Singular measures with small $H(p, q)$-projections

Evgueni Doubtsov(${ }^{1}$)

Abstract

We construct a singular probability measure μ on the complex sphere such that the Poisson integral of μ is a pluriharmonic function in the ball and the Fourier transform of μ is $\mathcal{O}(1 / \sqrt{p})$ as $p \rightarrow \infty$.

1. Introduction

Let \mathbf{T} denote the unit circle and $\mu \in M(\mathbf{T})$ be a measure. Recall the following classical observation.

Heuristic uncertainty principle. If the Fourier transform $\hat{\mu}$ is small (in a certain sense), then μ is regular.

For example, by the classical F. and M. Riesz theorem, if $\hat{\mu}=0$ on \mathbf{Z}_{+}, then μ is absolutely continuous with respect to Lebesgue measure m.

We are looking for phenomena of the opposite nature. If we understand " $\hat{\mu}$ is small" as "pointwise small" and " μ is not regular" as " μ and m are mutually singular", then we obtain the following classical problem.

Definition \mathbf{T}. A function $h: \mathbf{Z}_{+} \rightarrow \mathbf{R}_{+}$is said to be \mathbf{T}-admissible if there exists a probability continuous singular measure $\mu \in M(\mathbf{T})$ such that $\hat{\mu}(k)=\mathcal{O}(h(|k|))$.

Problem. Characterize the admissible functions.
The famous Ivashëv-Musatov theorem shows that all of the standard test functions

$$
h(k)=\left(k \log k \log \log k \ldots \log _{(p)} k\right)^{-1 / 2}
$$

[^0]are \mathbf{T}-admissible (see [I] for the precise conditions sufficient for admissibility, see also $[\mathrm{K}]$ for a simplified and somewhat different version). We refer the interested reader to the paper $[\mathrm{BH}]$ where other \mathbf{T}-admissible functions are obtained and the history of the problem is discussed.

Often \mathbf{T}-admissibility constructions can be carried out for all locally compact nondiscrete Abelian groups. In the present paper we consider a generalization of a different type. Namely, we are concerned with an analogue of the above problem on the complex unit sphere $S=S_{n} \subset \mathbf{C}^{n}, n \geq 2$.

Given a measure $\mu \in M(S)$, denote by $\mu_{p q},(p, q) \in \mathbf{Z}_{+}^{2}$, the projection of μ on $H(p, q)$, the space of the complex spherical harmonics (so $\mu_{p q}$ is a polynomial on the sphere; in dimension 1 we just have $\left.\mu_{p 0}(z)=\hat{\mu}(p) z^{p}, z \in \mathbf{T}, p \in \mathbf{Z}_{+}\right)$.

Definition S. A function $h: \mathbf{Z}_{+}^{2} \rightarrow \mathbf{R}_{+}$is said to be S-admissible if there exists a probability continuous singular measure $\mu \in M(S)$ such that $\left\|\mu_{p q}\right\|_{2}=\mathcal{O}(h(p, q))$.

If also $h(p, q)=0$ for all $(p, q) \in \mathbf{Z}_{+}^{2}$ such that $p q \neq 0$, then h is said to be $p l h-$ admissible (note that the corresponding μ is pluriharmonic, i.e. the Poisson integral of μ is a pluriharmonic function in the ball).

We show that the test function $h(k)=k^{-1 / 2}$ is $p l h$-admissible (without loss of generality, we always put $h(0)=1$).

Theorem. Put $h(p, 0)=h(0, p)=p^{-1 / 2}, p \in \mathbf{N}$, and $h(p, q)=0$ if $p q \neq 0$. Then h in S-admissible.

Remark 1. Every pluriharmonic measure $\mu \in M(S)$ is sufficiently regular. In particular, it is well known that μ has the full closed support and $|\mu|(E)=0$ if the (real) Hausdorff dimension of E does not exceed $2 n-2$.

Remark 2. Obviously, if $h \in l^{2}$, then h is not admissible. Therefore, the theorem shows that there is no gap between necessary and sufficient conditions for S-admissibility in terms of the scale $\left\{k^{\alpha}\right\}_{k \in \mathbf{N}}, \alpha \in \mathbf{R}$.

Remark 3. The theorem has an \mathbf{R}-interpretation since the measure μ is pluriharmonic. Namely, identify S_{n} and $S_{\mathbf{R}}^{2 n-1} \subset \mathbf{R}^{2 n}$, then $\left\|\mu_{k}\right\|_{2}=\mathcal{O}(1 / \sqrt{k})$ where μ_{k} is the projection of μ on \mathcal{H}_{k}, the space of the real spherical harmonics.

Notation. The notation of the paper is standard. In particular, σ is the normalized Lebesgue measure on $S, \sigma(S)=1$; the symbol $\|\cdot\|_{p}$ denotes the L^{p}-norm with respect to σ.

To finish the introduction, we give a simple and important example.
Example. There exists an $h: \mathbf{Z}_{+}^{2} \rightarrow \mathbf{R}_{+}$such that $h \notin l^{2}$ and h is not S-admissible.

Proof. Put $h(0,0)=h\left(2^{j}, 0\right)=h\left(0,2^{j}\right)=1$ for all $j \in \mathbf{Z}_{+}$and put $h(p, q)=0$ otherwise. Suppose that $\mu \in M(S)$ and $\left\|\mu_{p q}\right\|_{2}=\mathcal{O}(h(p, q))$. We claim that $\mu \ll \sigma$.

This is well known and easy to see. Indeed, the Cauchy projection $C[\mu]$ is in the Hardy class $H^{1 / 2}(B)$. Therefore, $C[\mu] \in H^{1}(B)$ since $C[\mu]$ has a lacunary spectrum. Finally, we apply the F. and M. Riesz theorem (on the sphere) to the measure $\mu-C[\mu] \sigma$.

2. Auxiliary polynomials

Lemma. Suppose that $K \in \mathbf{N}$. Then, for all $N \in \mathbf{N}$ large enough, there exist polynomials $W(N)=W(N, K) \in \sum_{l \geq 0} H(N+l K, 0)$ such that

$$
\begin{align*}
\|W(N)\|_{\infty} & \leq 1 \tag{1}\\
\|W(N)\|_{2} & \geq \text { const }>0 \tag{2}\\
\left\|W_{q}(N)\right\|_{\infty} & \leq 1 \tag{3}\\
\left\|W_{q}(N)\right\|_{2} & \leq \operatorname{const} q^{-1 / 2} \tag{4}
\end{align*}
$$

where $W_{q}(N)$ is the $H(q, 0)$-projection of $W(N)$.
Proof. For $\zeta, \eta \in S$, put $d^{2}(\zeta, \eta)=1-|\langle\zeta, \eta\rangle|^{2}$ and $E_{\delta}(\eta)=\{\zeta \in S: d(\zeta, \eta)<\delta\}$ for $0<\delta \leq 1$. Recall that d satisfies the triangle inequality and $\sigma\left(E_{\delta}\right)=\delta^{2 n-2}$.
(1) Construction for $K=1$ and $n=2$. Put $\delta=N^{-1 / 2}$. Choose points $\left\{\eta_{j}\right\}_{j=1}^{M} \subset$ S such that $E_{\delta}\left(\eta_{j}\right)$ are mutually disjoint and $\bigcup_{j=1}^{M} E_{2 \delta}\left(\eta_{j}\right) \supset S$. In particular, $N \asymp$ $M \asymp \delta^{-2}$.

Define $g_{j}(z)=\left\langle z, \eta_{j}\right\rangle^{N+j}, 1 \leq j \leq M$, and $G(N)=\sum g_{j}$. We claim that the properties (1)-(4) hold for $G(N)$ (up to a multiplicative constant).

Indeed, we have $\left\|g_{j}\right\|_{2}^{2}=(N+j+1)^{-1}$ and $G_{N+j}(N)=g_{j}$. Therefore, (3) and (4) hold. The property (2) is also clear because $\|G(N)\|_{2}^{2}=\sum\left\|g_{j}\right\|_{2}^{2} \geq M / 2 N \geq$ const.

Finally, we have to estimate $\|G(N)\|_{\infty}$. Fix a $\zeta \in S$. For $k \in \mathbf{Z}_{+}$, define $H_{k}=$ $\left\{j: k \delta \leq d\left(\zeta, \eta_{j}\right) \leq(k+1) \delta\right\}$. First, the cardinality of H_{k} does not exceed $(k+2)^{2}$. Second, if $j \in H_{k}$, then $\left|g_{j}(\zeta)\right| \leq \exp \left(-k^{2} / 2\right)$. Therefore

$$
|G(N)(\zeta)| \leq \sum_{j=1}^{M}\left|g_{j}(\zeta)\right| \leq \sum_{k \geq 0}(k+2)^{2} \exp \left(-k^{2} / 2\right):=\Sigma<\infty
$$

To finish the argument, put $W(N)=G(N) / \Sigma$.
(2) $K=1$ and $n \geq 2$ is arbitrary. As in the case $n=2$, put $\delta^{2}=N^{-1}$ and choose the points $\left\{\eta_{j}^{l}\right\}_{j=1}^{N}, 1 \leq l \leq M / N$ (it is useful to organize the sequence as a matrix). We have $M \asymp \delta^{-2 n+2}$, so $M \asymp N^{n-1}$.

Define $f_{j}^{(l)}(z)=\left\langle z, \eta_{j}^{l}\right\rangle^{N+j}, 1 \leq l \leq M / N$. Now, make a randomization. Namely, let $r_{l}(t)$ be the Rademacher functions on $[0,1]$. Define

$$
g_{j}(z, t)=\sum_{l} f_{j}^{(l)}(z) r_{l}(t) \quad \text { and } \quad h_{j}^{L}=\sum_{l=1}^{L} f_{j}^{(l)}(z) r_{l}(t)
$$

Then there exists $\tau=\tau_{j} \in[0,1]$ such that $\left\|g_{j}(\cdot, \tau)\right\|_{2}^{2} \geq \sum_{l}\left\|f_{j}^{(l)}\right\|_{2}^{2}$. Note that $\left\|f_{j}^{(l)}\right\|_{2}^{2} \asymp$ N^{1-n}, thus $\left\|g_{j}(\cdot, \tau)\right\|_{2}^{2} \geq C / N$. We fix such τ and C, and claim that there exists $L_{0}=L_{0}(j) \in[1, M / N]$ such that $\left\|h_{j}^{L_{0}}\right\|_{2}^{2} \asymp 1 / N$. To show this, remark that $\left\|h_{j}^{1}\right\|_{2}^{2} \asymp$ $N^{1-n} \leq C / N$ (we assume that $n \geq 3$). If $\left\|h_{j}^{L}\right\|_{2}^{2} \leq C / N$ for all L, then we are done. Else choose such L that $\left\|h_{j}^{L}\right\|_{2}^{2} \leq C / N$ but $\left\|h_{j}^{L+1}\right\|_{2}^{2}>C / N$. Then $\left\|h_{j}^{L}\right\|_{2}^{2} \asymp 1 / N$ since $\left\|f_{j}^{(L+1)}\right\|_{2}^{2} \asymp N^{1-n}$.

Finally, put $g_{j}=h_{j}^{L_{0}}$ and $G(N)=\sum g_{j}$.
As above, the absolute value estimates provide (1) (up to a multiplicative constant). Since $G_{N+j}(N)=g_{j},(3)$ is clear also. By the definition of $L_{0},\left\|g_{j}\right\|_{2}^{2} \leq$ const $/ N$, so (4) holds. Since g_{j} are mutually orthogonal, we obtain $\|G(N)\|_{2}^{2}=$ $\sum\left\|g_{j}\right\|_{2}^{2} \geq N$ const $/ N=$ const >0. This yields (2).
(3) K is arbitrary (to simplify the notation, we assume that $n=2$). Take a sequence $0=a_{0}<a_{1}<\ldots<a_{K}=1$ such that the sets $S_{p}=\left\{z \in S: a_{p} \leq\left|z_{1}\right| \leq a_{p+1}\right\}, p=$ $0,1, \ldots, K-1$, have equal areas (i.e. $\sigma\left(S_{p}\right)=1 / K$).

For $p=0,1, \ldots, K-1$, define $\delta_{p}^{2}=2^{-p} N^{-1}$. We take points $\left\{\eta_{j}^{p}\right\}_{j=1}^{M(p)}$ such that $E_{\delta_{p}}\left(\eta_{j}^{p}\right) \subset S_{p}$ are mutually disjoint and $E_{2 \delta_{p}}\left(\eta_{j}^{p}\right)$ cover S_{p} (we can do this if N is sufficiently large). Note that $M(p) \asymp 2^{p} N / K$. It is convenient to assume that $M(p)<2^{p} N / K$ (we just forget other points).

Finally, we define $f_{j}^{(p)}(z)=\left\langle z, \eta_{j}^{p}\right\rangle^{p} N+K j, j=1,2, \ldots, M(p), g^{(p)}=\sum_{j} f_{j}^{(p)}$ and $G(N)=\sum_{p} g^{(p)}$.

Fix $\zeta \in S_{p}$, then

$$
|G(N)(\zeta)| \leq \sum_{\substack{l=0 \\|p-l| \leq 1}}\left|g^{(l)}(\zeta)\right|+\left|\sum_{\substack{l \neq 0 \\|p-l|>1}} g^{(l)}(\zeta)\right|:=\Sigma_{1}+\Sigma_{2}
$$

First, the estimates given in the case $K=1$ provide $\Sigma_{1} \leq 4 \Sigma$.
Second, put $\delta^{2}=\delta_{0}^{2}=N^{-1}$. Choose points $\left\{\eta_{m}\right\}_{m=1}^{M} \subset S$ such that $E_{\delta}\left(\eta_{m}\right)$ are mutually disjoint and $\bigcup_{m=1}^{M} E_{2 \delta}\left(\eta_{m}\right) \supset S$. Now, fix $m \in\{1, \ldots, M\}$ and $l \in\{1, \ldots, K-$ $1\}$ such that $|p-l|>1$. Consider the set $I(l, m)=\left\{j: \eta_{j}^{l} \in E_{2 \delta}\left(\eta_{m}\right)\right\}$ (we suppose that $I(l, m) \neq \emptyset)$. Clearly card $I(l, m) \leq$ const 2^{l}. Since $|p-l|>1$, we have $\left|\left\langle\zeta, \eta_{j}^{l}\right\rangle\right|^{2^{l} N+K j} \leq$
const $\left|\left\langle\zeta, \eta_{m}\right\rangle\right|^{2^{l-1} N}$ if $j \in I(l, m)$ (we always assume that N is sufficiently large). Therefore

$$
\sum_{j \in I(l, m)}\left|\left\langle\zeta, \eta_{j}^{l}\right\rangle\right|^{2^{l} N+K j} \leq \mathrm{const}\left|\left\langle\zeta, \eta_{m}\right\rangle\right|^{N}
$$

for all $N \in \mathbf{N}$ large enough.
Note that, for every $m, E_{2 \delta}\left(\eta_{m}\right)$ has a non-empty intersection with at most two sets S_{l}. On the other hand, recall that $\bigcup_{m=1}^{M} E_{2 \delta}\left(\eta_{m}\right) \supset S$. Hence

$$
\Sigma_{2} \leq \text { const } \sum_{m=1}^{M}\left|\left\langle\zeta, \eta_{m}\right\rangle\right|^{N} \leq \text { const } \Sigma
$$

Therefore, we have $\|G(N)\|_{\infty} \leq$ const.
Note that $f_{j}^{(p)}$ are mutually orthogonal and $\left\|f_{j}^{(p)}\right\|_{2}^{2} \asymp\left(2^{p} N\right)^{-1}$, so $\left\|g^{(p)}\right\|_{2}^{2} \geq$ const / K and we obtain (2). The properties (3)-(4) are clear.

3. The proof of the theorem

Let $\operatorname{Pr}: L^{2}(S) \rightarrow\left\{f \in L^{2}(S): P[f]\right.$ is a pluriharmonic function $\}$ be the orthogonal projection. Given a polynomial φ on S (a symbol), the corresponding operator of the Hankel type is defined by the equality $H_{\varphi}[f]=\varphi \operatorname{Pr}[f]-\operatorname{Pr}[\varphi f], f \in L^{2}(S)$. Then $H_{\varphi}: C(S) \rightarrow C(S)$ is a compact operator. Therefore

$$
\begin{equation*}
\left[\left\|f_{j}\right\|_{C(S)} \leq 1 \text { and } f_{j} \rightarrow 0 \text { weakly in } L^{2}(S)\right] \Rightarrow\left\|H_{\varphi} f_{j}\right\|_{C(S)} \rightarrow 0 \tag{5}
\end{equation*}
$$

The property (5) leads to the definition of the pluriharmonic Riesz product based on a sequence of Ryll-Wojtaszczyk polynomials (see [D]). In the present paper we use the polynomials $W(N)$ provided by the lemma. Since the spectrum of $W(N)$ is not the only point, our measure is the pluriharmonic version of the classical generalized Riesz product.

Generalized pluriharmonic Riesz product construction.
Step 1. Fix $N_{1} \in \mathbf{N}$ and put $\psi_{1}=1+W\left(N_{1}, 1\right) / 2, \varphi_{1}=\operatorname{Re} \psi_{1}>0$.
Step $k+1$. Assume, as induction hypothesis, that a holomorphic polynomial $\psi=\psi_{k}$ is constructed and $\varphi=\varphi_{k}=\operatorname{Re} \psi_{k}, \varphi>0$. Put $K=2 \operatorname{deg} \varphi+2$. Suppose that $\beta=\{\beta(N)\}$ is a sign sequence (i.e. $\beta(N) \in\{ \pm 1\}$) and $U=\{U(N)\}$ is a sequence of unitary operators on \mathbf{C}^{n}. Then put $W(N)=\frac{1}{2} \beta(N) W(N, K) \circ U(N), N \in \mathbf{N}$.

Let $\varphi=\sum_{l \in \mathbf{Z}} f_{l}$ and $W(N)=\sum_{j \in \mathbf{Z}_{+}} W_{j}(N)$ be the homogeneous decompositions (i.e. $f_{j} \in H(j, 0)$ if $j \in \mathbf{Z}_{+}$and $f_{j} \in H(0, j)$ if $\left.-j \in \mathbf{Z}_{+}\right)$. We assume, as induction
hypothesis, that $\left\|f_{l}\right\|_{C(S)} \leq 1$ for all $l \in \mathbf{Z}$ (this property trivially holds in step 1). Now define

$$
\begin{aligned}
& \Phi(N):=\operatorname{Pr}(\varphi[1+\operatorname{Re} W(N)])=\varphi+\left(\varphi \operatorname{Re} W(N)-H_{\varphi}[\operatorname{Re} W(N)]\right) \\
& g_{l j}(N)=f_{l} W_{j}(N)-H_{f_{l}}\left[W_{j}(N)\right]
\end{aligned}
$$

Note that, for $N>\operatorname{deg} \varphi, \Phi(N)=\operatorname{Re} \Psi(N)$, where $\Psi(N)=\psi+\operatorname{Pr}(\varphi W(N))$ is a holomorphic polynomial.

Claim. There exist sequences β and U such that the relations

$$
\begin{align*}
\operatorname{spec}(\varphi) & \cap \operatorname{spec}(\Phi(N)-\varphi)=\emptyset \tag{6}\\
\Phi(N) & >0 \tag{7}\\
\left\|g_{l j}(N)\right\|_{2} & \leq 2\left\|W_{j}(N)\right\|_{2} \leq \mathrm{const} j^{-1 / 2} \tag{8}\\
\left\|g_{l j}(N)\right\|_{C(S)} & \leq\left\|f_{l}\right\|_{C(S)} \leq 1 \tag{9}\\
\|\Phi(N)\|_{1 / 2} & \leq(1-\text { const })\|\varphi\|_{1 / 2} \tag{10}\\
\|\Psi(N)-\psi\|_{1 / 2} & \leq\|\varphi\|_{1 / 2} \tag{11}
\end{align*}
$$

obtain for all $N \in \mathbf{N}$ large enough (of course, β and U depend on k).
Proof of the claim. Using (1) and (2) we construct (and fix) the sequences β and U such that (10) holds (we proceed as in [D]).

To ensure (6), we just consider sufficiently large $N \in \mathbf{N}$. Remark that $W(N) \xrightarrow{w L^{2}}$ 0 and $\varphi>0$, therefore, (1) and (5) give (7). On the other hand, $\left\|f_{l}\right\|_{C(S)} \leq 1$, $\left\|W_{j}(N)\right\|_{C(S)} \leq \frac{1}{2}$, and $W_{j}(N) \xrightarrow{w L^{2}} 0$ as $N \rightarrow \infty$. Thus, (1) and (3)-(5) provide (8) and (9). Finally, $\Psi(N)-\psi=\varphi W(N)-H_{\varphi}[W(N)]$ and $\|W(N)\|_{C(S)} \leq \frac{1}{2}$, so we use (5) and obtain (11) for all sufficiently large $N \in \mathbf{N}$. This finishes the proof of the claim.

Fix $N_{k+1} \in \mathbf{N}$ such that the above properties hold and define $\psi_{k+1}=\Psi\left(N_{k+1}\right)$, respectively $\varphi_{k+1}=\Phi\left(N_{k+1}\right)$. By the definition of K, the $H(p, q)$-projections of $\varphi_{k+1}-\varphi_{k}$ (the "new $H(p, q)$-projections") are $g_{l j}\left(N_{k+1}\right) / 2$ or $\frac{(p, q)}{g_{l j}\left(N_{k+1}\right)} / 2$, therefore, (9) guarantees that the induction construction proceeds.

By (6) and (7), $\varphi_{k} \sigma \xrightarrow{w^{*}} \mu$ for a probability measure μ which is said to be the generalized Riesz product based on the polynomials $W(N)$.

By (10) and (11), $\left\|\psi_{k+1}-\psi_{k}\right\|_{1 / 2} \leq(1-\text { const) })^{k-1}\left\|\varphi_{1}\right\|_{1 / 2}$. Therefore, the sequence $\left\{\psi_{k}\right\}$ converges in $H^{1 / 2}(B)$ to a function f. Since $\varphi_{k}=\operatorname{Re} \psi_{k},(10)$ gives $\operatorname{Re} f^{*}=0$ a.e., where f^{*} stands for the boundary values of f. On the other hand, $\operatorname{Re} f$ is the Poisson integral of μ, so μ is a singular measure.

Finally, consider the new $H(p, q)$-projections $g_{l j}\left(N_{k+1}\right) / 2 \in H(j+l, 0)$. Since $j+l \leq 3 j / 2$, the estimate (8) gives $\left\|\mu_{p 0}\right\|_{2} \leq$ const $p^{-1 / 2}$. The proof of the theorem is complete.

References

[BH] Brown, G. and Hewitt, E., Continuous singular measures with small FourierStieltjes transforms, Adv. in Math. 37 (1980), 27-60.
[D] Doubtsov, E., Henkin measures, Riesz products and singular sets, Preprint, 1997.
[I] Ivashëv-Musatov, O. S., On the coefficients of trigonometric null-series, Izv. Akad. Nauk SSSR Ser. Mat. 21 (1957), 559-578 (Russian). English transl.: Amer. Math. Soc. Transl. 14 (1960), 289-310.
[K] Körner, T. W., On the theorem of Ivašev-Musatov, Ann. Inst. Fourier (Grenoble) 27:3 (1977), 97-115.

Received May 21, 1997
in revised form November 3, 1997

Evgueni Doubtsov
Centre de Recerca Matemàtica Institut d'Estudis Catalans
Apartat 50
E-08193 Bellaterra (Barcelona)
Spain
Current address:
St. Petersburg State University
Bibliotechnaya pl. 2
Staryi Petergof
198904 St. Petersburg
Russia
email: es@dub.pdmi.ras.ru

[^0]: (${ }^{1}$) Supported by the Centre de Recerca Matemàtica (Institut d'Estudis Catalans, Barcelona) under a grant from DGICYT (Spain); partially supported by the RFFI grant 96-01-00693.

