Higher order commutators for a class of rough operators

Yong Ding and Shanzhen $\operatorname{Lu}\left({ }^{1}\right)$

Abstract

In this paper we study the ($L^{p}\left(u^{p}\right), L^{q}\left(v^{q}\right)$) boundedness of the higher order commutators $T_{\Omega, \alpha, b}^{m}$ and $M_{\Omega, \alpha, b}^{m}$ formed by the fractional integral operator $T_{\Omega, \alpha}$, the fractional maximal operator $M_{\Omega, \alpha}$, and a function $b(x)$ in $\operatorname{BMO}(\nu)$, respectively.

Our results improve and extend the corresponding results obtained by Segovia and Torrea in 1993 [9].

1. Introduction

Suppose that $0<\alpha<n, \Omega(x)$ is homogeneous of degree zero on \mathbf{R}^{n} and $\Omega\left(x^{\prime}\right) \in$ $L^{s}\left(S^{n-1}\right)(s>1)$, where S^{n-1} denotes the unit sphere in \mathbf{R}^{n}. Then the fractional integral operator $T_{\Omega, \alpha}$ is defined by

$$
T_{\Omega, \alpha} f(x)=\int_{\mathbf{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) d y
$$

and the fractional maximal operator $M_{\Omega, \alpha}$ is defined by

$$
M_{\Omega, \alpha} f(x)=\sup _{r>0} \frac{1}{r^{n-\alpha}} \int_{|x-y|<r}|\Omega(x-y)||f(y)| d y
$$

In 1971, Muckenhoupt and Wheeden [8] gave (L^{p}, L^{q}) boundedness with power weight for the rough fractional integral operator $T_{\Omega, \alpha}$. This is an extension of the Hardy-Littlewood-Sobolev theorem. For general $A(p, q)$ weights, we gave the weighted (L^{p}, L^{q}) boundedness of $T_{\Omega, \alpha}$ and $M_{\Omega_{,} \alpha}$ in [5]. In 1993, Chanillo, Watson and Wheeden [1] proved that when $s \geq n /(n-\alpha)$, the operator $T_{\Omega, \alpha}$ is of weak type $(1, n /(n-\alpha))$. Recently, weak type inequalities with power weights for $T_{\Omega, \alpha}$ and $M_{\Omega, \alpha}$ have been obtained by one of the authors [4].
(${ }^{1}$) The project was supported by NNSF of China.

Before stating our results, let us give some definitions. For ν a nonnegative locally integrable function on \mathbf{R}^{n}, a function $b(x)$ is said to belong to $\operatorname{BMO}(\nu)$, if there is a constant $C>0$ such that for any cube Q in \mathbf{R}^{n} with its sides parallel to the coordinate axes

$$
\int_{Q}\left|b(x)-b_{Q}\right| d x \leq C \int_{Q} \nu(x) d x
$$

where $b_{Q}=(1 /|Q|) \int_{Q} b(x) d x$.
Let Ω be homogeneous of degree zero on \mathbf{R}^{n} and satisfy $\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d x^{\prime}=0$. Then the integral modulus of continuity of order $s(s \geq 1)$ of Ω is defined by

$$
\omega(t)=\sup _{|\varrho|<t}\left(\int_{S^{n-1}}\left|\Omega\left(\varrho x^{\prime}\right)-\Omega\left(x^{\prime}\right)\right|^{s} d x^{\prime}\right)^{1 / s}
$$

where ϱ is a rotation in \mathbf{R}^{n} and $|\varrho|=\|\varrho-I\|$.
A nonnegative locally integrable function $u(x)$ on \mathbf{R}^{n} is said to belong to $A(p, q)$ $(1<p, q<\infty)$, if there is a constant $C>0$ such that

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} u(x)^{q} d x\right)^{1 / q}\left(\frac{1}{|Q|} \int_{Q} u(x)^{-p^{\prime}} d x\right)^{1 / p^{\prime}} \leq C<\infty
$$

where $p^{\prime}=p /(p-1)$.
In this paper we shall follow the idea developed in [5] to consider the weighted (L^{p}, L^{q}) boundedness for a class of higher order commutators formed by $T_{\Omega, \alpha}, M_{\Omega, \alpha}$ and $\operatorname{BMO}(\nu)$ function $b(x)$ which are defined as

$$
\begin{equation*}
T_{\Omega, \alpha, b}^{m} f(x)=\int_{\mathbf{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}}[b(x)-b(y)]^{m} f(y) d y \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\Omega, \alpha, b}^{m} f(x)=\sup _{r>0} \frac{1}{r^{n-\alpha}} \int_{|x-y|<r}|\Omega(x-y)||b(x)-b(y)|^{m}|f(y)| d y \tag{1.2}
\end{equation*}
$$

In 1993, Segovia and Torrea [9] gave the weighted boundedness of higher order commutators for vector-valued integral operators with a pair of weights using the Rubio de Francia extrapolation idea for weighted norm inequalities. As an application of this result, they obtained $\left(L^{p}\left(u^{p}\right), L^{q}\left(v^{q}\right)\right)$ boundedness of $T_{\Omega, \alpha, b}^{m}$ and $M_{1, \alpha, b}^{m}$, where Ω satisfies some smoothness condition.

Theorem A. ([9]) Suppose that $0<\alpha<n, 1 \leq s^{\prime}<p<n / \alpha, 1 / q=1 / p-\alpha / n, \Omega$ is a homogeneous function of degree zero defined on \mathbf{R}^{n}, and $\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d x^{\prime}=0$. For $m \in \mathbf{Z}_{+}$, if the integral modulus of continuity of order $s(s>1)$ of Ω satisfies

$$
\begin{equation*}
\int_{0}^{1} \log ^{m}(1 / t) \omega(t) \frac{d t}{t}<\infty \tag{1.3}
\end{equation*}
$$

then for $b \in \operatorname{BMO}(\nu), u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q / s^{\prime}\right)$ and $u(x) v(x)^{-1}=\nu^{m}$, there is a constant C, independent of f, such that $T_{\Omega, \alpha, b}^{m}$ satisfies

$$
\left(\int_{\mathbf{R}^{n}}\left|T_{\Omega, \alpha, b}^{m} f(x) v(x)\right|^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x) u(x)|^{p} d x\right)^{1 / p}
$$

Theorem B. ([9]) Suppose that $0<\alpha<n, 1<p<n / \alpha, 1 / q=1 / p-\alpha / n$. Then for $b \in \operatorname{BMO}(\nu), u(x), v(x) \in A(p, q)$ and $u(x) v(x)^{-1}=\nu^{m}$, there is a constant C, independent of f, such that $M_{1, \alpha, b}^{m}$ satisfies

$$
\left(\int_{\mathbf{R}^{n}}\left[M_{1, \alpha, b}^{m} f(x) v(x)\right]^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x) u(x)|^{p} d x\right)^{1 / p}
$$

In this paper we shall prove the following results.
Theorem 1. Suppose that $0<\alpha<n, 1 \leq s^{\prime}<p<n / \alpha, 1 / q=1 / p-\alpha / n, \Omega$ is homogeneous of degree zero defined on \mathbf{R}^{n} and $\Omega \in L^{s}\left(S^{n-1}\right)$, then for functions $b \in$ $\mathrm{BMO}(\nu), u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q / s^{\prime}\right)$ and $u(x) v(x)^{-1}=\nu^{m}$, there is a constant C, independent of f, such that $T_{\Omega, \alpha, b}^{m}$ satisfies

$$
\left(\int_{\mathbf{R}^{n}}\left|T_{\Omega, \alpha, b}^{m} f(x) v(x)\right|^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x) u(x)|^{p} d x\right)^{1 / p}
$$

Theorem 2. Suppose that $0<\alpha<n, 1<p<n / \alpha, 1 / q=1 / p-\alpha / n, s>q$. If Ω is homogeneous of degree zero defined on \mathbf{R}^{n} and $\Omega \in L^{s}\left(S^{n-1}\right)$, then for functions $b \in$ $\operatorname{BMO}(\nu), u(x)^{-s^{\prime}}, v(x)^{-s^{\prime}} \in A\left(q^{\prime} / s^{\prime}, p^{\prime} / s^{\prime}\right)$, and $u(x) v(x)^{-1}=\nu^{m}$, there is a constant C, independent of f, such that $T_{\Omega, \alpha, b}^{m}$ satisfies

$$
\left(\int_{\mathbf{R}^{n}}\left|T_{\Omega, \alpha, b}^{m} f(x) v(x)\right|^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x) u(x)|^{p} d x\right)^{1 / p}
$$

On the higher order commutator $M_{\Omega, \alpha, b}^{m}$ of the fractional maximal operator $M_{\Omega, \alpha}$ we have the following results.

Theorem 3. Suppose that $0<\alpha<n, 1 \leq s^{\prime}<p<n / \alpha, 1 / q=1 / p-\alpha / n, \Omega$ is homogeneous of degree zero defined on \mathbf{R}^{n} and $\Omega \in L^{s}\left(S^{n-1}\right)$, then for functions $b \in$ $\mathrm{BMO}(\nu), u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q / s^{\prime}\right)$ and $u(x) v(x)^{-1}=\nu^{m}$, there is a constant C, independent of f, such that $M_{\Omega, \alpha, b}^{m}$ satisfies

$$
\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha, b}^{m} f(x) v(x)\right]^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x) u(x)|^{p} d x\right)^{1 / p}
$$

Theorem 4. Suppose that $0<\alpha<n, 1<p<n / \alpha, 1 / q=1 / p-\alpha / n, s>q$. If Ω is homogeneous of degree zero defined on \mathbf{R}^{n} and $\Omega \in L^{s}\left(S^{n-1}\right)$, then for functions $b \in$ $\operatorname{BMO}(\nu), u(x)^{-s^{\prime}}, v(x)^{-s^{\prime}} \in A\left(q^{\prime} / s^{\prime}, p^{\prime} / s^{\prime}\right)$, and $u(x) v(x)^{-1}=\nu^{m}$, there is a constant C, independent of f, such that $M_{\Omega, \alpha, b}^{m}$ satisfies

$$
\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha, b}^{m} f(x) v(x)\right]^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x) u(x)|^{p} d x\right)^{1 / p}
$$

Remark 1. By comparing the results in this paper with the results in [9], we see that the cancellation condition and smoothness condition (1.3) of Ω in Theorem A have been removed in Theorem 1. Moreover, the theorems in this paper are also extensions of Theorem A and B.

Remark 2. In [2] and [3], we gave the weighted boundedness of $T_{\Omega, \alpha, b}^{m}$ and $M_{\Omega, \alpha, b}^{m}$ for one weight function, respectively. The theorems in this paper are also extensions of results in [2] and [3].

2. Proof of the theorems

Let us recall the definitions of $A_{p}(1 \leq p<\infty)$ weights and some elementary properties of A_{p} weights and $A(p, q)$ weights. A nonnegative locally integrable function $w(x)$ on \mathbf{R}^{n} is said to belong to $A_{p}(1<p<\infty)$, if there is a constant $C>0$ such that for any cube Q,

$$
\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} w(x)^{-1 /(p-1)} d x\right)^{p-1} \leq C<\infty
$$

Using the elementary properties of A_{p} weights [6], we can prove that if $0<\alpha<n$, $1<p<n / \alpha, 1 / q=1 / p-\alpha / n$, then we have

$$
\begin{align*}
u(x) \in A(p, q) & \Longleftrightarrow u(x)^{-p^{\prime}} \in A_{1+p^{\prime} / q} \Longleftrightarrow u(x)^{q} \in A_{1+q / p^{\prime}} \tag{2.1}\\
& \Longleftrightarrow u(x)^{q} \in A_{q(n-\alpha) / n}
\end{align*}
$$

Lemma 1. Suppose that $0<\alpha<n, s^{\prime}>1,1<p / s^{\prime}<n / \alpha, 1 /\left(q / s^{\prime}\right)=1 /\left(p / s^{\prime}\right)-$ α / n. Then for $b \in \operatorname{BMO}(\nu), u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q / s^{\prime}\right)$ and $u(x) v(x)^{-1}=\nu^{m}$, there is a C, independent of f, such that the commutator $N_{\alpha, s^{\prime}, b}^{m s^{\prime}}$ satisfies

$$
\begin{equation*}
\left(\int_{\mathbf{R}^{n}}\left[N_{\alpha, s^{\prime}, b}^{m s^{\prime}} f(x) v(x)\right]^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x) u(x)|^{p} d x\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

where $N_{\alpha, s^{\prime}, b}^{m s^{\prime}}$ is the commutator for the fractional maximal operator of order s^{\prime} defined by

$$
N_{\alpha, s^{\prime}, b}^{m s^{\prime}} f(x)=\sup _{r>0}\left(\frac{1}{r^{n-\alpha}} \int_{|x-y|<r}|b(x)-b(y)|^{m s^{\prime}}|f(y)|^{s^{\prime}} d y\right)^{1 / s^{\prime}}
$$

Proof. Clearly, $N_{\alpha, s^{\prime}, b}^{m s^{\prime}} f(x)=\left(M_{1, \alpha, b}^{m s^{\prime}}\left(|f|^{s^{\prime}}\right)(x)\right)^{1 / s^{\prime}}$, and we have

$$
\begin{aligned}
\left(\int_{\mathbf{R}^{n}}\left[N_{\alpha, s^{\prime}, b}^{m s^{\prime}} f(x) v(x)\right]^{q} d x\right)^{1 / q} & =\left(\int_{\mathbf{R}^{n}}\left[M_{1, \alpha, b}^{m s^{\prime}}\left(|f|^{s^{\prime}}(x)\right)\right]^{q / s^{\prime}} v(x)^{q} d x\right)^{1 / q} \\
& =\left[\left(\int_{\mathbf{R}^{n}}\left[M_{1, \alpha, b}^{m s^{\prime}}\left(|f|^{s^{\prime}}(x)\right) v(x)^{s^{\prime}}\right]^{q / s^{\prime}} d x\right)^{s^{\prime} / q}\right]^{1 / s^{\prime}} .
\end{aligned}
$$

Since $u v^{-1}=\nu^{m}$, we get $\left(u^{s^{\prime}}\right)\left(v^{s^{\prime}}\right)^{-1}=\nu^{m s^{\prime}}$. By Theorem B,

$$
\begin{aligned}
\left(\int_{\mathbf{R}^{n}}\left[M_{1, \alpha, b}^{m s^{\prime}}\left(|f|^{s^{\prime}}(x)\right) v(x)^{s^{\prime}}\right]^{q / s^{\prime}} d x\right)^{s^{\prime} / q} & \leq C\left(\int_{\mathbf{R}^{n}}\left[|f(x)|^{s^{\prime}} u(x)^{s^{\prime}}\right]^{p / s^{\prime}} d x\right)^{s^{\prime} / p} \\
& =C\left(\int_{\mathbf{R}^{n}}|f(x)|^{p} u(x)^{p} d x\right)^{s^{\prime} / p}
\end{aligned}
$$

Thus,

$$
\left(\int_{\mathbf{R}^{n}}\left[N_{\alpha, s^{\prime}, b}^{m s^{\prime}} f(x) v(x)\right]^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbf{R}^{n}}|f(x)|^{p} u(x)^{p} d x\right)^{1 / p}
$$

This is (2.2).
Let us first give the proof of Theorem 3. By the conditions of Theorem 3, we know that for $r>0$,

$$
\left(\int_{|x-y|<r}|\Omega(x-y)|^{s} d y\right)^{1 / s} \leq C r^{n / s}| | \Omega \|_{L^{s}\left(S^{n-1}\right)}
$$

Hence

$$
\begin{aligned}
M_{\Omega, \alpha, b}^{m} f(x)= & \sup _{r>0} \frac{1}{r^{n-\alpha}} \int_{|x-y|<r}|\Omega(x-y)||b(x)-b(y)|^{m}|f(y)| d y \\
\leq & \sup _{r>0} \frac{1}{r^{n-\alpha}}\left(\int_{|x-y|<r}|\Omega(x-y)|^{s} d y\right)^{1 / s} \\
& \times\left(\int_{|x-y|<r}|b(x)-b(y)|^{m s^{\prime}}|f(y)|^{s^{\prime}} d y\right)^{1 / s^{\prime}} \\
\leq & C \sup _{r>0} \frac{1}{r^{n-\alpha}} r^{n / s}\left(\int_{|x-y|<r}|b(x)-b(y)|^{m s^{\prime}}|f(y)|^{s^{\prime}} d y\right)^{1 . / s^{\prime}} \\
= & C \sup _{r>0}\left(\frac{1}{r^{n-\alpha s^{\prime}}} \int_{|x-y|<r}|b(x)-b(y)|^{m s^{\prime}}|f(y)|^{s^{\prime}} d y\right)^{1 / s^{\prime}} \\
= & C N_{\alpha s^{\prime}, s^{\prime}, b}^{m s^{\prime}} f(x) .
\end{aligned}
$$

From $1<s^{\prime}<p<n / \alpha$ and $1 / q=1 / p-\alpha / n$, we have $0<\alpha s^{\prime}<n, 1<p / s^{\prime}<n / \alpha s^{\prime}$ and $1 /\left(q / s^{\prime}\right)=1 /\left(p / s^{\prime}\right)-\alpha s^{\prime} / n$. Thus, by Lemma 1 we get

$$
\begin{aligned}
\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha, b}^{m} f(x) v(x)\right]^{q} d x\right)^{1 / q} & \leq C\left(\int_{\mathbf{R}^{n}}\left[N_{\alpha s^{\prime}, s^{\prime}, b}^{m s^{\prime}} f(x) v(x)\right]^{q} d x\right)^{1 / q} \\
& \leq C\left(\int_{\mathbf{R}^{n}}|f(x)|^{p} u(x)^{p} d x\right)^{1 / p}
\end{aligned}
$$

The result of Theorem 3 is proved.
The proof of Theorem 1 is based on the following lemmas. Let us first give a pointwise relation between $T_{\Omega, \alpha, b}^{m}$ and $M_{\Omega, \alpha, b}^{m}$.

Lemma 2. For any $\varepsilon>0$ with $0<\alpha-\varepsilon<\alpha+\varepsilon<n$, we have

$$
\begin{equation*}
\left|T_{\Omega, \alpha, b}^{m} f(x)\right| \leq C\left[M_{\Omega, \alpha+\varepsilon, b}^{m} f(x)\right]^{1 / 2}\left[M_{\Omega, \alpha-\varepsilon, b}^{m} f(x)\right]^{1 / 2}, \quad x \in \mathbf{R}^{n} \tag{2.3}
\end{equation*}
$$

where C depends only on α, ε, n.
Proof. The idea of the proof will be taken from [10]. However, it is worth pointing out that the important technique used here was suggested first by Hedberg in [7]. For $x \in \mathbf{R}^{n}$ and $\varepsilon>0$ with $0<\alpha-\varepsilon<\alpha+\varepsilon<n$, we choose a $\delta>0$ such that

$$
\delta^{2 \varepsilon}=M_{\Omega, \alpha+\varepsilon, b}^{m} f(x) / M_{\Omega, \alpha-\varepsilon, b}^{m} f(x)
$$

Write

$$
\begin{aligned}
T_{\Omega, \alpha, b}^{m} f(x)= & \int_{|x-y|<\delta} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}}[b(x)-b(y)]^{m} f(y) d y \\
& +\int_{|x-y| \geq \delta} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}}[b(x)-b(y)]^{m} f(y) d y \\
:= & I_{1}+I_{2}
\end{aligned}
$$

We have

$$
\begin{aligned}
\left|I_{1}\right| & \leq \sum_{j=0}^{\infty} \int_{2^{-j-1} \delta \leq|x-y|<2^{-j} \delta} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}}|b(x)-b(y)|^{m}|f(y)| d y \\
& \leq \sum_{j=0}^{\infty}\left(2^{-j-1} \delta\right)^{-(n-\alpha)} \int_{|x-y|<2^{-j} \delta}|\Omega(x-y)||b(x)-b(y)|^{m}|f(y)| d y \\
& =2^{n-\alpha} \sum_{j=0}^{\infty}\left(2^{-j} \delta\right)^{\varepsilon} \frac{1}{\left(2^{-j} \delta\right)^{n-\alpha+\varepsilon}} \int_{|x-y|<2^{-j \delta}}|\Omega(x-y)||b(x)-b(y)|^{m}|f(y)| d y \\
& \leq C \delta^{\varepsilon} M_{\Omega, \alpha-\varepsilon, b}^{m} f(x) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left|I_{2}\right| & \leq \sum_{j=1}^{\infty} \int_{2^{j-1} \delta \leq|x-y|<2^{j} \delta} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}}|b(x)-b(y)|^{m}|f(y)| d y \\
& \leq C \sum_{j=1}^{\infty}\left(2^{j} \delta\right)^{-\varepsilon} \frac{1}{\left(2^{j} \delta\right)^{n-\alpha-\varepsilon}} \int_{|x-y|<2^{j} \delta}|\Omega(x-y)||b(x)-b(y)|^{m}|f(y)| d y \\
& \leq C \delta^{-\varepsilon} M_{\Omega, \alpha+\varepsilon, b}^{m} f(x)
\end{aligned}
$$

Thus, by the above selection of δ we get

$$
\begin{aligned}
\left|T_{\Omega, \alpha, b}^{m} f(x)\right| & \leq C\left[\delta^{\varepsilon} M_{\Omega, \alpha-\varepsilon, b}^{m} f(x)+\delta^{-\varepsilon} M_{\Omega, \alpha+\varepsilon, b}^{m} f(x)\right] \\
& =C\left[M_{\Omega, \alpha+\varepsilon, b}^{m} f(x)\right]^{1 / 2}\left[M_{\Omega, \alpha-\varepsilon, b}^{m} f(x)\right]^{1 / 2}
\end{aligned}
$$

and the proof of Lemma 2 is complete.
The following two lemmas characterize an important property of $A(p, q)$ weights and they are also the key for proving Theorem 1.

Lemma 3. Suppose that $0<\alpha<n, 1<p<n / \alpha, 1 / q=1 / p-\alpha / n$ and $u(x), v(x) \in$ $A(p, q)$. Then there is an $\varepsilon>0$ such that

$$
\begin{equation*}
\varepsilon<\alpha<\alpha+\varepsilon<n, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
1 / p>(\alpha+\varepsilon) / n, \quad 1 / q<(n-\varepsilon) / n \tag{ii}
\end{equation*}
$$

$u(x), v(x) \in A\left(p, q_{\varepsilon}\right)$ and $u(x), v(x) \in A\left(p, \bar{q}_{\varepsilon}\right)$, where $1 / q_{\varepsilon}=1 / p-(\alpha+\varepsilon) / n$ and $1 / \bar{q}_{\varepsilon}=$ $1 / p-(\alpha-\varepsilon) / n$.

Proof. For $\alpha>0,1 / q<1$, we can take $\delta_{1}>0$ such that $\delta_{1}<\alpha$ and $1 / q+\delta_{1} / n<1$. Let $1 / q_{\delta_{1}}=1 / p-\left(\alpha-\delta_{1}\right) / n=1 / q+\delta_{1} / n$, then $q>q_{\delta_{1}}>1$ and $1+p^{\prime} / q<1+p^{\prime} / q_{\delta_{1}}$. By (2.1) and the inclusion relation between A_{p} weight classes, we have $u^{-p^{\prime}}, v^{-p^{\prime}} \in$ $A_{1+p^{\prime} / q} \subset A_{1+p^{\prime} / q \delta_{1}}$, which is equivalent to

$$
\begin{equation*}
u(x), v(x) \in A\left(p, q_{\delta_{1}}\right) \tag{2.4}
\end{equation*}
$$

by (2.1).
On the other hand, there is an η with $0<\eta<1 / q$, such that $u^{-p^{\prime}} \in A_{1+p^{\prime}(1 / q-\eta)}$, by the reverse Hölder's inequality or A_{p} weights. Hence we can choose $\delta_{2}>0$ small enough such that $\delta_{2}<\min \{\alpha, n-\alpha\}, 1 / p>\left(\alpha+\delta_{2}\right) / n$ and $\delta_{2} / n<\eta$ hold at the same time. Now let $1 / q_{\delta_{2}}=1 / p-\left(\alpha+\delta_{2}\right) / n$, then since $1 / p>\left(\alpha+\delta_{2}\right) / n$ and $\delta_{2} / n<\eta$ we get $0<1 / q_{\delta_{2}}<1$ and $1 / q_{\delta_{2}}=1 / q-\delta_{2} / n>1 / q-\eta$. From this we have $u^{-p^{\prime}} \in A_{1+p^{\prime}(1 / q-\eta)} \subset$ $A_{1+p^{\prime} / q_{\delta_{2}}}$. By (2.1), this is equivalent to $u(x) \in A\left(p, q_{\delta_{2}}\right)$. Obviously, given the same discussion for $v(x)$, we can also get a $\sigma_{2}>0$ (corresponding to $v(x)$), which possesses the conditions satisfied by δ_{2} (corresponding to $u(x)$). Hence we have also $v(x) \in A\left(p, q_{\sigma_{2}}\right)$. Let $\varepsilon_{1}=\min \left\{\delta_{2}, \sigma_{2}\right\}$, then we have

$$
\begin{equation*}
u(x), v(x) \in A\left(p, q_{\varepsilon_{1}}\right) \tag{2.5}
\end{equation*}
$$

Finally, let $\varepsilon=\min \left\{\delta_{1}, \varepsilon_{1}\right\}$ and $1 / q_{\varepsilon}=1 / p-(\alpha+\varepsilon) / n, 1 / \bar{q}_{\varepsilon}=1 / p-(\alpha-\varepsilon) / n$, then by (2.4) and (2.5) we get $u(x), v(x) \in A\left(p, q_{\varepsilon}\right)$ and $u(x), v(x) \in A\left(p, \bar{q}_{\varepsilon}\right)$.

Lemma 4. Suppose that $0<\alpha<n, 1 \leq s^{\prime}<p<n / \alpha, 1 / q=1 / p-\alpha / n$ and that $u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q / s^{\prime}\right)$. Then there is an $\varepsilon>0$ such that

$$
\begin{equation*}
\varepsilon<\alpha<\alpha+\varepsilon<n \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
1 / p>(\alpha+\varepsilon) / n, \quad 1 / q<(n-\varepsilon) / n \tag{iv}
\end{equation*}
$$

and $u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q_{\varepsilon} / s^{\prime}\right), u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, \bar{q}_{\varepsilon} / s^{\prime}\right)$ hold at the same time, where $1 / q_{\varepsilon}=1 / p-(\alpha+\varepsilon) / n, 1 / \bar{q}_{\varepsilon}=1 / p-(\alpha-\varepsilon) / n$.

Proof. As $1 /\left(q / s^{\prime}\right)=1 /\left(p / s^{\prime}\right)-\alpha s^{\prime} / n$, by Lemma 3 there is an $\eta>0$ such that $\eta<$ $\alpha s^{\prime}<\alpha s^{\prime}+\eta<n, 1 /\left(p / s^{\prime}\right)>\left(\alpha s^{\prime}+\eta\right) / n, 1 /\left(q / s^{\prime}\right)<(n-\eta) / n$ and that $u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in$
$A\left(p / s^{\prime}, q_{\eta}\right), u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, \bar{q}_{\eta}\right)$ hold at the same time, where $1 / q_{\eta}=1 /\left(p / s^{\prime}\right)-$ $\left(\alpha s^{\prime}+\eta\right) / n, 1 / \bar{q}_{\eta}=1 /\left(p / s^{\prime}\right)-\left(\alpha s^{\prime}-\eta\right) / n$.

Now let $\varepsilon=\eta / s^{\prime}, q_{\varepsilon}=s^{\prime} q_{\eta}$ and $\bar{q}_{\varepsilon}=s^{\prime} \bar{q}_{\eta}$, then it is easy to see that ε satisfies (iii), (iv) and $u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q_{\varepsilon} / s^{\prime}\right), u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, \bar{q}_{\varepsilon} / s^{\prime}\right)$ hold at the same time, where $1 / q_{\varepsilon}=1 / p-(\alpha+\varepsilon) / n, 1 / \bar{q}_{\varepsilon}=1 / p-(\alpha-\varepsilon) / n$. This completes the proof of Lemma 4.

The proof of Theorem 1. Under the conditions of Theorem 1, by Lemma 4, there is an $\varepsilon>0$ such that (iii) and (iv) hold, and

$$
u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, q_{\varepsilon} / s^{\prime}\right) \quad \text { and } \quad u(x)^{s^{\prime}}, v(x)^{s^{\prime}} \in A\left(p / s^{\prime}, \bar{q}_{\varepsilon} / s^{\prime}\right)
$$

hold at the same time, where $1 / q_{\varepsilon}=1 / p-(\alpha+\varepsilon) / n, 1 / \bar{q}_{\varepsilon}=1 / p-(\alpha-\varepsilon) / n$. Let $l_{1}=$ $2 q_{\varepsilon} / q, l_{2}=2 \bar{q}_{\varepsilon} / q$, then $1 / l_{1}+1 / l_{2}=1$. For the above given $\varepsilon>0$, using Lemma 2 and Hölder's inequality, we have

$$
\begin{aligned}
\left\|T_{\Omega, \alpha, b}^{m} f\right\|_{q, v^{q}} \leq & C\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha+\varepsilon, b}^{m} f(x) v(x)\right]^{q / 2}\left[M_{\Omega, \alpha-\varepsilon, b}^{m} f(x) v(x)\right]^{q / 2} d x\right)^{1 / q} \\
\leq & C\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha+\varepsilon, b}^{m} f(x) v(x)\right]^{q l_{1} / 2} d x\right)^{1 / q l_{1}} \\
& \times\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha-\varepsilon, b}^{m} f(x) v(x)\right]^{q l_{2} / 2} d x\right)^{1 / q l_{2}} \\
= & C\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha+\varepsilon, b}^{m} f(x) v(x)\right]^{q_{\varepsilon}} d x\right)^{1 / 2 q_{\varepsilon}} \\
& \times\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha-\varepsilon, b}^{m} f(x) v(x)\right]^{\bar{q}_{\varepsilon}} d x\right)^{1 / 2 \bar{q}_{\varepsilon}}
\end{aligned}
$$

From Lemma 4 and Theorem 3, it follows that

$$
\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha+\varepsilon, b}^{m} f(x) v(x)\right]^{q_{c}} d x\right)^{1 / 2 q_{\varepsilon}} \leq C\|f\|_{p, u^{p}}^{1 / 2}
$$

and

$$
\left(\int_{\mathbf{R}^{n}}\left[M_{\Omega, \alpha-\varepsilon, b}^{m} f(x) v(x)\right]^{\bar{q}_{\varepsilon}} d x\right)^{1 / 2 \bar{q}_{\varepsilon}} \leq C\|f\|_{p, u^{p}}^{1 / 2}
$$

Thus, we get

$$
\left\|T_{\Omega, \alpha, b}^{m} f\right\|_{q, v^{q}} \leq C\|f\|_{p, u^{p}}
$$

This is the conclusion of Theorem 1.

Remark 3. If we define the commutator $\bar{T}_{\Omega, \alpha, b}^{m}$ by

$$
\bar{T}_{\Omega, \alpha, b}^{m} f(x)=\int_{\mathbf{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}}|b(x)-b(y)|^{m} f(y) d y
$$

then from the proof of Lemma 2, we know that (2.3) still holds if one has $\bar{T}_{\Omega, \alpha, b}^{m}$ instead of $T_{\Omega, \alpha, b}^{m}$. Thus, under the conditions of Theorem 1 we have also

$$
\left\|\bar{T}_{\Omega, \alpha, b}^{m} f\right\|_{q, v^{g}} \leq C\|f\|_{p, u^{p}}
$$

The proof of Theorem 2. From the definition we know that the commutator $T_{\Omega, \alpha, b}^{m}$ is a linear operator. Then we have $\left(T_{\Omega, \alpha, b}^{m}\right)^{*}=T_{\Omega^{*}, \alpha, b}^{m}$, where $\Omega^{*}(x)=$ $(-1)^{m} \Omega(-x)$. Clearly, Ω^{*} satisfies the same conditions as Ω. We have

$$
\left\|T_{\Omega, \alpha, b}^{m} f\right\|_{q, v^{q}}=\sup _{g}\left|\int_{\mathbf{R}^{n}} T_{\Omega, \alpha, b}^{m} f(x) g(x) d x\right|
$$

where the supremum is taken over all g with $\|g\|_{q^{\prime}, v^{-q^{\prime}}} \leq 1$. Since $\left(T_{\Omega, \alpha, b}^{m}\right)^{*}$ is the adjoint operator of $T_{\Omega, \alpha, b}^{m}$,

$$
\int_{\mathbf{R}^{n}} T_{\Omega, \alpha, b}^{m} f(x) g(x) d x=\int_{\mathbf{R}^{n}} f(x)\left(T_{\Omega, \alpha, b}^{m}\right)^{*} g(x) d x
$$

Thus,

$$
\left\|T_{\Omega, \alpha, b}^{m} f\right\|_{q, v^{q}}=\sup _{g}\left|\int_{\mathbf{R}^{n}} T_{\Omega, \alpha, b}^{m} f(x) g(x) d x\right| \leq\|f\|_{p, u^{p}} \sup _{g}\left\|\left(T_{\Omega, \alpha, b}^{m}\right)^{*} g\right\|_{p^{\prime}, u^{-p^{\prime}}}
$$

From the conditions in Theorem 2, we see that $1 / p^{\prime}=1 / q^{\prime}-\alpha / n$ and $s^{\prime}<q^{\prime}<n / \alpha$. Since $\left(u^{-1}\right)^{s^{\prime}},\left(v^{-1}\right)^{s^{\prime}} \in A\left(q^{\prime} / s^{\prime}, p^{\prime} / s^{\prime}\right)$, and noticing that $\left(v^{-1}\right)\left(u^{-1}\right)^{-1}=u v^{-1}=\nu^{m}$, using the conclusion of Theorem 1 , we get

$$
\left\|\left(T_{\Omega, \alpha, b}^{m}\right)^{*} g\right\|_{p^{\prime}, u^{-p^{\prime}}} \leq C\|g\|_{q^{\prime}, v^{-q^{\prime}}}
$$

Therefore,

$$
\left\|T_{\Omega, \alpha, b}^{m} f\right\|_{q, v^{q}} \leq\|f\|_{p, u^{p}} \sup _{g}\left\|\left(T_{\Omega, \alpha, b}^{m}\right)^{*} g\right\|_{p^{\prime}, u^{-p^{\prime}}} \leq C\|f\|_{p, u^{p}}
$$

This is the conclusion of Theorem 2.
Remark 4. From the proof of Theorem 2 and Remark 3, we know that under the conditions of Theorem 2,

$$
\left\|\bar{T}_{\Omega, \alpha, b}^{m} f\right\|_{q, v^{q}} \leq C\|f\|_{p, u^{p}}
$$

The proof of Theorem 4. The conclusion of Theorem 4 is a direct consequence of the following lemma and Remark 4.

Lemma 5. Let $0<\alpha<n, \Omega \in L^{1}\left(S^{n-1}\right)$. Then we have

$$
M_{\Omega, \alpha, b}^{m} f(x) \leq \bar{T}_{|\Omega|, \alpha, b}^{m}(|f|)(x), \quad x \in \mathbf{R}^{n}
$$

In fact, fix $r>0$, we have

$$
\begin{aligned}
\bar{T}_{|\Omega|, \alpha, b}^{m}(|f|)(x) & \geq \int_{|x-y|<r} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}}|b(x)-b(y)|^{m}|f(y)| d y \\
& \geq \frac{1}{r^{n-\alpha}} \int_{|x-y|<r}|\Omega(x-y)||b(x)-b(y)|^{m}|f(y)| d y
\end{aligned}
$$

Taking the supremum for $r>0$ on both sides of the inequality above, we get

$$
\bar{T}_{|\Omega|, \alpha, b}^{m}(|f|)(x) \geq \sup _{r>0} \frac{1}{r^{n-\alpha}} \int_{|x-y|<r}|\Omega(x-y)||b(x)-b(y)|^{m}|f(y)| d y
$$

This is just our desired conclusion.
Acknowledgement. The authors would like to express their gratitude to the referee for his very valuable comments.

References

1. Chanillo, S., Watson, D. and Wheeden, R. L., Some integral and maximal operators related to star like sets, Studia Math. 107 (1993), 223-255.
2. Ding, Y., Weighted boundedness for commutators of integral operators of fractional order with rough kernels, Beijing Shifan Daxue Xuebao 32 (1996), 157-161 (Chinese).
3. Ding, Y., Weighted boundedness for commutators of a class of rough maximal operators, Kexue Tongbao (Chinese) 41 (1996), 385-388 (Chinese).
4. Ding, Y., Weak type bounds for a class of rough operators with power weights, Proc. Amer. Math. Soc. 125 (1997), 2939-2942.
5. Ding, Y. and Lu, S. Z., Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math. 50 (1998), 29-39.
6. García-Cuerva, J. and Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
7. Hedberg, L. I., On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
8. Muckenhoupt, B. and Wheeden, R. L., Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249-258.
9. Segovia, C. and Torrea, J. L., Higher order commutators for vector-valued Calde-rón-Zygmund operators, Trans. Amer. Math. Soc. 336 (1993), 537-556.

44 Yong Ding and Shanzhen Lu: Higher order commutators for a class of rough operators
10. Welland, G. V., Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 51 (1975), 143-148.

Received February 10, 1997
Yong Ding
Department of Mathematics
Beijing Normal University
Beijing, 100875
P. R. of China
email: dingy@bnu.edu.cn

Shanzhen Lu
Department of Mathematics
Beijing Normal University
Beijing, 100875
P. R. of China
email: Lusz@bnu.edu.cn

