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Singular measures with 
small H(p, q)-projections 

Evgueni Doubtsov(1) 

A b s t r a c t .  We cons t ruc t  a s ingular  probabi l i ty  m e a s u r e  # on t he  complex  sphere  such  t h a t  

the  Poisson integral  of # is a p lu r iha rmon ic  func t ion  in t he  ball  and  t he  Fourier  t r a n s f o r m  of /*  is 

1. I n t r o d u c t i o n  

Let T denote the unit circle and # c M ( T )  be a measure. Recall the following 
classical observation. 

Heuristic uncertainty principle. If the Fourier t ransform/5 is small (in a certain 

sense), then # is regular. 

For example, by the classical F. and Ivl. Riesz theorem, i f /5=0  on Z+, then # 
is absolutely continuous with respect to Lebesgue measure m. 

We are looking for phenomena of the opposite nature. If  we understand "/5 
is small" as "pointwise small" and "# is not regular" as "# and m are mutually 

singular", then we obtain the following classical problem. 

Definition T.  A function h: Z+--+R+ is said to be T-admissible if there exists 
a probabili ty continuous singular measure # e M ( W )  such that /5(k)  (9(h(Ikl)). 

Problem. Characterize the admissible functions. 

The famous Ivash~v-Musatov theorem shows that  all of the s tandard test  func- 

tions 

h(k) = (k log k log log k. log(p) k)-i/2 
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are T-admissible (see [I] for the precise conditions sufficient for admissibility, see 
also [K] for a simplified and somewhat  different version). We refer the interested 
reader to the paper  [BH] where other T-admissible functions are obtained and the 
history of the problem is discussed. 

Often T-admissibil i ty constructions can be carried out for all locally compact 
nondiscrete Abelian groups. In the present paper  we consider a generalization of a 
different type. Namely, we are concerned with an analogue of the above problem 
on the complex unit sphere S -  Sn C C n, n >_ 2. 

Given a measure #cM(S) ,  denote by #pq, (p,q)CZ2+, the projection of # on 

H(p, q), the space of the complex spherical harmonics (so Itpq is a polynomial on 
the sphere; in dimension 1 we just have #po(Z)=[t(p)z p, z E T ,  pEZ+) .  

Definition S. A function h: Z2+-~R+ is said to be S-admissible if there exists 

a probabili ty continuous singular measure # E M(S) such that  II #pq I I 2 = O(h(p, q)). 
If  also h(p,q)=O for all (p,q)EZ2+ such that  pqr then h is said to be plh- 

admissible (note that  the corresponding # is pluriharmonic, i.e. the Poisson integral 
of # is a pluriharmonic function in the ball). 

We show that  the test function h(k)=k 1/2 is plh-admissible (without loss of 
generality, we always put h (0 )=  1). 

T h e o r e m .  Put h(p, O)=h(O,p)=p 1/2, pCN, and h(p, q)=0  ifpqr Then h 
in S-admissible. 

Remark 1. Every pluriharmonic measure ItEM(S) is sufficiently regular. In 
particular, it is well known that  It has the full closed support  and I I t l (E)=0 if the 
(real) Hausdorff dimension of E does not exceed 2 n - 2 .  

Remark 2. Obviously, if hc12, then h is not admissible. Therefore, the the- 
orem shows that  there is no gap between necessary and sufficient conditions for 
S-admissibility in terms of the scale {kS}keN, ctER. 

Remark 3. The theorem has an R-interpreta t ion since the measure # is pluri- 
harmonic. Namely, identify S~ and S~ ~ 1cR2n, then [[itktI2=O(1/V/~) where Itk 

is the projection of It on 7gk, the space of the real spherical harmonics. 

Notation. The notation of the paper  is standard. In particular, cr is the nor- 

malized Lebesgue measure on S, a ( S ) = l ;  the symbol II" lip denotes the LP-norm 
with respect to o-. 

To finish the introduction, we give a simple and important  example. 

Example. There exists an h: Z2+~R+ such that  hq~l 2 and h is not S-admissible. 
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Proof. Put  h(0, 0) h(2J, 0)=h(0,  2 j) =1 for all j e Z +  and put h(p~ q) 0 other- 
wise. Suppose that #cM(S) and tl,pqll~=O(h(p, q)). We claim that #<<~. 

This is well known and easy to see. Indeed, the Cauchy projection C[#] is 
in the Hardy class HU2(B). Therefore, C[p]EHI(B) since C[#] has a lacunary 
spectrum. Finally, we apply the F. and M. Riesz theorem (on the sphere) to the 
measure #-C[#]a. [] 

2. Auxi l iary  po lynomia l s  

L e m m a .  Suppose that KcN.  Then, for all NEN large enough, there exist 
polynomials W(N)=W(N, K ) e ~ > 0  H(N+IK, O) such that 

(1) [[W(N)[[oo _< 1, 

(2) ItW(N)II2 > eonst > o, 

(3) IIW~(N)II~ _< 1, 

(4) II Wq (N) t 12 _< const q -  1/2, 

where Wq(N) is the H(q, O)-projection of W(N). 

Proof. For ~ ,~eS ,  put d2(~ ,~)=l - ] (C, , l>]  2 and E~O?):{~cS:d(C,~?)<5 } for 
0 < 5< 1. Recall that d satisfies the triangle inequality and a ( E s ) = 6  2~-2. 

(1) Construction for K = I  and n=2.  Put  5 = N  1/2. Choose points {~5}~_1C 

S such that Es(~lj ) are mutually disjoint and [.JM 1 E2~(~Ij)DS. In particular, N x  
M• -2. 

Define gj(z)=(z,~j) N+j, I<_j-<M, and G(N)=~gj.  We claim that the prop- 
erties (1)-(4) hold for G(N) (up to a multiplicative constant). 

Indeed, we have IIgj I I~=(N+Y+I)  -~ and G~+j (N)=g~.  Therefore, (3) and (4) 
hold. The property (2) is also clear because JIG(N)[]2 2 E I]gJtl~>-M/2N>-c~ 

Finally, we have to estimate ]]G(N)tl~. Fix a ~CS. For kEZ+, define H k =  
{j:kS<_d(~,~j)<_(k+l)6}. First, the cardinality of Hk does not exceed (k+2) 2. 
Second, if j EHk, then Igj (~)l-<exp(-k2/2) �9 Therefore 

M 

tG(N)(<)I < ~ tgj(<)l-< ~ ( k + 2 )  = exp(-k=/2):= ~ < ~ .  
j - 1  k~0  

To finish the argument, put W(N)--G(N)/E. 

(2) K 1 and n>2 is arbitrary. As in the case n 2, put 52=N -1 and choose 
the points z N {~} j= l ,  I < I < M / N  (it is useful to organize the sequence as a matrix). 
We have Mx5 -2n+2, so M x N  ~-1. 
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Define f)~)(z) = (z, qj ~/\N+Y, 1 <I<M/N. Now, make a randomization. Namely, 
let rt (t) be the Rademacher functions on [0, 1]. Define 

L 

gi(z,t)=Ef~Z)(z)rl(t) and hL=Ef~t)(z)rl(t). 
l / = 1  

Then there exists 3-=3-j E [0, 1] such that l id(" ,  3-)112 2_>El IIf~ z) 112. Note that IIf~ l) ][~x 
N 1 ~, thus Ilgj(-,3-)ll~>c/N. We fix such 3- and C, and claim that there exists 
Lo=Lo(j) C[1, M/N] such that IIh)~ II~• To show this, remark that IIh~ I1~ 
NI-~<C/N (we assume that n>3) .  If II@II~<_C/N for all L, then we are done. 
Else choose such L that II@II~<C/N but II@+~II~>C/N. Then IIh~ll~• since 

III~L+I) II2xN 1-~. 
Finally, gj=hy o and a ( x ) = E g j .  
As above, the absolute value estimates provide (1) (up to a multiplicative 

constant). Since GN+j(N)=gj, (3) is clear also. By the definition of L0, IIgjll~ 
cons t /N ,  so (4) holds. Since gj are mutually orthogonal, we obtain Ila(N)IlN- 

IlgJ 112 > N  c o n s t / N = c o n s t > 0 .  This yields (2). 

(3) K is arbitrary (to simplify the notation, we assume that n=2) .  Take a 
sequence O--ao<al<...<aK=l such that the sets Sp--{zES:ap<lZll<<_ap+l}, p= 
0, 1, ... , K - l ,  have equal areas (i.e. o-(Sp)=l/K). 

. . .  [ ~ P l M ( P )  such that For p=0,  1, , K - l ,  define @2=2-PN-1. We take points L q j ] j  1 
E~,(~]~)CSp are mutually disjoint and E2~(71} ~) cover Sp (we can do this if N 
is sufficiently large). Note that M(p)• It is convenient to assume that 
M(p) <2PN/K (we just forget other points). 

Finally, we define fJP)(z)=(z, rl~) 2~N+Kj, j = l ,  2, ..., M(p), g(P)=2j f(P) and 

G(N)=Ep gO~) 
Fix ~ E Sp, then 

l=O or  l~iO 
Ip-ll~x Ip-lF>l 

: = E l + E 2 .  

First, the estimates given in the case I ( = 1  provide ~1<4~. 
Second, put ~2 = ~g = N 1. Choose points M {~,~}~n=ICS such that Ee(~,~) are 

M mutually disjoint and Um=l E2~(r/~) DS. Now, fix rnC{1, ..., M} and lc{1,  ..., K -  
1} such that Ip-ll >1. Consider the set I(1, m)={j :~}  EE2~(r],~)} (we suppose that 

I(1, m) r 0). Clearly card I(1, m) <_ const 2 ~. Since IP I I > 1, we have I(~, 7})12zN+Kj < 
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const I(~,~]m}l 2'-~N if je I ( l ,m)  (we always assume that N is sufficiently large). 
Therefore 

Z 
j6x(z,m) 

for all N EN large enough. 
Note ~hat, for every m, E2~(r~m) has a non-empty intersection with at most 

M E two sets St. On the other hand, recall that U,~ 1 2~(f]rn) DS ,  Hence 

M 

E2 < const ~ I((, r~-~>l N -< const E. 

Therefore, we have IIG(N)II~ <const. 
Note that  fJP) are mutually orthogonal and IIfJP)ll~x(2pN) z, so IIg(p)ll~_> 

c o n s t / K  and we obtain (2). The properties (3)-(4) are cleat'. [~ 

3. T h e  p r o o f  o f  t h e  t h e o r e m  

Let Pr: L 2 ( S) --+ { f  E L 2 (S) :P[f] is a pluriharmonic function} be the orthogonal 
projection. Given a polynomial ~ on S (a symbol), the corresponding operator of 
the Hankel type is defined by the equality H~,[f]=~Pr[f]-Pr[~f], fEL2(S). Then 
H~: C(S)--+C(S) is a compact operator. Therefore 

(5) [llfjllc(s) <<_l and fj---~OweaklyinL2(S)] ~ [IH~fjllc(s)-~O. 

The property (5) leads to the definition of the pluriharmonic Riesz product 
based on a sequence of Ryll Wojtaszczyk polynomials (see [D]). In the present 
paper we use the polynomials W(N) provided by the temma. Since the spectrum 
of W(N) is not the only point, our measure is the pluriharmonic version of the 
classical generalized Riesz product. 

Generalized pluriharmonic Riesz product construction. 

Step 1. Fix N ~ c N  and put ~ = I + W ( N 1 ,  1)/2, ~ = R e ~ l > 0 .  

Step k + l .  Assume, as induction hypothesis, that a holomorphic polynomial 
~ = ~ k  is constructed and ~ = ~ k = R e ~ k ,  ~>0 .  Pu t  K = 2 d e g ~ + 2 .  Suppose that 
/3={/3(N)} is a sign sequence (i.e. /3(N)E{•  and U=fU(N)} is a sequence of 
unitary operators on C". Then put W(N)= �89 K)oU(N), N EN. 

Let ~ = E z ~ z  fl and W(N)=Ej~z  + Wj(N) be the homogeneous decomposi- 
tions (i.e. fj E H(j, 0) if j E Z+ and fj G H(0, j )  if - j  E Z+). We assume, as induction 
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hypothesis, that  I lfl I Ic<s> ~ 1 for all 1cZ (this property trivially holds in step 1). 
Now define 

~)(N) : = P r ( ~ [ l + R e  W(N)])  = ~ + ( p  Re W(N) - H ~  [Re W(N)]) ,  

gu (N) = f tWj (N) - H k[Wj (N)]. 

Note that, for N > d e g ~ ,  (I)(N)=Re ~P(N), where ~ ( N ) = r  is a 
holomorphic polynomial. 

Cla im.  There exist sequences/3 and U such that the relations 

(6) spec(~) N spec ((I)(N) - ~o) -- 0, 
(7) ~ ( N )  > 0, 

(S) Ilgzj (N)I1~ 5 211Wj (N)I1~ ~ const j - 1 / 2  

(9) IIgu(N)llc(s) _ Ilf~llc(s) -< 1, 
(10) riO(N) li 1/2 5 (1 -const)II~ll l/= 

(11) II!J(N)-~II1/2 ~ 11~111/2 

obtain for all N E N  large enough (of course, /3 and U depend on k). 

Proof of the claim. Using (1) and (2) we construct (and fix) the sequences 
and V such that (10) holds (we proceed as in [D]). 

To ensure (6), we just consider sufficiently large N E N .  Remark that W(N)~L:  
0 and ~>0 ,  therefore, (1) and (5) give (7). On the other hand, I lf l l lc(s)<l,  

HWj(N)Hc(s) < 1 Wj(N) ~L~o as 5, and N-+oc .  Thus, (1) and (3)-(5) provide (8) 
and (9). Finally, ~(N)-~b=cpW(N)-H~[W(N)]  and IIW(N)llccs)<_ 1 2 '  SO w e  u s e  

(5) and obtain (11) for all sufficiently large N C N .  This finishes the proof of the 
claim. 

Fix Nk+l E N  such that the above properties hold and define r  
respectively ~k+l=aP(Nk+l).  By the definition of K, the H(p,q)-projections of 
~k+l ~:~k (the "new H(p, q)-projeetions") are gzj(Nk+l)/2 or gzj(Nk+l)/2, there- 
fore, (9) guarantees that the induction construction proceeds. 

W* By (6) and (7), ~ka )t~ for a probability measure p which is said to be the 
generalized Riesz product based oil the polynomials W(N).  

By (10) and ( n ) ,  I I~+ , - -r  Therefore, the se- 
quence {r converges in H1/2(B) to a function f .  Since pk=ReCk ,  (10) gives 
Re f * = 0  a.e., where f* stands for the boundary values of f .  On the other hand, 
Re f is the Poisson integral of it, so p is a singular measure. 



Singular measures with small H(p, q)-projections 361 

Finally, consider the new H(p,q)-projections 9 t j ( N k + l ) / 2 E H ( j + l , O ) .  Since 
j+l<_3j /2 ,  the estimate (8) gives II~p0ll2<const p 1/2. The proof of the theorem 
is complete. [] 
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