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Harmonic measure on simply 
connected domains of fixed inradius 

Dimitrios Betsakos 

A b s t r a c t .  Let D C C  be a simply connected domain tha t  contains 0 and does not coutain 

any disk of radius larger t han  1. For R > 0 ,  let WD(R) denote the harmonic measure at 0 of the 

set {z:lzI>_R}NOD. Then  it is shown tha t  there exist ~ > 0  and C > 0  such that for each such D, 
WD(R)<_Ce -fiR, for every H > 0 .  Thus  a natura l  question is: W h a t  is the sup r e mum of all j3's, call 

it/30, for which the above inequality holds for every such D? Another  formulation of the problem 

involves hyperbolic metric instead of harmonic  measure. Using this formulation a lower bound  for 

/3o is found. Upper  bounds  for ~0 can be obtained by construct ing examples of domains D. It is 

shown tha t  a certain domain whose boundary  consists of an infinite number  of vertical half-lines, 

i.e. a comb domain, gives a good upper  bound.  This bound  disproves a conjecture of C. Bishop 

which asserted tha t  the strips of width  2 are extremal domains. Harmonic measures  on comb 

domains are also studied. 

1. I n t r o d u c t i o n  

The inradius R(D) of a domain D is the radius of the largest disk contained 

in D. More precisely 

(1. l) /~(D) : sup dist(z, aU).  
zED 

Let B be the class of all simply connected domains that  contain the origin and have 
inradius 1. Several extremal problems for domains in G have been studied. The 
most famous is the problem of determining the univalent Bloch constant U. This 
problem can be formulated as follows: Let or(z, D) be the density of the hyperbolic 
metric on D with curvature - 4 ,  that  is, c~(z, D)=l f ' ( z ) l  , where f is a function that 
maps D conformally onto the unit disk D, with f ( z ) = 0 .  It follows from Koebe's 
~-theorem that  U:=infn~BinfzeD cr(z, D) _> �88 The univalent Bloch constant U 
remains unknown. For a brief history of the work on U we refer to [BC] (which 
also reviews some other problems involving inradius). Here we mention only the 
following lower bound due to Zhang [Z]: U>0.57088. 
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We will study a similar problem for harmonic measure. For a domain DE13 and 
for R>0 ,  let coD(R) denote the harmonic measure at 0 of the set ODn{z:lzl_>R} 
with respect to D. It is obvious that  coD is g decreasing function of R. In fact, 
one can prove that  coD decreases exponentially. This follows, at least intuitively, 
from the probabilistic interpretation of harmonic measure as hitting probability of 
Brownian motion in D: A Brownian particle starting from the circle Izl=r and 
stopping when it hits the boundary of D has small probability to reach the circle 
[z I = r  +2,  because of the inradius condition R(D)= 1. Now repeated applications of 
the Markov property shows that  coD decays exponentially. Of course, this argument 
can be made rigorous, see Proposition 3.4. Our purpose is to study more precisely 
the exponential decay of coD. 

For a domain D, le t /3(D) be the exponent of decay of WD, that  is 

/3(D) = s u p { / 3 > 0 :  for some C > 0 ,  coD(R) <_Ce -~R for all R > 0 } .  

Our problem is to determine or estimate the exact value of the number 

/30 = inf{/3(D) : D C B}. 

Thus/3o is the smallest possible (in the sense of infimum) exponent of decay of coD 
for some DEB. 

C. Bishop conjectured that/30=/3(S) 1 7re, where S is a strip of inradius 1, i.e. 
of width 2. We will disprove Bishop's conjecture by presenting a domain D* for 
which fl(D*)~O.428rr. Thus (Theorem 9.14) 

flo < 0.4285rc. 

The domain D* is a comb domain, i.e. its boundary consists of an infinite 
number of vertical half-lines. Certain extremal lengths on comb domains can be 
computed explicitly. These computations lead to estimates of harmonic measure 
via Beurling's inequalities relating extremal length and harmonic measure. We 
will study harmonic measures on several types of comb domains: parasymmetric, 
periodic and symmetric comb domains (see Figure 1). 

I 

I 

Figure 1. A parasymmetric  comb domain, a periodic comb domain and a symmetric  

comb domain, respectively. 
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A lower bound for fl0 is found in Section 4 (Theorem 4.16): 

Zo >2u, 

where U is the univalent Bloch constant. This bound follows from a characterization 
of/3o in terms of hyperbolic distance instead of harmonic measure. 

The exact value of/30 remains unknown. We can determine, however, the 
value of a related constant. Let B~ be the subset of B consisting of all domains D 
symmetric with respect to the real axis and convex in the y-direction. The latter 
condition means that each vertical line intersects D in a single vertical interval. We 
will prove that  the class of all symmetric comb domains is dense in B~ in the sense 
of Carath4odory convergence. Then we will show (Theorem 8.4) that  a certain 
periodic comb domain Do has the smallest exponent of decay ~(D0) among all 
domains in Be: 

min{/~(D) : D E Be} =/~(D0) ~ 0.4577r. 

As we mention above, we will use extremal length to prove estimates for har- 
monic measure. In the next section we review some results on extremal length. 

2. Extremal  l ength  and Beurl ing's  inequal i t ies  for harmonic  measure  

Let D be a plane domain and E0, E1 be two disjoint closed sets on OD. Let 5 r 
be the family of all rectifiable curves in D joining E0 to Ez. We consider nonnegative 
Borel functions p(z) in D and define 

L ( Q , ~ ) =  inf f Idzl and A(o,D)  / J D ~ 2 d x d y '  
~ e f  Jv Q = 

The extremal distance A(E0, El ,  D) between Eo and Ez with respect to D is 

7 )  2 
(2.1) z l ,  D)  = sup , 

e A(& D) 

where the supremum is taken over all ~ with 0<A(~,  D)<oc .  
Extremal distances on the upper half-plane C+ can be computed explicitly. 

Let a, b, c be positive numbers. The extremal distance )~([-a, 0], [b, b+el, C+) can 
be expressed in terms of elliptic integrals. Precisely, we have (see [O, w 

(2.2) A([-a,  0], [b, b+c], C+) = 4u (a+b)(b+c) ' 
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where 

1 ~:( ~41~-~ ~ ) ~ 1  dx 
(2.3) u(r)= 4 K(r) , and K ( r ) = _  V/(1_x2)(1 r2x2) 

is the complete elliptic integral of modulus rC(0, 1). 
The function v(r) plays an important role in the theory of quasiconformal 

mappings because it is equal to the modulus of the Gr5tzsch ring D \ [0, r], i.e. 

(2.4) u(r) = A([0, r], 0D, D). 

It follows from (2.4) that u is a decreasing function. Also, the expression (2.3) of 
in terms of elliptic integrals implies 

(2.5) . ( r ) . (  141  

We mention some more formulae for u taken from [O]: 

(2.6) = g, 

1 4 
(2.8) u(s) = ~ log s +o(1), as s -+  O, 

(2.9) ,(s)_ 1 =-4 log ~ + o ( 1 ) ,  as s 1. 
7Y 

Using (2.2) and the conformal invariance of extremal length we can compute ex- 
tremal distances on some simply connected domains. We do two such computations: 
for the strip S and for the unit disk D. 

P r o p o s i t i o n  2.10. Let S={z :x<Rez<y}  with x, yCR. Consider the sets 
A={z:Rez  x, ]Imzl_<a}, a>0 ,  and B={z:Rez=x,  IImzl<b}, b>0. Then 

X + Y  1 
(2.11) 

where 

Proof. The function 
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maps S onto C+ and the function 

maps C+ onto itself so that  f2ofx(A)=[Y+X, Y+X -1] and f2ofl(B)=[Z-Y-' ,  0]. 
Using (2.2) and (2.5) we obtain 

4 / j f / ( Y  1 Y ) ( X - l - x )  = 4 u ( ~ 1 _ (  X + Y  

4 1 1 

) ( \ I + X Y  I+XY ] 

and (2.11) is proven. 

P r o p o s i t i o n  2 . 1 2 .  

1 
(2.13) )~(d, B, D) - 2,(g(0) 2)' 

~he~e g(0) = (1 +sin 0) /cos  0. 

Proof. The function f(z)=-i(z+i)(z-i) 1 maps D 

Let A={eit:te[-O,O]} and B=-A={-~:s Then 

onto C+ with f ( A ) =  
[g(0) -1, g(0)] and f ( B ) =  I-g(0),--g(0)--l]. So (2.2) and (2.6) give 

.X(A,B,D)= ~r,~ ~ =4r,(1-g(O)-2"~~~/] 

(2.14) 1 1 1 
- 4  

8 .(g(0) -~) - 2.(g(0) 5) 

and the proposition is proven. 

Now we present some inequalities (due mainly to Beurling) that  relate harmonic 
measure and extremal length. These inequalities will be used several times in the 
subsequent sections. 

Let D be a simply connected domain in C and let E consist of a finite number 
of arcs lying on OD. Fix zoED and choose a crosscut 3'0 of D that  contains z0 and 
joins two points of OD. Then 

(2.15) w(zo, E, D) <_ Ce ~),('yo,E,D), 
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where C is an absolute constant. The inequality (2.15) is a special case of Theorem 3 
in [Be, p. 372]. Some related results appear in [K]. 

Next we investigate the possibility of an inequality opposite to (2.15): Let D, 
z0 and E be as above and assume in addition that  E is an arc (of prime ends) 
on OD. We map D onto D by the conformal mapping f so that f (z0)=0 and 
f(E)={ei~ t,t]} for some tE[0, Tc]. Let 7 E = f - l ( [ - 1 , 0 ] )  and rE=f-l([-- i , i]) .  
We will refer to ~'E as "the geodesic of D opposite to E" and to FE as "the geodesic 
of D perpendicular to 7E at z0". It follows from [K, p. 100] that  

(2.16) W(Zo, E, D) >_ Ce ~a(~E,~,D), 

with an absolute constant C>O. 
We will now prove a similar inequality. 

L e m m a  2.17. Let D be a simply connected domain, zoED and A be an arc 
on OD such that w(O, A, D) <_ ~. Let ~/A be the geodesic of D opposite to A and F A 
be the geodesic of D perpendicular to ~/A at Zo. If  E is a subarc of A, then 

(2.18)  (z0, E, D) > Ce 

where C is an absolute positive constant. 

Pro@ By conformal invariance we may assume that  D = D ,  FA=[--i,i], A -  
{eiO:oE[ -1  

If IEI>6 for some fixed 5>0, then we have nothing to prove. So we assume 
IEI <6. The exact value of 8 will be determined later. 

Because of (2.16) it suffices to prove two estimates: 
( i ) ) , ( r A , E , D ) > a ( F A ,  E*,D)  C, where E*={ei~189 �89 is the 

circular symmetrization of E, and C is an absolute positive constant, 
(ii) A(FA, E*, D) >A(TA , E*, D ) - C ,  where C is an absolute positive constant. 

Proof of (ii). Let IEI =2~. A square root transformation (see [K, p. 98]) shows 
that  

(2.19) A(TA , E*, D) = )~(FA, E~, D), 

where E~={ei~ [-�89 �89 }. Also by symmetry, 2a(r~,  E~, D ) = a ( - E r ,  Er,  D) 
and 2)~(FA,E*,D)-A(-E*,E*,D).  By Proposition 2.12, the extremal lengths 
A(-E~, E~, D) and A( E*, E*, D) can be computed in terms of the function u: 

1 
(2.20) )~(-E~, E~', D) -- 2u(i/g( �89 , 

1 
(2.21) )~(-E*, E*, D) -- 2u(1/g(s)2), 
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where g (t) = (sin t-t- 1) / cos t. 

Now we use the remark involving 5 at the beginning of the proof. Given e>0 ,  
we choose 6 small enough so that  the asymptot ic  formula (2.9) for the function u 
gives, for s~_6, 

1 4 8 +a,  
A(-E~ ,  E~, D)  < ~ log 1-1 /g( l s )  2 (2.22) 

and 

(2.23) A ( - E * , E * , D )  > 1 4 8 
~ l o g  l_l/g(s)2 e. 

The est imate (ii) follows from (2.22) and (2.23) by elementary calculus. 

The proof of (i) is very similar: we express A(FA, El ,  D)  and A(FA, E*, D) in 
terms of the function u and then we use the asymptot ic  formula for u. 

3. A n  e x t r e m a l  p r o b l e m  for  h a r m o n i c  m e a s u r e  

We will use the following notat ion for harmonic measure: If D C C is an open 
set and K c C ,  w(z, K, D) is the harmonic measure at z of the set c losKNclos D 
with respect to the component  of D \c los  K that  contains z. 

We consider the following class of domains: 

(3.1) B = {D C C :  D is simply connected, R(D) - 1 and 0 �9 D}. 

For a domain DEB and for R > 0 ,  let 

(3.2) WD(R) =w(0,  ODN{z : Izl > R}, D), 

(3.3) (R) = {z: I zl = R}, D )  

Every D E B  is a BMO domain, i.e. the boundary function f(e i~ of any ana- 

lytic function f :  D--~D is a function of bounded mean oscillation. This follows from 
work of Baernstein, Hayman,  Pommerenke,  Stegenga and Stephenson, see [B1] and 

references therein. Thus WD(R), as a function of R, is expected to decrease expo- 
nentially (the John Nirenberg phenomenon). This is actually proved in the next 
proposition (of. [BI, p. 22]). 

P r o p o s i t i o n  3.4. There exist positive constants/~ and C with the property 

(3.5) WD(R)~_Ce -~n, D � 9  R > O .  

For the proof of the proposition we need two lemmas. 
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L e m m a  3.6. There exists a constant BE(O, 1) such that for all DCB, s>0,  
and zoe DN{Iz[--s}, W(Zo, {[zl=s+2},  D)<6. 

Proof. By the maximum principle 

~(Zo, {Izl = s+2},  D) < w(z0, {Iz-z01 = 2}, D) 

= 1-w(zo, OD~{Iz-zo  I < 2}, DND(zo, 2)). 

Now by the Beurling-Nevanlinna projection theorem (see [NI) 

w(zo,ODn{Iz z0] <2},DND(zo,2))  >w(0, [1,2],D(0,2)):=~]. 

Then w(z0, {Izl=.s+2}, D ) < l - r ] < l ,  since 7]>0. Choose any 5 in the open inter- 
val (1-~?, 1). For such a 5 we have w(z0, {Iz[=s+2}, D)<5.  

The next lemma states the strong Markov property for harmonic measure. This 
property follows from the probabilistic interpretation of harmonic measure. We will 
use only a special case of the Markov property. One can actually prove it using the 
potential-theoretic definition of harmonic measure, see [HK, p. 114]. 

L e m m a  3.7. (The strong Markov property for harmonic measure.) Let fix 
and ft2 be two domains in C. Assume that ~ICQ2 and let FCOf~2 be a closed set. 
Let a=Oftx \Oft2. Then for ZE[~I, 

(3.s) ~(~, F, a~) = ~(z, F, a x ) + f  ~(z, ds, a~)~(~, r, a~). 

We explain the notation w(z, ds, t21) that  appears in (3.8): The harmonic mea- 
t21 sure cJ(z, . ,  fix) is a measure for fixed ZEql .  Call this measure #z - In integrals 

the usual notation is d#~ 1 (s) where s is the variable of integration. Instead of this 
notation we will use the notation c~(z, ds, f~z), i.e. dpz ~1 (s)=aJ(z, ds, t)l). 

Proof of Proposition 3.4. Let DEB and s>0.  By the Markov property there 
exists Zl C{Izl =s} such that  

(3.9) WD(S§ ~ aJ(Zl, {Izl = ~+2}, O)~o(~) 

By the lemma above, w(zl, {Izl s+2}, D)<hC(0,  1). Hence (3.9) implies 

(3.10) ~ (~+2)  < ~ . ( s ) .  

Now let R > 4  (if RE(0, 4] the theorem holds trivially). Let R=2k+q, where kEZ + 
and qC[0, 2). By iterating (3.10) we obtain 
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Therefore 

(3.11) ~D( R) <_ Ce (l~ 5)R/2 = Ce-flR 

where/3 1/21og(1/8)>0 and C = 5  -1. By the maximum principle WD(R)<_~D(R). 
Hence (3.11) implies WD (R) < Ce- fiR. 

The above proof is similar to a proof in [HP]. 

Definition 3.12. Let DCB. The ~3-exponent /3(D) of D is defined by 

/3(D) = s u p { / 3 > 0 :  for some C > 0 ,  WD(R)<<_Ce -fiR for all R > 0 } .  

The /3-exponent of a domain D~B indicates how fast WD(R) decays as R in- 
creases to oc. Proposit ion 3.4 shows that  for all DCB, /3(D)>C for an absolute 
constant C > 0 .  

The strip S { z = x + i y e C : - l < y < l }  of width 2 has /3-exponent /3(S) 1 =571-. 

This can be proved by a direct calculation of ws(R) using the conformal mapping 

] --e~rz/2 

f(z) l + e ~ / 2  

that  maps S onto D. 

Now we consider the number 

(3.13) /30 = inf /3(D). 
DEB 

Problem 3.14. Find the exact value of rio. 

C. Bishop [Bi, p. 296] conjectured that  fl0=fl(S)=�89 where S is a strip of 
width 2. In Section 9 we disprove Bishop's conjecture. We do not give a complete 
solution to Problem 3.14 but we find a lower and an upper bound for rio- The 

problem of the existence of a domain DCI3 for which f l0=fl(D) also remains open. 

4. Lower  b o u n d  for /30 

We give two additional characterizations of rio, in terms of Green flmction and 
hyperbolic distance. A lower bound for fl0 will then come from an estimate of the 
hyperbolic density. 
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P r o p o s i t i o n  
For all DC13, 

4.1. There exists /3>0 and C > 0  with the following property: 

(4.2) sup g(0, z, D) < Ce f~R R k 1. 
Izl R 

Proof. Let CE{Iz[=R}nD. We may assume that  r  Note that  g(0, z, D) is 
subharmonic in {z:0< ]z I <oc}. Hence the maximum principle, the Poisson integral 
representation of harmonic functions and a standard inequality for the Poisson 
kernel give 

R f2~ (4.3) g(O,R ,D)<- -  g(O,(R-1)eit,  D) dt. 
rcJo 

We use the following identity of Baernstein [B3]: 

/ /? 1 9(0, Re ~~ D) dO = a~D(t) dt, R > O. (4.4) ~ ~ t 

This and Proposition 3.4 give 

1 f27r / ~  e fit e-fl(R-1) 
(4.5) 2-#~ Jo g(O'(R-1)ei~ - - d t <  . 

1 t - -  ( / ~ - -  1 ) / 3  

Inequalities (4.3) and (4.5) give 

(4.6) g(O, R, D) <_ Ce an, 

with an absolute constant C, and so the proposition is proven. 

Based on this proposition, we define, for DC/~, 

( 
/31 ( J )  = sup{/3 > 0 : for some C > 0, 

The proof of Proposition 4.1 implies 

(4.7) 

g(O, z, D) <_ Ce -t3R for all R > 1~. sup 
Izl=n ) 

(m) _> 

Actually equality holds: 
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P r o p o s i t i o n  4.8. For all DC13, /31(D)=/3(D). 

Proof. We use again Baernstein's identity (4.4). Since wD(t) is a decreasing 
function, (4.4) implies 

1 g(O, Re i~ D) dO > dt > R > O. 
~ - J R  t - R + I  ' 

Hence 

(4.9) wD(R+l)  _< (R+I)ira_a% g(0, z, D). 

Let c>0. The inequality (4.9) and the definition of 31 give 

(4.10) WD(R+I) < RCe (/31(D)-c)~t, R >  0. 

Therefore 

(4.11) WD(R+I)<Ce -(zl(D)-2z)~, R > 0 ,  

for a constant C that depends on c but not on R. 

The inequality (4.11) implies ~(D)>_~I(D)-2c. Now letting a~0 and using 

(4.7) we conclude ill(D) t~(D). 

In Section 1 we defined the hyperbolic density a(z, D) on D. The hyperbolic 
distance d(zl, z2, D) between zl and z2 in D is 

f 
(4.12) d(Zl, z2, D) = inf ] or(z, D)Idzl, 

7cF  J ~  

where F is the family of all curves in D that  join zl to z2. 

P r o p o s i t i o n  4.13. Let DCB and/3>0. The following are equivalent: 
(i) There exists C2>0 such that for R > I  and zc{ I z l=R}nD,  g(O,z,D)<<_ 

C2e-~ R" 
(ii) The~e exists q > 0  such that for R>0 and z~{Izl i~}aD, d(0,z,D)>_ 

� 8 9  

Proof. Let R > I  and zC{IzI=R}ND. Then 

l +e--2d(O,z,D) 
(4.14) g(0, z, D) = log 1--e-2d(0,~,D) " 
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if  z E (0, 1) and D=D, this identity follows at once from the formulae 

l+Lzl 
d(O, z, D) = log 1-Izl  and g(O, z, D) = -  log Izl. 

In general it holds by conformal invariance. Now with a little calculus one shows 
that  (i) is equivalent to (ii). 

For DCB, let 

f l 2 ( D ) = 2 s u p { b > 0 :  for some C :> 0, i~s 

Propositions 4.8 and 4.13 imply 

(4.15) /3(D)=/31(D)=/32(D), DC13. 

We use (4.15) to get a lower bound for/3o. 

T h e o r e m  4.16. We have 

(4.17) /30 > 2U > 1.14176, 

where U is the univalent Bloch constant. 

Proof. Let DE~B, R > I  and zE{IzI=R}ND. Then 

(4.18) d(O,z,D)=inf f a(z,D) ldzl>inf{aDl(7)}>CrDIZl=aDR>_UR, 
7EF ~3~ 

where F is the class of all curves in D joining 0 and z, aD =inf~ED a(Z, D), a(z, D) 
is the hyperbolic density on D and l(7 ) is the length of 7- 

Hence, by (4.15),/3o>2U. As noted in Section 1, the bound U>0.57088 is due 
to Zhang [Z]. 

The inequalities in (4.18) are rather crude and it is unlikely that /30=2U. 

5. A n  e x t r e m a l  p r o b l e m  for e x t r e m a l  l e n g t h  

In this section we formulate and solve an extremal problem: 
Let xC[-1 ,  0], y~ (x, 1] and S={z:x<Re z<y}. Consider two boundary sets 

of S: 

(5.1) 
(5.2) 

A c 0SODO{Re z = x}, 

B c 0SNDA{Re z = y}, 
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and let A(x, y, A, B) : -A(A,  B, S). 

Problem 5.3. Find 
inf )~(x,y, A,B)  

x,y,A,B y--x 

We start  with some reductions of the problem: 
Since )~(x, y, A, B)>A(x,  y, A', B') ,  where A'=OSADN {Re z=x} and B' OSn 

D A { R e z = y } ,  we may assume that  A=A' and B B' ,  and write A(x,y,A,B)= 
~(x,y). 

If y < 0  then ,k(x, y)>~k(x-y, 0). So, without loss of generality, from now on we 
assume that  y>0 .  

S 

Figure 2. The vertical segments A and B on OS. 

Applying (2.11) we obtain 

(5.4) 

where 

C l a i m  5.5.  

(5.6) 

[ (x§ 1 
~ ( ~ , y ) =  4 .  l + x Y / j  ' 

X : e x p (  -7cv/1 x 2 ) ,  Y=exp(-TrV/~12Y2).  
k y x k y - x  

We have 

lim ~k(x, y) _ 1 
x~0 y x 2 
y---+0 

Proof. When x--~0 and y--~O, (X+Y)/(I+XY)-~O.  
formula (2.8) 

(5.7) ,(~,) = ~ to~ +o(1), as , - ~  0. 

We use the asymptotic 
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We have 

X + Y  [ 1 
l i m ( y - x ) t , (  "~ = lim ( y - x )  x~O tl+_x~) ~--o ~ log 

4(I+XY) ] X + Y  
y--+0 

= lira ( y - x ) [  ~-+o ~ log(X+Y)]  
y+O 

1 [ ] = l i m  (y x)log e ~ ~ ' /F~/(Y-~)+e ~@77~-y~/(y-x) 
x--~O - - ~  
y~O 

= lim - ( y - x )  -rr lx/i77-z 2 
x ~ O  27"C y - -  x 
y-+O 

+limx~o -(y-x)27r log[  l@e( 7r l~----Y2+rc~l x2)/(Y--X)J 
y--+O 

- -~  -- 1 • 0 = 1 .  

So 

(5.8) lim A(x,y) _ 1 _ 1 
x~O y - x  4 .1 2 
y-~O 

and the claim is proven. 

We extend the function k(x, y) to [ 1, 0] x [0, 1] by setting A(0, 0)=1~. Con- 
tinuity implies that the infimum in (5.4) is attained for a pair (x0, Y0), where 
(x0, yo)~[-1 ,  0] x [0, 1]. A numerical computation shows that the value of the in- 
fimum in (5.4) is approximately equal to 0.457443. We will return later to this 
numerical result. For now, we will use only the fact that  )~(-0.4, 0.4)/0.8~0.45<0.5. 

C l a im  5.9. There exist xoE(-1 ,  0) and yoE(O, 1) such that 

(5.1o) min A(x,y) ~(xo,yo) 
x,y y-- x yo -- Xo 

where the minimum here and below is taken over all x c  [-1, O] and yC [0, 1]. 

Proof. If x=--1  or y 1 then )~(x, y )=+oc .  
If - l < x < O  and y=O, then, because of symmetry, 

A(x, y) _ ~(x, - x )  
y - x  - 2 x  
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If z = 0  and 0 < v < l ,  then similarly 

)t(z,y) )t(-y,y) 
y - x  2y 

The minimum of the function ) t ( x , y ) / ( y - x )  cannot be attained at (0, 0) because 
as we remarked above A(-0.4, 0.4)/0.8~0.45<0.5. The above remarks show that 
the minimum is attained for a point in the interior of the square [-1,0] x [0, 1] and 
the claim is proven. 

Let (xo, Yo) c ( -1 ,  0) x (0, 1) be a minimizing pair whose existence is asserted by 
Claim 5.9. We write )to=)t(Xo, Yo) and (to y o - x o  so that  c*oE (0, 2) and 

(5.11) min ) t ( x , y )  _ ) to.  
x,y y -  x eeo 

C l a i m  5.12. We have x0=-Yo . 

Proof. We have 

A(x, )t(xo, Yo) )to (5.13) rain Y ~  - -- 
x,y g - x  Yo Xo (to 

In particular 

(5.14) min )t(y (to,Y) _ )to 
Y OL 0 CZ 0 

where the mininmm is taken over all y c  [max(0, C~o-1), min(c~o, 1)). 
Let g(y)=)t(y-c~o,y)/c~o. The function g attains its minimum for y Yo. By 

(5.4) we have 

(5.15) [ (x+Y)l 
g(y)= 4 .  17 7j ' 

where 

X = e x p ( - r c ~ f  ( t~  y e x p ( - - ~ - @ ) .  

Since u is a decreasing function, g is minimal when F ( y ) : = ( X + Y ) / ( I + X Y )  

is minimal. So F ' (yo)=0.  We differentiate and obtain 

(5.16) X '  + Y l = X 2 Y I  + Y 2 X  '. 
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1 Y0=�89  and E : =  Because of symmetry,  we may assume that  y0_> ga0. We set 
1 2 1 - E  2 -  ~a  0 so tha t  

(5.17) 1 - ( y 0 - a 0 ) 2 = E + c s 0  and 1 - y 0 2 = E - ~ s o  . 

With  this notation (5.16) becomes 
(5.18) 

= k 

After some algebraic calculations (5.18) becomes 

(5.19) 

Each of the four factors in the left-hand side of (5.19) is positive and at least as 
large as the corresponding factor in the right-hand side, with equality if and only 

1 1 if e=0 .  Hence (5.19) implies c = 0  and therefore y 0 = ~ 0 .  So x 0 = - ~ s 0 = - Y 0  and 
the claim is proven. 

Using (5.4) we can find a numerical solution of Problem 5.3. The identity 
(5.4) expresses A(x, y) in terms of the function u. Recall from Section 2 tha t  u(s) = 
K ' ( s ) / 4 K ( s )  where K '  and K are the complete elliptic integrals of modulus 
and s, respectively. These integrals are built into Mathematica, which is thus able 

to give the following result: 

(5.20) rain A(x, y) ~ 0.457443. 
x , y  y - -  X 

This minimum is at tained for y = - x ~ 0 . 4 0 3  and r = l .  
We summarize ore' results on Problem 5.3 in the following proposition. 

P r o p o s i t i o n  5.21. Let x, y, A, B be as in the beginning of this section. There 

exists a number Y0 E (0, 1) such that 

(5.22) A(x, y, A, B) > ),(-Y0, y0) _ A0 
y - x  - 2yo so 

The following approximate equalities hold: Yo ~0.403, Ao/So ~0.457443, so~0.806.  

Remark (1). We observed that  

- cos e '  cos e ~ 0.457443, 
h k e  )(~-'~ := (5.23) 

2 cos - 
e 
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that  is, the numerical solution of the extremal problem agrees with the number 
A(rr/e) in its first six decimal digits. It would be interesting if one could prove that 
y cos(re/e) is indeed the minimizing value in (5.22). 

(2) Is the number Y0 in Proposition 5.21 unique? 
(3) Proposition 5.21 will play an important role in Section 8. 

6. P e r i o d i c  c o m b  d o m a i n s  

A periodic comb domain is a domain of the form 

(6.1) D = D(zo) : C \  U {(2j-1)Xo + i y :  lYl > Y0}, 
j E z  

where Zo -- Xo +iyo with xo > 0, Yo > 0. 
If DcB,  then 2 2 xo+Y o 1, and conversely. We denote by Bp the class of all 

periodic comb domains in B. We write D=D(xo) for D(zo), if DEBp. 
Let D be a periodic comb domain. For j c Z ,  we define the crosscuts Fj of D 

by Fj = { ( 2 j -  1)x0 +iy: lYI-<Yo}. Let S =  {z: x0 <Re  z<x0}. There exists a unique 
conformal mapping f and a unique number A>0 such that f maps S onto the 

( -~A,  ~A) x ( - l i ,  l i )  with f(F0) 1 1. rectangle G =  1 1 [ ~A ~z, 21-A+�89 and f ( F 1 ) =  
1 1 1 .  5~, 5A+5~]. Notice that A=A(F0,F1, S). By repeated reflections f extends 

1 to a conformal mapping of D onto the strip G1 = {z:] Im z I < ~ }. Using the mapping 
f one can easily estimate harmonic measures at 0 on D. 

P r o p o s i t i o n  6.2. Let DEBp and xo, A be as above. Then for all R>0 ,  

(6.3) WD(R) > Ce mR, 

where ~=min(Tr/2x0, 7cA/2x0) and C is an absolute constant. 

We study now the conformal radius R(0, D) of a domain D CBp. Note that for a 
simply connected domain D and for zED, R(z, D)--a(z, D) -1. Let D=D(xo)EBp. 
We will compute R(0, D) as a function of x0. 

Recall that  S = { z : - x o < R e  z<x0} and A=A(F0, F1, S). The number A can be 
explicitly computed using Proposition 2.10 and (2.6), 

( 1 - e  ~yo/xo~_ 1 yo=  l ~ _ x ~ "  
(6.4) A=4z~ 1 ~ ]  2t,(e ~o/xo) '  

We will use elliptic functions (see [A]). Set k=e ~sx/T~~176 and k ' - ~ k  2. The 
function 

(6.5) f l  (z) = i exp 2x0 J 
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maps S onto C+ so that  fl(O)=i/v~, fl(xo-ilx/T~-xS)=l, fl(xo+i@~o-X~)= 
1/k, fl ( -xo- ix /1-xg)=-1,  fl (-xo+i lv/~-x~)=-l/k. 

The Jacobi elliptic function g(z):=sn(z, k) maps the rectangle I I = ( - K ,  K ) x  
(0, K ' )  onto C+ with g ( - K ) = - l ,  g ( K ) = l  and g(liK')=i/v~. Here 

/01 (6.6) K=K(k)= ( l - x )  1/2(1-k2x2) '/2dx, 

(6.7) K ' =  K ( V / 1 - k  2 ) = (1-x)-l/2(1-(k')2x2) -1/2 dx. 

Hence the flmction F=g-lofl maps S onto II. By repeated reflections we 
extend F to a function that  maps D(xo) onto the strip Sl={O<Imz<K'} which 
has eonformal radius 2K'/7c. 

So, for the conformal radius R(0, D ) : = a ( 0 ,  D) 1 of D at 0, we have 

2K' 1 2K' 1 2K' lg'(i/v~)l R(O,D)- 
If'(o)l I(g-loI1)'(o)l I/ (0)l 

(6.8) 
2 K '  ( l + k ) / v / k  _ 4xo(l+k)K' 

 /2xov  
In the computat ion above we used some formulae for the derivative of the function 
sn(z, k), see [A, p. 208]. Since k and K '  are known functions of x0, (6.8) is the 
expression we sought. 

Using Mathematiea we found the following result. 

Let R(Xo)=R(O,D(xo)). Then 

(6.9) max R(xo) = 1.39304. 
xoe(0,1) 

The computat ions of Mathematica suggest tha t  this maximum is at tained uniquely 
for x0=0.4227. The computat ion of R(xo) gives an upper  bound U<R(Xo) -~ for 

the univalent Bloch constant U. The best (approximately) upper bound we obtain 
is U<1.39304-1~0.718 and this is worse (larger) than the upper bound U_<0.6566 
obtained by Goodman [Go]. 

7. H a r m o n i c  m e a s u r e  a n d  c o n v e r g e n c e  o f  d o m a i n s  in  B 

Let {D,~} be a sequence of domains in B and assume that  Dn---~DEB, as n---~oo, 
with respect to 0, in the sense of Carath~odory. This means (see [P, p. 13]) that:  

(i) For every zcD there exists an open set O that  contains z and lies in Dn 

for all n > n 0 ,  no may depend on z and O. 
(ii) For #COD, and each n, there exists #ncODn such tha t  C n ~ ( ,  as n--+oc. 
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In this section we will s tudy some problems related to the following question: 

Let B~D~---~DEB. Is it true that WD~(R)---~O.)D(R)? 
First we need a result of Baernstein [B2]. Let S be the family of all univalent 

functions f : D - ~ C  with f ( 0 ) = 0  and f ' ( 0 ) = l .  Let H p, 0<p_<oc, be the Hardy 
space on the unit disk (see [D]). For 0 < p < l ,  H p is a complete, separable metric 
space with distance function 

f0 (7.1) d( f ,g  ) = If(ei~176 dO. 

From the subharmonicity of f n - f  in D, one sees tha t  if f n ~ f  in H p, then fi~--*f 
locally uniformly in D. Baernstein 's  result asserts that  for 0 < p <  1 the converse 
holds, too. This follows from the following theorem. 

T h e o r e m  7.2. (Baernstein) For 0 < p <  �89 S is a compact subset of H p. 

Since this theorem is not published we include a proof taken from [B2]. 

2<  <1  For these by Pro@ By HSlder's inequality, it suffices to consider g p 5" P, 
a theorem of Feng and MacGregor [FM], we have 

~0 2~ Ap (7.3) [f'(rei~ (1 r)ap -1 '  0 < r < l ,  

where the constant Ap depends only on p. 

Now 3 - l / p <  1, if p <  1. So, by an argument of Gwilliam [Gw], 

f0 (7.4) If(re i~ ) - f ( e  i~ [P dO < Ap(1 - r )  1-2p , 2 < p < z  - g 3" 

Since S is a normal family, compactness of H p follows easily. 

C o r o l l a r y  7.5. Let fn be a sequence in S and assume that f n ~ f  locally 
uniformly on D. Then 

(7.6) lim ]fn(e~~176 O<p< 1 
n ~ o ~  2 " 

We will use this corollary to prove the following theorem. Its  proof is also due 
to Baernstein. 
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with respect to O. 

(7.8) 

T h e o r e m  7.7. Let {D/t}n~__i be a sequence in 13 and assume that D~-+DoEB 
Then for all c>0  and R > 0  

n - - ~  o ( 3  

P w @  Let f~ be the function that  maps D conformally onto Dn, n=0,  1, 2, .., , 
with f/ t(0)=0 and f,~(0) >0. By Carath6odory's convergence theorem (see [P, p. 13]) 

(7.9) 2im f/t = f0 locally uniformly on D. 

So, by Corollary 7.5, 

&%/o 1 (7.10) If,~(ei~176 0 < p <  5" 

Fix 0 < p <  �89 and let m denote the Lebesgue measure on 0D. Since L 1 convergence 
implies convergence in measure, (7.10) implies that for every e>0,  

(7.11) limoo m({0: If/t(e ~~ -fo(ei~ p > e}) = 0. 

Now since (a+b)P<aP+b p for a>0,  b>0, we have 

{I/hi p > c~4-e} C {If ,~-lot p >- E}U{Ifol p >- c~} (7.12) 

and 

(7.13) {If0] p > a} C {If/t-f01 p >- r p >- c~-e}, 

for all a > 0  and all r Since m({IfolP>a})=WDo(C~l/P), (7.11) and (7.12) imply 

(7.14) nlim WD,, ((a§ i/p) <_ WDo (Ctl/v). 

Similarly, (7.11) and (7.13) imply 

(7.15) lim WDn ((a--a) z/p) _> WDo (CtZ/P). 
/ t  ---+ O O  

Setting az/P=R, we see easily that (7.14) and (7.15) imply 

(7.16) l i fn  wD,~(R+c) <_C~Do(R) < li_mm aJD,,(R--~). 
/ t -  + o ( }  
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The left-hand side inequality can be written as 

(7.17) ~im ~.~ (R) < ~-o (R- ~). 

Now letting c---~0, and using the fact that  WD is continuous from the left, we obtain 

(7.1s) nlimo~ ~ . ~  (R) < ~ 'o  (R), 

and (7.8) is proven. 

Remark. For DEB, C~D(R) is not in general a continuous function of R. It 

is, however, a decreasing function and so it can have at most a countable number 

of discontinuities. It is easy to see that if D is a comb domain then czD(R) is a 

continuous function. 

Before stating the next theorem we need some definitions. 

Definition 7.19. A symmetric comb domain is a domain D of the form 

(7.20) D = C \  [.J { ~ j + i y  : lY4 > Y~}, 
jEz 

where {xj}jc z is an increasing sequence of real numbers and {Yj}jcz is a sequence 
of positive numbers. 

If, in addition, there exists d=d(D)>0 such that xj+l - x j  > d  for all j E Z ,  then 

D will be called a symmetric a-comb domain. 

Definition 7.21. A domain D c C  will be called convex in the y-direction, if for 

all x E R  the set Dx={x+iy:yED} is connected. 

We will use the following notation: 

B8 is the class of all symmetric comb domains that belong to B, 

Ba is the class of all symmetric a-comb domains that belong to B, 

Bc is the class of all domains that are symmetric with respect to the real axis, 

convex in the y-direction and belong to B. 

Recall that  Bp is the class of all periodic comb domains in B. With the above 
notation we have ~p C B~ C ~8 C Be. 

In the next section we will study the harmonic measure a~D(R), R>0 ,  and 

the /~-exponent ~(D) of domains DEBt .  Here we prove that any DEB~ can be 

approximated in the sense of Carath6odory by a sequence of domains in 13,. More 
precisely we will prove the following proposition. 
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P r o p o s i t i o n  7.22. Let DCBc. There exists a sequence {Dn}Cl3a such that 
Dn---~D, with respect to O, in the sense of Carathdodory. 

Proof. For xED, let f(x)=sup{y:x+iyEDx}. It  is easy to see tha t  if [ is a 
closed interval lying in R n D ,  then either f ( x ) = + o o  for all xEI, or there exists at 
least one point x ,  E I  such that f(xi)=minxci f(x)<co. 

Fix an integer n > 1 0  and consider the intervals In,k=[k/n, (k+l)/n], kcZ. If 
ln,kCRnD and f ~ + o o  on L~,k, let Xn,k be a point of minimum whose existence 
was asserted above. Let also a=inf(DAR), b = s u p ( D N R ) .  

The domain G,~ is the symmetr ic  comb domain whose boundary  is defined as 
follows: 

Let Sn,k={Xn,k+iy:iyl>f(Xn,k)}, k . . . .  - -4 , - -2 ,0 ,2 ,4 , . . . .  
If  a=-cx~ and b= + oo ,  then OGn=Uk S,~,k. 
If a = - - o c  and b < + o c ,  then OGn=Uk Sn,kU{z:Rez=b+l/n}. 
If a > - o c  and b= + oo ,  then OG,~=Uk &,,ktO{z:Rez=a-1/n}. 
I f a > - c x ~  and b < + ~ ,  then OG~=Uk Sn,kU{z:Rez=a-1/n or Rez=b+l/n}. 
So we have constructed a sequence G~ of symmetr ic  a-comb domains. I t  is 

easy to see that  (i) DcG~ for all n and (ii) for all ~EOD there exists ~nEOGn such 
that  lim,>-+oo ~,~=~. Hence G~-~D, as n-+oo. 

The inradius of Gn may be larger than 1, but the triangle inequality implies 
tha t  

2 
(7.23) R(G~) < 1+-. 

/l, 

Let D~=G,~/R(G,). Then {D,~}CBa and Dn-~D, as n--+eo. 

8. D o m a i n s  w h i c h  are  s y m m e t r i c  and  c o n v e x  in t h e  y - d i r e c t i o n  

We will use the results of the previous section to s tudy the harmonic measure 
and WD(R) and the ~-exponent/~(D) for DEBt. We will show that  a certain domain 
Do EBa has the smallest/~-exponent among all DEBt. This extremal comb domain 
Do has an additional symmetry:  it is a periodic comb domain defined as follows: 

In Section 5 we defined the numbers s0 and A0 and we proved that  (see Propo- 
sition 5.21) 

1 (8.1) ~-A0/a0 := ~ < ~rc. 

Let D 0 = D ( l a 0 ) ,  i.e. 

(8.2) 
j~z 
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From Proposition 6.2 it follows that  

(8.3) Ce -eR _< ~D0 (R). 

T h e o r e m  8.4. For all D�9 

(8.5) ~v(R) <C~Vo(t~), R>0, 

where C is an absolute constant. 

From Theorem 8.4 and Proposition 6.2 we obtain the following corollary. 

C o r o l l a r y  8.6. For all DEBt, /~(D)>_/3(Do)=TCAo/ao. 

Remark. Since )~o/c~0~0.457443, Corollary 8.6 implies ~(Do)<�89 This fact 
disproves Bishop's conjecture. A smaller upper bound for 270 will be obtained in 
Section 9. 

The rest of this section is devoted to the proof of Theorem 8.4. 

Proof. The proof has three steps. 

Step 1. In Steps 1 and 2 we prove (8.5) with the additional assumption D�9 
The class B~ was defined in Section 7. Let 

(8.7) D = C \  [_J {x j+ iy  : lYl-> Y~} �9 ~o- 
j~z 

We may assume that  yj < 1 for all j E Z. Otherwise, we replace D by the domain 
D' obtained from D by deleting the half-lines {xj +iyj:lyl->Y5 } with yj _> 1. Then 
D c D '  and R(D')=I. 

We will construct a domain D* ~Ba that  contains D and has additional prop- 
erties. We may assume that  xi>O for j c Z  + and xi<_O for j c Z  U{0}. The domain 
D* is obtained from D by deleting certain half-lines of OD. It has the form 

(8.8) 1)* = c \  U {x i+ iy:  lyr >_ y;}, 
j cz  

where {x~ }jcz and {y; }jez are subsequences of {xj }j~z and {yj }jcz,  respectively. 
They are defined inductively as follows: 

Set x7 = x l  and y~ =y l .  Let A1 D(~, 1) be the disk satisfying 
(i) xl+iyl@OAt, 
(ii) ~>_xl. 
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By a simple argument (involving a renumbering of the sequence {xj}jcz) we 
may assume that  A1N{z:Rez<~}cD. Then, since R ( D ) = I ,  there exists a finite 
number of points x I <x~ <... <x~ ~ in {xj}?= 2 with ~<x  I such that  x j +iy{ Eclos A~, 

* s  j = l , 2 , . . . , k l .  We set x~=x~ ~ and y2=yl . 
Applying the same construction starting from x~ and y~ we define the sequences 

* * * * * C o o  {x 1, x2,..., xn,...} C {xj }~-l, {Y{, Y2, ..., Yn,-.-} {Yd }j=* and the sequence of disks 
{A1, A2, ..., A~, ...}. 

Similarly, working from right to left we define the sequences 

�9 . ,  �9 ~ �9 �9 , . . -  * y - ~  {~0,~ ~,...,~ ,, . . .}c{~j}j 0, {y0,>~, ,y_~,...}<{ j}j=0 

and the sequence of disks {A0, A - l ,  . . . , /k-n ,  ...}. 
By the construction the domain 

(s.9) D* = c \  U {x~+iy: lyl _> y;} 
jEz 

is a comb domain in B~, contains D and satisfies 

(8.10) {x~+iy;, x;+l+iy;+l} C clos Aj ,  j E Z. 

Step 2. We continue to assume that  DE/3a. Let 

(s.~) D = c \  U {x~+iy: lyf-> yji- 
jEz  

We again assume that  xj>O for j E Z  + and xj<_O for j c Z - U { 0 } .  Set dj=xj+l--Zj, 
Fj ={Re  z=xj}AD, S 3 ={z:xj <Re  z<xj+l}, j eZ. 

By Step 1 we may assume (by replacing D by D*) that  for all j cZ ,  the points 
xj +iyj and Xj+l+iyd+l lie in the closure of a disk Aj of radius 1 centered on R. 
Now we may apply the solution of the extremal problem of Section 5 (Proposi- 
tion 5.21) to get 

(8.12) A(Fj ,Fj+I ,Sj)_> ~oo(XJ+l-xj), j ~ Z .  

Let R >10  and D~=Dn{lzI<R }. Let E~ be the component of DN{lzI=R } 
that  intersects R + and let E2 be the component of DC~{]zl =R} that  intersects R - .  

Let k be the largest positive integer with the properties xk_< R - 1  and 

(8.13) dos El n{Xk-~iy: [Yl ~ Y~ } r O. 
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Since R(D)= 1, it follows that 

(8.14) R - 3  < xk < R - 1 .  

Then, by the maximum principle, 

co(0, El, D) < co(0, P~, D). (s.15) 

Similarly we have 

(8.16) co(O, E2, D) < co(O, Fk ,  , D), 

where k' is the smallest negative integer with the property 

(8.17) c]os/772 ~ {x~, +iv:  lYl -> Y~' } r ~. 

Next let Aj={izi=R}NSy , U<j<_k-1. The set Aj has two components. 

Claim 8.18. The harmonic measure co(z, Aj, D) <_Ce -~(uj-1)/dj, 1 <_j < k -  1, 
where C is an absolute constant, zeFj and uj=min{Imz:zCAa }=(R2-X~+l) U2. 

Proof. By the maximum principle it suffices to prove that 

1 " * co(Tdjq-z, Aj, Q) < Ce -'~('*j-1)ldj, 

where a=C\{ iy :y>l} \{d j+iy:y>l}  and A~={x+iuj:xE[O, dj]}. By Beurling's 
inequality (2.15) 

co (ldj + i, A;, a) _< 

where "r={x+i:xc[O, dj]}. But and hence the claim is 
proven. 

Next, let 

(8.19) coj=co(O, Aj,D), U+l<j<_k 1. 

By the strong Markov property (Lemma 3.7) 

(8.20) coy < max co(z, Aj, D)co(0, Fj, D). 
z C P j  

By Beurling's inequality (2.15) and the subadditivity property of extremal distance 
(see [O, Theorem 2.10]) 

(8.21) co(0, rj, D) <_ Ce ~a(ro,rj,D) < Ce . . . . .  . 
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Using (8.12) and (8.21) we obtain 

(8.22) ~(o,  r j, D) < Ce -~o(xj-xo)/"o 

Claim 8.18, (8.29) and (8.22) yield 

(~(~j-1) ~0~ ,  
(8.23) wj <Cexp - dj a-o / 

with an absolute constant C. Recall that 5=Tr),~/ao. Then (8.23) and the fact 
x j + l - x j < 2  give for l < j < k - 1 ,  

wj ~ C exp(-Sx j  7r(u j -1)~  < C exp(-e~Xj+l 7r(uj-1) ) 

/ 7r(uj- 1) "~ 
< c exp(- 6R) e~p ke(x~ - x~+~) ]' 

where we used (8.14). 
2 2_  2 S o x j + l + u j - l > R - l > x k .  Hence Now xj+ 1 +uj:-_R . 

( (8.24) ~j  _< c ~  -~R exp - ( ~ - x j + , )  d-~- ' - 

Similarly we show 

(8.25) c~j<_Ce-SRexp--(xk,--xj-i) 7---6 , k ' + l < j < - l .  

Fo r /=0 ,  1, 2, ..., let 

(8.26) 

Then 

(8.27) 

Jl= {j >_ l :l <Xk_l--Xj+l </+1} .  

k - 1  oG 

j = l  jEJo j@J1 / = 2  jCJ~ 

Let m E Z  + be such that R-7<x,~ < R - 5 .  By Beurling's inequality (2.15), the 
subadditivity property of extremal distance (see [O]), and (8.12) 

(8.28) ~ ~ +  ~ ~,~ < ~ ( o , r . , D ) <  c~--~(Fo, ~m,~) <c~-'~o~/~o=c~ -~'~. 
jEJo jCJ1 
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By (8.27), (8.28) and (8.24) we get 

k--1  oc 71" 

(8.29) j = l  1=2 j C J ,  

<_ Ce -~R ~ ~ e-l(~/dJ-~) +Ce -~R. 
1=2 jEJt 

Now we will estimate ~ - 2  ~j~J~ e-l(~/dJ -~) by an absolute constant. We need the 
following lemma. 

L e m m a  8.30. Let f be a positive function, convex, increasing on [0, 2] and 
smooth on (0, 2). Assume also that f(O)=0. Let 

N 

(8.3I) g(dl, d2, ..., tiN) = E f(dj).  
j=l 

Then the maximum of g under the conditions dl+d2+...+dN-<2 and dj>_O for all 
j = l ,  2, ..., N is attained when dj=2 for some j.  

The proof of the lemma follows easily from the theorem on Lagrange multipliers. 
We apply the lemma to f(x)=exp[-l(Tr/x-5)].  Note that  ~j~j~ dj <2. It is 

easy to check that  f satisfies the other conditions of the lemma if 1C(2, 3, ...}. So 
we have 

(8.32) E e-l(~/dJ -~) -< e-l(~/2-~)' l = 2, 3 , . . . .  
j~Jz 

Therefore, since 5< ~zT, 

(8.33) E e-'(-/d~-~) -< E e-Z(----~) < c, 
/ = 2  jEJz 

for an absolute constant C. 
Now (8.29) and (8.33) give 

(8.34) 

/ = 2  

k - 1  

wj -< Ce -~R. 
j=l 

Similarly we use (8.25) to find the estimate 

(8.35) 
k--1 
E Wj ~__ Ce -hR. 
j=k' 
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Also Wo~_Ce -~R. This follows from Claim 8.18 and the fact 7r/do~_�89 Hence 

k--i 

(8.36) ~D(R) <_w(O, E1,D)+w(O, E2,D)+ E Wy <Ce eR. 
j z k  t 

Recall now that 

(8.37) Do=C\U{z:Rez=�89 _> 
j c z  

By Proposition 6.2 

(8.38) WDo (R) > Ce ~),oR/~o = Ce-eR. 

The inequalities (8.36) and (8.38) imply 

(8.39) WD(R) < C~D(R) < CWDo (R), R > 10. 

This holds actually for all R>0 .  

Step 3. In Steps 1 and 2 we have assumed that  DCBa. Here we drop this 
assumption. 

Let DCB~ and consider a sequence Dn in Ba which converges to D, in the sense 
of Carath6odory. The existence of such a sequence was proved in Proposition 7.22. 
By Step 2 we have for all n and R 

(8.40) WD~ (R) < CwDo (R). 

By Theorem 7.7 and (8.40) for each c>0,  we have 

(8.41) WD(R) <_ lim WD,,(R--c) <_ CwDo(R--c). 
n -~.  o o  

Now since Do is a comb domain, WDo is continuous. Hence, letting c--~0 we obtain 
(8.5) and the theorem is proved. 

9. P a r a s y m m e t r i c  c o m b  d o m a i n s .  U p p e r  b o u n d  for  flo 

As we saw in Corollary 8.6, f10<zcA0/a0<0.467r. Now we find a better  upper 

bound for rio- 
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F i g u r e  3. T h e  p a r a s y m m e t r i c  c o m b  d o m a i n  D(xl). 

Definition 9.1. A parasymmetric comb domain is a domain D=D(xl,yl) of 
the form 

D : c \ ( U { 2 k x l + i y : Y > y l } U U { ( 2 ~ q - 1 ) x l @ i y : y < _ - Y l } ) ,  
" k E Z  --  kEZ 

where xz, Yl are positive numbers. 

A parasymmetric comb domain D(xl ,  Yl) belongs to B if and only if xl C (0, 1) 
and Yz = �89 (1 + X / ~  ). Thus the parasymmetric comb domains in B form a one- 
parameter family. We write D=D(xl) when DEI3. 

We extend each half-line of OD(Xl) and obtain a decomposition of D(Xl) into 
an infinite number of vertical strips. Let S={z:O<Rez<xl}, A={iy:yGyl} and 
B = {x~ +iy:y > - y l  }. We compute the extremal distance A---A(x~) = A(A, B, S). 

L e m m a  9.2. Let A, B, S be as above. Then A=4,((I)), where (I)-(I)(Xl)= 
(i@e--~r( l~x~--x~ +1)/x1)--l/2. 

Pro@ We map S conformally onto the upper half plane C+. A function that  
does this mapping is f(z)=e -i~(z-:cl)/~l. Then I(A)=[-e~m/x~,O] and f ( B ) =  
[e ~Y~/~, +oc). By conformal invariance of the extremal distance we have (see 2.3) 

(9.3) 
(le  lJxl) 

A(xz):=A(f(A),f(B),C+)=4y e_~yl/X~+e~yl/xl 

=4~,((1+e -2~yl/xl) 1) =4~,((I)(xl)). 

Next we consider the following extremal problem: Find 

(9.4) min A(Xl) 
x~e(0,1) Xl 
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Mathematica gives 

(9.5) min A(xl) = 0.428517, 
x~E(O,1) Xl 

and this minimum is attained only for x l~0.660895=:x*.  We will not provide 
a proof of the existence of the minimum. Below we will only use the fact that  
A(0.66)/0.66~0.428517. 

For kEZ,  let Ak={2kx*+iy:y<_y*} and Bk {(2k+l)x*+iy:y>_-y*}, where 
y*= �89 (1 + ~ )  =0.875239. The sets Ak and Bk are vertical crosscuts of the 
parasymmetric comb domain D*=D(x*). 

C l a i m  9.6. We have 

a(x*) 
(9.7) fl(D*) < ~ r - -  

X* 

Pro@ We could prove this claim by using a conformal mapping obtained by 
repeated reflections. Instead we give a proof based on Lemma 2.17. 

Let R>100.  Then x*k<R<_(k+l)x* for some k EZ  +. We assume that  k is 
even. The case k odd is t reated similarly. 

Let ER be the component of D*n{lz]=R } that  intersects R +. It is obvious 
that  for all ~EER, 

(9.8) 

for some 5>0. So the strong Markov property (Lemma 3.7) gives 

(9.9) 

COD(R) >/ER w(O, d(, D \ ER)W( (, {]z I > R}AOD*, D*) 

>_ 5 f .  w(O, de, D\ER) = 5w(O, ER, D). 
R 

By the maximum principle 

(9.10) w(0, ER, D) > w(0, Bk, D) > w(0, Bk, Dk), 

where Dk is the component of D*\Bk\B k that contains 0. 
Now we apply Lemma 2.17. We map Dk onto D so that  0 goes to 0 and A0 

goes to [-i,i]. Since R>100,  Bk is mapped into {ei t : t~[-~Tr,  11r]}. So we may 
apply the lemma with FA=A0 and obtain 

(9.11) w(0, Bk, Dk) > Ce -TrA(A~ > Ce -~r)~(B-I'Bk'D*). 
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By symmetry we have 

(9.12) /~(J~--l, Bk, D*) ---- (k-l-2)/~(x*). 

We combine (9.9), (9.10), (9.11) and (9.12) to obtain 

(9.13) WD(R) > Cle -~r(k+2)~(x*) > C2e k~rA(x*) > C3e-~r~(x*)R/x* 

with absolute constants, which implies the claim. 

Thus we obtain the following upper bound for/30. 

T h e o r e m  9.14. We have/30_<1.34622_<0.42867r. 

C o n j e c t u r e  9.15. It is true that/30=/3(D(x*)). 

Remark. (1) R. Goodman [Go] constructed a domain GC/3 which is important  
for some extremal problems involving conformal radius, the first eigenvalue of the 
Laplacian and the expected lifetime of Brownian motion, see [Go] and [BC]. We have 
proved that  the/3-exponent of G satisfies the inequality/3(G) >_Tr log 2~0.6937r > �89 

(2) By disproving the conjecture of Bishop, we showed that  the strip S of width 
2 is not an extremal domain. However, S is the extremal domain for the following 
problem: Find inf{/3(D):DcB and D is convex}. This fact can easily be proved by 
using an old theorem of Szeg5 (see [BC]). 
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