Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space

Jelena Ausekle and Eve $Oja(^1)$

Abstract. Let X and Y be closed subspaces of the Lorentz sequence space d(v, p) and the Orlicz sequence space l_M , respectively. It is proved that every bounded linear operator from X to Y is compact whenever

$$p>\beta_M:=\inf\{q>0:\inf\{M(\lambda t)/M(\lambda)t^q:0<\lambda,t\leq 1\}>0\}.$$

As an application, the reflexivity of the space of bounded linear operators acting from d(v, p) to l_M is characterized.

1. For Banach spaces X and Y, let L(X, Y) be the Banach space of all bounded linear operators from X to Y, and let K(X, Y) denote its subspace of compact operators.

Let $1 \le p, q < \infty$. By the classical *Pitt's theorem* (cf. e.g. [5, p. 76]), $K(l_p, l_q) = L(l_p, l_q)$ whenever p > q. On the other hand, if $p \le q$, then $K(l_p, l_q) \ne L(l_p, l_q)$ (because the formal identity map from l_p to l_q is clearly non-compact).

One of the closest analogues of the space l_p is the Lorentz sequence space d(v, p). Recall its definition. Let $v=(v_k)=(v_k)_{k=1}^{\infty}$ be a non-increasing sequence of positive numbers such that $v_1=1$, $\lim_k v_k=0$, and $\sum_{k=1}^{\infty} v_k=\infty$. The Lorentz sequence space d(v, p) is the Banach space of all sequences of scalars $x=(\xi_k)$ for which

$$||x|| = \sup_{\pi} \left(\sum_{k=1}^{\infty} v_k |\xi_{\pi(k)}|^p \right)^{1/p} < \infty,$$

where π ranges over all permutations of the natural numbers **N**.

⁽¹⁾ This research was partially supported by the Estonian Science Foundation Grant 3055.

The spaces d(v, p) and l_p are never isomorphic but they have similar properties. For example, every infinite-dimensional closed subspace of l_p or d(v, p) has a subspace which is isomorphic to l_p (cf. e.g. [5, pp. 53, 177]). Background material on Lorentz sequence spaces can be found e.g. in [5].

In [6], E. Oja proved the following analogue of Pitt's theorem for the case of operators acting from l_p to d(v,q).

Theorem 1. (cf. [6]) Let X and Y be closed subspaces of l_p and d(v,q), respectively. If p > q and $v \notin l_{p/(p-q)}$, then K(X,Y) = L(X,Y). If p > q and $v \in l_{p/(p-q)}$, then $K(l_p, d(v,q)) \neq L(l_p, d(v,q))$.

Here again, if $p \leq q$, then $K(l_p, d(v, q)) \neq L(l_p, d(v, q))$ because the formal identity map from l_p to d(v, q) is not compact.

We shall prove the analogue of Pitt's theorem for the case of operators acting from d(v, p) to l_q . However, we shall do it in a much more general context, considering instead of the spaces l_q their well-known generalizations—Orlicz sequence spaces l_M .

Recall the definition of Orlicz sequence spaces. An Orlicz function M is a continuous convex function on $[0,\infty)$ such that M(0)=0, M(t)>0 if t>0, and $\lim_{t\to\infty} M(t)=\infty$. The Orlicz sequence space l_M is the Banach space of all sequences of scalars $x=(\xi_k)$ such that $\sum_{k=1}^{\infty} M(|\xi_k|/\varrho) < \infty$, for some $\varrho=\varrho(x)>0$, under the norm

$$||x|| = \inf \left\{ \varrho > 0 : \sum_{k=1}^{\infty} M(|\xi_k|/\varrho) \le 1 \right\}.$$

Denote

$$\begin{split} &\alpha_M = \sup\{q > 0 : \sup\{M(\lambda t)/M(\lambda)t^q : 0 < \lambda, t \le 1\} < \infty\}, \\ &\beta_M = \inf\{q > 0 : \inf\{M(\lambda t)/M(\lambda)t^q : 0 < \lambda, t \le 1\} > 0\}. \end{split}$$

It is easily verified that $1 \le \alpha_M \le \beta_M \le \infty$, and $\beta_M < \infty$ if and only if M satisfies the Δ_2 -condition at zero, i.e. $\limsup_{t\to 0} M(2t)/M(t) < \infty$. This implies that $\limsup_{t\to 0} M(Qt)/M(t) < \infty$ for every positive number Q.

It is also easily checked that $l_M = l_q$ whenever $M(t) = t^q$, and, in this case, $\alpha_M = \beta_M = q$.

These and other necessary facts on Orlicz sequence spaces can be found e.g. in [5].

2. Let us state the main result of the present note.

Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space 235

Theorem 2. Let X and Y be closed subspaces of d(v, p) and l_M , respectively. If $p > \beta_M$, then K(X, Y) = L(X, Y).

The proof of Theorem 2 is based on the following result from the paper [1] by J. Ausekle and E. Oja. It uses the definition of α -domination of sequences. Let $\alpha = (a_k)$ be a sequence of numbers, and let (x_k) and (y_k) be two sequences in some Banach spaces. We say that $(x_k) \alpha$ -dominates (y_k) if there exists C > 0 such that

$$\left\|\sum_{k=1}^{n} a_k y_k\right\| \le C \left\|\sum_{k=1}^{n} a_k x_k\right\| \quad \text{for all } n \in \mathbf{N}.$$

In this case, we write $(x_k) >_{\alpha} (y_k)$.

Proposition 3. (cf. [1]) Let $\alpha = (a_k)$ be a sequence of numbers. Let (ε_k) and (φ_k) be two sequences in some Banach spaces. Suppose that (ε_k) does not α -dominate (φ_k) . Let (e_k) and (f_k) be bases in Banach spaces E and F, respectively. Suppose that $(\varepsilon_k) \alpha$ -dominates any normalized block-basis (u_k) of (e_k) and any normalized block-basis (v_k) of (f_k) has a subsequence $(v_{n_k}) >_{\alpha} (\varphi_k)$. If X and Y are closed subspaces of E and F, respectively, with X^* being separable, then K(X,Y) = L(X,Y).

Proof of Theorem 2. Let q be such that $p > q \ge \beta_M$ and, for some k > 0,

(1)
$$kt^q M(\lambda) \le M(\lambda t), \quad 0 < \lambda, t \le 1.$$

Put $\alpha = (1, 1, ...)$. Denote by (ε_k) and (φ_k) the unit vector bases in l_p and l_q , respectively. First of all, notice that (ε_k) does not α -dominate (φ_k) , because

$$\left\|\sum_{k=1}^n arphi_k
ight\|_{l_q} = n^{1/q}, \quad \left\|\sum_{k=1}^n arepsilon_k
ight\|_{l_p} = n^{1/p},$$

and $n^{1/q-1/p} \rightarrow \infty$.

Since d(v, p) is reflexive and separable, X is also reflexive and separable, and therefore X^* is separable.

For completing the proof of the theorem, it remains to show that, in Proposition 3, one can take E=d(v,p) and $F=l_M$ with their unit vector bases (e_k) and (f_k) , respectively.

Let (u_k) be a normalized block-basis of the unit vector basis (e_k) of d(v, p). It is easily checked (cf. e.g. [5, p. 177]) that

$$\left\|\sum_{k=1}^{n} u_{k}\right\|_{d(v,p)} \leq n^{1/p} = \left\|\sum_{k=1}^{n} \varepsilon_{k}\right\|_{l_{p}} \quad \text{for all } n \in \mathbf{N}.$$

Hence $(\varepsilon_k) >_{\alpha} (u_k)$.

Finally, we show that $(v_k) >_{\alpha} (\varphi_k)$ for any normalized block-basis (v_k) of the unit vector basis (f_k) of l_M , i.e. there exists C > 0 such that

(2)
$$\nu_n := \left\| \sum_{k=1}^n v_k \right\|_{l_M} \ge C \left\| \sum_{k=1}^n \varphi_k \right\|_{l_q} = C n^{1/q} \quad \text{for all } n \in \mathbf{N}.$$

Let

$$v_k = \sum_{j=m_k+1}^{m_{k+1}} c_j f_j, \quad k \in \mathbf{N}.$$

Since

$$\nu_n = \inf \left\{ \varrho > 0 : \sum_{k=1}^n \sum_{j=m_k+1}^{m_{k+1}} M(|c_j|/\varrho) \le 1 \right\},\,$$

we have $\nu_1 \leq \nu_2 \leq \dots$ and

(3)
$$\sum_{k=1}^{n} \sum_{j=m_k+1}^{m_{k+1}} M(|c_j|/\nu_n) = 1 \text{ for all } n \in \mathbf{N}$$

We also have that

(4)
$$\sum_{j=m_k+1}^{m_{k+1}} M(|c_j|) = 1 \quad \text{for all } k \in \mathbf{N},$$

because $||v_k||_{l_M} = 1$. It follows from (4) that $|c_j| \leq \gamma, j \in \mathbb{N}$, for some $\gamma \geq 1$.

Note that $\nu_n \to \infty$. In fact, if $\nu_n \leq Q$, $n \in \mathbb{N}$, for some Q > 0, then we also could assume that $|c_j| \leq Q$, $j \in \mathbb{N}$. Since $\beta_M < \infty$, the function M satisfies the Δ_2 -condition at zero. Hence, for some K > 0,

$$M(Qt) \le KM(t), \quad 0 \le t \le 1.$$

Consequently, by (3) and (4), we would have that

$$1 = \sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M(|c_{j}|/\nu_{n}) \ge \sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M(|c_{j}|/Q)$$
$$\ge \frac{1}{K} \sum_{k=1}^{n} \sum_{j=m_{k}+1}^{m_{k+1}} M(|c_{j}|) = \frac{n}{K} \quad \text{for all } n \in \mathbf{N},$$

a contradiction.

236

Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space 237

Since $\nu_1 \leq \nu_2 \leq ...$ and $\nu_n \rightarrow \infty$, for the proof of (2), it is sufficient to consider those $n \in \mathbf{N}$ for which $\nu_n \geq \gamma$. In this case, by (1) and the Δ_2 -condition at zero,

$$M(|c_j|/\nu_n) = M((|c_j|/\gamma)(\gamma/\nu_n)) \ge kM(|c_j|/\gamma)\frac{\gamma^q}{\nu_n^q} \ge \frac{k\gamma^q}{K\nu_n^q}M(|c_j|) \quad \text{for all } j \in \mathbf{N}$$

for some K>0. It follows from (3) and (4) that

$$1 \ge \sum_{k=1}^{n} \frac{k\gamma^{q}}{K\nu_{n}^{q}} \sum_{j=m_{k}+1}^{m_{k+1}} M(|c_{j}|) = \frac{k\gamma^{q}}{K\nu_{n}^{q}} n.$$

This proves (2). The proof is complete. \Box

Remark. In [1], we proved the equality K(X,Y) = L(X,Y) for closed subspaces $X \subset d(v,p), Y \subset d(w,q)$ with $p > q, w \notin l_{p/(p-q)}$ and also for closed subspaces $X \subset h_M$, $Y \subset l_N$ with $\alpha_M > \beta_N$.

3. The next result shows that the condition $p > \beta_M$ is essential in Theorem 2.

Theorem 4. Let X be an infinite-dimensional closed subspace of d(v, p). If $p \leq \beta_M$, then $K(X, l_M) \neq L(X, l_M)$.

The proof of Theorem 4 uses the following easy observation whose proof is straightforward.

Proposition 5. Let X, Y, Z, W be Banach spaces and K(X,Y)=L(X,Y). Suppose that Z is isomorphic to a complemented subspace of X and W is isomorphic to a subspace of Y. Then K(Z,W)=L(Z,W).

Proof of Theorem 4. Assume for contradiction that $K(X, l_M) = L(X, l_M)$. Set $q = \beta_M$. Since $q \in [\alpha_M, \beta_M]$, l_M contains a subspace isomorphic to l_q (see [5, p. 143]). It is also known (see e.g. [5, p. 177]) that every infinite-dimensional closed subspace of d(v, p) contains a complemented subspace isomorphic to l_p . Therefore, we get from Proposition 5 that $K(l_p, l_q) = L(l_p, l_q)$. Since $p \leq q$, this is a contradiction and we have $K(X, l_M) \neq L(X, l_M)$. \Box

Since every infinite-dimensional closed subspace of l_q contains a subspace isomorphic to l_q (cf. e.g. [5, p. 53]), the following is clear from the proof of Theorem 4.

Corollary 6. Let X and Y be infinite-dimensional closed subspaces of d(v, p)and l_q , respectively. If $p \leq q$, then $K(X, Y) \neq L(X, Y)$.

Remark. In Theorem 4, the space l_M cannot be replaced by its infinite-dimensional closed subspace (cf. Theorem 2 and Corollary 6). For example, let l_M be

an Orlicz space such that $\alpha_M < \beta_M$, and let $p \in (\alpha_M, \beta_M)$. Putting $q = \alpha_M$, we get that l_M contains a subspace Y isomorphic to l_q . We also know that d(v, p) contains a complemented subspace X isomorphic to l_p . Since q < p, by Pitt's theorem, $K(l_p, l_q) = L(l_p, l_q)$. Hence K(X, Y) = L(X, Y).

4. We conclude with some applications to the reflexivity of spaces of operators acting from d(v, p) to l_M . Recall that d(v, p) is reflexive if and only if p>1. Recall also that l_M is reflexive if and only if both M and its complementary Orlicz function M^* satisfy the Δ_2 -condition at zero. This means that $\beta_M < \infty$ and $\alpha_M > 1$.

We shall apply the following result proved by S. Heinrich [3] and independently by N. J. Kalton [4]: if X and Y are reflexive, and K(X,Y)=L(X,Y), then L(X,Y)is reflexive. This result, together with Theorem 2, yields Corollaries 7 and 8 below.

Corollary 7. Let X be a closed subspace of d(v, p), and let Y be a reflexive subspace of l_M . If $p > \beta_M$, then L(X, Y) is reflexive.

Corollary 8. Let X and Y be closed subspaces of d(v, p) and l_q , respectively. If p > q > 1, then L(X, Y) is reflexive.

We now come to the main application of this note.

Theorem 9. The following assertions are equivalent:

(a) $L(d(v, p), l_M)$ is reflexive,

(b) $K(d(v, p), l_M)$ is reflexive,

(c)
$$1 < \alpha_M \leq \beta_M < p$$
.

Proof. (a) \Rightarrow (b) This is true because the reflexivity passes to closed subspaces. (b) \Rightarrow (c) Since $K(d(v, p), l_M)$ is reflexive, its subspace l_M is also reflexive. Hence $\alpha_M > 1$. It is well known (cf. e.g. [2, p. 247]) that if X and Y are Banach spaces, one of them having the approximation property, and K(X,Y) is reflexive, then K(X,Y)=L(X,Y). This implies $K(d(v,p), l_M)=L(d(v,p), l_M)$. Therefore, $\beta_M < p$ by Theorem 4.

(c) \Rightarrow (a) This is clear from Corollary 7 because $\alpha_M > 1$ and $\beta_M < p$ imply the reflexivity of l_M . \Box

The next corollary is immediate from Theorem 9.

Corollary 10. The following assertions are equivalent:

(a) $L(d(v, p), l_q)$ is reflexive,

- (b) $K(d(v, p), l_q)$ is reflexive,
- (c) 1 < q < p.

The last result can be derived from Theorem 1 similarly to the proof of Theorem 9. We include it for comparison with Corollary 10. Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space 239

Theorem 11. The following assertions are equivalent:

- (a) $L(l_p, d(w, q))$ is reflexive,
- (b) $K(l_p, d(w, q))$ is reflexive,
- (c) $1 < q < p \text{ and } w \notin l_{p/(p-q)}$.

References

- AUSEKLE, J. A. and OJA, E. F., Pitt's theorem for the Lorentz and Orlicz sequence spaces, Mat. Zametki 61 (1997), 18–25 (Russian). English transl.: Math. Notes 61 (1997), 16–21.
- DIESTEL, J. and UHL, J. J., JR, Vector Measures, Amer. Math. Soc., Providence, R. I., 1977.
- HEINRICH, S., The reflexivity of the Banach space L(E, F), Funktsional. Anal. i Prilozhen. 8 (1974), 97–98 (Russian). English transl.: Functional Anal. Appl. 8 (1974), 186–187.
- 4. KALTON, N. J., Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- 5. LINDENSTRAUSS, J. and TZAFRIRI, L., Classical Banach spaces I. Sequence Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- OJA, E., On M-ideals of compact operators and Lorentz sequence spaces, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 40 (1991), 31–36, 62.

Received June 12, 1997

Jelena Ausekle Faculty of Mathematics Tartu University Vanemuise 46 EE-2400 Tartu Estonia email: jausekle@math.ut.ee

Eve Oja Faculty of Mathematics Tartu University Vanemuise 46 EE-2400 Tartu Estonia email: eveoja@math.ut.ee