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Holomorphic vector fields and proper 
holomorphic self-maps of Reinhardt domains 

Francois Berteloot 

1. I n t r o d u c t i o n  

In 1977, H. Alexander discovered a typical fact of several complex variables. 

T h e o r e m .  ([1]) The proper holornorphic self-mappings of the euclidean unit 
ball of C ~+1 ( n > l )  are automorphisrns. 

This result has been generalized to certain pseudoconvex domains with regu- 
lar boundaries and well behaved sets of weakly pseudoconvex points. For instance, 
S. Pinchuk [20] extended it to C2-strictly pseudoconvex domains and E. Bedford and 
S. Bell [4] to pseudoconvex domains with real-analytic boundaries. K. Diederich 
and J. E. Fornaess proved that  proper holomorphic maps, from domains with suffi- 
ciently small sets of weakly pseudoconvex points (in the Hausdorff measure sense) 
to smoothly bounded ones, do not branch [12]. 

It then became a question to know if the phenomenon discovered by H. Alexan- 
der occurs for any smoothly bounded domain in C n+l. This question is still largely 
open, even for pseudoeonvex domains of finite type. However, the problem is easier 
to handle for domains presenting some symmetries. For instance, Y. Pan [18] gave 
a positive answer for pseudoconvex Reinhardt domains of finite type (see also [10]). 
The presence of symmetries may even allow to relax some boundary conditions 
and to consider mappings between different domains. S. Bell proved that  map- 
pings between circular domains are algebraic as soon as they preserve the origin [6]. 
Mappings between particular classes of Reinhardt domains were studied by G. Dini 
and A. Selvaggi [13], M. Landucci and G. Patrizio [15] and M. Landueei and S. 
Pinehuk [16]. In [9], F. Berteloot and S. Pinchuk classified the proper maps be- 
tween bounded complete Reinhardt domains in C 2 and characterized the bidisc as 
being the only domain in this class which admits non-injective proper holomorphie 
self-maps (see also [17]). In this paper, we solve the above problem for complete 
Reinhardt domains in C n+l. Our approach also works for Reinhardt domains in 
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(C*) ~+1 and gives a new proof of a result of E. Bedford (see [3, p. 160]) for the 

specific case of C2-smooth boundaries. Our main result is the following theorem. 

T h e o r e m  1.1. Let f~ be a bounded complete Reinhardt domain in C ~+1, or 
a Reinhardt domain in (C*) ~+1, with boundary of class C 2. Then every proper 

holomorphic self-map of ft is an automorphism. 

To this purpose, we study the Lie algebra of holomorphic tangent vector fields 

of strictly pseudoconvex Reinhardt  hypersurfaces. We essentially need to show 
that  it is finite dimensional and has a simple structure. As we consider C2-smooth 
hypersurfaces, we cannot use the works of S. Chern and J. Moser [11]. It  could 
appear  more promising to adapt  the results obtained by N. Stanton for C~ 
rigid hypersurfaces [22]. However, as we do not deal with a purely local situation, 

we shall get a rather precise description of this Lie algebra by using elementary 

tools. 

T h e o r e m  1.2. The Lie algebra of holomorphic tangent vector fields of a g2_ 
strictly pseudoconvex Reinhardt hypersurface in C n+l is finite dimensional and con- 

sists of rational vector fields of (C*) n+l. 

We then use the results on holomorphic extension due to S. Bell [5] and D. Bar- 
ret t  [2] to investigate the effect of proper mappings on the rotation vector fields. 
We may then show that  the structure of the branch locus is naturally related to 
the structure of the Lie algebra of holomorphic tangent vector fields associated to 
some strictly pseudoconvex par t  of the boundary. By using the above theorem, we 
obtain precise information on the branch locus which eventually implies tha t  the 
self-maps are unbranched and thus yield Theorem 1.1. By combining this method 
with some techniques introduced in [9], we obtain the following local statement.  

T h e o r e m  1.3. Let f~ be a bounded complete Reinhardt domain in C n+l such 

that bf~ is somewhere C~-strictly pseudoconvex. Then every proper holomorphic 

self-map of f~ is an automo~phism. 

Notation. 
�9 We denote by (z0, zl, ..., z~)=(z0,  z ')  the coordinates in C ~+1. 

�9 For z = ( z o , z l , . . . , z n )  and w = ( w o , w l , . . . , w ~ )  we shall define zw by z w =  

(ZoWo~ Z l W l ~  --. ~ ZnWn). 
�9 For any multi-index (kl, ..., kn,1):=(K, 1 )EZ ~xZ ;  t~'(~t'~K~l'] ~0 '=~'0X~l~l . ~ 1  . . .  Z~%~'~ . 

�9 For any integer j ,  j* denotes the multi-index (S1,j, ..-, ~n,j) where 5~,j is the 

Kronecker symbol. 
�9 The set A denotes the unit disc in C and A k the corresponding polydise 

in C k. 
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�9 We set C* = C \ { 0 }  and, for any subset A of C n+~, A* denotes the intersection 
An(C*)  n+l. 

�9 For any z E C  n+l, we denote by e iz the point (e i~~ ..., ei~"). For any ~]EC ~+1, 

T~ denotes the torus {ei~ 
n �9 For any O<j<n,  ~J  denotes the hyperplane {z /=0}  and 7-/:=Us 0 7-tj, for a 

domain ft we s e t  ~-~f~j:=~l~-~j and 7-/a:=f~NT-L 

�9 The field 7~j denotes the rotation vector field izy(O/Ozj). 
�9 We denote by Vf the branch locus of any holomorphic map f .  
�9 For any self map f ,  fk  denotes the ]~th i terate of f .  

2. The Lie algebra of  holomorphic  tangent vector fields 

The aim of this section is to establish a precise version of Theorem 1.2. 
A vector field 

0 z'/ 
x :=  S=l 

is said to be holomorphic on a domain H c C  n+l if the functions B and A s are 
holomorphic on H. We say that  X is tangent to some real hypersurface SCLt if the 
vector field X + X  is tangent to $. Thus, if S is defined by {or=0}, the tangency 
condition may be writ ten as 

onS. 
j=Z 

We shall need the following definition. 

Definition. For every multi-index (K, l)cZ*~x Z, gK,1 is the space of holomor- 
phic vector fields on (C*) n+l which are of the following form: 

(b(z')K z~~ +b(z ' ) -K z~ 8@, + E ( a s  (z')K+j* Z~o +5 s (z') K+j* Zot) OZ ' 
0 j = l  J 

where b, b, as, aj a r e  complex constants. 

We are now in order to state the main result of this section. 

Propos i t ion  2.1. Let S be a Reinhardt hypersurface in C '~+1 which is defined 
by s={Iz012--C(Izl[ 2,..., Iznl2)}, whe~ the function r is of class C 2 on some 
neighbourhood of to := (t01, ..., to,~ ) E (R+*) ~. 

Assume that $ is strictly pseudoeonvex at rl0: (~(t0) 1/2, t~{ 2, ..., t0~1/2). 
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Then there exists a finite family of multi-indices A / l c Z n •  such that every 
holomorphic vector field X ,  defined on some neighbourhood of the torus T,1 o and 
tangent to S, admits a finite decomposition 

X = E XK, I, 
(K,I)C~4 

where the Xg, l  are holomorphic vector fields on (C*) '~+1 which belong to EK,t and 
are tangent to $ near T,~o. 

Proof. Let X be a holomorphic vector field which is defined on some neigh- 
bourhood of T,0, 

(1) x : :  B(zo, z' ) ~ + Z Aj (z0, / O z j  " 
j 1 

By expanding the holomorphic functions B and Aj ( j = l ,  ..., n) in Laurent series 
on a suitable neighbourhood of Tvo , one may rewrite X as 

0 

, ] UZ 0 j = t \ K ,  l f O Z j '  

where (K, l ) e Z  ~ x Z and bK,z, aj,K,l are complex numbers. After setting a(z0, z ' ) := 
I z o [ 2 - r  . . . ,  Iznl2), the identity (2) gives 

r  (3) (X,~) = E  bK,l(Z ) ZoZo-- E aj,K,lZj(Z')KZIo ([Zll 2,..., IZnl 2) �9 
K,l  ~ j = l  

Let V0 be a sufficiently small neighbourhood of to. One may parametrize S 
by Zo=Oe iv, z j=r je  i~5 ( j = l ,  ..., n), where (u, v)E[0, 2~r] n x [0, 27r], r = ( r l ,  ..., rn)E 
17o and 02=r 2, ... ,r,~2). Using this parametrization and the identity (3), the 
tangeney condition becomes 

(4) ~K,~ r 

- Re(X, or)Is - 0. 

We now introduce the notation 
(5) 

, r)=bK,l+ir p -- ay,K+y, tr K+2' p ~ ( r l , . . . , r ~ )  
j l \ 

q - b - K ,  l + l r - K s  1 4 - 2 - - / 2 ~ ( ~ j , - - K + j ' , - t  ~" ~ \ ' 1 , - - - ,  

j 1 \ ~3 
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Then (4) is equivalent to 

(6) 0 - 2 ae<X, ~)Is --- ~ ~(~u+~)E~,~ (X, r). 
K,l 

For any (K, I)EZ~ x Z, let XK,t be the element of gg,1 which is defined by 

rb {zt~KzI+I~ b [Zl~ Kz_l+l~ 0 XK,1 =1, K,l+l[ ) 0 ~- K, l+lk ) 0 )Ozo 

(7) n 

+~(aj,~+r,~(~')~+J*~0+aj,-~+r,-~(z')-~+J*~o ~)~ 
j 1 

Then, using the same parametrization of S as above we get the identity 

(8) 2ae{XK,~, ~)ls -- ~(Ku+~)EK,~(X, r)+e-~(K~+z~)E-~,-~(X, r). 

Thus, it follows from (6), (7) and (8) that X is tangent to S if and only if 
each XK,Z itself is tangent to $. To end the proof it remains to show that  there 
exist at most a finite number of multi-indices (K, l ) c Z  ~ x Z for which $K,1 contains 
non-trivial vector fields which are tangent to $. To this purpose, we shall derive a 
simple condition of tangency for the fields in CK,t. 

Assume that  X is a non-trivial element of gK,l which is tangent to S. Then, 
we may assume that  X XK,t, where Xu,t is given by (7). According to (8), the 
function EK,I(X,r) must identically vanish on V0. Thus, after multiplying both 
sides of (5) by rKQ 1 2, we obtain the following necessary condition for X to be 
tangent to $, 

O_r2Kp2l(bK,l+ 1 n 2 2 9 r  r 2 ) )  E aj,K+j*,lrjc 0 ~ j  (r l ,  .-., 

(9) j=l  
n 

aj,_K_bj., lrj ~ ~ j  (r I , ..., �9 

2 by tj, ~2 by r and simplifying the notation, we may rewrite After replacing rj 
(9) as follows 

(10) O=_tgr tJ 9r ~~-1~ tj 9r 

We shall now use logarithmic coordinates. Let us set xj: log tj for j = l ,  ..., n 
and ~(x):  logr Then (10) becomes 

(11) eK~e lr (b+L(grad r  + (1)+ L (grad ~)) ~ 0, 
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where L and /" are elements of (Cn) ' which are respectively defined by L(u) :=  
n /"  n 

-- ~ j = l  ajuj and ( u ) : = -  ~ j = l  gtjuj. 
As is well known, the strict pseudoconvexity of the Reinhardt hypersurface S 

is equivalent to the strict convexity of the function r Thus the conclusion will be 
directly obtained by using (11) and the following lemma. [] 

L e m m a  2.2. Let r be a function of class C 2 which is defined on a neighbour- 
hood V of x0E(R+*) n. Assume that r is strictly convex at Xo. Then there exists at 
most a finite number of multi-indices (K, l) E Z ~ x Z such that ~ satisfies a partial 
differential equation of the following type on V: 

(E) eKxe zr (L(grad r  +b) = / , (g rad  r +{), 

where b, b~ C and L, /"c(Cn)  I do not vanish simultaneously. 

Proof of the lemma. Let cr be the map defined by or(x):=grad(~b) on V. Then, 
since ~b is strictly convex at x0, the hessian det [(02r is strictly positive 
and the map a is open at x0. Let U be an open ball which is contained in the range 
of a. If L+b- - 0  (resp. L+b=_O) then tile equation (E) shows that  L+b (resp./"+D) 
is vanishing on U and therefore on C n. Thus L+b and L+b do not both vanish 
identically since otherwise we would have L-- /"- -0  and b b=0. 

We now proceed by contradiction and suppose that  there exists infinite families 
(Kj, lj)j>o C Z n x Z, (nj,/"j)j>0 C (c 'n) '  x (Cn) r and (bj, Dj)j>0 C C x C such that the 
following equations hold on V: 

/"j (grad @) +l)j 
(Ej) eKJx e l9  = Lj (grad r  

Without loss of generality, we may assume that (Kj, lj)r 0) and (Kj, lj)+ 
(Ky,ly)r for every j > 0 .  Let us set Aj:={u~Cn;Lj(u)+bj=O} and A j : =  
{ucCn;Lj(u)+t)j=O}. In general, Aj is an attine hyperplane in C n but, when 
Lj=--O, J~j is the empty set. 

Observe that if Aj =Aj , ,  then Lj +bj =_ct(Lj, +bj, ) for some c~ E C. In particular, 
if A j = A j  then the equation (Ej) shows that  the function eKjxe lie is constant on 
V, which is impossible since ( K j , l j ) r  and ~r is open at x0. We also have 
Aj O.,4j r  U.,4j, for j r  since otherwise the equations (Ej) and (Ej,) would imply 
that the function e(Kj+~KJ')~e(lJ+~lJ')r is constant on V for eC{ 1 , -1 } ,  which is 
impossible for the same reasons as above. Thus, after replacing (Kj,  lj)j>0 by some 
subsequence, we may assume that  one of the following conditions is satisfied: 

(i) Aj, Aj, Aj, and .Aj, are four distinct sets for j e j ' ;  
(ii) Aj A1 for every j > 0  and ~tj~s for j e j ' ;  
(iii) A j=A~ for every j > 0  and A j e A j ,  for j e j ' .  
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Now, by elementary linear algebra, we may find an integer N and a non-zero 
vector c~: (c~I,...,C~N)EQ N such that  (Ks+l, N I N + I ) = E j = I  a j ( K j , l j ) .  Let A be 
an integer such that  Ac~j :njEZ for every jE{1,  ... ,N},  then 

N 
eA(KN+I'X+IN+Ir = H (enj (Kj .x+lj r 

j=l  

and, taking into account the equations (Ej) for jE{1 ,  ..., N + I } ,  

(12) (LN+l (g r ad  ~b) +DN+I )A ] ~  ( L j  (grad ~b) +Dj 
LN+l(gradr =t-*l \ ~ ~  )no. 

Let us define Gj ( 0 < j < N + I )  on C ~ by Gj(u):=([,j(u)+{)j)/(Lj(u)+bj). The 
functions Gj and 1/Gj are meromorphic on C n and holomorphic on the connected 

open set f~: c ~ \ u N + I ( A j U , 4 j ) .  Let us again consider a non-empty open set U 
of R n which is contained in the range of or: g r a d r  at x0. The set U cannot 
be contained in 7-tj (or My) for jE{1,  ..., N + I }  since otherwise the holomorphic 
function Lj§ or [_,j+{)j, would identically vanish on C ~. Thus we may assume 
that  Ucf~.  Let V be a non-empty open set in C ~ such that  VARncU.  According 

FI N G~J to (12), the functions GAN+I and 11j=1 y coincide on U and therefore on V. Thus, 
these functions do actually coincide on C n, 

Q LN§ 4-bN+I~ A ~ ( L j ( u ) @ b j ~  nj 

LN+I (u) § ] --~'_11\ ~ ] " 

But this is impossible in view of the conditions (i) to (iii). [] 

3. T h e  s t r u c t u r e  o f  t h e  b r a n c h  l o c u s  

The aim of this section is to apply the results on holomorphic tangent vector 
fields to the study of rigidity properties of proper holomorphic mappings. The 
following proposition describes how these objects are related. 

P r o p o s i t i o n  3.1. Let f~i and f~2 be two Reinhardt domains in C aT1. Assume 
that bftl is C2-strictly pseudoconvex at some point ~o which belongs to bf~. Then 
there exists a finite family of multi-indices Z c Z ~ x Z  and an associated space of 
rational functions 

(K,t)ez 



248 Francois Berteloot 

such that, for any proper holomorphic mapping f : ~ 1 ~ 2 ,  which holomorphicaUy 
extends to some neighbourhood of Tvo and does not branch on Tvo, there exists an 
( n + l ,  n + l )  matrix Q f :=[(Qf)k,~] with entries in g which satisfies the identity 

[0s ] 
(13) 1 ~ ]  [(Qs)k,~] = i[~k,~f~]. 

Pro@ By assumption the map f holomorphieally extends to some neighbour- 
hood of T,~o, we shall still denote this extension by f .  As f induces a local biholo- 
morphism at any point of the torus T, lo , we may define n + l  holomorphie vector 
fields (Qf)p on some neighbourhood of Tvo by pulling back the rotation vector fields 
Tr (Qf)p:=f*('R.p) for pE{0,. . .  ,n}. By construction the vector fields (Qf)p are 
tangent to bt~l on some neighbourhood of Tvo. Thus, as Proposition 2.1 shows, there 
exists a finite family of multi-indices A/l c Z n x Z which only depends on bf~l and 
such that  (Qf)pE(~)(K,t)e~ gK,Z for pE{0, ..., n}. Then, according to the definition 
of the spaces gK,1, it suffices to set 

2r= {..J U { ( K , l + l ) , ( - K , - l + l ) , ( K + j * , l ) , ( - K + j * , - l ) }  
l<j<~ (KJ)~M 

and 

to get 

9:= 0 
(K,1)CZ 

n o 
(Qy)p= ~(Qf)k,p(Z)~jy~, where (Qf)k,p ~g-  

k=O 

Consider now the holomorphic ( n+  1, n +  1) matrix Qf := [(Qy)k,p] on (C n+l)*. 
Since, by construction, the linear tangent map of f maps (Qf)p(~l) to Tgp(f(rl)) for 
every ~/near Tv0 , the identity (13) is clearly satisfied on some neighbourhood of Tvo. 
By analytic continuation, the same identity occurs on f/~. [] 

We shall now use the above proposition in order to describe the structure of the 
branch locus of proper holomorphie mappings between certain Reinhardt domains. 
Tile following lemma will be the key point in our argumentation. 

L e m m a  3.2. Let ~1 and f~2 be two Reinhardt domains in C ~+1. Let f:f~l--~ 
f~2 be a proper holomorphic mapping. Assume that the hypothesis of Proposition 3.1 
are satisfied. Let Q f be the matrix with entries in ~ which is defined in Proposi- 
tion 3.1. Then 

(i) zEV;  ~ f(z) eT-l, 
(ii) z E V [  ~ detQf(z)=O. 
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Proof. By taking the determinant  of identity (13) we get 

[Ofk~ =in+ 1 det [~zp j det Qf  (z) H f k ( z )  
k=0 

for every z E ~ .  The assertion (i) follows immediately. 
Let us now prove the assertion (ii). For this we assume that  ~ c V  7 and 

d e t Q f ( r  for some ~ E ~  and seek a contradiction. Let us first notice that  

there exists a neighbourhood U of ~ and a holomorphic matr ix  Q(z) defined on U 

such that  Q(z)=[Qf(z)] -1 for every zEU. On the other hand, the identity (13) 
shows that  

1 Ofk 

on U \ ( V f U I - I ( ~ ) A U ) .  Thus we must have C2(z)=[(1/ifk)(Ofk/Ozp)] on U which 
means tha t  the functions (1/fk)(Ofk/Ozp)(Z) are holomorphieally extendable to U. 

According to the assertion (i) we may assume that  f0(~)=O and, since f is 
proper, we may pick a complex linear disc ~: A---~f~l ( e ( u ) = ~ + u ~ )  through ~-such 
that  5:=f0ocr  does not identically vanish on A. Thus for u close to the origin and 
u r  we have 

du f0( (u))0zp p=0 

As we have previously seen, the right-hand side of the above identity is a welt- 
defined holomorphic function on some neighbourhood of the origin in A. Since 

(1/~(u))(d~(u)/du) is singular at the origin we have reached a contradiction. [] 

We end this section by giving a precise description of the branch locus of proper 
holomorphic self-mappings of certain Reinhardt  domains. 

P r o p o s i t i o n  3.3. Let ~ be a complete Reinhardt domain in C ~+1 and let 
f: ~-~gt be a proper holomorphie self-map such that Vf#O. Assume that bQ is 
C2-strictly pseudoconvex at some point ~7oEb~* and that fk  holomorphically ex- 
tends without branching to some neighbourhood of Tvo for every k > l .  Then, after 
replacing f by some iterate and permuting the variables, we have 

v s = a n d  =f( aj) 
j = l  

for some m e { 0 ,  ..., n} and every j �9 {1, ..., m}. 

Proof. Let Z be the set of sections by the coordinate hyperplanes 7 ~ j  such 
that  fk(7~j)CT[.gtj for some k_>l. Since ~- is finite we may replace f by some 
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iterate and assume that  f(T/aj)C'/-~flj for every 7~g~y ~Y. We now proceed in three 
steps. 

First step. The inclusion f~(Vf~)cT-la holds for every k > l .  
According to the first assertion of Lemma 3.2, one has f~(Vf~2*)CTl for 

every k > l .  It therefore remains to show that  if Tla jcVf~ for some k>_l then 
f~(7-lnj) c ~ .  We argue by contradiction. 

Assume that ~aa, cVo where g : = f  ~o and g(~ay~)~. Let us then con- 
struct a sequence (7-[ajq)q>~ such tha t  9(7-~ajq+~)=7-~fzjq for q>_l. Assume that  
~aO,,-.-,7-/aoq have already been constructed. Then 9q-~(7-{g~jq)CT-[aj~ CYg and 
therefore 

g--l("~f2jq) C (gq) l(gg) C ggq+l. 

If 9 l(~.[[~jq) does not contain any coordinate hyperplane, then the holomor- 
phic function (I-[j~0 zj) restricted to the analytic set g - l ( ~ a j ~ )  has a negligeable 

zero set and thus g-~(~aj~)~f~* is dense in g-~(~/aa~). It follows that  gq(~Hjq)C 
gq+*[g l(7_[ajq)] cgq+l[g-* (~-gf2jq) Nf~*], where the first inclusion occurs because g 
is onto. Then, by using (14) and the first assertion of Lemma 3.2, we get 

05) gq (~-[f~jq) C gq+l (Vgq+~ A~*) A~ C ~-[f~. 

Since gq (7-~f~jq) =9(~~j l  ) and g(7-L~j 1 ) ~7-[, the last inclusion of (15) is not possible 
and therefore g-l(?-/a&) must contain some coordinate hyperplane 7-/[?jq+l. As 
gl~ajq+l is a proper map from ~aO~+l to %/aj~, it is onto and thus we actually have 

Let r > s > 0  be some integers such that  ~-~aj~-7-~aj. Then gr-s(~-~f~j,.)-~t-~f~js 
and therefore ~ojr=~j~ ~ .  It follows that  9k(~nj~)=Tgaj~ for every k and in 
particular g(7-/aj~ )=7-/f~y,., which is a contradiction. 

Second step. The inclusions (fk) I(V~)CVf~c~ n hold for every k>_ko and 
some ko EN. 

Since Vf~+~ =(fk)-l(Vf)UVfk for any k > l ,  the sequence (Vfk)k>l is increasing. 
By using both Proposition 3.1 and the assertion (ii) of Lemma 3.2, we may find an 
integer N and a sequence of polynomials Ok, 

:-- zd ... de t  (z )  

whose degrees are uniformly bounded and such that  

(16 )  c = o} .  
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Without loss of generality we may assume that  IIQkll=l for every k and, after 
taking some subsequence, that  Qk is converging to Qoo. Since Q o ~ 0 ,  it follows 
from (16) that  the number of irreducible components of V/k is uniformly bounded. 
Thus, there exists some k0 such that  Vfk =Vf~+l for k>~ko. In particular, for k>ko, 
one has Vf~ =Vf:~ =(fk)-l(vf~)UVf~ and therefore (fk)-l(Vf~)cVf~. Then, as fk 
is onto, we get Vf~ C f~ [ ( fk ) - i  (Vf~)] C f ~ (Vf~) and the conclusion follows from the 
first step. 

Third step. Let g:=fko,  then after a possible permutation of the variables, 
one has Vg=~alU...UTlam for some 0 < m < n  and g-l(']-L~j)=']-lftj=g(']~f~j) for 
O<_j<_m. 

By the second step one has Vg=7-/ajl O...OT-/aj,~ and g -1(V9) c Vg. Thus there 
exists 12C{jl,...,j,,,} such that  g(7-tal=)cT-tajl. Then, g-l(~al~)C(g2)-l(Vg)C 
Vg~c~a  , and one finds la such that  g(7-/al~)C~l=. By iterating one obtains a 
sequence (lk)k_>2 such that  g(~azk+,)C~lk.  The sequence (~aZk)k>2 must contain 
an element 7-tal~ of Y. Thus g(7-tl,.)CT-/al~ and, since the map g]an~at~ is proper 
one actually has g ( ~ a l . ) = ~ a z , .  Thus ~z~=~ad ,  and the conclusion follows. [] 

Remark. The following example, which is due to G. Dini and A. Selvaggi [13], 
shows that  one cannot expect such a simple control of the branch locus for proper 
mappings between different Reinhardt domains. Let f~, := { I Zl 4 @ I Wl 4 < 1 } and f~2 := 
{IGIQ-I~I)II/P<I} b e  tWO Reinhardt domains in C 2 and f :  ~ s + f t 2  a proper holomor- 

1 2 2 2 phic map which is defined by f (z ,w)=(7(z  +w ) , (v~)-2p(w2-z2) 2p) for p > l .  

Then the branch locus of f contains the intersection of ft l  with the line {z=w} and 
thus is not contained in 7-{. 

4. Proper holomorphic self-maps 

Proof of Theorem 1.1. Let f :f t--+ft  be proper and holomorphic. As ft is 
bounded and complete or contained in (C*) n+l, f holomorphically extends to some 
neighbourhood of ft (see [6] and [2]), we shall still denote this extension by f .  

We first establish the existence of some point r]0 Ebb* such that  bf~ is CU-strictly 
pseudoconvex at r/0 and f does not branch on the torus T,o. As is well known, the 
existence of strictly pseudoconvex regions of bft follows from its global smoothness 
(see [21, Proposition 15.5.2]). Then, if Tno is a strictly pseudoconvex torus in bfF, 
f cannot branch at any point of T~jo since it maps these points on smooth ones 
(see [12, Lemma 4]). 

We shall now prove that  Vf is empty. If f t c ( C * )  '~+1, it directly follows from 
Lemma 3.2 that  Vf is empty and, since bf~ is smooth, this implies that  f is an 
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automorphism by a result of S. Pinchuk ([19]). We now assume that  f~ is com- 
plete and proceed by contradiction. By conjugating f with some dilation, we 
may also assume that  [ ~ c A  n+l. As the above arguments also apply to the it- 

erates of f ,  we may use Proposit ion 3.3 and assume that  there exists O<m<n 
"~ 7-/ such tha t  Vy=[_Jj 1 f2j and f-l(7-t~j)=7-l~j=f(7-l~j) for O~j<_m. Let us set 

V "~ :=[-Jj=l 7-/~j. Then, fk: f ~ \ V ~ \ V  is a covering map for every k and moreover, 
O~ 0 one may pick a map p(z):=(z 0 , , ~m ... z,~ ,Zm+l,--. z ~ ) ( c ~ j c N ,  a j > l )  such that  

pk maps ~k := (pk ) - l (F t )  onto f~ and (pk). coincides with ( fk ) .  on the hoinotopy 

groups II1 (~k \ V ) = I I 1  (~t\V). This implies the existence of a sequence of homeo- 
morphisms (r (~k\V)--~(~\V) such that  fkoCk=pk. One easily sees that  the 

Ck are actually biholomorphic and thus, by the Riemann removable singularities 
theorem, extend as biholomorphisms between ~k and ~. Then, by a theorem of 
W. Kaup  and J. P. Vigu~ [14], the complete Reinhardt domains ~k and ft are ac- 
tually linearly equivalent. Thus there exists a sequence of linear biholomorphisms 
Lk:ftk---~2. By Montel 's theorem, some subsequence is uniformly converging on 
compact  subsets of C n+l to some linear map L which induces a biholomorphism 
L: A m xf~--~f~. This is impossible since bft is somewhere strictly pseudoconvex. 

Thus Vf=O and, as f~ is simply connected, f is an automorphism. [] 

Proof of Theorem 1.3. Let T~o cb~* be a strictly pseudoconvex torus. The 
pull-back (fk)*(74p) are well defined at some point on T~o, using Proposit ion 3.3 
of [9] one sees that  these fields are defined along T~0. The conclusion is then obtained 
as for Theorem 1.1 by using Proposition 3.3. [] 

Remark. Theorem 1.3 is not true for circular domains: some complete circular 
basins of at t ract ion in C 2 are spherical outside a finite number of circles and do 
admit non-injective proper hotomorphic self-maps (see [8], other examples related 
with dynamics are in [7]). 
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