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Compactness  of operators acting 
from a Lorentz sequence space 

to an Orlicz sequence space 

Jelena Ausekle and Eve Oja(1) 

A b s t r a c t .  Let  X and  Y be closed subspaces  of  the  Lorentz  sequence  space  d(v,p) and  t he  

Orlicz sequence  space IM, respectively. It  is proved t h a t  every b o u n d e d  linear opera tor  f rom X to 

Y is compac t  whenever  

P > fi/M :=  inf{q > 0: inf{M()~t)/M()~)tq: 0 < ,~, t < 1} > 0}. 

As an  appl icat ion,  t he  reflexivity of  the  space  of b o u n d e d  linear opera tors  ac t ing  f rom d(v,p) to 

lM is character ized.  

1. For Bausch spaces X and Y, let L(X, Y) be the Banach space of all bounded 
linear operators from X to Y, and let K ( X , Y )  denote its subspace of compact  

operators. 
Let l<_p, q<oc.  By the classical Pitt's theorem (cf. e.g. [5, p. 76]), K(Ip, lq)= 

L(lp, lv) whenever p>q. On the other hand, if p<_q, then K(lp, lq)~L(lp, lq) (be- 
cause the formal identity map from l v to lq is clearly non-compact).  

One of the closest analogues of the space lp is the Lorentz sequence space d(v, p). 
V oo Recall its definition. Let v =  (vk)= ( k)k 1 be a non-increasing sequence of positive 

numbers such that  vl = 1, limk vk =0,  and ~k~_l vk =oc .  The Lorentz sequence space 
d(v, p) is the Bausch space of all sequences of scalars x =  ({k) for which 

Ilxll sup ~kL~(k)l p\I/p 
7r \ k = l  

where 7c ranges over all permutat ions of the natural  numbers N. 

(1) Th i s  research was par t ia l ly  suppo r t ed  by the  Es ton i an  Science Founda t i on  Gran t  3055. 
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The spaces d(v, p) and Ip a r e  never isomorphic but they have similar proper- 

ties. For example, every infinite-dimensional closed subspace of Ip or d(v, p) has a 
subspace which is isomorphic to Ip (of. e.g. [5, pp. 53, 177]). Background material  

on Lorentz sequence spaces can be found e.g. in [5]. 

In [6], E. Oja proved the following analogue of Pi t t ' s  theorem for the case of 

operators acting from lp to d(v, q). 

T h e o r e m  1. (cf. [6]) Let X and Y be closed subspaces of lp and d(v, q), re- 
spectively. If p>q and vr q), then K(X,  Y ) - L ( X ,  Y). If p>q and vElp/(p_q), 
then K(Ip, d(v, q))r d(v, q)). 

Here again, if p<q, then K(Ip, d(v, q)) r d(v, q)) because the formal iden- 

t i ty map from Ip to d(v, q) is not compact.  

We shall prove the analogue of P i t t ' s  theorem for the case of operators acting 

from d(v,p) to lq. However, we shall do it in a much more general context, con- 
sidering instead of the spaces lq their well-known generalizations Orlicz sequence 

spaces 1M. 
Recall the definition of Orlicz sequence spaces. An Orlicz function M is a 

continuous convex function on [0, eo) such tha t  M(0 )=0 ,  M ( t ) > 0  if t>0 ,  and 
limt__,~ M ( t ) = o c .  The Orlicz sequence space IM is the Banach space of all sequences 
of scalars x=(~k)  such that  ~k~_l M(l~kl/~))<oc, for some p = ~ ( x ) > 0 ,  under the 

norm 

[[xll=inf ~)>0: M ( l ~ k l / e ) < l  . 
k=l  

Denote 

aM = sup{q > 0: sup{M()~t)/M(A)tq: 0 < ~, t <_ 1} < oc}, 

~M = inf{q > 0: inf{M()~t)/M(A)tq: 0 < ~, t < 1} > 0}. 

It  is easily verified that  I~OZM~flM~CX?, and flM<OC if and only if M sat- 
isfies the A2-condition at zero, i.e. lim supt__. 0 M(2t)/M(t)<cc. This implies that  
lira supt_0 M(Qt)/M(t)<oc for every positive number Q. 

It  is also easily checked that  lM=lq whenever M(t)=tq, and, in this case, 

aM =tiM--q.  
These and other necessary facts on Orlicz sequence spaces can be found e.g. 

in 

2. Let us state the main result of the present note. 
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T h e o r e m  2. Let X and Y be closed subspaces of d(v,p) and IM, respectively. 
If p>13M, then K(X ,  Y ) = L ( X ,  Y).  

The proof of Theorem 2 is based on the following result from the paper [1] by 
J. Ausekle and E. Oja. It uses the definition of a-domination of sequences. Let 
a= (aL)  be a sequence of numbers, and let (xk) and (YL) be two sequences in some 
Banach spaces. We say that  (xL) a-dominates (YL) if there exists C > 0  such that  

akyL <<_ C akxL for all n E N. 
L=I  

In this case, we write (xk)>~(yL). 

P r o p o s i t i o n  3. (cf. [1]) Let c~=(aL) be a sequence of numbers. Let (ok) 
and (~L) be two sequences in some Banach spaces. Suppose that (eL) does not 
a-dominate (~L). Let (eL) and (fL) be bases in Banach spaces E and F, respec- 
tively. Suppose that (eL) a-dominates any normalized block-basis (uL) of (ek) and 
any normalized block-basis (vL) of (fL) has a subsequence (vnk)>~ (~L). If X and 
Y are closed subspaces of E and F, respectively, with X* being separable, then 
K ( X , Y ) = L ( X , Y ) .  

Proof of Theorem 2. Let q be such that  p>q>>t3A4 and, for some k>0,  

(1) ktqM(A) < M(At), 0 < A, t _< 1. 

Put  a = ( 1 ,  1, ...). Denote by (eL) and (PL) the refit vector bases in lp and lq, 
respectively. First of all, notice that  (eL) does not a-dominate (PL), because 

~ _ ~ k  nl/q' ? ~ = _ cL = 

and nl/q-1/P--+~. 
Since d(v,p) is reflexive and separable, X is also reflexive and separable, and 

therefore X* is separable. 
For completing the proof of the theorem, it remains to show that~ in Propo- 

sition 3, one can take E--d(v,p) and F IM with their unit vector bases (eL) and 
(fL), respectively. 

Let (uL) be a normalized block-basis of the unit vector basis (ek) of d(v, p). It 
is easily checked (cf. e.g. [5, p. 177]) that  

Uk < n lip = for all n e N. 
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Hence (ok) >~ (uk). 
Finally, we show that  (vk)>~ (Pk) for any normalized block-basis (vk) of the 

unit vector basis (fk) of IM, i.e. there exists C>O such that  

(2) 
n n 

~'n : =  IIk=lE vk IllM > C ~_ ~k lq = Cnl/q for all  n E N .  

Let 

Since 

m k + l  

vk= E cjfj, 
j=mkq-1 

k c N .  

u ~ = i n f  Q>0:  E M(Icjl/v)<-] ' 
k=l  j=rak+Y 

w e  h a v e  //1 ~/22 ~--~". a n d  

(3) ~ M(Icyl///n)=l for a l l n e N .  
k=l  j=mk +1 

We also have that  

Tr},k+ 1 

(4) M(l jl)--1 
j = m k + l  

for all k E N, 

because Ilv~ll~M=l ~t fonows from (4) that  icj{<7, jeN, for some 7>1.  
Note that //,~--~oo. In fact, if//~_<Q, nCN,  for some Q>0,  then we also could 

assume that  I c j I< Q, j c N. Since/3M < co, the function M satisfies the A2-condition 
at zero. Hence, for some K > 0 ,  

M(Qt)<_KM(t), O<t<l. 

Consequently, by (3) and (4), we would have that  

?i,?k + 1 fl m ~  1 

1= }2 M(Icjl/Q) 
k : l  j = m k + l  k=l  j=mk§ 

77~k4_ 1 
1 n 

> - K  E M ( [ e J l ) = ~  for a l l n { N ,  
k l j ~ T n k + l  

a contradiction. 
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Since vl<_v2<.., and v,--+oc, for the proof of (2), it is sufficient to consider 
those n C N  for which v,~_> 7. In this case, by (1) and the A2-condition at zero, 

~q k 7  q M([cj I/v~) = M((Icy I/7)(7/~'n)) > kM(Icy I/7) ~q -> ~ M ( I c j  I) for all j C N 

for some K > 0 .  It follows from (3) and (4) that  

m k + l  

1 ) kTq kTq 
Kv~ E M(tcJt)= r~Tig-.qn" 

- Kvn 
k = l  2 = m k + l  

This proves (2). The proof is complete. [] 

Remark. In [1], we proved the equality K(X, Y)=L(X,  Y) for closed subspaees 
X C d(v,p), Y cd(w, q) with p>q, w~lp/(p q) and also for closed subspaees X ChM, 
YCIN with aN>fiN. 

3. The next result shows that  the condition p>/3 M is essential in Theorem 2. 

T h e o r e m  4. Let X be an infinite-dimensional closed subspace of d(v,p). If 
P<_gM, then K(X, 1M)r l . ) .  

The proof of Theorem 4 uses the following easy observation whose proof is 
straightforward. 

P r o p o s i t i o n  5. Let X,  Y, Z, W be Banach spaces and K(X, Y)=L(X,  Y). 
Suppose that Z is isomorphic to a complemented subspace of X and W is isomor- 
phic to a subspace of Y. Then K(Z, W)=L(Z, W). 

Proof of Theorem 4. Assume for contradiction that  K(X,  IM)=L(X, lM). Set 
q=/3M. Since qE [aM,/~M], IM contains a subspace isomorphic to lq (see [5, p. 143]). 
It is also known (see e.g. [5, p. 177]) that  every infinite-dimensional closed subspace 
of d(v, p) contains a complemented subspace isomorphic to lp. Therefore, we get 
from Proposition 5 that  K(Ip, lq)=L(lp, lq). Since p<q, this is a contradiction and 
we have K(X, I~) r  IM). [] 

Since every infinite-dimensional closed subspace of lq contains a subspace iso- 
morphic to lq (cf. e.g. [5, p. 53]), the following is clear from the proof of Theorem 4. 

C o r o l l a r y  6. Let X and Y be infinite-dimensional closed subspaces of d(v, p) 
and lq, respectively. If p<q, then K(X, Y )#L(X ,  Y). 

Remark. In Theorem 4, the space tM cannot be replaced by its infinite-dimen- 
sional closed subspace (cf. Theorem 2 and Corollary 6). For example, let IM be 
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an Orlicz space such that  OZM</~M, and let pC (aM,/~M). Putt ing q=aM, we get 
that  1M contains a subspace Y isomorphic to lq. We also know that  d(v,p) con- 
tains a complemented subspace X isomorphic t o  lp. Since q<p, by Pit t ' s  theorem, 
K(lp, lq)=L(lp, lq). Hence K(X,  Y )=L(X ,  Y). 

4. We conclude with some applications to the reflexivity of spaces of operators 
acting from d(v,p) to 1M. Recall that d(v,p) is reflexive if and only if p > l .  Recall 
also that  1M is reflexive if and only if both M and its complementary Orlicz function 
M* satisfy the A2-condition at zero. This means that  /3M<CX~ and c~M>I. 

We shall apply the following result proved by S. Heinrich [3] and independently 
byN.  J. Kalton [4]: if X and Y are reflexive, and K ( X , Y )  L (X ,Y ) ,  thenL(X,Y)  
is reflexive. This result, together with Theorem 2, yields Corollaries 7 and 8 below. 

C o r o l l a r y  7. Let X be a closed subspace of d(v,p), and let Y be a reflexive 
subspace of lM. If p>/3M, then L(X, Y) is reflexive. 

C o r o l l a r y  8. Let X and Y be closed subspaces of d(v,p) and lq, respectively. 
If p>q> l, then L (X ,Y )  is reflexive. 

We now come to the main application of this note. 

T h e o r e m  9. The following assertions are equivalent: 
(a) L(d(v,p),lM) is reflexive, 
(b) K(d(v,p), l~) is reflexive, 
(c) I<C~M<_/~M<p. 

Pro@ (a) ~ (b) This is true because the reflexivity passes to closed subspaces. 
(b) ~ (c) Since K(d(v,p),IM) is reflexive, its subspace IM is also reflexive. 

Hence a M > l .  It is well known (cf. e.g. [2, p. 247]) that  if X and Y are Banach 
spaces, one of them having the approximation property, and K(X,  Y) is reflexive, 
then K ( X , Y ) = L ( X , Y ) .  This implies K(d(v,p),IM)=L(d(v,p),lM). Therefore, 
/3M <p  by Theorem 4. 

(c) ~ (a) This is clear from Corollary 7 because a N  > 1 and/~M <P imply the 
reflexivity of IM. [] 

The next corollary is immediate from Theorem 9. 

C o r o l l a r y  10. The following assertions are equivalent: 
(a) L(d(v,p),lq) is reflexive, 
(b) K(d(v,p), lq) is reflexive, 
(c) l<q<p.  

The last result can be derived from Theorem 1 similarly to the proof of Theo- 
rem 9. We include it for comparison with Corollary 10. 
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T h e o r e m  11.  The following assertions are equivalent: 

(a) L(l , d(w, q)) is reJ exive, 
(b) K(l , q)) is reflexive, 
(c) l < q < p  and w~Ip/(p  q). 
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