# Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space 

Jelena Ausekle and Eve Oja( ${ }^{1}$ )


#### Abstract

Let $X$ and $Y$ be closed subspaces of the Lorentz sequence space $d(v, p)$ and the Orlicz sequence space $l_{M}$, respectively. It is proved that every bounded linear operator from $X$ to $Y$ is compact whenever $$
p>\beta_{M}:=\inf \left\{q>0: \inf \left\{M(\lambda t) / M(\lambda) t^{q}: 0<\lambda, t \leq 1\right\}>0\right\}
$$

As an application, the reflexivity of the space of bounded linear operators acting from $d(v, p)$ to $l_{M}$ is characterized.


1. For Banach spaces $X$ and $Y$, let $L(X, Y)$ be the Banach space of all bounded linear operators from $X$ to $Y$, and let $K(X, Y)$ denote its subspace of compact operators.

Let $1 \leq p, q<\infty$. By the classical Pitt's theorem (cf. e.g. [5, p. 76]), $K\left(l_{p}, l_{q}\right)=$ $L\left(l_{p}, l_{q}\right)$ whenever $p>q$. On the other hand, if $p \leq q$, then $K\left(l_{p}, l_{q}\right) \neq L\left(l_{p}, l_{q}\right)$ (because the formal identity map from $l_{p}$ to $l_{q}$ is clearly non-compact).

One of the closest analogues of the space $l_{p}$ is the Lorentz sequence space $d(v, p)$. Recall its definition. Let $v=\left(v_{k}\right)=\left(v_{k}\right)_{k=1}^{\infty}$ be a non-increasing sequence of positive numbers such that $v_{1}=1, \lim _{k} v_{k}=0$, and $\sum_{k=1}^{\infty} v_{k}=\infty$. The Lorentz sequence space $d(v, p)$ is the Banach space of all sequences of scalars $x=\left(\xi_{k}\right)$ for which

$$
\|x\|=\sup _{\pi}\left(\sum_{k=1}^{\infty} v_{k}\left|\xi_{\pi(k)}\right|^{p}\right)^{1 / p}<\infty
$$

where $\pi$ ranges over all permutations of the natural numbers $\mathbf{N}$.
(1) This research was partially supported by the Estonian Science Foundation Grant 3055.

The spaces $d(v, p)$ and $l_{p}$ are never isomorphic but they have similar properties. For example, every infinite-dimensional closed subspace of $l_{p}$ or $d(v, p)$ has a subspace which is isomorphic to $l_{p}$ (cf. e.g. [5, pp. 53, 177]). Background material on Lorentz sequence spaces can be found e.g. in [5].

In [6], E. Oja proved the following analogue of Pitt's theorem for the case of operators acting from $l_{p}$ to $d(v, q)$.

Theorem 1. (cf. [6]) Let $X$ and $Y$ be closed subspaces of $l_{p}$ and $d(v, q)$, respectively. If $p>q$ and $v \notin l_{p /(p-q)}$, then $K(X, Y)=L(X, Y)$. If $p>q$ and $v \in l_{p /(p-q)}$, then $K\left(l_{p}, d(v, q)\right) \neq L\left(l_{p}, d(v, q)\right)$.

Here again, if $p \leq q$, then $K\left(l_{p}, d(v, q)\right) \neq L\left(l_{p}, d(v, q)\right)$ because the formal identity map from $l_{p}$ to $d(v, q)$ is not compact.

We shall prove the analogue of Pitt's theorem for the case of operators acting from $d(v, p)$ to $l_{q}$. However, we shall do it in a much more general context, considering instead of the spaces $l_{q}$ their well-known generalizations-Orlicz sequence spaces $l_{M}$.

Recall the definition of Orlicz sequence spaces. An Orlicz function $M$ is a continuous convex function on $[0, \infty)$ such that $M(0)=0, M(t)>0$ if $t>0$, and $\lim _{t \rightarrow \infty} M(t)=\infty$. The Orlicz sequence space $l_{M}$ is the Banach space of all sequences of scalars $x=\left(\xi_{k}\right)$ such that $\sum_{k=1}^{\infty} M\left(\left|\xi_{k}\right| / \varrho\right)<\infty$, for some $\varrho=\varrho(x)>0$, under the norm

$$
\|x\|=\inf \left\{\varrho>0: \sum_{k=1}^{\infty} M\left(\left|\xi_{k}\right| / \varrho\right) \leq 1\right\}
$$

Denote

$$
\begin{aligned}
& \alpha_{M}=\sup \left\{q>0: \sup \left\{M(\lambda t) / M(\lambda) t^{q}: 0<\lambda, t \leq 1\right\}<\infty\right\}, \\
& \beta_{M}=\inf \left\{q>0: \inf \left\{M(\lambda t) / M(\lambda) t^{q}: 0<\lambda, t \leq 1\right\}>0\right\} .
\end{aligned}
$$

It is easily verified that $1 \leq \alpha_{M} \leq \beta_{M} \leq \infty$, and $\beta_{M}<\infty$ if and only if $M$ satisfies the $\Delta_{2}$-condition at zero, i.e. $\lim _{\sup _{t \rightarrow 0}} M(2 t) / M(t)<\infty$. This implies that $\lim \sup _{t \rightarrow 0} M(Q t) / M(t)<\infty$ for every positive number $Q$.

It is also easily checked that $l_{M}=l_{q}$ whenever $M(t)=t^{q}$, and, in this case, $\alpha_{M}=\beta_{M}=q$.

These and other necessary facts on Orlicz sequence spaces can be found e.g. in [5].
2. Let us state the main result of the present note.

Theorem 2. Let $X$ and $Y$ be closed subspaces of $d(v, p)$ and $l_{M}$, respectively. If $p>\beta_{M}$, then $K(X, Y)=L(X, Y)$.

The proof of Theorem 2 is based on the following result from the paper [1] by J. Ausekle and E. Oja. It uses the definition of $\alpha$-domination of sequences. Let $\alpha=\left(a_{k}\right)$ be a sequence of numbers, and let $\left(x_{k}\right)$ and $\left(y_{k}\right)$ be two sequences in some Banach spaces. We say that $\left(x_{k}\right) \alpha$-dominates $\left(y_{k}\right)$ if there exists $C>0$ such that

$$
\left\|\sum_{k=1}^{n} a_{k} y_{k}\right\| \leq C\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\| \quad \text { for all } n \in \mathbf{N}
$$

In this case, we write $\left(x_{k}\right)>_{\alpha}\left(y_{k}\right)$.
Proposition 3. (cf. [1]) Let $\alpha=\left(a_{k}\right)$ be a sequence of numbers. Let $\left(\varepsilon_{k}\right)$ and $\left(\varphi_{k}\right)$ be two sequences in some Banach spaces. Suppose that $\left(\varepsilon_{k}\right)$ does not $\alpha$-dominate $\left(\varphi_{k}\right)$. Let $\left(e_{k}\right)$ and $\left(f_{k}\right)$ be bases in Banach spaces $E$ and $F$, respectively. Suppose that $\left(\varepsilon_{k}\right) \alpha$-dominates any normalized block-basis $\left(u_{k}\right)$ of $\left(e_{k}\right)$ and any normalized block-basis $\left(v_{k}\right)$ of $\left(f_{k}\right)$ has a subsequence $\left(v_{n_{k}}\right)>_{\alpha}\left(\varphi_{k}\right)$. If $X$ and $Y$ are closed subspaces of $E$ and $F$, respectively, with $X^{*}$ being separable, then $K(X, Y)=L(X, Y)$.

Proof of Theorem 2. Let $q$ be such that $p>q \geq \beta_{M}$ and, for some $k>0$,

$$
\begin{equation*}
k t^{q} M(\lambda) \leq M(\lambda t), \quad 0<\lambda, t \leq 1 \tag{1}
\end{equation*}
$$

Put $\alpha=(1,1, \ldots)$. Denote by $\left(\varepsilon_{k}\right)$ and $\left(\varphi_{k}\right)$ the unit vector bases in $l_{p}$ and $l_{q}$, respectively. First of all, notice that $\left(\varepsilon_{k}\right)$ does not $\alpha$-dominate ( $\varphi_{k}$ ), because

$$
\left\|\sum_{k=1}^{n} \varphi_{k}\right\|_{l_{q}}=n^{1 / q}, \quad\left\|\sum_{k=1}^{n} \varepsilon_{k}\right\|_{l_{p}}=n^{1 / p}
$$

and $n^{1 / q-1 / p} \rightarrow \infty$.
Since $d(v, p)$ is reflexive and separable, $X$ is also reflexive and separable, and therefore $X^{*}$ is separable.

For completing the proof of the theorem, it remains to show that, in Proposition 3, one can take $E=d(v, p)$ and $F=l_{M}$ with their unit vector bases $\left(e_{k}\right)$ and $\left(f_{k}\right)$, respectively.

Let $\left(u_{k}\right)$ be a normalized block-basis of the unit vector basis $\left(e_{k}\right)$ of $d(v, p)$. It is easily checked (cf. e.g. [5, p. 177]) that

$$
\left\|\sum_{k=1}^{n} u_{k}\right\|_{d(v, p)} \leq n^{1 / p}=\left\|\sum_{k=1}^{n} \varepsilon_{k}\right\|_{l_{p}} \quad \text { for all } n \in \mathbf{N}
$$

Hence $\left(\varepsilon_{k}\right)>_{\alpha}\left(u_{k}\right)$.
Finally, we show that $\left(v_{k}\right)>_{\alpha}\left(\varphi_{k}\right)$ for any normalized block-basis $\left(v_{k}\right)$ of the unit vector basis $\left(f_{k}\right)$ of $l_{M}$, i.e. there exists $C>0$ such that

$$
\begin{equation*}
\nu_{n}:=\left\|\sum_{k=1}^{n} v_{k}\right\|_{l_{M}} \geq C\left\|\sum_{k=1}^{n} \varphi_{k}\right\|_{l_{q}}=C n^{1 / q} \quad \text { for all } n \in \mathbf{N} \tag{2}
\end{equation*}
$$

Let

$$
v_{k}=\sum_{j=m_{k}+1}^{m_{k+1}} c_{j} f_{j}, \quad k \in \mathbf{N}
$$

Since

$$
\nu_{n}=\inf \left\{\varrho>0: \sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M\left(\left|c_{j}\right| / \varrho\right) \leq 1\right\}
$$

we have $\nu_{1} \leq \nu_{2} \leq \ldots$ and

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M\left(\left|c_{j}\right| / \nu_{n}\right)=1 \quad \text { for all } n \in \mathbf{N} \tag{3}
\end{equation*}
$$

We also have that

$$
\begin{equation*}
\sum_{j=m_{k}+1}^{m_{k+1}} M\left(\left|c_{j}\right|\right)=1 \quad \text { for all } k \in \mathbf{N} \tag{4}
\end{equation*}
$$

because $\left\|v_{k}\right\|_{l_{M}}=1$. It follows from (4) that $\left|c_{j}\right| \leq \gamma, j \in \mathbf{N}$, for some $\gamma \geq 1$.
Note that $\nu_{n} \rightarrow \infty$. In fact, if $\nu_{n} \leq Q, n \in \mathbf{N}$, for some $Q>0$, then we also could assume that $\left|c_{j}\right| \leq Q, j \in \mathbf{N}$. Since $\beta_{M}<\infty$, the function $M$ satisfies the $\Delta_{2}$-condition at zero. Hence, for some $K>0$,

$$
M(Q t) \leq K M(t), \quad 0 \leq t \leq 1
$$

Consequently, by (3) and (4), we would have that

$$
\begin{aligned}
1 & =\sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M\left(\left|c_{j}\right| / \nu_{n}\right) \geq \sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M\left(\left|c_{j}\right| / Q\right) \\
& \geq \frac{1}{K} \sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M\left(\left|c_{j}\right|\right)=\frac{n}{K} \quad \text { for all } n \in \mathbf{N}
\end{aligned}
$$

a contradiction.

Since $\nu_{1} \leq \nu_{2} \leq \ldots$ and $\nu_{n} \rightarrow \infty$, for the proof of (2), it is sufficient to consider those $n \in \mathbf{N}$ for which $\nu_{n} \geq \gamma$. In this case, by (1) and the $\Delta_{2}$-condition at zero,

$$
M\left(\left|c_{j}\right| / \nu_{n}\right)=M\left(\left(\left|c_{j}\right| / \gamma\right)\left(\gamma / \nu_{n}\right)\right) \geq k M\left(\left|c_{j}\right| / \gamma\right) \frac{\gamma^{q}}{\nu_{n}^{q}} \geq \frac{k \gamma^{q}}{K \nu_{n}^{q}} M\left(\left|c_{j}\right|\right) \quad \text { for all } j \in \mathbf{N}
$$

for some $K>0$. It follows from (3) and (4) that

$$
1 \geq \sum_{k=1}^{n} \frac{k \gamma^{q}}{K \nu_{n}^{q}} \sum_{j=m_{k}+1}^{m_{k+1}} M\left(\left|c_{j}\right|\right)=\frac{k \gamma^{q}}{K \nu_{n}^{q}} n .
$$

This proves (2). The proof is complete.
Remark. In [1], we proved the equality $K(X, Y)=L(X, Y)$ for closed subspaces $X \subset d(v, p), Y \subset d(w, q)$ with $p>q, w \notin l_{p /(p-q)}$ and also for closed subspaces $X \subset h_{M}$, $Y \subset l_{N}$ with $\alpha_{M}>\beta_{N}$.
3. The next result shows that the condition $p>\beta_{M}$ is essential in Theorem 2.

Theorem 4. Let $X$ be an infinite-dimensional closed subspace of $d(v, p)$. If $p \leq \beta_{M}$, then $K\left(X, l_{M}\right) \neq L\left(X, l_{M}\right)$.

The proof of Theorem 4 uses the following easy observation whose proof is straightforward.

Proposition 5. Let $X, Y, Z, W$ be Banach spaces and $K(X, Y)=L(X, Y)$. Suppose that $Z$ is isomorphic to a complemented subspace of $X$ and $W$ is isomorphic to a subspace of $Y$. Then $K(Z, W)=L(Z, W)$.

Proof of Theorem 4. Assume for contradiction that $K\left(X, l_{M}\right)=L\left(X, l_{M}\right)$. Set $q=\beta_{M}$. Since $q \in\left[\alpha_{M}, \beta_{M}\right], l_{M}$ contains a subspace isomorphic to $l_{q}$ (see [5, p. 143]). It is also known (see e.g. [5, p. 177]) that every infinite-dimensional closed subspace of $d(v, p)$ contains a complemented subspace isomorphic to $l_{p}$. Therefore, we get from Proposition 5 that $K\left(l_{p}, l_{q}\right)=L\left(l_{p}, l_{q}\right)$. Since $p \leq q$, this is a contradiction and we have $K\left(X, l_{M}\right) \neq L\left(X, l_{M}\right)$.

Since every infinite-dimensional closed subspace of $l_{q}$ contains a subspace isomorphic to $l_{q}$ (cf. e.g. [5, p. 53]), the following is clear from the proof of Theorem 4.

Corollary 6. Let $X$ and $Y$ be infinite-dimensional closed subspaces of $d(v, p)$ and $l_{q}$, respectively. If $p \leq q$, then $K(X, Y) \neq L(X, Y)$.

Remark. In Theorem 4, the space $l_{M}$ cannot be replaced by its infinite-dimensional closed subspace (cf. Theorem 2 and Corollary 6). For example, let $l_{M}$ be
an Orlicz space such that $\alpha_{M}<\beta_{M}$, and let $p \in\left(\alpha_{M}, \beta_{M}\right)$. Putting $q=\alpha_{M}$, we get that $l_{M}$ contains a subspace $Y$ isomorphic to $l_{q}$. We also know that $d(v, p)$ contains a complemented subspace $X$ isomorphic to $l_{p}$. Since $q<p$, by Pitt's theorem, $K\left(l_{p}, l_{q}\right)=L\left(l_{p}, l_{q}\right)$. Hence $K(X, Y)=L(X, Y)$.
4. We conclude with some applications to the reflexivity of spaces of operators acting from $d(v, p)$ to $l_{M}$. Recall that $d(v, p)$ is reflexive if and only if $p>1$. Recall also that $l_{M}$ is reflexive if and only if both $M$ and its complementary Orlicz function $M^{*}$ satisfy the $\Delta_{2}$-condition at zero. This means that $\beta_{M}<\infty$ and $\alpha_{M}>1$.

We shall apply the following result proved by S. Heinrich [3] and independently by N. J. Kalton [4]: if $X$ and $Y$ are reflexive, and $K(X, Y)=L(X, Y)$, then $L(X, Y)$ is reflexive. This result, together with Theorem 2, yields Corollaries 7 and 8 below.

Corollary 7. Let $X$ be a closed subspace of $d(v, p)$, and let $Y$ be a reflexive subspace of $l_{M}$. If $p>\beta_{M}$, then $L(X, Y)$ is reflexive.

Corollary 8. Let $X$ and $Y$ be closed subspaces of $d(v, p)$ and $l_{q}$, respectively. If $p>q>1$, then $L(X, Y)$ is reflexive.

We now come to the main application of this note.
Theorem 9. The following assertions are equivalent:
(a) $L\left(d(v, p), l_{M}\right)$ is reflexive,
(b) $K\left(d(v, p), l_{M}\right)$ is reflexive,
(c) $1<\alpha_{M} \leq \beta_{M}<p$.

Proof. (a) $\Rightarrow$ (b) This is true because the reflexivity passes to closed subspaces.
(b) $\Rightarrow$ (c) Since $K\left(d(v, p), l_{M}\right)$ is reflexive, its subspace $l_{M}$ is also reflexive. Hence $\alpha_{M}>1$. It is well known (cf. e.g. [2, p. 247]) that if $X$ and $Y$ are Banach spaces, one of them having the approximation property, and $K(X, Y)$ is reflexive, then $K(X, Y)=L(X, Y)$. This implies $K\left(d(v, p), l_{M}\right)=L\left(d(v, p), l_{M}\right)$. Therefore, $\beta_{M}<p$ by Theorem 4.
(c) $\Rightarrow$ (a) This is clear from Corollary 7 because $\alpha_{M}>1$ and $\beta_{M}<p$ imply the reflexivity of $l_{M}$.

The next corollary is immediate from Theorem 9.
Corollary 10. The following assertions are equivalent:
(a) $L\left(d(v, p), l_{q}\right)$ is reflexive,
(b) $K\left(d(v, p), l_{q}\right)$ is reflexive,
(c) $1<q<p$.

The last result can be derived from Theorem 1 similarly to the proof of Theorem 9. We include it for comparison with Corollary 10.

Theorem 11. The following assertions are equivalent:
(a) $L\left(l_{p}, d(w, q)\right)$ is reflexive,
(b) $K\left(l_{p}, d(w, q)\right)$ is reflexive,
(c) $1<q<p$ and $w \notin l_{p /(p-q)}$.

## References

1. Ausekle, J. A. and Oja, E. F., Pitt's theorem for the Lorentz and Orlicz sequence spaces, Mat. Zametki 61 (1997), 18-25 (Russian). English transl.: Math. Notes 61 (1997), 16-21.
2. Diestel, J. and Uhl, J. J., Jr, Vector Measures, Amer. Math. Soc., Providence, R. I., 1977.
3. Heinrich, S., The reflexivity of the Banach space $L(E, F)$, Funktsional. Anal. $i$ Prilozhen. 8 (1974), 97-98 (Russian). English transl.: Functional Anal. Appl. 8 (1974), 186-187.
4. Kalton, N. J., Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
5. Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I. Sequence Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
6. OJA, E., On $M$-ideals of compact operators and Lorentz sequence spaces, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 40 (1991), 31-36, 62.

Received June 12, 1997

Jelena Ausekle
Faculty of Mathematics
Tartu University
Vanemuise 46
EE-2400 Tartu
Estonia
email: jausekle@math.ut.ee
Eve Oja
Faculty of Mathematics
Tartu University
Vanemuise 46
EE-2400 Tartu
Estonia
email: eveoja@math.ut.ee

