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Sobolev embeddings into BMO, VMO, and 
Andrea Cianchi and Lubog Pick 

A b s t r a c t .  Let X be a rearrangement- invariant  Banach function space on R n and let VIX 
be the Sobolev space of functions whose gradient belongs to X.  We give necessary and sufficient 

conditions on X under which V1X is continuously embedded into BMO or into Lz~. In particulm', 

we show tha t  Ln,oo is the largest rearrangement- invariant  space X such tha t  V1X is continuously 

embedded into BMO and, similarly, L~,I is the largest rearrangement- invariant  space X such tha t  

V1X is continuously embedded into Lc~. We further  show tha t  V1X is a subset  of VMO if and 

only if every function from X has an absolutely continuous norm in L n , ~ .  A compact  inclusion 

of V1X into C o is characterized as well. 

1. I n t r o d u c t i o n  

The space BMO of functions having bounded mean oscillation, introduced by 
John and Nirenberg [JN], has proved to be particularly useful in various areas of 
analysis, especially harmonic analysis (see [To] or [S, Chapter 4] and the references 
given there) and interpolation theory (see [BS, Chapter 5]), as an appropriate sub- 
stitute for L ~  when Lo~ does not work. 

The main objective of the present paper is to establish criteria for the mere- 
bership of a function to BMO or to L ~  in terms of the summability properties 
of its gradient. More precisely, we characterize all rearrangement-invariant (r.i.) 
Banach function spaces X on R n such that  the corresponding Sobolev space V I X  
of functions whose gradient belongs to X is continuously embedded into BMO or 
into L ~ .  Furthermore, we show that  the Marcinkiewicz space Ln,~ is the largest 
rearrangement-invariant space X such that  V~X is continuously embedded into 
BMO, whereas the Lorentz space Ln,1 is the largest rearrangement-invariant space 
X such that  V1X  is continuously embedded into Lo~. Our conclusions bring some 
new information to the study of the gap between L ~  and BMO (cf. [GJ], [LAP] 
or [LP]). We also give a necessary and sufficient condition for V I x  to be uniformly 
included into the space of functions with vanishing mean oscillation (VMO), which 
has recently found applications in the theory of partial differential equations--  
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see e.g. [CFL], [Ch], [BC]. Moreover, we prove that  V I X c V M O  if and only if 

X C (L~,~)a, the subspace of Ln ,~  containing functions with absolutely continuous 
norms. Finally, we present a characterization of the compact  embedding of W1X 
into C O . 

Roughly speaking, in an r.i. space the norm depends only on the measure 
of level sets of a function. This class of function spaces includes, for example, 
Lebesgue, Lorentz, Lorentz Zygmund, and Orlicz spaces. Thus, in particular, our 
characterization reproduces the well-known results about  embeddings of V I X  into 

BMO, VMO, and Lo~ when X is a Lebesgue space or a Lorentz space, and enables 
us to deal with a more general class of Lorentz-Zygmund spaces. We also show that  

L,~ is the largest Orlicz space LA such that  V I L A ~ B M O ,  recovering thus a recent 
result of IF], and that  there does not exist any largest Orlicz space LA such that  

The paper  is organized as follows. Basic definitions and elementary properties 
of the relevant function spaces are collected in Section 2. In Section 3 we state 
the main results of the paper. Two inequalities, possibly of independent interest, 
extending the P61ya-Szeg5 principle for rearrangements (see e.g. [BZ], IT3]) and the 
classical Poincar6 inequality, are proved in Section 4. Section 5 contains proofs of 
the main results. Some applications are presented in Section 6. We wish to thank 
Nicola Fusco for pointing out to us the question that  is dealt with in Theorem 3.3(i). 

2. Pre l iminaries  

Throughout  the paper, As stands for the n-dimensional Lebesgue measure. The 
letter C will denote various constants independent of appropriate  quantities. By 
the symbol "~--+" we mean a continuous embedding between (quasi-)normed linear 
spaces. Let R n denote the Euclidean space of dimension n which will be assumed 
>2  throughout the paper. Let Q be a cube in R% The space BMO(Q) is the class 

of real-valued integrable functions on Q such that  

]lf]]*,Q = sup 1 /Q 
0,'cc2 A~(Q') , ] f ( z ) - f o" ld z<~  

where fc2' Ar~(Q') 1 /Q, f ,  and the supremum is extended over all subcubes Q'  of 
Q. Let us recall that  BMO is not a Banach space, although it can be turned into 
one by introducing the norm 

IIflIBMO(Q) = IIflI*,Q+IIflILI(Q). 
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We say that  a function f :  Q--+R belongs to VMO(Q), the space of functions with 

vanishing mean oscillation, if lim.~0+ Of(s) 0, where 

(2.1) ~)f (s) = sup 1 fQ )~,~(Q,)<s~n(Q,)  , If(z)  fQ, ldx. 

Occasionally we shall work with the function e~, defined in the same way as ~)f but 
with cubes replaced by balls. 

The following relations hold: L o ~  BMO, V MO ~BMO ,  Loo~VMO, and 
VMO ~ Loo (the non-equalities and non-inclusions can be demonstrated for example 
with the functions log Ixl, log Ixl, sin(log Ixl), and (log Ixl) 1/2, respectively). 

Let G be a measurable subset of R n and let f be a real-valued measurable 
function on R. The nonincreasing rearrangement of f is given by 

f*(t)=sup{s>OI)~n({xCG IIf(x)l>s})>t},  0 < t < / ~ n ( G ) ,  

and the signed nonincreasing rearrangement of f is given by 

f~ = sup{s E R I An({x C G I f(x) > s}) > t}, 0 < t < An(G). 

We also denote by G* the ball, centered at the origin, and having the same measure 
as G, and by f* the spherically symmetric rearrangement of f ,  namely, the radially 
decreasing function on G* equidistributed with f .  Observe that  f*  (x )=  f* (Ca I xln), 
where Cn =rcn/2/F (1 + �89 the measure of the n-dimensional unit ball. 

Let X be a Banach space of functions defined on R ~, equipped with the norm 
II " II- We say that  X is a rearrangement-invariant Banach function space, or briefly 
an r.i. space, if the following five axioms hold: 

(P1) O<_g<_f a.e. implies Ilgllx<_llfllx; 
(P2) O < f ~ / f  a.e. implies I I f~ l l x / l l f l l x ;  
(P3) IIxElIx<(x~ for any E c R  n such that  ~ n ( E ) < o c  (here XE denotes the 

characteristic function of E); 
(P4) for every E c R  ~ with ~ ( E ) < o c ,  there exists a constant CE such that  

f<_c llZll  for all f o X ;  
(PS) Ilfll =llgll  whenever f*=g*. 

A function f E X  is said to have an absolutely continuous (a.c.) norm if IlfxEk IIX ---~0 
whenever XEk --~0 a.e. If every function in X has an a.c. norm, then we say that  X 
has an a.c. norm. We denote by Xa the subspace of X containing functions with 
a.c. norms in X. 

If X is an r.i. space, then the set 

X ' = {  f : R ~ R  ./R,~ , f g , < o c f o r a l l g E X } ,  



320 Andrea Cianchi and Lubog Pick 

endowed with  the  norm 

Ilf t tx '  = s u p  f Ifgl 
g; o [Igllx ' 

is called the  associate space of X.  Recall  t ha t  X ~ is again  an r.i. space and  (X/)  ~ = X .  
The  H61der inequal i ty  

(2.2) If g] _< Ilfllxllgllx' 

holds and,  moreover ,  

(2.3) Ilfllx = s u p  f Ifgl 
Ilgll '" 

For every r.i. space X there  exists  an r.i. space X on (0, oc), sat isfying t lf lIx = IIf* IIx 
for every fEX .  Such a space is called a representation space of X. T h e  norm in 

X is given by IIf / Ix  sup{f0 f g tllgllx _<1}. Since A n ( R n ) = o c  and  A,, is non- 
atomic,  _32 is in fact unique. For proofs of proper t ies  of r.i. spaces and  fur ther  results  
we refer the  reader  to [BS, Chap t e r  2]. 

The  simplest  example  of an r.i. space is the  Lebesgue space Lp, l~p_<cx~. The  
generalized Lorentz Zygmund (GLZ) space Lp,q;a,~, equipped  with  the  norm 

IlfllL ... . . .  , = lit 1/p 1/ql~(t)ll~(t)f*(t)llL~(o,oo), 

is an r.i. space, when l<p,q<_oc, a,/3ER, l(t)=l+llogtl, ll(t)=l+log(l(t)), and 
one of the  following condit ions holds: 

(2.4) 

1 < p < o c ;  

p = l ,  q = l ,  a > 0 ;  

p = l ,  q 1, a = 0 ,  /3_>0; 

p oo, q = o c ,  (~<0;  

p = o e ,  q = o c ,  a = O ,  / 3<0 ;  

(cf. [EOPI).  If a = f 3 = 0 ,  then  Lp,q;a,~ coincides wi th  the  usual  Lorentz  space Lp,q, 
and, in par t icular ,  wi th  the  Lebesgue s p a c e  Lp if p=q. Let  us fur ther  recall t h a t  
(Lp,q;~,/~)'--Lp,,q,; ~, ~, where 1/p+ l/p'=l. 

Anothe r  example  of an r.i. space is the Orlicz space LA, genera ted  by a Young 
function A, i.e., a convex increasing funct ion on (0, oc) sat isfying l imt~0+ A(t)/t= 
l imt~oo t/A(t)=0. Recall  t ha t  LA contains  all measurab le  funct ions f :  R n---~R such 
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that  fR~ A(If (x) l /K)  dx<oo for some K > 0 .  The Luxemburg norm in LA is given 

by 

(2.5) , , f , ,La=in f{K>O / A ( ] f (~ ) ] )  dx<_l}. 

Moreover, (LA)'=LT~ (with equivalent norms), where 21 is the complementary func- 
tion of A, defined as ]t( t)=sup{st-A(s)ls>O }. 

Let G c R  ~. We define the extension operator  acting on real-valued functions 

on G by 
f (x ) ,  x � 9  

Eaf (x )  O, x c R ~ \ G .  

For a measurable subset G of R ~ and an r.i. space X we set 

X(G) = {f  real-valued on G tEa f �9 X},  tlfllx(G) = IIEcfllx . 

If in addition G is open, we define the following spaces and norms of Sobolev type: 

V1X(G) -- {u: G ~ R lu is weakly differentiable on G, IDul C X(G)};  

W i N ( G )  =X(G)NVIX(G), { l u l l w l x c G )  = IlutJxcG)+llD~llxcc); 
VdX(G) = {u: a - ~ R  I Z a u  is weakly differentiabte on R ~, IDnt ~ X ( a ) } ;  

W ~ X ( G ) -  X(G)nV~X(G) ,  Ilullw~x(a) = tlullx(a)+HDuHxca), 

where D stands for the gradient and I " I for the n-dimensional Euclidean norm. 

3. M a i n  r e s u l t s  

Our main result is the following characterization of the embedding of V1X 
into BMO. 

3.1. T h e o r e m .  Let X be an r,i. space, and let Q c R  ~ be a cube. Let mE 
(0, c~) and let 

1 
B.~ sup - I l r l / n x ( 0 , s ) ( r )  I Ix , .  

0<s<m S 

(i) There is a constant C > 0  such that 

(3.1) Ilull.,Q < CIIDultx(Q) , u eV1X(Q) ,  

if and only if 

(3.2) B1 < oc. 
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Moreover, if (3.2) holds, then the best constant C in (3.1) satisfies C<_KBan(Q)/2, 
where K depends only on n. 

(ii) The space Ln,~(Q) is the largest r.i. space X(Q) that renders (3.1) true. 
In other words, (3.1) holds if and only if X(Q)~-~L~,~(Q). 

Note that B1 in (3.2) can be equivalently replaced by Bm with any positive m. 

3.2. Remark. We can also show that (3.2) is equivalent to 

IlulI Mo(Q) CllulIw x(Q), u C w 1 X ( Q ) .  

As for the embedding into VMO, we have the following result. 

3.3. T h e o r e m .  Let X be an r.i. space and let Q c R  n be a cube. Then 
(i) V1X(Q)cVMO(Q)  uniformly, i.e., 

(3.3) lim sup Ou(s) = O, 
~-~o§ i[D~llx< 1 

if and only if 

(3.4) lim Ilrl/nx(0,s)(r)llx, = 0; 
s~0+ 

(ii) V~X(Q)cVMO(Q)  if and only if X(Q) c(Ln,~)a(Q). 

3.4. Remark. The proof of Theorem 3.1(i) (see Section 5 below) immediately 
gives a sufficient condition for the inclusion of VIX(Q)  into VMO(Q). Assume 
that  BI<OC and X has an a.c. norm. Then VIX(Q)cVMO(Q) ,  and, moreover, 

g~(s)<KBs/211DulIx(Q) for 0<s<An(Q)  and uEV~X(Q), where K only depends 
on n. However, the inclusion is not necessarily uniform in the sense of (3.3), as 
shown by the example X = L  ~. 

Our next aim is to characterize the embeddings of V~X and v X x  into L ~  
and C ~ For this type of embeddings we can consider more general domains than 
cubes. Actually, any open set G is admissible for embeddings of V~X(G), whereas 
a suitable class of sets for embeddings of V1X(G) can be defined as follows in terms 
of isoperimetric inequalities. 

We call ~ the collection of all open sets G c R  n of finite measure such that ,  for 
some K>O,  

(3.5) K h c ( s )  >> min{s,  A , , ( G ) - 8 }  1/n' , 0 < s < )~n(O), 
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where he(s)  is the isoperimetric function of G, defined as 

hG(s)= inf P(E,G) .  
A..(E)=s 

Here, the infimum is extended over all measurable subsets of G having finite perime- 
ter P(E, G) relative to G. Recall that  P(E,  G) is defined as the total variation on G 
of the vector-valued measure DXE; in particular, if OEAG is smooth, then P(E, G) 
agrees with the (n-1)-dimensional  Hausdorff measure of OENG. The smallest 
constant K such that  (3.5) holds will be denoted by K(G)  and called the relative 
isoperimetric constant of G. Note that  G includes, e.g., connected open sets having 
the cone property, in particular cubes and balls. 

3.5. T h e o r e m .  Let X be an r.i. space, and let m�9 oo). Set 

A.~ = l i t 1/n'X(0,.0(r)]]x,. 

(i) Let G c R  ~ be open and let An(G)<oo. Then there is a constant C > 0  such 
that 

(3.6) 

if" and only if 

(3.7) 

IlulILo~(G) ~ ClIDulIx(G), U �9 V~X(C), 

fl~ l ~ 00 .  

Moreover, if (3.7) holds, the best constant C in (3.6) satisfies C~_(n(j~l~/n) lr ). 
(ii) Let Gcg .  Then there is a constant C > 0  such that 

(3.8) ess sup u - e s s  inf u < CllDu}lxcG), u c V~X(G), 

if and only if (3.7) holds. Moreover, if (3.7) holds, then the best constant C in 
(3.8) satisfies C<2t/'~' K(G)AAn(m/2. 

(iii) Let G c R  '~ be open and let >,~(G)<oo. Then L~,I(G) is the largest r.i. 
space X(G)  that makes (3.6) true. In other words, (3.6) holds if and only if X(G)~--~ 
Ln,~(G). An analogous statement holds for the inequality (3.8). 

As in (3.2), the choice of the index 1 in (3.7) is immaterial. 

3.6. Remark. The same argument as in the proof of Theorem 3.5(0 (see Sec- 
tion 5 below) shows that  if G = R  *~ and if X is such that  u e X  implies A~({ju I > t } ) <  
oc for every t>0 ,  then (3.6) is equivalent to (3.7) with m=oo .  Thus, in particular, 
if (3.7) holds with m oo, then (3.6) is true for sets of infinite measure as well. 

The fact that  L~,I is the optimal r.i. domain for the Sobolev embedding (the 
statement (iii) of Theorem 3.5) can be obtained also by a method from [EKP]. 
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3.7. Remark. In  fact, we can also show tha t  the  following three  s t a t emen t s  are 

equivalent: 

(i) A1 <c~; 
(ii) for every G E ~  we have 

Ilu--~clIL~cG) ~CIIDu]/xCG), ueVXX(G); 

(iii) for every G which is a finite union of sets f rom Q we have 

II~HL~<G) ~ CII~IIwax<G>, u C w~x(c) .  

3.8. Remark. Obviously,  (3.7) implies (3.2) for any r.i. space X .  The  converse is 
not true.  For instance,  X L~ satisfies (3.2) but  not  (3.7). For more  examples  and  
more  delicate results  see Corol lary  6.2(ii), T h e o r e m  3.1(ii), and T h e o r e m  3.5(iii). 

Recall  t ha t  a bounded  open subset  G of R n is called strongly Lipschitz if for 

every xEOG there  exists a ne ighbourhood  U of x such t ha t  GAU is the  epigraph of 
a Lipschitz cont inuous function. 

3.9.  T h e o r e m .  Let X be an r.i. space and let G be a bounded strongly Lip- 
schitz domain. Then the following three statements are equivalent: 

(i) lims--,0+ Ur 1/n'x(o,~)(r)Ux,=O; 

(ii) ]im~o+ suPlbliwxx(a)_<1 suPl x vl<~ l u ( x ) - u ( y ) l - - 0 ;  
(iii) w i x ( G ) ~ c o ( v )  compactly. 

Moreover, if  any of (i) (iii) holds, then there exists a constant C such that for s>O 

1/n' (3.9) sup ]u(x)-~(y)l ~CIl~llw~x(a)llr X(o,~'0(r)ll~,- 

3.10. Remark. I t  is wor th  not ing t ha t  the  embedding  WIX(G)~-~C~ holds 
also if A1 < ~  and X has an a.c. norm. For example ,  this is the  case when X =  

L~,l(a). 

4. General ized PS ly a -Szeg 5  principle and Poincar6 inequal i ty  

In this section we s ta te  and prove two l emmas  which will play a key role in 
the  proof  of our embedding  theorems.  The  first of t h e m  provides a generalized 
P d l y ~ S z e g 5  inequality. 
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4.1. L e m m a .  Let X be an r.i. space and let G c R  n be open. 
(i) Let u c V I X ( G )  be such that A~({lul>t})<oo for t>O. Then u* is locally 

absolutely continuous and 

(4.1) nC1/'~ -~-sdU* sS/n, x(o,x~(c)) = IlOu*llx(G.) < IlDultx(G). 

(ii) Assume that G is connected and An(G)<oo. Let ueV1X(G) .  Then u ~ is 
locally absolutely continuous and 

(4.2) h G ( s ) ( - ~ s  ) s <- IIDulIx(a) �9 

Proof. 
As for the inequality in (4.1), let us set 

(i) The identity in (4.1) is a consequence of the very definition of u*. 

r  = , ~ c  1 I n  - ~/" ,  

If we show that  

(4.3) /0 s fo r d r <  IO~l*(r) dr, 

0 < s < ),~ (a ) .  

o < ~ < : ~ ( a ) ,  

then the inequality in (4.1) will follow on applying [BS, Chapter 2, Theorem 4.6]. 
In order to prove (4.3), we make use of an argument from [T2], [T3]. Let O<a<b 
and let v be the function defined by 

0 

v(x) = u(x)-u*(b) 

u*(a)-u*(b) 

if ]u(x)l < u*(b), 

if u*(b) < lu(x)] < u*(a), 

if u*(a) <_/u(x)[. 

Since/D~I eX(C) ,  and X(G)cLI(G)+Loo(G) (cf. [BS, Chapter 2, Theorem 6.6]), 
we have 

o ~ l D u l * ( r ) d r < o o  got" s > 0 ,  

and therefore DuELI(G') for every G ' c G  having finite measure. Hence, as 

(4.4) An({x ~ a I u*(a) > lu(x)l > u*(b)}) ~ b-a,  
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we have that  vEW1LI(Rn). The coarea formula (in its form for functions of 
bounded variation) applied to v yields 

K (4.5) JDu I dx = P({Ju I > t}, R n) dr. 
x~Glu*(a)>lu(x)]>u*(b)} a~*(b) 

The standard isoperimetric theorem tells us that  

(4.6) P({ lul > t}, R ~) >_ nC1/~a~/n' ({ lul > t}). 

Now, the last two inequalities easily imply that  

(4.7) IDul dx > nCZn/n a s/n [u (a)-u*(b)]. 
xcGl,,*(a)>l~(x)i>u*(b)} 

The estimates (4.4) and (4.7) ensure that  u* is locally absolutely continuous. More- 
over, the inequalities (4.5) and (4.6) yield, via a change of variables, 

b 

f~ r dr <<_ s IDul dx. 
xeGl~* (a)>l~(,~)l>~*(b)} 

Thus, by (4.4) and by the Hardy Litttewood inequality for rearrangements, we 
b oo obtain for every countable family {(ai, i)}i 1 of disjoint intervals in (0, t,~(G)), 

f~(b~ ~) 

U(~,b~) r dr <_ Jo IDul* (r) dr. 

The last estimate yields 

(4.8) sup r dr ~ IDul*(r) dr, 
;~I(E) s 

since every measurable set E C (0, An (G)) can be approximated from outside by sets 
of the form U(a~, bi). Hence (4.3) follows, as its left-hand side coincides with that  
of (4.8). 

(ii) The absolute continuity of u ~ is proved in [CEG, Lemma 6.6]. The proof 
of (4.2) is analogous to that  of (4.1). In particular, for the analogue of (4.4), we 
use [CEG, (6.22)]. [] 

The next result extends the Poincar6 inequality to the context of r.i. spaces. 
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4.2. L e m m a .  Let X be an r.i. space and let G c R  n be open. Let An(G)<oc. 
Then 

(4.9) ilullx(G ) <_ { A~(G)'~I/~ k c~ ] IIDullx(a), u c Vo~X(G). 

Pro@ We define the linear operator 

tx~(c) g(r) 
rl/.,~ , dr 

for functions g: [0, An(G))--*R. It is not hard to verify that  

IlrgllL~(O,Xn(C)) <_ An(G)l/"llgllL~(O,~(c)), 

and 

[[TgIIL~<0,X~<C)) ~ na,~(c)l/nllgilL~<0,X~<a))- 

An interpolation theorem of Calderdn ([C], cf. also [BS, Chapter 3, Theo- 
rem 2.12]) now yields 

(4.10) IITgllx(0,~,(a)) <-nAn(G)~/~llgllx(o,an(c)), g~X(O, An(G)). 

Now, if u c V I X ( G ) ,  then 

f an(a) du* dr. 
~*(~) = - d ~ -  J S  

We thus get (4.9) from (4.10) and Lemma 4.1(i). [] 

5. P r o o f s  o f  t h e  m a i n  resu l t s  

Proof of Theorem 3.1. (i) Assume that  (3.2) holds and let u c V l X ( Q ) .  Then 
(cf. the proof of Lemma 4.1) lDul ELI (Q). Since Q is a Lipschitz domain, Sobolev's 
embedding theorem ensures that  uEL~,(Q), and, the more so, uELI(Q).  Let Q' 
be a subcube of Q. Denote the restriction of u to Q' by v and set a=an(Q ' ) .  Then 
we have by [CEG, (6.30)] 

/0a( ~~ ~(~'~)(r)-r - T  d~, O<.~<a. 
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By Fhbini's theorem, this yields 

// ) lv~ Tr X(8,a)( r ) -  a ds dr 

f ' / 2 r ( a - r ) ( _ ~ _ r ) d r + 2  / -- =2 dv o a r(a_r)(  dvO,~ 
Jo a J~/2 a \ dr ] dr. 

Using (2.2), we easily obtain 

~oalv~ rl/n'( ~r )X(O,a/2)(r) xllrl/nx(o,a/2)(r)llx' 
+2 (a-r) 1/n' (-~-r )X(~/2,~)(r) xIl(a-r)l/nX(a/S,a)(r),,x,. 

Now, on taking into account the identity 

( (a--r)l/nx(a/2,a) ( r ) )*  --  (rl/n•(o,a/2)(r) )*, 
the inequality (3.5), and the fact that  K(Q')-K(Q), we get from Lemma 4.1(ii), 

~0 a 
(5.1) Iv ~ [ ds <_ 4K(Q) llrl/nx(o,~/2 )(r){tx, IIO~llx(Q,). 

Since (v--vQ,)*=(v~ *, we have 

/0 ~ , I~ (~) -~Q, I  d ~ =  tv~ Ids. (5.2) 

By (5.1) and (5.2), 
II~lt*,Q ~ 2K(Q)IID~IIxcQ)Ba/2, 

and (3.1) follows with K=2K(Q). 
Conversely, let (3.1) hold. We claim that, for some C1 >0, 

/ /  (5.3) sup Y (u*(r)-u*(s))dr~Clllullw1x(Q), ucWIX(Q).  
0<8<;~(Q) s 

Indeed, an argument analogous to that  of [BS, Chapter 5, Theorem 7.10] shows 
that  there is a constant C2 >0 such that  

(5.4) sup (u*(r)-u*(s)) dr < C2(IIutI.,Q+ItUIILI(Q)). 
0<s<~,~(Q) s 
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Using (3.1) and the estimate tMIL (Q)<CIMIX(Q), which follows from 
(2.2)), we obtain (5.3) from (5.4). Now, Lemma 4.2 and (5.3) yield 

e L s  
s u p  - (u*(r)-u*(s))dr<_CallDullx(Q), uev( x(o), 

0<,<~n(Q) s 

with C3 =6'1 (1+ (An (Q)/C,~) 1/,~). 
have 

(P4) (or 

Since fo (u*(r)-u*(s))dr= fo -r(du*/dr) dr, we 

1 f~ du* 
sup sup s Jo - r drr dr <_ Ca. 

~evOx(Q) o<,<~(Q) IlDullX(Q) 

For s small enough there is a ball B c Q  such that An(B)=s.  Considering radially 
decreasing (r.d.) functions ucVIX(B)cV~X(Q) ,  we obtain fi'om the last inequal- 
ity and Lemma 4.10) that  

1 L s du* 
s r ~ -  r dr 

(5 .5 )  c 4  _> sup 

u6V~X(B)u r.d. rl/n' (--~-r ) X(0,s) 

By (2.3), the right-hand side of (5.5) equals s lllrl/nx(o,~)(r)llS:,, and (3.2) follows 
for small (hence for all) m>0 .  

(ii) Let A,~(Q)=m. Assume that  X(Q)~-+L.,~,~(Q). Then Ln,,I(Q)~-,X'(Q), 
and therefore 

sup Ilrll*~x(o,s)(r)llx, <C sup 7ll  i x(0,,)(r)ll<l 
0<s<rn 0<,s<m 

C sup -1 f . s  (s_r)l/n 
0<s<m 8 Jo rl/n dr < oo, 

and (3.1) follows from (i). 
Conversely, assume that X(Q)~L~,~(Q).  Since both X and L,~,oo are r.i. 

spaces, this implies X(Q)~Ln,~ (Q) ([BS, Chapter 1, Theorem 1.8]). That  is, there 
exists a function g from X(Q) such that Ilgllx(Q)=l, and gr Thus there 

exists a sequence tk~(0, rn) such that  t~/'*g*(tk)--~e~ as k--+oc. But then, 

sup }llrl/nX(0,.,)(dtl~,_> sup 1 [ t k  sup f* (r) (tk -r )  1/~ dr 
0<s<m kcN E Ilfllx<l Jo 

1 L tk > sup g* - -  ~ N  g ( r ) ( t ~ - - r )  ~ / n  dr 

> sup g*(tk) [ tk  
- keN ~ do (tk-l') 1In d r  = oo, 
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hence (3.2) is not satisfied, and, by (i), V1X(Q)I/~BMO(Q). [] 

Proof of Thr 3.3. (i) That  (3.4) implies (3.3) follows easily from a close 
inspection of the proof of Theorem 3.1(i). 

Conversely, assume that  (3.3) is true. Let xo~Q and denote by Bt the ball 
centered at x0 and having measure t. Let t be small enough so that  BtcQ and 
consider radially decreasing functions u with respect to x0, supported in Bt/2. Then, 
similarly as in the proof of Theorem 3.1(i), 

:~(s~,) I~(x)-~B'ldx=Z jo I J0 
t 

whence 

= _1 (_  
2t Jo t dr ) 

Now, by Lemma 4.1(i), we have 

I I D ~ l l x  = n ds 

Combining the last two estimates and setting g(r)=nC1/nrl/n'(d~t*/dr), we ob- 
tain 

B 1 f t / 2  1 
sup ou(t)>_ sup 2 _ , ~ / ~ :  i rl/ng(r) dr 1/~llX(o,~/2)(r)rl/nllx,, 

liD-IIx_<l Ilgllx<l ,~wn ~J0 2nC~ t 

and the assertion follows, since, as is readily verified, g~(t)<_Clg(C2t), where C1 
and C2 are positive numbers depending only on n. 

(ii) Let X c ( L n , ~ ) , .  Then, following the lines of the proof of Theorem 3.1(i), 
we obtain for every uEV1X(Q) and every Q'cQ such that  ~n (Q ' )=a  

M(Q') ,lu(z)-UQ'pdx<-4K(Q)llr~/nX(~ 

CI]DuxQ ' II . . . .  
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which tends to zero as a--~0+, since DuCX(Q)C(Ln,~)a(Q). Hence V1X(Q)c 
VMO(Q).  

Conversely, assume that  X~(Ln,oc)a. Then there exists a function gEX(Q), 
a sequence t k ~ 0 + ,  kCN,  and a positive number 6 such tha t  

(5.6) , 1/n g (tk)t k kS, kEN.  

Let u be a radially decreasing function with respect to the centre of Q. Moreover, 

assume that  the support  of u has measure a and is contained in Q, and that  

{ a g.(~) 
u*(t) ~ d~, t ~ (0, ~). 

Then, by Lemma 4.1(i), ueV~X(Q), since gcX(Q). We claim that  u•VMO(Q).  
For k c N  let Bk be balls concentric with Q and such tha t  A,~(Bk)=2tk. Similar- 

ly as in the proof of Theorem 3.10) we can show that ,  denoting by vk the restriction 
of u to Bk, 

for large k. Now, -dv~/dr=-(du*/dr)x(o,2tk)(r), because u is nonnegative and 
radially decreasing and Bk are concentric with Q. Therefore we in fact have 

(5.7) 1 In lf2tk IF(s)[ ds, ~n(Bk) luCx)-uBk [dx = ~ ,o 
k 

where the function F(s)=f:  tk -(du*/dr)(r)(X(s,2tk)(r)-(r/2tk))dr. Observe tha t  
dF/ds=du*/ds, which is negative and increasing on (0, 2t~). Hence F is strictly de- 
creasing and convex on (0, 2tk), and there is a unique so E (0, 2tk) such that  F(so) -0. 

Assume that  so<_tk. Then, since F(s) is positive and concave on (tk, 2tk), we 
get from (5.6) 

IF(s)lds> -F(s)  ds> ( - - F ( 2 t k ) ) = ~ j  ~ - d-Trdr 
2tk ao - 2tk at~ 

1 tkg.(r)rl/ndr>> - 9 (k,)§ 
--> 8tk C tk ~k - 

Now assume tha t  so>_tk. By the positivity and convexity of F on (0,t~) we 
have F(s)>_F'(tk)(s-tk) for every sC(0, tk). Thus, using F'(tk)=(du*/dt)(tk) and 
(5.6), we get 

1 I2tk lF(s) lds>F'( tk)  f tk ~ 6 
~tk,o - 2tk Jo ( s - t ~ ) d s =  9*(t~)t~/~>_ ~. 
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The last two estimates combined with (5.7) show that  u~VMO(Q),  since 
l im~o+ 0~(s)=0 whenever l im~o+  a~(s)=0. The proof is complete. [] 

Proof of Theorem 3.5. (i) Assume that  (3.7) holds. Let G C R  n be open, 
) ,~ (a )=m,  and let ucVIX(G). Then 

(5.8) tI~IIL~<< = ~,(0) = ~ '~ ___d~*dr dr. 

By (2.2), 

(5.9) fo m - - -  
d~t* tilt* dr(  - nc'l/nrl/n'(--~-~ ) ~(O'm)(r) ~" 

Now, using (5.8), (5.9), and Lemma 4.1(i), we get (3.6) with C=A,~(nC~/~) 1. 
Conversely, assume that (3.6) holds for some G c R  n. Let B be a ball contained 

in G. We shall consider radially decreasing functions ucVo~X(B)cVOX(G). By 
(3.6) and Lemma 4.1(i), 

C >  
~o x'~(B) du* dr 

sup sup . 
uEV~ X(B) "DU"X(B) uevlx(B) nCln/nrl/n' ( du~r ) 

u r .d . . . . .  d. - -  X ( 0 , m )  ( r )  
X 

By (2.3), the last supremum equals AA,~(B), and (3.7) follows for m=A~(B),  and 
therefore also for m=A~(G). 

(ii) Let (3.7) hold, let GEG have measure m, and let ucV1X(G). By (2.2), 
(3.5), and Lemma 4.1(ii), we have 

/o m du~ dr ess sup u -  ess inf u = - d~- 

<_ K(G)II min{r, -1/,~' -~-r} IIx,(0,.~) 

dr J Y.(o,,~) 
_< K(a)ll min{r, --1/n' m--r} [IX,(o,m)IIDulIx(G). 

Now, (3.8) follows with the desired C, as It min{r,m-r} 1/*~'II~,(o,,TO=2Un'A,V > 
Conversely, the necessity of (3.7) can be obtained as in (i) on noting that  for 

a nonnegative radially decreasing function u vanishing outside the ball B we have 
u~ *, u*(0)=ess supu, and u*(rn)=ess in fu=0 .  
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(iii) Note that (3.7) holds if and only if supNyNx(c)< ~ f o  f*(r)r 1/,~' dr<co, in 

other words, X(G)~-~L,~,I(G). [] 

Proof of Theorem 3.9. (i) ~ (ii) Since G is a bounded strongly Lipschitz do- 
main, (el. e.g. [A, Lemma 5.17]), we may assume without loss of generality that  G 
is a cube. On applying (3.8) to the restriction of u over subcubes of G containing 
x, y and having sides of length s, we obtain (3.9), and the assertion follows. 

(ii) ~ (i) Let x0 c G and for t small let Bt be a ball centered at x0 and such 
that  A,~(Bt)=t. Consider radially decreasing functions u with respect to x0 and 
supported in B e. Let t be small enough so that  Bt CG, and set r=(t/C,~) ~/'~. Then 

L 
t du* 

(5.10) sup I~(x)-~(y) l  =~(Xo) = --dr-r dr. 
Ix-yl<~- 

Set g(r)=nC~/n (-du*/dr)r 1/n'. Then (5.10) yields 

1 Lt~  
snp sup f~(~) -~(y) t  = . ~ / n  sup dr 

(5.11) IIg/l~- <1 I~-yl<~ nt,  n Ilgll~_<l rlln 
1 

- . .~1~ tf r - ~ l ~  x(o,~)(r)ll~,. 

On the other hand, we have by Lemma 4.2 and the definition of the norm in WIx, 

(5.12) LL~IIw,x(G) <_ KIIgllx, 

where K=I+(An(G)/Cn)U'L We thus obtain from (5.11) and (5.12) 

' < 1/n II r-1/~ x(0,t)(r)llx,_nC& sup sup It(x) ~(y)l, 
II~llw1x(c)~ K I~-yl<~ 

and the desired implication follows. 
(i) ~ (iii) By (i) and Theorem 3.5, the set {llullw1x(c)<_l} is equibounded, 

and by (ii) it is equicontinuous at every x0 E G. We already know that  (i) implies 
(ii), hence the desired implication follows via the Arzel~-Ascoli theorem. 

(iii) ~ (i) If (iii) holds, then, by the Arzel~-Ascoli theorem, the set 
{Ilutlw1x(a) <_ 1} is equieontinuous at every x0 6G.  Now, (i) follows as in the proof 
of (ii) ~ (i). Note that  a full proof of the implications (i) ~ (ii) and (i) ~ (iii) 
would require an approximation of u by a sequence of continuous functions (e.g. 
averages of u over subeubes whose measure goes to 0), converging a.e. to u. For the 
sake of brevity we omit the details. [] 
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6. Examples  

We conclude the paper with some applications of the results from Section 3, 
For the sake of simplicity, we consider spaces of functions defined on a cube Q C R  n. 
We start with GLZ spaces. 

6.1. Theorem.  Let l <p,q<c~, c%fl~R, and assume that one of the condi- 
tions in (2.4) holds. Let X(Q)=Lp,q;~,z(Q). 

(i) The embedding V l X ( Q ) ~ B M O ( Q )  holds if and only if one of the following 
conditions is satisfied (recall that n>_2): 

p > n ;  

(6.1) p : n ,  o~>0; 

p = n ,  a=O,  /3>0. 

The embedding V~X(Q)~-~L~o(Q) holds if and only if one of the following (ii) 
conditions holds: 

p>n;  
1 

(6.2) 1 1 
p = n ,  o~:~7, / 9 > ~ ;  

p : n ,  q : l ,  ~ 0 ,  t3=0. 

(iii) The inclusion V1X(Q) cVMO(Q) holds if and only if one of the" following 
conditions holds: 

p>n;  

(6.3) p = n, a > O; 
p = n ,  a=O,  /3>0; 

p = n ,  l_<q<oo,  o~=0, fl=O. 

The same inclusion holds uniformly in the sense of (3.3) if and only if one of the 
first three conditions in (6.3) holds. 

6.2. Corol lary.  (i) The only GLZ space of the form X=Lp,q;~,Z such that 
V1X(Q)~-~BMO(Q), but V1X(Q)~VMO(Q) ,  is the Lorentz space L,~,oo. 

(ii) d GLZ space X=Lp,q;~,Z satisfies VIX(Q)~--~BMO(Q), but V 1 X ( Q ) ~  
Loo(Q), if and only if one of the following conditions holds: 

1 
p=n, l<q<oo, O<c~<--" 

_ _ q! 

1 1 
p = n ,  l < q < o o ,  a = ~ 7  , /3<--" __ -- ql ~ 

p : n ,  l < q < o o ,  c~:O, 3 > 0 .  
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(6.4) 

(ii) 

(6.5) 

Proof of Theorem 6.1. The statements (i) and (ii) can be proved by elementary 
calculus, cf. also [EOP, Theorem 6.3]. 

(iii) By a direct calculation we can verify that  if either p>n, or p=n and c~>0, 
or p=n, c~--O, and /3>0 ,  then (3.3) holds. On the other hand, if p=n, l_<q<oo, 
and c~=/3=0, then BAn(Q)<oo and X has an d.C. norm. Hence the assertion follows 
either by Theorem 3.3 or by Remark 3.4. 

Conversely, if VIX(Q)cVMO(Q) ,  then also VIX(Q)cBMO(Q),  and, by (i), 
one of the conditions in (6.1) must be satisfied. However, the only possible choice 
of the parameters p, q, c~, /3 such that  (6.1) is true but (6.3) is false, is p=n, q-co,  
and c~=/3=0. But in this case VIx(Q)f~VMO(Q), since, e.g., XQ(x)log Ix XQIE 
V1X(Q) \VMO(Q),  where XQ is the centre of Q. The inehtsion is indeed not uniform 
i f p = n ,  l_<q<oo, and c~ /3=0; to see this, observe that  (3.4) is not satisfied, and 
use Theorem 3.3(i). [] 

Our next example concerns Orliez spaces. Part  (ii) of the following theorem 
was proved in [Ci], of. also [T1]. 

6.3. T h e o r e m .  Let A be a Young function. 
(i) The embedding V1LA(Q)~-~BMO(Q) holds if and only if 

~o tfi(s) ds Ct W+l C and allt 1. for some > 

The embedding V1LA(Q)c--~L~(Q) holds if and only if 

Pro@ 

where 

(i) Using (2.5) and elementary calculus, we can easily show that  

81/n 
rl/n 

II X(O,s)(r)llL7~ E 1(1/8) '  

~ fo ~ 
z ( t ) = ~  2(y)y,~ lay, t>o. 

Note that  E is increasing, since E ( t ) = ~  lo ~ ~(ty)v "-1 dy. Thus, when X=LA, (3.2) 
can be rewritten as 

/o (871 (6.6) .A(s) k~] ds < ct n'+l, t > 1. 
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Furthermore, 

f0t ( t ) n  1 J l  ( t ) n - 1  1 f ;  1 f0t _ _ A ( s )  ds  > - -  A ( s )  ds ,  f t(s) ds > fi(s) ds > ~ 2 - 2~ 2 

whence (6.6) is equivalent to (6.4). This proves (i). 
The proof of (ii) is a consequence of the fact that, in case X = L A ,  (3.7) and 

(6.5) are equivalent, as a straightforward calculation shows. [] 

Theorem 6.3 enables us to prove two optimality results in the context of Orlicz 
spaces. 

6.4. T h e o r e m .  (i) The space Ln(Q) is the largest Orlicz space LA(Q) such 
that V1LA(Q)c--+BMO(Q) (and also such that V 1 L A ( Q ) c V M O ( Q ) ) .  

(ii) There does not exist any largest Orlicz space LA(Q) such that V1LA(Q)  ~--~ 
L ~ ( Q ) .  

Proof. (i) Obviously (6.4) is satisfied when A ( t ) = t  ~. 
Let now A be a Young function such that L n ( Q ) ~ L A ( Q ) .  That  is (cf. [KR]), 

ft(t)>_Ct ~' for some C and all t > l ,  and there exist sequences tk/zoc,  Ak/-zoo such 
that 

(6.7) -4(tk) = )~kt~'. 

Now, since A is a Young function, we have 

(6 .8 )  A ( s )  > A(t ) - tk  s ,  s _ > t k .  

For k E N define 

(6.9) zk = A~tk, 

where c~ is any fixed number in (0, n - l ) .  Then, by (6.8), (6.7), and (6.9), 

~oZk ~tfk ~(tk) /tfk f i t ( t k )  2 2 ' 1 Z k --t k ..> /~\2c~-}-14_n -}- f t(s) ds > fl(s) ds > s ds - I- " " k  ~k 
- -  - -  tk tk 2 

for some C>0.  On the other hand, by (6.9), zn'+l--)~a(n'+l)tn'+l and therefore k - -  k k , 

(6.4) does not hold, since a < n - 1  is equivalent to a(nP+ 1)< 2a+1.  
Let us recall that  an alternative proof follows from Theorem 3.1(ii) combined 

with the well-known fact that there is no Orlicz space LA(Q) such that  L n ( Q ) ~  
LA(Q) cLn, (Q). 
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(ii) The proof of this part  is pat terned on a construction from [KP]. We may 
assume, with no loss of generality, that  An(Q)=1. Let A be a Young function such 
that  (6.5) holds. We claim that  then there is another Young function, B, such that  
B(t)>ft( t )  for all t>0 ,  l imsuPt~ ~ B(t)/~i(flt)=oc for every/3>1,  and 

(6.10) f ~  ~(s) d, < o~ .  

For such t3 we would have LA(Q)GLB(Q) and V1LB(Q)~--~L~(Q), as required. 
To prove our claim, let us set ak=(klog2k) -1, k c N .  For tE[1, oc) we define 

~- by the identity 

(6.11) ft(r) a t n '-I  - k , t c [ k ! , ( k + l ) ! ) .  
T 

We note tha t  ~- is uniquely defined, since the function f i ( t) / t  strictly increases from 
0 to oc as t goes from 0 to c~. We claim that  for every/3>1 

~1(~-) t 
(6.12) lira sup oo. 

~-~o~ ~ ~ ( / ~ t )  

Indeed, assume the contrary. Then, for some/3>1 and K > 0 ,  

K lakt~' <_ fl(/3t), t E[k!, (k+l ) ! ) .  

But then 

o o  

sn'+l yn'+l dy 8n~+l = k! k=l Jk! 
o o  

1 ~ a k l o g ( k §  
>-- K/3X; k=l 

which contradicts (6.5). This proves (6.12). 
Now, l e t / 3 j / zec  be a fixed sequence. Then, by (6.12), there exists a sequence 

t j / z o c  such that  tj>_j!, tj+~>~-j (where ~-j corresponds to tj in the sense of (6.11)), 
and 

(6.13) lim .4 (-rj) tj - -  ~ ( X ) .  
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We define 

/~(t) = { fi(tJ)+f~(q-J)Tj--tjfi(tJ)(t--tJ)' te(ts"rS)' 

A(t), otherwise. 

Then /~ is a Young function and, evidently, /~(t)_>A(t) for tE(0, oc). It follows 
easily from (6.13) that, for every j c N ,  Tj>2tj, and therefore also A(Tj)>2A(tj). 
Hence, using (6.13), we get 

h(2ts) Li(tj)+ ~i(~j)-Li(tj)tj 
_ -rj-tj 1 A('rj)tj 

It remains to show (6.10). We have 

o o  

/1 ds <_ ~ j 1 "rj - t j  ~ ds. 

Further, using (6.11), tj>_j!, and the monotonicity of {aj}, we obtain 

- -  - 3  - -  
j = l  Tj--tj 8n'+1 ds<CEj=I Tj CEajj=l < o o .  

Therefore, we get (6.10) on recalling (6.5). The proof is complete. [] 
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