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On a theorem of Kaufman: Cantor-type 
construction of linear fractal Salem sets 

Chr i s t i an  Bluhm(1)  

Abs t r ac t .  In this paper we present a deterministic Cantor-type construction of linear fracta] 
Salem sets with prescribed dimension. The construction rests on a paper of Kaufman [10] where 
he investigated the Fourier dimension of the set of c~-well approxinmble numbers in lt .  

1. I n t r o d u c t i o n  

In met r i c  D iophan t ine  app rox ima t ion ,  sets  w i th  f rac ta l  Hausdorf f  d imens ion  

occur  often. As an example  we recal l  the  wel l -known the o re m of Ja rn fk  [7] and  

Besicovi tch [1], which s t a tes  t h a t  for a > 0  the  set E ( a )  of a -we l l  a pp rox ima b le  

numbers  in R has Hausdor f f  d imens ion  dimH(E(a))=2/(2§ In la te r  years  var-  

ious au thor s  genera l ized  this  t heo rem in m a n y  d i rec t ions  (see Dodson  [4]). In  1981 

K a u f m a n  [10] proved t h a t  E ( a )  carr ies  a p robab i l i t y  measure  #~ wi th  compac t  

s uppo r t  whose Four ier  t r ans fo rm is of o rder  

p~(x)-o(lo~pxl)lxl -lz(2+~) (Ix4 ~o~). 

By a wel l -known theo rem of P r o s t m a n  (of. M a t t i l a  [11]) th is  impl ies  the  lower b o u n d  

in the  t heo rem of J a rn ik  and  Besicovitch.  Fu r t he rmore ,  it  shows t h a t  the  Hausdor f f  

d imens ion  of the  suppo r t  of #~ equals  i ts  Fourier dimension, where  the  Four ie r  

d imens ion  of a compac t  set K C R d is defined by  

d i m F ( K )  : =  sup{~  C [0, d] I the re  is # C M~(K) w i t h / 2 ( x )  = O(Ixl -~/2) (txl ~ oc)}. 

Here M r ( K )  denotes  the  set of all  p robab i l i t y  measures  wi th  s u p p o r t  in K ,  and  p 

means  the  Four ie r  t r ans fo rm of a measure  #EM+(K) defined by  

~(~) := f exp(-2~i(~, y)) ,(dy) (x Rd). C 
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A compact set K c R  d is called a Salem set if d i m g ( K ) = d i m H ( K ) .  The dimen- 

sion of a Salem set means its Fourier resp. Hausdorff dimension. The theorem of 

Prostman already mentioned implies that the Fourier dimension of compact sets is 

majorized by their Hausdorff dimension. In certain random constructions the oc- 

currence of fractal Salem sets seems to be natural (el. Kahane and Mandelbrot [9], 

Kahane [8, Chapters 1~18], Salem [12], and Bluhm [3]), but Kaufman's work men- 

tioned above is the only deterministic construction of a Salem set of prescribed 

dimension known to the author. However, his account is by no means easy to fol- 

low. In this paper we have tried by modifying his construction and casting it in a 

more geometric form to produce an easier deterministic construction of linear Salem 

sets with prescribed dimension. This work is an extended version of Chapter 2 in 

the author 's dissertation [2]. 

2. C a n t o r - t y p e  c o n s t r u c t i o n s  

First of all we need some notation. For x C R  

Ilxll := min Ix -ml  
m C Z  

describes the distance from x to the nearest integer. The set of prime numbers will 

be denoted by P,  and we set 

PM := PN[M, 2M] 

for a positive integer M. Now we explain the Cantor-type construction considered 

in this paper. Fix c~>0 and choose a sequence of positive integers (Mk)kcN with 

M1 < 2M1 < M2 < 2M2 < M3 < 2M3 < . . . .  

Later we are going to determine recursively a sequence (Mk)kcN for which the set 

Or 

so := N U {x  �9 [0,1]111pxtl _<.-1-~} 
k - - 1  p G P  M k 

is a Salem set of dimension 2 / ( 2 + c  0 (Theorem 3.3). Let us for a moment explain 

the structure of S~. For abbreviation we set 

Eq(~) == {x c [0,1]lllqxll ~ q 1 ~} 
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for every qcN.  Obviously, Eq(c~) can be written as a union of closed intervals: 

q--1 

(,) ~(-)=Io, q-~-~l~ U [~ - ,~  ~ ~-~-~176 . 
m_lLq q 

Therefore, the set S~ is compact. 
We assume the following Condition 2.1 on (Mk)k~N to be fulfilled throughout 

the paper. 
Before formulating it we should recall the prime number theorem in the follow- 

ing form (Hardy and Wright [6, (22.19.3)]) 

# P M  
(2) lim -- 1, 

M-~+~o M~ log M 

where # A  denotes the number of elements of a finite set A. Therefore, if M1 is 
large enough we are able to find a sequence (Mk)kcN which fulfills the following 
condition. 

Condition 2.1. Let M~ c N  be large enough so that  

Mk 
P M k r  and #PMk-->21ogMk 

for every k C N. 

We are now in a position to state the following proposition. 

P r o p o s i t i o n  2.2. The set S~ is a nonempty compact set in [0, 1] and has 
finite Hausdorff measure for the measure function h(r)=r 2/(2+~) log(e+r-1) .  

Proof. For proving S~r  it is sufficient to observe that  0, 1EEp(c~) for every 
PCPMk and that  PMk r  for all k E N  (Condition 2.1). 

For qCN the set Eq(a) can be covered by q + l  intervals of length 2q 2 ~. 
Once more applying the prime number theorem (2) it is straightforward to show 
that the set S~ has finite Hausdorff measure for the measure function h ( r )=  
r2/(2+ ~)log(e+r-1) .  [] 

As an immediate consequence we obtain dimF(S~)_<dimH(S~)_<2/(2+c~). 

Remark 2.3. Closely related to S~ is the set 
oo (2<3 

E(.)  = n U {x ~ [0,1] i Ilqxil < q-~ ~} 
k ~ l  q=k 

of c~-well-approximable numbers. As mentioned in the introduction, the Hausdorff 
dimension of E(c~) is 2 / (2+a) ,  which was proved by Jarnfk [7] and Besicovitch [1]. 
However, the set E(c~) is dense in [0, 1] and therefore quite different from S~. 
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3. C o n s t r u c t i o n  o f  # ~  

In [10] Kaufman constructed a positive measure pa  with support  in E(a) whose 
Fourier t ransform is of order 

P (x)=o(loglxl)lxl 

In this section we construct a measure #a  with a similar decay and support  in S~ 

based on a certain sequence (Mk)kcN, which will be constructed recursively accord- 
ing to Lemma 3.2 below. The construction rests on a modification of Kaufman 's  
construction. Here C~ (R) denotes the space of all twice continuously differentiable 
functions with compact  support.  

Before stating Lemma 3.2 we need to introduce some functions. Fix M c N  
with 

(3) R := ( 4 M ) - 1 - ~  < �89 

and define a function FM on [--�89 �89 by 15 --5 FM( )=rSR (R2- 2) 2 when %<_R, 
FM(X)=O when R<lxl<�89 In the following we assume FM to be defined on the 
whole real line with period 1. Because FMEC2(R) its Fourier series FM(X)= 
~ , ~ c z  a(M)e2~i~'~x converges uniformly to FM, where the Fourier coefficients a ( ~  ) 
are given by 

a (M) /1/2 
FM (t) e- 2~rimt dr. 

J--1/2 

By (partial) integration we obtain 

(4) a(o M)=I, la(M) l < l ,  and la(M) l<m-2R 2 ( m E N )  

for the Fourier coefficients of [?M. Now set 

qM(x):= E FM(px)= E E a(M)e2~i~P~" 
pCPM mEZ pCPM 

Therefore, qM E C2(R) is a l-periodic function. We intend to normalize qM by 
multiplication with a constant CM 1 in order to obtain eMI~M(0)=I.  Because of 

(5) 0M (k )=  E a~nM) 
m E Z  

PCPM 
k--rap 

it is clear that  one has to choose CM:=#PM. For abbreviation we set 

gM := C~ qM. 
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P r o p o s i t i o n  3.1. If gM(X)>O, then there exist pEPM with [[PXii<<_p 1-% 

Proof. The fimction F M is l-periodic, which yields to 

1 gM(X)>O ~ there a r e p E P M  a n d m G Z w i t h i P x  m I < R = ( 4 M )  - 1 - ~ < g .  

This implies the assertion of the proposition. [] 

Roughly spoken, we are going to construct a measure #~ with support in S~ by 
repeated multiplication of densities gMk where (Mk)keN will be chosen recursively 
according to the following lemma. We introduce the function 

O(z) := ( l+lxl)  1/(2+~)log(e+[x[)loglog(e+[x[) 

for the sake of a clearer presentation. 

L e m m a  3.2. For every CEC~(R) and 6>0 there exists a positive integer 
Mo = Mo @' , 6) such that 

I[r < 60(x) for �9 ~ R,  

for all M>Mo.  

Before proving the lemma we use it for the construction of an appropriate 
sequence (M~)kcN and a corresponding measure >~ carried by S~. 

We start with a function ~b0: R+-+R+ with the properties 

/ ~ o ( x )  d x = l ,  ~)01]0 ,1[>0 ,  a n d  ~O]R\[0,1]=O. (6) r c C~. (R), 

Now we choose 0<T<�89 According to Lemma 3.2 we find 

M1 Ml(g)o, "r2-1), 

M2= M2(r 7-2 2), 

Mk=Mk(r -k) (kEN) .  

We assmne S~ to be constructed according t o  (Mk)kEN. Now we build products 

k 

G 0 : = l ,  and G k : = I I g M j  (kEN) .  
r 1 
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Using Lemma 3.2 we obtain for all k c N 0  and all x C R  

(7) I [~0ak+l ]  A (x) - [r ak]  A (x) l _< T 2 - - k - - I o ( x )  �9 

Denote by A 1 the Lebesgue measure on the BoreI sets in R. Define a sequence of 
measures by 

#k:=r 1 ( k E N 0 )  

with Fourier transforms f~k(X)=[OoGk]A(X) (xER,  kCNo). Because of (7) the se- 
quence (Pk)kENo is a Cauchy sequence with respect to the supremum norm. This 
implies that  

there exists #~ EM{([0,  1]) such that cpk-%p~ 

where ~ denotes weak convergence and c=c(T) is a positive constant which nor- 
malizes #~ to mass 1. Now (under assumption of Lemma 3.2) we are able to prove 
the main theorem of this paper. 

T h e o r e m  3.3. The measure p~ obeys 

Therefore, S~ is a Salem set of dimension 2 / ( 2 + a ) .  

Proof. The cIaimed Fourier asymptotic of p~ follows from (7) and ~ sire- 
ple geometric series argument, also taking into account that  ftp(x)=O(]x1-2) for 
fixed p. The second assertion follows from Proposition 2.2, dimF(S~)_<dim/~(S~), 
and Proposition 3.1 (which implies that  the support of #~ is contained in S~). [] 

4. P r o o f  o f  L e m m a  3.2 

Our task in this section is to prove Lemma 3.2. To begin with, fix M c N  for a 

moment. Because of (5) and [a(~M) [ _< 1 we have IqM (k) l_< # {  (m, p)C Z x PM [k =rap}. 
Because [kl has a unique factorization by prime numbers, we easily obtain 

(8) t~M(k)L < log Ikl 
- l o g  M 

for all k c Z \ { 0 } .  Additionally, by (4) and (5) we have the implication 

m p = k  :. im[=lk~> [k[ ~ [a(M)[~_m_SR_2<4k_SMSR_2, 
(9) P - 2M 

4k-  S MS R -2 log Ikl 
:- ]q~(k) t  _< log M 

for all kcZ\{O}.  We prove Lemma 3.2 in three steps. 
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Step  1. There exists M I > 0  and A = A ( . ) > 0  such that for all M>MI,  

I[lM(k)I<_AM-11ogM for allkCZ\{O~, 

I~M(k)l <_ Alk1-1/(2+~) log Ikl for all k E Z with Ikl > 4MR 1. 

Proof of Step 1. We consider two cases. 
Case 1: I<_IkI<_4MR -1. Using (8) with Condition 2.1 we have 

IgM (k) l = CM ll0M(k)l < cM1 log [k[ < 2M -1 log M( log(4M)- log  R) 
- l o g  M - l o g  M 

= 2M ~(log 4+log M +  (1+, ) ( log  4+log M ) ) <  4(2 + - ) M  -1 log M. 

Case 2: IkI>4MR-~=(4M)2+% By (9) we obtain the following estimation, 

]gM(k)[ = CM 1 [(tM(k)[ < eM14k-sM21:l-2 log [k] < 2M 1(log M)4k-SM2R-2 log [k[ 
log M - log M 

8k 2MR 210glk[= -2 t  3+2~ = 8k ~(4M) log Ikl _< 21k1-1/(2+") log Ikl 

It remains to show that  I[~M(k)I<AM -1 l ogM for IkI>4MR -~ for all M>M~ with 
large M1 and some constant A = A ( . ) .  But this is easily verified by combining 
elementary properties of the logarithm with the estimations in Case 2 (e.g. A =  
2(2+ . ) ) .  [] 

From now on let always M > M1, and let ~b C C~ (R) be given. 

S tep  2. There exists B=B(r  such that 

I[~gM]A(x)--~(x)I < B M  -1 l ogM for x e R. 

Proof of Step 2. Writing gM as a Fourier series we obtain 

[r = Z ~M(k)~(x-- k). 
kcZ 

Then, OEC~(R) and ~M(0)=I imply 

I[~'gM]A(x)--r <_ ~ I~M(k)llr <_ t3~ ~ f~(k)l(l+ Ix-kl) -2 
k#O k#O 

B1 ( ~ ( l + l x - k l )  -2) sup 10M(k)l _< BM -1 logM, 
- k r  . k~0 

with constant B=B(r ~ - 1  k-2, where A = A ( . )  is the constant from 
Step 1. Therefore, Step 2 is proven. [] 

Now let 6>0 be arbitrarily small. 
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S t e p  3. There exists M2>0 such that for all M>_M2, 

I[>gM]A(X)--~(X)I _<50(X) for x ~ a .  

Proof of Step 3. We consider two cases. 
Case 1: Ixl<8MR 1=2(4M)2+% In this case the assertion follows for large 

M from Step 2 and some tedious manipulation. 
Case 2: IxI>8MR -1. We divide the sum 

~-~ B~10M(k)l(l+lX_kl ) 2 

kr 

arising in the proof of Step 2 in two parts by summing first over k with Ix-k l  > 1 _~lxl 
and second over k with Ix-kl<~lxl. It is easy to see that for large M the first 
sum is majorized by C1]x I 1 with a constant C1 independent of M and x. For 

1 estimating the second sum we apply Step 1 and use ~ Ixl >_4MR 1 to obtain 

E 
Im-kl<lxl/2 

( k )  BxlgM(k)[(l+lx k[)-2_< 2B1 k -2 sup [gM(k)[ 
k=l Ikj>J~l/2 

_< B sup (Ik1-1/(2+~) log Ikl) <_ SO(x) 
[ k l > l x [ / 2 > 4 M R  -1  

for all M which are large enough. [] 

The assertion of Lemma 3.2 follows by choosing M0(~b, ~5)=M2.  

5. C o n c l u s i o n s  

The proof of Lemma 3.2 shows that the construction of M0(~, 5) is explicit. 
Therefore, Lemma 3.2 provides a recursive explicit construction of the sequence 

(Mk)kcN. 
By choosing an appropriate a>0 the method of this paper results in an ex- 

plicit method for constructing linear (fractal) Salem sets with prescribed dimension 

in ]0, 1[. 
It is possible to generalize the results of this paper in two directions. 
The first consists in considering a decreasing function ~; :N-~R+ instead of 

the function qF-~q -1-~. This leads to sets S,r (closely related to the set E(~)  of 
~-well approximable numbers) instead of S~. Dodson [4] calculated the Hausdorff 
dimension of E(g)), and in [2] we proved that  Sr is a Salem set. The second 
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generalization consists in considering all x E R  d with IxIES~. Then a paper of 
Gatesoupe [5] shows that this leads to Salem sets in R d (invariant under rotations) 

with dimensions in ] d -  1, d[ (see [2]). 
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