
Ark. Mat., 37 (1999), 45 86 
@ 1999 by Inst i tut  Mittag-Lefl:ler. All rights reserved 

Trace expansions for pseudodifferential 
boundary problems for Dirac-type 

operators and more general systems 

Gerd Grubb 

1. I n t r o d u c t i o n  

One of the purposes of this paper is to prove asymptotic expansions of heat 
traces 

(1.1) 

c ~  

Tr(~e-~)~ ~ a~,kt~/~+~(<~logt+<~)t~/~ fort-~0, 
n_<k<0 k=0 

Z~l =D*BDu, A2 =DuD*B, 

for general realizations Du of first-order differential operators D (e.g. Dirac-type op- 
erators) on a manifold X with pseudodifferential boundary conditions: B(ulx,)=O 
at the boundary OX=X ~. In (1.1), ~ denotes a compactly supported morphism. 
The coefficients without primes are locally determined, the primed coefficients 
global. 

Such realizations were considered first by Atiyah, Patodi  and Singer in [APS] 
who showed an interesting index formula in the so-called product case, when X is 
compact. We say that  D is of Dirac-type when D=o-(Ox,~+A1) on a collar neigh- 
borhood of X ~, with a unitary morphism cr and a first-order differential operator A1 
such that  AI=A+x~PI+Po with A selfadjoint on X ~ and constant in xn and the 
Pj of order j;  the p~vduct case is where P1 =P0 =0. The operator B was in [APS] 
taken equal to the orthogonal projection II> onto the eigenspace for A associated 
with eigenvalues >_0. 

For Dirac-type operators on compact manifolds, finite expansions (1.1) (up to 
k=0,  with ~ =1  and ai,0=0) were shown in [G4], implying the index formula 

(1.2) index Du -- al, 0/-a2,0,/ when ~ = 1 and X is compact. 
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Full expansions were established in Grubb and Seeley [GS13, with precisions for the 
product case in [GS2]. Here B = I I >  +B0 with special finite rank perturbations B0. 

Booss-Bavnbek and Wojciechowski studied, for the compact product case, the 
index of DB in [BW2] and other works with B=C++S, where C + is the Calderdn 
projector for D (having the same principal part as II>) and S is a pseudodifferential 
operator (r of order -1 .  One of our motivations for the present work was to 
establish (1.1) for such problems too. A different type of boundary condition was 
introduced by Briining and Lesch in [BL] (in a study of the gluing problem for the 
eta invariant), where they showed heat trace expansions in the product case but 
with B principally different from II> (Example 4.2 below). For this type, we obtain 
(1.1) without the product assumption. 

Actually, we find that  there are many more boundary conditions, different from 
the above, for which (1.1) can be obtained. In fact, D need not even be of Dirac- 
type, but can be any first-order elliptic differential operator. The operator B need 
not be closely linked to the Calderdn projector but can be any r that is well-posed 
for D in the sense defined by Seeley in [$2, Chapter VI]. We obtain (1.1) and (1.2) 
in all these cases (including those previously known) for compact X,  and generalize 
(1.1) to suitable noncompact situations. 

The freedom to choose more general B seems to be useful e.g. for variational 
studies. It is also interesting to allow general D that  are not tied, by the requirement 
of (principal) selfadjointness of the tangential part, to a specific choice of Hermitian 
structures. 

In our method to establish (1.1), we imbed DB and D ) ,  which are in themselves 
only injectively elliptic, into a truly elliptic system ~Dg, which we treat by use of 
the Calderdn projector for 79+p and by an elaboration of the calculus of weakly 
polyhomogeneous Cdos introduced in [GS1]. This t reatment works also for general 
elliptic systems P of order d_>l with appropriate pseudo-normal Cdo boundary 
conditions Sgu=O (L)u= { ( D ~ u ) I x '  }0<j<d)- We show a general result on resolvent 
and heat operator trace expansions for such realizations, 
(1.3) 

Tr ~e - tPs  ~,~ 

Ck(--&)k/d--m--l + E ( C ~  l o g ( - - & ) + ~ ) ( - - ; )  k /d -m-1  , 

- - n < k < O  k 0 

E Cktk/d+~--, (cklOgt+c~)fk/d ~ r  t ~ O ;  
--n<k<O k 0 

in the first formula, A-~cx~ on a ray in C, and the second formula follows, when 
( P s - A )  1 exists and the expansion holds for A--*oc in an obtuse keyhole region 
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W--{~IIAI_<r or I arg)~-Tcl<�89 from the formula 

Tr ~oe -tPs = -~ w 

Such expansions were shown in cases where S is a differential operator by Seeley [$3] 
and Greiner [Gr]; then there are no logarithmic terms and all the coefficients are 
locally determined. The crucial step in the analysis is to find the symbol structure 

of the resolvent. We do this not only for compact manifolds but also in noncompact  
situations with global estimates; here we use the calculi established in [GK] (with 
Kokholm), [G5], [G3]. 

The plan of the paper  is as follows: The hypotheses on general systems {P, SO} 
are explained in Section 2. Well-posed first-order problems are introduced in Sec- 
tion 3, with examples in Section 4 and the imbedding into elliptic systems in Sec- 
tion 5. In Section 6 we show a technical result on spectral invariance of the weakly 
polyhomogeneous calculus from [GS1] (drawing on [G5]), and in Section 7 we es- 
tablish the necessary results on Calderdn projectors. In Section 8 we determine the 

structure of the resolvent, and in Section 9 we derive the trace estimates by use 
of [GS1]. 

2. The general set-up 

On an n-dimensional C ~ manifold X with boundary OX=X'  we consider an 
elliptic differential operator of order d, P: C~176 E1)--~C~ E2), between sec- 
tions of Hermit ian C ~ vector bundles E1 and E2 of dimension N.  The manifold X 
is provided with a smooth volume element v(x) dx defining a Hilbert space structure 
on the sections. 

In order to include noneompact  manifolds such as R n, R~ and exterior domains 

R '~ \Y ,  R~ \ Y  (Y smooth compact) ,  we take X to be admissible as defined in [GK], 
[G3]; this means that  X is the union of a compact  piece and finitely many conical 
pieces of the form { z=txo lxoEMCS ~ 1, t>r}. The manifold X is covered by a 
finite system of local coordinate patches diffeomorphic to either bounded or conical 

- n  The use of such manifolds is worked out in detail in [GK], open subsets of R+.  

[G5], [G3], so we can be brief here. The crucial assmnption is that  the admissible 
coordinate changes • are such that  I~(x) - •(y)l/Ix-yl is bounded above and below 
by positive constants, and all derivatives of ~ and x -1 are bounded. Admissible 
vector bundles are likewise defined. The differential operators and Cdos considered 
in this context are defined by reference to the admissible local coordinate systems; 

their symbols are assumed to have global estimates in the space variable x, as 
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in HSrmander [H2, Section 18.1]. The concepts are extended to pseudodifferential 
boundary operators in [GK], [G5], [G31. An advantage is tha t  the calculus has rather 
precise composition rules, where all remainders lie inside the calculus. For brevity, 
we shall call such operators admissible (in [G3] they are called uniformly est imated 
or globally estimated),  and we always assume in the following when working with 
admissible manifolds that  the operators are of this type. A reader who is mainly 
interested in the case of compact  manifolds can just disregard this generality. 

The Sobolev space of order s of sections of Ei is denoted by Hs(X, Ei) or 

just Hs(Ei); it is defined by use of admissible local coordinates. 

We denote Edx, by E~. We assume tha t  a normal coordinate x~ has been 
chosen in a neighborhood U of the boundary X ~ such that  the points are represented 

as x=(x',xn) there, with x'EX',  xnE[O,c(x')[, the E~ are isomorphic to the pull- 
backs of the E~ there, and there is a normal derivative cO~. The boundary X ~ is 
provided with the volume element v(x', O)dx' induced by v(x', x~)dx' dxn on U. 
For a compact  manifold, we take U as a collar neighborhood X~=X ~ x [0, c[; more 
generally this is used for the compact  part  and extended conically in the conical 
parts  (cf. [G3, Section A.5]). 

Let 6=  {'Y0, ... ,')'d 1 } with ~/ju= ( - i 0 ~ ) J u  I~,,_0 (i denotes the imaginary unit 
"]4 s (EId~ - - l l  H s - j - 1 / 2  (El~ v / ~ f ) .  For s>d -1 ,  ~ maps H~(Ei) into ,~ ~ i J--l10<j<~ ~ iJ (E~ d= 

(~0<j<aE~).  The sections u of E1 and w of E2 in H ~ ( s > d - � 8 9  satisfy Green's 
formula 

(2.1) 
(pu,  P* )x = (.40u, 

.4----(.4jk)j,k=0 ..... a 1 wi th .4 jk  of order d 1 - j - k .  

Here the Ajk are differential operators; those with k > d - l - j  are 0 (A is upper 
skew-triangular) and those with k = d - l - j  are isomorphisms, so .4 has an inverse 
of a similar type, just lower skew-triangular. 

When S is an operator  on 7-td(E[d), the boundary  condition 

(2.2) SOu = 0 

determines the realization Ps  of P,  defined as the operator acting like P and with 
domain 

(2.3) D(Ps) = {u C Hd(x, E1) [ SQu - 0 } .  

We shall s tudy boundary conditions that  are pseudo-normal in the following 
s e n s e .  
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A s s u m p t i o n  2.1. (Pseudo-normality) The operator S is a matrix of admis- 
sible classical ~pdos Sjk going from E~ to admissible bundles Fj over X '  such that 

S=(Sjk)j,k_o ..... d 1, withSjk of order j - k ,  Sjk=O f o r j < k ,  
(2.4) 

Sjj surjective and uniformly surjectively elliptic. 

For convenience of notation, we here include bundles Fj of dimension 0. We 
set F=~0<_j<  a Fj. It will often be tacitly understood in the following that  symbols 
and operators are taken admissible when the manifolds and bundles are so. 

The new generality in comparison with the normal boundary conditions con- 
sidered in [G3] (for compact manifolds, the information is found also in [G2], this 
will not be repeated), is that  the Sjj are now allowed to be ~pdos; this is needed in 
ore" application to first-order operators. The normal boundary conditions have just 
surjective morphisms as the Sjj, hence regularity ~>0, whereas the present bound- 
ary conditions have regularity ~=0, in the sense of the regularity concept from [G3]. 
(There is a discussion in [G3, Remark 1.5.8]. In other ways the conditions in the 
book are more general.) 

Our basic hypothesis for the resolvent analysis is the following assumption. 

A s s u m p t i o n  2.2. (Resolvent growth condition) Let E1 =E2=E. There is an 
open sector F {~EC\{0} i a rgAEJ  } (for an open interval YC[0, 27r]) such that the 
following holds: 

(1) The operator P is elliptic, and for the principal symbol pO of P, p~ ~) - 
A is invertible for all (x,~,s with AeFU{0}, the inverse being 
O((]~]d-4-]AI) -1) on closed subsectors F', uniformly in x. 

(2) The bundle F has dimension 1Nd, the system {P, SO} is elliptic, and for 
any closed subsector Ft there is an r>O such that the resolvent R ~ = ( P B - ) 0  1 
exists as a bounded operator in L2 and is 0(~ -1) for ACF~,., 

(2 .5)  - �9 r '  I _> r} .  

The first property means uniform parameter-ellipticity of P A, as defined 
in [G3, Section 3.1]. 

The second property contains a global requirement of invertibility. If S0 is 
normal, such invertibility for large A is assured by a condition on principal symbols, 
namely uniform parameter-ellipticity of { P - ) , ,  S0} as defined in [G3, Section 3.1]. 
This means that the associated model problem on R+ for each (x', ~', A) with ]~'I2+ 
];~]2/d= 1 is uniquely solvable with uniform bounds in x ~ for the solution operator, for 
A in closed subsectors of F. Then the results of [G3, Section 3.3] imply invertibility 
with the O(A 1) estimate for large A. When S is merely pseudo-normal, property (2) 
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depends not just on principal symbols but on the flfll structure; it is verified e.g. if 
Ps is selfadjoint. 

The resolvent Rx will now be supplied with a Poisson operator Kx to define an 
inverse of the full system {P A, Sg}. In the following lemma, Ko,x denotes an aux- 
iliary Poisson operator such that  oKe,a I,  constructed e.g. as in [G3, Lemma 1.6.4] 
with (~} replaced by ((~, [All~d)). (We use the notation (x}=([xl[2+. . .+lx ,[2+l)  U2 
for x = ( x l ,  ... ,x , ) . )  In its dependence on ~=1~1 a/d, Ko,:, is strongly polyhomoge- 
neous on all rays, cf. Section 6, [GS1, Appendix 1. If holomorphy in A is desired, 
one can instead take the Poisson operator Ke,x: cp~+u solving the following Diriehlet 
problem, where A 2d is a positive differential operator with principal symbol (~)2d 
and [ a rgA- w [<  1 ~Tr, 

(A2d+(e iwA)2)U 0 on X, cou=~ on X t. 

L e m m a  2.3. Let Assumptions 2.1 and 2.2 hold. For the ;~ such that R~ is 
defined, there exists a unique Poisson operator K~ such that 

p 1 

(2.6) ( S t )  ] 

In a neighborhood of each ray in F, Kx equals 

(2.7) K x  = 

here S'=(SS-k)j,k--O ..... d-1 is a right inverse of S, constructed such that for all j ,  
k, Sjk is a classical •do of order j k, Sjk=0 for y<k ,  and Sjy is injective and 
injectively elliptic; and Ko,~ is an auxiliary right inverse of g as described above. 

Proof. Let us first explain the construction of S/. We can write SZSdiag@ 
S~.b, where Sdiag=(5jkSyk)j,k--O ..... d 1 and Ss~b is subtriangular (has zero entries 
in and above the diagonal). Here ~diag is surjective and surjectively elliptic of 
order 0 from E~ d to F, hence SdiagS(]iag is bijective and elliptic of order 0 in F 
and therefore has an (elliptic) inverse [SdiagS/li~g ] 1. Then ~diag has the right 
inverse ~tiag=S(]iag[~diagSr]iag] 1; again a classical Cdo of order 0. Finally, since 

l - - I  ! ! SS'ai~g- +S~uSdiag , where Ss,~6Sai~g is subdiagonal and hence nilpotent, S has 
the right inverse 

i t t - - 1  i 
S S~tiag (1 @ Ssub S~liag) Sdiag E , 1. : (-- Ssub Sdiag) , 

O<l<d 

it is of the asserted form. (Admissibility follows from [G5, Theorem 1.12].) 
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The operator Kx required in (2.6) is the solution operator for the problem 

(2.8) ( P - A ) u = 0  oi1X, Saou=~9 on X' .  

First note that  since Ha is injective, the problem has at most one solution u for 
any ~o. Define Kx by (2.7), then check that  u=Kx~o solves (2.8) by observing 

(P a)[i-n~(P-a)]=0 since(P--a)n~=I, 

and, using that  DORa=O, 

SOK~ = SoKe,~S' =1. [] 

For each fixed A, the inverse (Rx Ka ) belongs to the pseudodifferential 
boundary operator calculus ([B2], [03]), but to start with, we in general only have 
a rough information on the behavior of Rx with respect to A that  comes from its 
definition as a resolvent. Before showing this in an elementary lemma, let us recall 
the definition of parameter-dependent Sobolev spaces (used e.g. in [G3], [GS1]). 

For sER,  the space Hs'U(R ~) is the Sobolev space provided with the norm 

(2.9) IIUlIH ~'" = II {({, #)>*U({)IIL2(R~)" 

The notion is extended to sections of a Hermitian bundle F over X by use of a finite 
family of admissible local coordinate systems (the space is then denoted H~,u(X, F) 
or H",U(F)). Note that  H~ and that  for s>0,  the norm is equivalent 

with (llull~/s +(#}2~llull2r2) 1/2. 

L e m m a  2.4. Let Rx and K), be as in Lemma 2.3. For any s>0,  R~ and 
Kx define continuous mappings (where ~ + d ' ~ (  F)-tt0<j<d-rl Hs+d-J 1/2,,lF.5~ ~J, p= 
Ial~/~) 

(2.10) Ra:H~ ' " (E )~H~+d ' " (E ) ,  Ka:~+d '" (F)  )H~+d'"(E), 

uniformly for A in subsectors F~. (as in Assumption 2.2). 

Proof. From the elliptic regularity for the A-independent system {P, St)} and 
from the resolvent growth condition follows that  for k>  1, v ED(Ps)NHkd(E1) ,  

(2.11) IlvltH~ <--Cl,k(llPsVllH<~-=>~+llvllm~ .~), /~l Ilt~fllL~ _<c2llfllL=, 

uniformly for AEF~. We use this first with v = R x f  and k =0  to see that on the ray 
A=ttde iO, ~>rl/d, 

IIR~fllH~,- < c3(llR~f II~ + <,~> Iln~fllL=) 
(2.12) 

< ~(11 (P~ - a)R~ f I1~ § <a/IIR~ f I1~ + IIR~ f IIL~) < c~ II f l l ~ ;  
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in other words, R~ is continuous from L2(E) t o  Hd,t~(E), uniformly for p>_r 1/d. 
Next, combining (2.11) with (2.12) we find for k = l ,  

< c~4(II(Ps-A)R~IIIHd+IAI IIR~IIIHd+IIR~IIIHd+(A)211R~flIL2) 

<- C~(HfHHd+(A)HfllL~) <- c611flIHd,. �9 

This can be continued to give H (k+l)d'p estimates of Rxf  in terms of H kd'~ estimates 
o f f  for k 2, 3, ..., and we conclude that  the first statement in (2.10) holds for s=dk, 
k=0,  1, 2 , . . . .  The remaining values of s>0  are included by interpolation. 

For the second statement we argue as follows. When C is a parameter-inde- 
pendent ~bdo on X '  of order l>O, it is bounded from H s," to H *-z'" for all sER,  
uniformly in #; cf. Section 2.5 in [O3] (using that  C is of regularity , = / > 0 ) .  It 
follows that  S'  maps ~ s " ( E  'd) =I]0<j<d H*-J-1/2"(E') into %/*,'(F) with uniform 

bounds in p for s e R .  [O3] also shows that 0 maps H~'u(E) into 7-l*'"(E 'd) for 
s > d  gl and that  Ke,a is continuous in the opposite direction, with uniform bounds 
in #. Applying these facts to the factors in (2.7) and using what we just found for 
Rx, we obtain the statement for Kx in (2.10). [] 

Remark 2.5. There do exist boundary conditions other than those satisfying 
the assumption of pseudo-normality, for which the resolvent is O(A -1) on rays in C. 
One example is the condition A' 1Dx171u+A'7ou=O for A on R+ studied in [G3, 
Example 1.7.17] (here A ' -  ( I -  Ax,) ~/2); the coefficient of ")'1 is not surjective. 

For another type of example containing negative-order r  on X ~ and defining 
a realization Ps that  is skew-selfadjoint and hence has many rays where the resolvent 
is O(~-1) ,  see Remark 5.2 later. We expect that  such cases may still be handled 
by variants of the present methods, but will give extra log terms at some of the 
negative powers of t in (1.3). 

A third example is D*BDB considered below; here the surjectiveness is missing 
in the boundary condition BT0u=0 , (I-B*)a*7o(O,~ + A 0 u = 0 ;  but the questions 
for this operator are dealt with in a different way, as will be shown. 

3. F i r s t  o r d e r  we l l -posed  b o u n d a r y  p r o b l e m s  

For first-order operators (and odd-order operators more generally) it may not 
be possible to fulfill Assumptions 2.1 and 2.2 that  lead to good resolvents--already 
the condition in Assumption 2.2, that  Nd be even, needs not hold. However, 
for compact manifolds it is known that  there exist Cdo boundary conditions (not 
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pseudo-normal) 

(3.1) B-y0u = 0, 

such that  the realization PB is a Fredholm operator with a similar adjoint P~.  In 
this case there is an interest in studying the positive selfadjoint operator P~PB, 
which does have a resolvent. We now consider such problems in detail. 

Let D be a first-order elliptic operator  on X; D: C~(E~)~C~(E2),  where E~ 
and E2 are N-dimensional  Hermit ian vector bundles over X.  D can be represented 
Oil g as  

where cr is an isomorphism from Ellu to E2lu and A1 is a first order differential 
operator that  acts in the x ~ variable at x~=0 .  The restriction Allx~-O has the 
principal symbol a~ ', ~'). For these operators, 

(3.3) A - - - a  on X '  and L)=~/0 in (2.1). 

Definition 3.1. (1) We say that  D is of Dirac-type when ~r is a unitary mor- 
phism, and 

(3.4) A1 =A+xnPI+Po on U, 

where A is an elliptic first-order differential operator  in C ~176 (E  l) which is selfadjoint 
with respect to the Hermit ian metric in E~, and the Pj are differential operators of 
order <_j. 

(2) The product case is the case where D is of Dirac-type and, moreover, 

v(x) dx=v(x', O) dx' dx~ on U, ~ is constant in xn, and P1 = P 0 = 0 .  

As explained in [G4, p. 2036], unitarity o f ~  in (3.2) can be obtained by a simple 
homotopy near X t, whereas the assumption on A1 in (1) is an essential restriction 
in comparison with arbi t rary first-order elliptic systems; it means that  the principal 

symbol a~ ', ~') of A1 at x n = 0  is Hermit ian symmetric.  The operators P1 and P0 
can be taken arbi trary near X I, but for larger x~, P1 is subject to the requirement 
that  D be elliptic. 

To begin with, let X be compact. When (1) holds, a~ I, ~') equals the principal 
symbol a~ ~, ~) of A. Since A is selfadjoint and elliptic of order 1, it has a discrete 
spectrum consisting of eigenvalues of finite multiplicity going to +oe.  Along with 

A one considers the orthogonal projections II>,  II>,  II<,  II< and IIa onto the 
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closed spaces V>, V>, V<, V< and Va spanned by the eigenvectors belonging to 
eigenvalues of A that  are >0, >0, <0, <0 resp. =~.  These operators are classical 
g?dos of order 0; IIa is of order -oc .  

At• Patodi and Singer considered in lAPS] the product case. It is also 
studied e.g. in [GS2], [BW1], [BW2], [BL], whereas the case where only (1) holds is 
studied in [G4], [GS1] and other works. Cases where not even (1) holds, have to our 
knowledge not been studied for the purpose of heat trace expansions for boundary 
problems before. 

We shall study boundary problems satisfying the condition of well-posedness 
introduced by Seeley in [$2]. This uses the Calderdn projector C + associated with 
D (as defined in [$2]). The reader is kindly asked to consult Section 7 for notation 
and a general explanation of Calderdn projectors. Since d = l ,  C + is a classical ~bdo 
of order 0 in E[ that  projects g s 1/2(X', E'I) onto the space N~ of boundary values 
of null-solutions for all sCR; 

(3.5) IV+ "/oZ+ CHS-1/2(X',E~), Z+={zeH~(X ,  E1) l D z = O o n X } ;  

C - = I - C  +. The analogous construction for the model operator 

on R+ c R  (defined from the principal symbol at each boundary point) leads to the 
principal symbols c• ', ( ') of C• they are the projections in C N onto the spaces 
AT+ (x', ( ') of boundary values of the bounded solutions of d o (z', 0, ( ' ,  Dx,~ ) z (zn) = 0 
on R•  resp. One finds e.g. by changing a~ ', ( ') to Jordan normal form that  the 
spaces N•  are the generalized eigenspaces for a~ ', (') associated with the 
eigenvalues having real part ~0, resp. Moreover, one has the formulas 

1 ~ (iTi_t_a0(x/,~/)) l dT, (3 .6)  c • (x' ,  ~') = ~ • 

where the integration is over curves 12• in C •  encircling the 7- 
roots of det(iTI+a~ ', ~')) (the poles of (d~ -1) there, resp. 

Remark 3.2. When D is of Dirac-type, so that  a~ ') equals a~ 
N+ (x', ~') and IV_ (x', ~') are orthogonal complements mad are spanned by the eigen- 
vectors belonging to the positive, resp. negative eigenvalues of a~ ~, ~).  The pro- 
jections c• ', ~') onto N• ~') along NT(x' , ~') are then orthogonal, and they 
are the principal symbols of II> resp. II<. Thus 

(3.7) C + - I I >  is a classical ~pdo of order - 1  when D is of Dirac-type. 
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Definition 3.3. (Well-posedness) Let X be compact and let D be an elliptic 
first-order differential operator from C~176 to Coo(E2). A classical ~pdo B in E{ 
of order 0 is well-posed for D when: 

(i) the mapping defined by B in HS(E[) has closed range for each sCR; 
(ii) for each (z', ~') with [~'l =1, the principal symbol b~ ', ~') maps N+(x', ~') 

injectively onto the range of b~ ', ~') in C N. 

A generalization to admissible manifolds will be included at the end of Section 5. 
In comparison with the general choices of S: HS(E~)--~H~(F) (for d = l )  dis- 

cussed in Section 7 from (7.7) on, F=E' 1 here, so M=N. Condition (ii) assures that  
the system {D, B'y0} is injectively elliptic; see the explanation around (7.15)-(7.16). 
But (ii) is stronger than injective ellipticity, since the range of b~ ', ~') for general 
injectively elliptic problems can have a larger dimension than b~ ') 
has. (One can say that  (ii) means injective ellipticity with smallest possible range 
dimension for b~ 

Observe that  when B satisfies Definition 3.3, {D, B3'o} cannot be surjectively 
elliptic if n>3 ,  since N is then even and strictly larger than dim ?9+ (z', ~ ')= ~N.1 (If 
n--2, this lack of surjective ellipticity holds when dim N+(x', ~')<N.) Therefore, 
the system {D, BT0 } is not elliptic in the standard terminology, and, e.g., its range 
does not have a smooth complement. The word "well-posed" does not conflict with 
this and was well chosen by Seeley. (Some authors use the dangerous notation 
"globally elliptic" for these boundary problems sometimes even abbreviated to 
"elliptic" .) 

When Definition 3.3 holds, one can replace (3.1) by an equivalent condition 

(3.8) B~7ou 0, 

where B1 is a projection in the HS-spaces, in addition to being well-posed for D; 
cf. [$2]. The range of B 1 in HS(Ei) is closed for each 8, since it is the nullspace of 
the complementing projection I B1 which is likewise a ~pdo of order O. Thus it is 
no restriction to assume that  B in (3.1) is a projection; we shall often do that. 

Seeley shows in [$2] that  for each boundary condition (3.1) with B well-posed 
for D, the realization DB defined as in (2.3) (with domain D(DB)={ucH 1 (X, El)] 
BT0u--0}) is a Fredholm operator from D(DB) to L2(E2). Moreover, when B is a 
projection, the adjoint D~ (when DB is considered as an unbounded operator from 
L2(E1) to L2(E2)) is the realization of D* with domain 

~ D  * (3.9) D(D*B)={'uEH~(X, E2) I(I-B*)~*7ou=O} ( ( D ) ( I  B*)cr*); 

here (I-B*)a* is well-posed for D*. The nullspaces Z(DB) and Z(D*B) are finite 
dimensional spaces of C ~ sections, defining index DB =dim Z(DB) - d i m  Z(D*B). 
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It  is useful to know that  when B has been replaced by a projection B1, then 
furthermore, B1 can be replaced by a projection B2 that  is orthogonal in L2(E[). 
This may possibly be inferred from [$2] which leaves out details on the proof of 
the relevant Lemnia VI.3, but it certainly follows by a formula from Birman and 
Solomyak [BS] recalled in [BW2]. 

L e m I n a  3.4. When R is a projection in a Hilbert space H, then the operator 
RR* + ( I -  R*) ( I -  n) is invertible and 

(3.10) nor  = n n * [ n n *  + ( I - n * ) ( I - n ) ]  1 

is an orthogonaI projection in H with R(H)=Rort(H). 
Here if H=L2(F),  where F is an admissible vector bundle over a manifold 

X' ,  and R is an admissible classical ~bdo of order 0 in F, then the same holds .for 
Rort, and the principal symbol is determined by a formula similar to (3.10) on the 
principal symbol level. 

Proof. The formulas are verified in detail in [BW2, Lemma 12.8]. For the last 
s tatement,  the invertibility of RR* + ( I -  R*) ( I -  R) implies, by the spectral  invari- 
ance shown in [C5] (and in the proof of Theorem 6.5 below), that  it is uniformly 
elliptic and its inverse is likewise admissible, classical and uniformly elliptic of or- 
der 0. Then, since the principal symbol of R is a projection, the formulas likewise 
hold on the principal symbol level. [] 

Remark 3.5. Since the range of R in H~(F) equals the nullspace of I - R  there, 
it follows from the fact that  I - R  and / - R o r t  have the same nullspace in L2(F) 
that  they also have the same nullspace in H '~ (F),  s20 .  Hence 

(3.11) R ( / t  ~ (F)) = nor~ ( W  (F)) 

for s>0 .  This property extends to negative s by consideration of the adjoint R*, 
which is likewise a projection and a classical ~bdo of order 0, when one uses that  
the nullspace of I - R  in H-S(F) (s>O) is the annihilator of the range of R ' = I - R *  
i n / t  s(F). 

The lemma and remark imply that  when R is a classical ~do in E[ which 
acts as a projection in H*(E[), then Rort defined by (3.10) is a projection which 
is orthogonal in L2(E'I) and has the same range as R in H*(E'~) for all s. When 
we apply this construction to R I - B 1 ,  (3.8) can be replaced by the condition 
B27ou=O with the orthogonal projection B2=I Rort. It is not hard to check that  
B2 again satisfies Definition 3.3. 

Only the orthogonal projection defining a boundary  condition is uniquely de- 
termined from it; without the orthogonality there can be many  choices of projection 

that  give the same condition. 
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4. Examples of well-posed problems 

We here give examples with increasing generality, still taking X compact. 
Clearly, the choice B=C + is well-posed, and so is B = I I >  when D is of Dirac- 

type, in view of Remark 3.2. The first situation that  was considered for index ques- 
tions, in [APS], was the choice B----II> in the product case. This choice is convenient 
because it permits construction of the heat operators (in a good approximation) by 
easy functional calculus for the selfadjoint operator A. 

Grubb and Seeley consider in [GS2] the product case with B II> ranging in 
the nullspace of A, and in [GS1] Dirac-type operators with B - I I >  ranging in the 
eigenspace for eigenvalues of A of modulus < a  (some a>O), showing full heat trace 
expansions. 

Booss-Bavnbek and Wojciechowski [BW2] consider, for the product case, index 
questions for the full set of projections B of the form 

(4.1) B=C++S, So forder -1 ;  

likewise well-posed. This includes the preceding cases, and moreover allows infinite 
rank perturbations of II>. 

Before leaving the case (4.1) we observe that  (3.7) can be sharpened in the 
product case; this is of interest for the trace estimates (cf. Corollary 9.5 below). 

P r o p o s i t i o n  4.1. In the product case, when X is compact, 

(4.2) C + II> is a Cdo of order oc. 

Pro@ We shall compare D, extended as a(Ox~+A) on X ' x  l - c ,  0], with the 
operator crD ~ where 

D o = 0 ~  +A' ,  A' = A+IIo,  

on X ~ X'  x R+ and j~o X '  • R provided with the volume element v(x', O) dx' dxn. 
The operator D o acts in E ~ and in E ~ the pull-backs of E~ to X ~ and X~ in Green's 
formula (cf. (2.1) and (a.3)), 4 - i .  The operator D o has an inverse QO on ~0,  
easily described by its action on functions of xn taking values in the eigenspaces 
V~ of A' (here V0'={0}, V~'=VI| V~=Va for 17/0, 1). When f(x,  0 has values in 
Vs Q0 acts on f as the ~bdo in xn with symbol (i{,~+t)-1; more generally when f 
has an expansion f(x)=~Xesper A' g~, (xn)u),(x') in terms of eigenfunctions ua C V~, 
then Qof ~ x 3 r , ~ [ ( i ~ + l )  10x(~)]ux(x,). For D ~ the Calderdn projector 
is constructed exactly as in the differential operator case; it equals 70~r+Q~ as 
in (7.5). It acts on a u),cV){ like the Calder6n projector for 0 ~ + t ,  so 

7~r+QO~u, x = { U~o if t < 0 . i f  1 _> 0, 
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(One may also consult (3.6).) This implies that  7~r+Q~ = I I > .  

On J(~ X'• c,f[, c~D ~ and D differ only by the te rm aII0. Let Q be a 

parametr ix  of D on X=XtJXc;  then C+=7~r+Q~)a+Ta, where T3 is of order 
- o e ,  el. (7.6). Let X and ;glEC~(]-c,c[),  equal to 1 on a neighborhood of 0 and 
satisfying XX1 X, then 

(4.3) 7~r+Q~ (crD~ 

If I I0=0  (i.e., d imker  A=0) ,  x(Q-(crD ~ 1)X is a Cdo on X~ with symbol 0, hence 
of order - o e ,  so C + - I I >  is a ~do on X'  of order - e c  by the boundary operator 

calculus; this ends the proof. If I I0#0 ,  we need a further effort since II0 on )2~ is 
not a Cdo. 

In view of (7.1), we have on Xr 

(4.4) 

x(Q-(~rD ~ 1)x= xQxlaD~176 a 1X1X-XxI(QD-T2)x1Q~ 1 x 

= xQ[Xl C~D~ DXlJQ~ a 1X 4- X'T2X1Q~ cr i x 

= xQ[x~c~Ho- (a~,~Xl)a]Q~176 

Define the anisotropic spaces H (~'t) ( X ' x  R)  and H (~'t) (X' x] c, c[), via local coor- 
dinates and a parti t ion of unity on X ' ,  from the spaces H (s't) (R  n-1 x R)  with norm 

II <~>~ <~'>'u(~)II. The operators have the continuity properties: 

xQxI:H(s't)(E2]2~) > H(S+l't)(El]~o), 

X~2XI: H(S't)(E2]2~) > H(S~'tl)(El]2c ), 

7~: H(a' t)(Xc) ~+ H1/2+t(x'), 

QO: 

IIo: 
-*'70" H-1/2 +t ( X '  ) 

) H(S+l , t ) (Eo) ,  

> H ( 2 c )  

for all s, sl ,  t, h c R .  Such properties are easy to show and are e.g. dealt with in 

[G2], [G3, Section 2.5] (used with fixed >). Then the operator in (4.4) is continuous 
fl'om H(l ' t ) (El l~o)  to H(~,tl)(Ell2c) for all t, t l c R ,  and when we compose it to 
the left with 7~r  + and to the right with ~), we get an operator tha t  is continuous 
from Ht(E~) to Htl(E~) for all t, t l c R .  Then this is a ~do of order - o c  on X ' .  

Thus finally, C + II> in (4.3) is a ~do of order - o c  on X'. [] 

Defining Co+.t by formula (3.10), we find as a corollary that  + CoUrt II_> is likewise 
a ~do of order - o c .  For selfadjoint Dirae operators on spin manifolds, this was 
shown in the case dim ker A 0 by Scott in [Sc, Proposit ion 2.2] by a rather different 
argument.  
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Example 4.2. A well-posed B need not be of the type (4.1). One example was 
introduced by Briining and Lesch [BL], in the product case and under the additional 
hypotheses that  D is formally selfadjoint and a A = - A a ,  ~2=_i ,  TA=-AT,  ~-2 =I, 
7-a=-a~-, where ~- is an auxiliary morphism or r  of order 0. The prototype is, 
for cos 0r  

(4.5) Bo = cos 2 0 II> +sin 2 0 II< - c o s  0 sin 0 ~-(II> +II<)  +B', 

with a suitable projection B ~ in V0. Here Bo is principally different from II> when 
cos 2 0r  The operator DBo is selfadjoint. 

For the analysis it is useful to observe that  the hypotheses imply a spectral 
symmetry of A; in fact ~- (as well as ~r) defines isometrics of the eigenspaces V S 
for positive eigenvalues A] (ordered increasingly) onto the eigenspaees V j  for nega- 

- + and vice versa (in particular, ~I(A, s)=Tr(AIA I 8-1)=_0). tive eigenvalues ~j -- Aj 

Then the nullspace of t?o in V0 ~ is a "shifted version" of V<, 

(4.6) span{e~k+tan 0e+k I J > 0, k = 1, ..., uj}; 

here the ej.k, l<k<uj,_ are an orthonormal basis of Vj-, and e+,_j,~ Te~..3,~ 
For B=Bo, [BL] shows a precise version of (1.1), related to that  of [GS21 (see 

also Grubb [G6, Remark 7.14]). The present study allows generalizations to the 
non-product case and perturbations of order - 1 .  The same holds for the more 
abstractly formulated well-posed conditions in [BL 1. 

Example 4.3. Without assuming spectral symmetry, we can give general ex- 
amples of well-posed B for Dirac-type operators by taking 

(4.7) B = II>_ +II> SII<, 

where S is a classical ~do of order 0 in El .  The operator B is a projection, 
since I I<I I>=0;  so (i) in Definition 3.3 is satisfied. For the principal symbols, the 
injectiveness (7.16) is obvious for b~ c+(x',(')+c+(x',~')s~ (x',('). 
Moreover, 

b~ t, ~')]V+(x', ~') C b~ ,, ~ ' ) C  N C ./V+ (x ' ,  ~'),  

so since the former has the same dimension as N+(x~,['), there must be equality. 
Then also (ii) of Definition 3.3 is satisfied. 

To compare this with earlier cases, we replace B by the orthogonal projection 
B1 = I - ( I - B ) o r t  defining the same boundary condition. Write S and B in blocks 

according to the decomposition L2 ( E l ) =  V>_ @ V(', S---- ~ ~q,21 ~22 ] , J~z ( ~ (  Sll S12 x ~2 ) .  Then 

with R = I  B, we find from (3.10) that  

/ S  S* /I - e  e* ~ 1 "~ (4.8) Rort = / 12 12[ W012~ _X12(I_~_S~2X12 ) 1 
_S~2(I@S12S~2 ) 1 ( i + S ~ 2 S 1 2 ) - ~ )  �9 
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(:0) Here B1 / - R o r t  is principally different from H_>= 0 as soon as $12 has non- 

vanishing principal symbol, which is the generic case (when 0 < d i m  IV+ (z', ~ ' )<N,  
in particular when n>3) .  One can also allow lower order perturbations.  

Let us remark that  if there is a spectral symmetry,  A~-=-TA for some zero- 

order ~do 7- with ~-2=I, then the choice B=H>_+fl~-H< for some t iER,  is of the 
above type with S=fl ,- ,  since ~-H<=~-I I<H<=H>TH<.  The condition defined by 
this B is similar to that  defined by (4.5); in fact the nullspace of B in V0 ~ equals 

(4.6) with tan 0 - - - f t .  

Still other examples can be found by replacing (II>, II<)  in (4.7) by (C +, C ) or 
+ q-•  

Cor t = I - C o r t )  , these choices have a meaning CoUrt ) o r  by (CoUrt, (Co~r~ , Cort) (with •177 • " 
for an arbi trary D. Since the c • are orthogonal projections when P is of Dirac-type, 

(4.9) C+-C~o+.t and C + Cort l are of order - 1  when P is of Dirac-type, 

so the resulting problems are just per turbat ions of order - 1  of the previous types. 
However, c + is not orthogonal in general (examples with non-symmetric a ~ are easy 

to give). 

Example 4.4. Denote the principal symbols and range spaces of C+.t and Co+~ 
by + (x' ,( ') ,  ~§177 ' I § ' ' • eor t ~ ; o r t ~ , ~ )  Cort(X,~), N+(x',~'), N + ( x ' , ~ ' ) = C N o N + ( x ' , ( ' ) .  
As noted above, the following operators are well-posed for D, 

(4.10) B = Co+rt -~- Co+rt SC+rt ~. 

(We can add $1 of order 1, as long as B remains a projection.) This is, in a 
microloeal sense, the most general possible example. When B defines the condition 
B'y0u=0, so does C B  for any invertible classical elliptic ~do C of order 0; in this 
sense, B and C B  can be regarded as equivalent. Now if B satisfies Definition 3.3, 
we can for (x',~') in a neighborhood of each (X'o,~) ( l~ ' l= l )  find a smooth family 

§ t / of bijeetive matrices c(x', ~') such that  c(x', ~')b~ ', ~') is of the form Cort(X, ~ ) +  
Cor t+ (X,I ~')S(X', S~'~+• (X',~'), as follows. Note tha t  C N has the two decompositions 
(depending smoothly on (x', ~')) 

(4.11) c N :  N+ (x', (x ', ( ' ) :  R(b~ (x ', (x ', (')); 

the latter denotes the range and nullspace of b ~ (we now omit the indication (z' ,  ~')). 
Here b ~ defines a homeomorphism cl of AT+ onto R(b~ Let c2 =c~  1 and let Ca be a 
homeomorphism of Z(b ~ onto N+ ~ (it can be chosen to depend smoothly on (z' ,  {') 
in a neighborhood of (x~ ,~) ) ;  then c4=c2b~ b ~ is a bijection in C N. Now 
its inverse c5=c 4 1 does the job, it is a bijection in C N that  maps R(b ~ to N+ as 
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an inverse of b ~ from N+ to R(b~ So c5b ~ ranges in AT+ and is the identity on N+, 

and hence 

(4.12) o + o + +• ~+ "~+ c ~0~+• ccb = Cot t C 5 b (Cor t + Cot t ) = t~or t ~- Cor t 5 u t o r t ,  

it is of the desired form and is equivalent with b ~  considerations hold with 
+ +• {C + ~+• (CoUrt, CoUrt ) and , ort, "ort J replaced by (C +, C - )  and (c +, c ). 

5. Imbedding of  wel l -posed problems into elliptic systems 

We shall now show how the resolvents of the operators 

(5 .1)  ( A 1 _ / ~ ) - 1  (z~k2_~) 1, where A I = D S D B  , A2=DBD*B, 

can be t reated within the framework of Section 2. In fact, there is a nice trick 

of replacing the s tudy of the injectively elliptic first-order system {D, BT0} by a 
truly elliptic first-order system {/), B~/0} satisfying the resolvent growth condition, 
in such a way that  the second-order resolvents (5.1) are found from the resolvent 
construction for/3~.  

Let B be a well-posed projection for D and let us denote 

(o (o 
(5.2) D o ' DB 0 

The o p e r a t o r / )  in (5.2) is formally skew-selfadjoint on X.  The operator /)n 
is skew-selfadjoint as an unbounded operator  in L2(E),  E-E1GE2.  It  then has a 
resolvent T ~  ( / )B+#)  1 for # E C \ i R .  A calculation shows that  

(5.3) 

where 

"~/~ = ( ~ ) B + # )  1 = ( # R I , .  D~?R2,#  ) 
\ DBRI,t~ p R 2 , .  ' 

-~1,# = ( A 1 - ] - # 2 ) - 1 ,  ]~2,/z = ( A 2 ~ - #  2) 1; 

this shows how the resolvents (5.1) can be recovered from T~.  Also DBRI,t~ and 
* 1 DBR2,, are determined. When   r0={zccllargzl<   }, then a=_ 2 runs 

through C\R,+,  so it suffices for (5.1) to let pCF0. 

Now 79~ is the realization of Z) in L2 (E) of the boundary condition 

(us) 
(5.4) BTou = O, u = , 

~2 
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where/3 is the row matrix (of. (3.9)) 

(5.5) /3 = ( B  ( I -B*) (7") ,  

going from L2(EI)xL2(E~) to L2(E[).  Since the ranges of B and I -B*  are or- 
thogonal complements in L2(E~), /3 is surjective; note that  the dimension N of E~ 
is half of the dimension 2N of E'=E[ OE~. Moreover, /3 has as a right inverse the 
g)do C of order O, 

(5.6) C (((7*)1(*~ j~))[BB*+(I-B*)(I B)] 1 

(cf. Lemma 3.4); in particular, 13 is surjectively elliptic. Now {~D+I,BT0} has the 
inverse (Tr ~1 ) with ~ I = [ I - ~ I ( ~ D + I ) ] K ~ o , I C  as in (2.7). Since the inverse is 
continuous from L2(E)xH1/2(E[) to Hi(E), {77+1, BT0} and hence also {l), 1370 } 
is elliptic. Thus all the conditions in Assumptions 2.1 and 2.2 are satisfied by 
{~D, Bg}, with N replaced by 2N, d = l ,  ~=70, F=Fo E'I! 

Then the consequences we draw later for the general systems in Section 2 apply 
in particular to ~DB. 

Example 5.1. By Theorem 7.5 below, the Calderdn projector for D* equals 
C '+=(a*)  1(I-C+*)(7", when D has an invertible extension. (More generally, this 
holds modulo smoothing operators.) Then in view of (3.9), the adjoint of Dc+ is the 
realization of D* determined by the boundary condition C'+70u=0. Here B is the 
surjective o p e r a t o r / 3 = ( C  + (I-C+*)cr *)=(C + ~r*C '+). (We observe moreover 
that  if (7* (7 1, one finds by (3.10) that  '+ + * C ort=(7(I-Co~rt)(7 , generalizing [BWl, 
Corollary 3.3].) 

Remark 5.2. The trick of considering the "doubled-up" system (5.2) will be 
restricted to first-order operators in this paper. Well-posed boundary conditions 
can also be defined for higher order systems, cf. [$2]. But here when one takes the 
example of B=C +, one gets an operator on the boundary with entries of negative 
order that  are generally nontrivial, and these exist also in the doubled-up version 
and violate the requirement concerning order > 0 in Assumption 2.1. Manipulations 
with order-reducing operators do not seem to help; they cannot at the same time 
remove a singularity in ~' and be strongly polyhomogeneous in (~', #). (See also 
Remark 2.5 and the calculations after (8.2).) 

The analysis of (5.4) (5.6) moreover tells us how to include admissible mani- 
folds in the study of first-order systems. Here we need a uniformity in x' in the 
well-posedness condition. We restrict the attention to projections B. 
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Definition 5.3 (Uniform well-posedness). Let D be an admissible, uniformly 
elliptic first-order differential operator from E1 to E2 (admissible vector bundles 
over an admissible manifold X).  Let B be an admissible classical Cdo of order 0 
in E~ with B2=B. We say that  B is uniformly well-posed for D, when B satisfies 
Definition 3.3(ii) and in addition, 13 defined by (5.5) is uniformly surjectively elliptic 
and {79, BT0 } (cf. (5.2)) is mfiformly elliptic. 

When Definition 5.3 is satisfied, the realization 79e is seen by Green's formula to 
be skew-symmetric. It is skew-selfadjoint since (79t3)* acts like 79* and u�9 
implies u�9 with 79*u�9 and BT0u=0 as an element of H 1/2(E~), hence 
by use of a parametrix of {79,1370 } it is seen that  uEHI(E) and thus uED(79~). 

It follows that  Assumptions 2.1 and 2.2 are satisfied, with P=F0;  so (5.3) exists 
and gives the resolvents of the Ai as in the compact case. 

Examples are constructed as in Section 4, most easily when D has an invertible 
extension to a boundaryless manifold so that  Theorem 7.1 defines an exact projec- 
tion C+; then B=C++C+SC - and B=C+rt-[-C+.tSC+.L are examples. (Otherwise 
there is a question of modifying B to be a projection.) 

6. S p e c t r a l  i nva r i ance  o f  w e a k l y  p o l y h o m o g e n e o u s  ~bdos 

For use in the fine analysis of the resolvents, we now recall the definition of 
weakly polyhomogeneous ~bdo classes from Grubb and Seeley [GS1], presently allow- 
ing non-compact admissible manifolds and globally estimated operators as in [Gh], 
[03]. 

The symbol space S "~ (R" x R n) consists of the functions p(x, ~) �9 C a (R" x R n) 

such that  

(6.1) 0~cg~p O({~} "~ 1,~1) f o r a l t a � 9  

N =  {integers _>0}. The basic rules of calculus for this space are well known fi'om 
Hhrmander [H2, Section 18.1]. (When we are only interested in symbols with es- 
timates valid over compact subsets of R ~, we can use the results of the global 
calculus by introducing suitable cut-off functions.) A symbol pES'~(R" x R ~) is 
called classical (or classical polyhomogeneous) of degree m if it has an expansion 
P ~ j E N P J ,  where the pj are homogeneous in ~ of degree m - j  for I~]>1, and 

m- J p ~j<jpjES (R  x R  '~) for J E N .  
Grubb and See]ey [GS1] introduced a class of symbols p depending on a pa- 

rameter # varying in a sector F c C \ { 0 } ,  in a special way. Here it is the behavior 
for I#]--+oo that  is important; it is often described in terms of the behavior of 
p(x, ~, 1/z) for z-+O, 1/z=~er.  For brevity of notation, we write OJp(x, ~, 1/z) (or 
just OJp) for the j t h  z-derivative of the composite function z~-~p(x, 4, 1/z). 
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Definition 6.1. Let n and u be positive integers, and let m and d c R .  Let 
F be a sector in C\{0}.  The space S ' ~ ' ~  consists of the functions 
p(x, ~, it) C C ~ (R ~ • R '~ x F) that  are holomorphic in it C F for I(~, it) l -> e (some c > 0) 
and satisfy, for all j C N ,  

(6.2) O J p ( - , . ,  1 )  i s i n S ' ~ + J ( R ' •  n) for 1 - E F ,  
Z 

with estimates valid uniformly for Izl < 1, 1 c closed subsectors of F. 
Z 

Moreover, we set S'*'d=#ds m'~ (so pCS m'd means that  zdpcS'~'~ 

Sometimes the symbols are only defined for litl > a constant depending on the 
subsector of F; this requires obvious modifications. We can inject Sm(R" x R ~ ) c  
S'~,~ x R n, C). Asymptotic expansions and polyhomogeneous subclasses are 
introduced as follows. 

Definition 6.2. (1) Let pC S "~ d'd(R" • R n, F) and let pj be a sequence of sym- 
bols in S m-j-d'd (R u x R n, F) such that  p - ~ y <  j pj C S m- J d,d (R" x R n, F) for any 

J C N ;  then we say t h a t  P'"EjGNPJ in S rn-d'd. 
(2) If, moreover, the pj are weakly homogeneous of degree m - j ,  i.e., 

(6.3) p~(x,t~,tit)=t~-Jp~(x,~,it) for I~l>_l, t>_l, (~,it) c R ~ •  

we say that  p is weakly polyhomogeneous. 
(3) If, furthermore, the pj are strongly homogeneous of degree m - j ,  i.e., 

(6.4) 
pj(x , t~ , t i t )=t  m Jpd(x,~,it) for 1~]2+]#]2>1, t > l ,  (~,it) c R ~ x ( F x { 0 } ) ,  

and c9~c9~c~ ( p - ~ j < j  pj)=O(((~, #))m-J-I~l-k)  for all indices a, fl, J ,  then we say 
that p is strongly poIyhomogeneous. 

(For simplicity, we leave out the possibility of noninteger steps between the 
degrees of the pj, included in [GS1].) It is shown in [GS1] that  the conditions in 
(3) imply those in (1) and (2). Thus the strongly polyhomogeneous symbol can be 
thought of as the case where it enters as an extra cotangent variable, on a par with 
the others, in a classical symbol. For example, for rncZ,  

{S 
~n,~ ~ for m > 0 ,  

(6.5) (1~1~+1~1~+1) "~/~c s,,~,ons o .... for.~<_0, 

2 +  4]_ 4 2+ 2 is strongly polyhomogeneous, whereas the function (litl (~ 42)/(~1 ~2+1)) -~ 
is weakly polyhomogeneous and belongs to S 2'~176 (Cf. [GS1, Lemma 1.13 
and Theorem lAY].) 

We shall use a special name (as in [G6]) for symbols of the latter kind. 
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Definition 6.3. Let r be an integer >0. A symbol s(x, ~, #) (and the operator 
it defines) is called special parameter-dependent of order - r ,  when 

s (x, {, #) E S ~,0 (R" x R ~, r )  N S ~ ~ (R" x R n , r )  
(6.6) 

with a2~(~, ~, , )  c S . . . . . .  ~ •176 ~ •  

for any m, all O~s(x, ~, #) being weakly polyhomogeneous. 

By [GS1, Theorem 1.16], a strongly polyhomogeneous symbol of order - r  has 
this property. 

The rules of calculus for the symbol spaces and the associated operators are 
described in detail in [GS1]. Let us here just recall a few elements. A symbol 
p(x, ~, #) with x and ~ c R  '~ defines a family of gados on R ~ depending on # c F ,  

(6.7) P~f(x)  = OP(p) f (x)  -- 

There holds the composition rule 

P .  E OP(S~'a),  P ;  C OP(S "~''a') 

(6.8) 
with symbol (pov')(x, ~ , , )  ~ Z 

a G N  ~ 

1 / ciX'{p(x, ~, ]~)f(~) d~. 
(270 n 

-P~G E OP(S'~+m"d+d'), 

~.ogv(x,~, io ~ ' , ) (  ~) p(~,~,~) 

Theorem 1.23 in [GS1], formulated there for symbols with local estimates in x, 
extends without difficulty to symbols with global estimates in x, and to one-sided 
ellipticity. 

T h e o r e m  6.4. (1) Let p(x, ~, # ) c S ~ 1 7 6  ~ x R n, F ) | 1 6 3  N, C N) be such that 
P=Po + P-  z with p 1 C S -1'~ and with po 1 E C ~176 bounded uniformly in ( x, ~ , #) E R n x 
R n xP~, for any closed subsector F' of P and r i = { , e r ' l  1,1>_1}. Then there exists 
a parametrix symbol q(x, ~, #) cS~176 x R n, F) such that poq~I  in S~176 here 

(6.9) q~qoo ~ r ~ where qo=po -1, r=_ I-poqo ' r~  . . . . .  r (k factors). 
k c N  

(2) Let p(x, ~, p ) c S  ~176 (R" x R ~, F ) | 1 6 3  N, C M) be such that P=Po +P-1 with 
p 1ES 1,o and with Po having a right inverse qo~C ~ that is bounded uniformly 
in ( x , G # ) c R ' ~ x R n / F ] ,  for any closed truncated subsector F' 1 of F. Then there 
exists a right parametrix symbol q(x,~,p)  ES~176 x R ~ , F ) | 1 6 3  M, C N) such that 
p o q ~ i  in S~176 here 

(6.10) q ~p*o(pop*) ~ 
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where (pop*)~ ~ is a parametrix symbol for pop* according to (1). 

(3) When the assumptions in (2) hold with "right" replaced by "left," there 
exists a left parametrix symbol q~(p*op)~ l op* ES~176 such that qop~I in S ~176 

In (1) (3), if p is weakly resp. strongly polyhomogeneous, so is q. 

Proof. For (1), the proof of [GS1, Theorem 1.23] extends readily; it is in fact 
simplified because the compositions can be carried out directly, without cut-off 
functions, in the global calculus. Cases (2) and (3) follow from (1), when we note 
that  p* op in case (2), resp. pop* in case (3), satisfies the hypotheses of (1). The last 
s tatement is seen from the formulas. [] 

We shall not introduce a general ellipticity definition but just say that the 
operators with symbol satisfying the hypotheses of Theorem 6.4(I), (2) resp. (3) 
are uniformly parameter-elliptic, uniformly surjectively parameter-elliptic, resp. uni- 
formly inject@ely parameter-elliptic, in the sense of Theorem 6.4. 

For our application to the resolvent analysis we need to show spectral invariance 
of our calculus (briefly expressed this means that  when a ed o  has an inverse in 
some operator sense, then the inverse belongs to the calculus, and both operators 
are elliptic). We even need a one-sided version. In the earlier work [G5], results 
were shown both for parameter-independent g)dos and for parameter-dependent 
r of a slightly different type than here. The following proof uses the parameter- 
independent results. 

T h e o r e m  6.5. Let E1 and E2 be admissible vector bundles of dimensions N 
and M over an admissible boundaryless manifold X ,  and let P~ (depending on # in 
a sector F of C) be a weakly polyhomogeneous r with symbol in S ~176 in admissible 
coordinate systems. 

(1) Assume that N = M  and for some IEZ, Pp: HI'~(EI)~HI,~(E2) (which is 
bounded uniformly for # in closed truncated subsectors F~) has an inverse p~ l  that 
is likewise HZ,~-bounded uniformly for # in subsectors F~.. Then p~ l  is a weakly 
polyhomogeneous r with symbol in S ~176 Moreover, P~ and p~ l  are uniformly 
parameter-elliptic in the sense of Theorem 6.4. If  P~ is strongly polyhomogeneous, 
so is PS  1. If  P,  is special parameter-dependent of order 0 (cf. Definition 6.3), so 
is p s i .  

(2) Assume that.for some 1EZ, P~: HI,~(E1)~H~,"(E2) has a right inverse R~ 
that is likewise bounded uniformly .for # in truncated closed subsectors Fir. Then P~ 
has a right inverse R~t,. that is a weakly poIyhomogeneous ~bdo with symbol in S ~176 
If P~ is strongly polyhomogeneous, so is R~. If P~ is special parameter-dependent 
of order O, so is R~. 

(3) A similar statement holds with "right" replaced by "left." 
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Proof. (1) Consider a r~,.. First let l=0,  so that  H ~," is simply L2. Consider 
a fixed #. Here we can draw on [G5, Theorem 1.14], which shows that  p~-i is a 
classical elliptic Cdo with globally estimated symbol. The details in [G5] are given 
for a Green operator; for a Cdo on X, the proof is a simpler variant: Using that  

(6.11) 

with O<c<_C, one can define B . = I - C  1P;P.>-O with  norm lIB.[ I <(C-c)/C=5< 
1. Its principal symbol b ~ (z, ~, #) then has I b~ ~, #) l<& (In fact, when X(x)E C ~ ,  
the essential spectrum of x B . x  equals the union over z and I~l >_1 of the spectra of 
X(z)2b~ ~, #).) Now I - B .  is elliptic and has the inverse ~ k c N  B~ (converging 
in norm); it belongs to the globally estimated calculus by [G5, Theorem 1.12] (using 
also the localization worked out in Theorem 1.7 there). Finally, 

(6.12) P 2 1 = ( Z - B . ) - l C - 1 p ;  

belongs to the calculus by the composition rules, the principal symbol (p0)-i satis- 
fying 1. 

This shows that  p - 1  is in the calculus with symbols in S~ • R n ) | 1 6 3  N) 
in admissible coordinates, for each #cF'~. We now study the #-dependence. Here 
we use that  the constants c and C can be taken independent of #EF~. and the S o. 
estimates for P ,  hold uniformly in #. Then the whole analysis of the inverse works 
uniformly in #EF~., so we can conclude that  the S~ for p 1 are likewise 
uniform in #EF~.. Thus the requirement for j = 0  in (6.2) is satisfied. For derivatives 
0~ we use successively the formulas 

(6.13) j --1__ ( J ~ j - - l p  ~lp-1  
Ozp; _ p .  1 Z  \ l J  € ~"~z . , J>O, 

l<j 

that  follow f rom 0J (P#P~  -1) 0 by the Leibniz formula; they lead to the conclusion 
that  J --1 S j #EFt ,  and thus finally pffl has symbol 0 zP~ has symbol in uniformly in 
in S ~176 Inspection of the construction shows that  strong polyhomogeneity of P .  
carries over to p-1 .  The preservation of special parameter-dependence follows by 
a version of (6.13) with 0~ replaced by 0. .  

If Ir  we reduce to the preceding case as follows. For any admissible vec- 
tor bundle F over X there exists a family of isomorphisms A m from Hs,"(F) to F,.  
Hs-'~,"(F) (rnEZ) with principal symbol essentially ((~,#)) '~I ( A ~  A?,~= 
(A.~ ~-1~ such that  the operator norm of Afro,. for any s is uniformly bounded in F,.) ], 
#, for arg # in an interval ]01,02[. (These order-reducing operators are a standard 
tool in [G2], [G3], [G5]; to get holomorphicness in # for I a r g . - ~ l < e ,  say, o n e  can 
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for m > 0  take an operator as in [G3, Corollary 3.2.12] with ((~,p)) replaced by 
(l~]2m+(e--~~ 1/2 that  is well-defined when 5<_Tr/2m; for - m  one takes the 
inverse.) Now we replace P ,  and p~-i on suitable subsectors by 

(6.14) PI ,u=A~,uPuAul , , , ,  p - 1  A l p - 1 A  l 
1,/x E l , l  z P E2 ,#"  

Here PI,~ and PI~  are uniformly bounded with respect to L 2 n o r m s .  Assume 

e.g. that  />0. In view of (6.5) and (6.8), P,A~I ~ has symbol in S-l,~176 

subsequently PI , ,  AtE~,~P~AEZ~,~ has symbol in 

(6.15) ( S * ' ~ 1 7 6  t'~176 a (S~176 ~176 a S ~176 

It is seen in a similar way that  the ruth #-derivative of PI , ,  has symbol in S ~'~ 
S ~ This PI , ,  satisfies the hypotheses with 1 0, so the already proved part of 
the theorem shows that  P ~  is as asserted. We get back to p 1  by considerations 
as in (6.15). This completes the proof of (1). 

(2). One can reduce to the case /=0  in the same way as in the preceding 
proof. The identity P,R~ I implies R*,P~=I. Since R~ is uniformly L2-bounded 
for pEF~, its adjoint R ,  has norm <Cx for some fixed CI>0.  Insertion of u=P~v 
for an arbitrary vcL2(E2) gives 

i l v l l~2<E2>= �9 �9 2 IIR.P~V]IL2(E2) <-- C~ �9 2 = C12(P,~P~v,* IrP~VlIL2(EI) V)L2(E2). 

This shows that  the selfadjoint operator PuP~ in L2(E2) has lower bound _)C12, 
so it has an inverse (P,P~) 1 with L2-operator norm <C12 for pCF~,,. Now (1) 
applies to P~P~, since it has symbol in S ~176 by the composition rules (el. (6.8)). 
Then (PuP~) 1 is a weakly polyhomogeneous r  with symbol in S ~176 and since 
p . p ; ( p . p ; ) - l = i  ' , * �9 -1 �9 R ,  P~(P,P~) is a right inverse of P~; it is likewise a g?do 
with symbol in S ~176 Also strong polyhomogeneity and special parameter-depen- 
dence is preserved. This shows (2). 

Finally, (3) follows by obvious modifications of the proof of (2). [] 

Note that  (2) does not say anything about the structure of R ,  itself. However, 
we shall use it in Section 8 in a situation where we can also infer that  the given 
right inverse is a weakly polyhomogeneous ~do. 

7. Ca lder6n  p r o j e c t o r s  and the ir  c o n s t r u c t i o n  for re so lvent s  

We recall, and extend to admissible manifolds, the definition and application 
of the Calder6n projector C + for an elliptic differential operator P: C a ( X ,  E1)---~ 
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C~176 E2) of order d, as introduced by Calderdn [C], Seeley [S1], [$2], see also 

H6rmander  [Hll, Boutet  de Monvel [B1), Grubb [G1]. It  is used in the discussion 
of well-posed boundary conditions for first-order operators in Sections 3 5, and a 
parameter-dependent  version enters as a tool in the resolvent analysis in Section 8. 

The manifold X is taken to be compact  or, more generally, admissible as defined 
in [GK], [G3], see the introduction to Section 2; P is assumed to be admissible and 
uniformly elliptic. We can assume tha t  X is smoothly imbedded in an n-dimensional 
admissible boundaryless manifold ) (  such that  X ~ is an (n-1) -d imens iona l  hyper- 

surface in ) (  and Ex and E2 are restrictions to X of N-dimensional bundles/~1 and 
E2 over X; one such choice is to double up the neighborhood U (cf. Section 2) along 
X ~, augmenting X by the reflected piece U_. In UUU we write x=(J, Xn), where 

Ixnl <c(x ' ) ,  e(x')>_c>O. In the compact  case one can add another piece to XUU 
to get a compact  )( .  

If  P extends to a uniformly elliptic operator (also denoted P)  from C~ to 

C~(/~2),  we let Q denote an admissible parametr ix  of P on X; then 

(7.1) PQ=I+T1, QP=I+T2 on )( ,  

where ~ and T2 are admissible g)dos on ) (  of order - o c .  The use of Calderdn 
projectors is simplest if ) (  and the extension P can be chosen so that  P is invertible 
on X; then Q stands for the inverse (necessarily admissible by the spectral invariance 
proved in [G5]), and 2rl and T2 are zero. 

Define X~ X \ X = X  , Eilx•177 The mapping 0={3~0, ... ,~/~t-1} can 
be regarded as a mapping either from functions on X+, or from functions on X , or 

from functions on _~, to functions on Xt; to distinguish between the three versions, 
we denote them 0 +, ~- resp. f (so ~=t)+). When F=Fo|174 are vector 
bundles over X r we define 

(7.2) II Hs-J-1/2(F ), l-I 
O<j<d O<j<d 

Writing O0<j<d J~{ =F"{ d, we have that  ~• and ~ map the respective H s spaces into 
s td 1 H ( E i ) ~  ( E i )  has the adjoint mapping 7{ (E i ) for s>d-5. The mapping ~: ~ - ~ ~d 

0 * : ~ - s ( E { d )  --+H s(Ei) for  s > d -  1. 5, it ranges in distributions supported in X ~. We 

use the notation A• for the truncation of a ~do A on )~ to X•  

(7.3) A • 1 7 7  i ,  when A is a Odo on X;  

here r • means restriction to X• and e :~ means extension by zero on X T. 
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Define the spaces 

(7.,~) 

z~ = {zc  HS(X•177 IPz=O on x •  

Zo = {z E c~(~2, E1)NHa(f2, bl) I Pz = 0, supp z c X};  

here Z0 is identified with a subspace of the Z~ and has finite dimension when X is 
1 only, compact. Although the trace operators g~ are defined on H~(EI,• for s> d  

the definition of the spaces N~_ of Cauchy data for null solutions can be extended 
to all sCR,  by results in Lions and Magenes [LM] or by the arguments in [$1], [$2]. 

T h e o r e m  7.1. Consider admissible manifolds, bundles and operators, and 
assume that P has the inverse Q on ~2. Then the spaces N~: are complementing 

subspaces of ~ ( E ~ a ) ;  ~ ( E ~ a ) = N +  4-N ~. When we define (cf. (2.1)) 

(7.5) K • =~_r• C ~ = g •  • = T g • 1 7 7  

K • 7ySIE'~__~H~rE the Poisson operators : ~ 1 J t 1,• have range equal to Z~_ and provide 
left inverses of g-~ on Z~,  resp.; and the ~pdos C + (the Calderdn projectors for P)  
are the projections of ~ ( E f t )  onto N~ along N~:, resp. In particular, 

c++c =i,  (c+)~=c +, (c- )~--c,  c+c-=o. 

Pro@ The proof is a generalization of the deduction in [$1], [$2] for the invert- 
ible case with J~ compact. In fact, the proof given in [G3, Example 1.3.5] carries 
over verbatim to the present admissible manifolds, when the operators are admissi- 
ble and one allows the range bundle for P to be different from the initial bundle E.  
To save space, we refrain from repeating the details here. [] 

When P merely satisfies (7.1), one can still define operators K • by formulas 
as in (7.5) supplied with smoothing terms, setting 

(7.6) C + = O+K + = -g+r+Q~*A+T3 

and C - = I - C  + (with a ~pdo T3 of order -oc ) ;  then they have the listed map- 
ping properties only modulo smoothing operators. Such a construction is worked 
out in [GI] for general multi-order operators P (on compact manifolds), with ap- 
plications. For compact manifolds, Seeley gives in [$2] an optimal construction, 
where K + maps ~ s  injectively onto a subspace of Z+ with complement Z0, and 
where C + = ~ + K  + is a projection of ?~s onto iV+; we use this in Sections 3 and 4. 
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The book of Booss-Bavnbek and Wojciechowski [BW2] goes through the proof of 
Theorem 7.1 for first-order operators as in Definition 3.1(2). 

The Calderdn projectors are used to treat  boundary value problems for P,  

(7.7) Pu= f on X, Sou=i~ on X', 

where S is a system of ~pdos Sjk of order j - k  ( j ,k=0 , . . .  , d - l )  going from E[ 
to bundles Fj of dimension >0 over X';  M--~0_<j< d dim Fj. In the following we 

consider {P, S0} as a mapping from HS(E1) to H~-d(E2) x ~ S ( F )  for some s > d -  �89 
and discuss right/left inverses that  are continuous in the opposite direction; here S 
is considered as a mapping from ~ ( E [  d) to ~ ( F )  and the C i act in ~(E~ld). 

T h e o r e m  7.2. Hypotheses and definitions as in Theorem 7.1. 

( P )  hastherightinverse (1) If SC + has a right inverse Si, then so 

(7.s) (Rs Ks)  = (Q+-K§ K+S1 ). 

( P ) has a right inverse (Rs' Ks) ,  then SC + has the right Conversely, if so 
inverse 

(7.9) $1 = oKs. 

(2) If (C8-)has a leftinverse ($1 $2): then ( P so) has the left inverse (7.8). 

Conversely, if ( P 
~nverse 

(7.10) ($1 S 2 ) = ( o K s  I - o K s S ) .  

Proof. We first observe some auxiliary formulas, 

(7.11) PQ+=I,  Q + P = I - K + o ,  K+C =0 .  

The first formula holds since P Q = I  on J( and P is local. Next, we note that 
Green's formula (2.1) can be written in distributional form 

1 (7.12) e+r+Pft=Pe+r+~t+~*(AOu) for g ~ H s + d ( E 1 )  , u-- r%2,  s > - ~ .  

The second formula follows from this by composition with r+Q, using (7.5) and 
1 QP=I; it holds on Hs+d(E1), s>-~ .  Now the third formula follows from a calcu- 

lation using also that  oK+=C § P K + = 0 ,  

K+C = K  +-K+C + = K  +-K+OK + = K  + - ( I - Q + P ) K  + =0. 
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For the first statement, let $1 be a right inverse of SC +. Then, by the above 
rules, 

P(Q+-  K+ S1SoQ+ ) = I, 

So(Q+- K+ S~SoQ+ ) = SoQ+-  SC+ S~SQQ+ = O, 

PK+S1 -- O, 

SoK+ S1 = SC+ S1 -- I. 

when ( R s  Ks  ) i s  a right inverse of ( P ) then PKs=O, SQKs=I,  Conversely, SQ ' 
N / 

so K s  maps into Z~, whereby C oKs=O and consequently SC+oKs=S~Ks  - 
SC ~Ks=I .  Thus 0Ks is a right inverse of SC +. This proves (1). 

For (2), we check the composition of (7.8) to the left with so as follows, 

using (7.11) and the fact that  C C+=0,  

( Q+-K+S1SoQ+ P ) = ( I - K + S ,  SQ)Q+P+K+SISQ K+S1 ) SO 

= ( I - K + S 1 S o ) ( I - K + o ) + K + S 1 S  O 

= I - K + ( I  S1SC+)e 

=i-K§ 
= I - K + C  4=I .  

Conversely, define ($1 $2 ) by (7.10) and check its left composition with 

(7.14) (~Ks I oKsS)  ( c S _ ) = ~ K s S + C - - ~ K s S C - = ~ K s S C + + I - C  +. 

When w=K+C+F for some ~r176176 then Pw=O, pw=C+C+~=C+9) and 

S~w=SC+~, so since ( Rs K s ) i s a l e f t i n v e r s e o f ( P )  
S o , 

w = KsSow  = KsSC+~. 

It follows that  oKsSC+~ Qw=C+~ for 9~ECC'~ Then the expression in (7.14) 
equals I.  This ends the proof of (2). [] 

The statements have generalizations where the word "inverse" is replaced by 
"parametrix", also when Q is merely a parametrix of P (here one can keep track 
of the smoothing terms as in [G1]). Moreover, the statements hold on the principal 
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symbol level, i.e., for the model operator {p~ 0,~', Dx~), s~ ', ~')t)} defined on 
R + c R  from the principal symbols at a boundary point; its Calderdn projectors 
c• ~t) are the principal symbols of C • It is standard terminology to call the 
systems with surjectiveness, resp. injectiveness, of the model operator (for all x r, all 
I~'1=1) surjectively elliptic, resp. injectively elliptic. It follows that 

(7.15) 
( P ) is injectively elliptic St) r ( C S - )  is inj ectively elliptic' 

( P ~ is surjectively elliptic 4==~ SC + is surjectively elliptic. 
St) k / 

The range spaces N• for c• ', ~') in C Na have dimensions rn--(z',~') 
(with sum Nd). By (7.15), the injectively resp. surjectively elliptic problems can also 
be characterized by injeetiveness resp. surjectiveness of s~ ') from N+(z',~') 
to C Ne for all x', I~'1=1. In particular, this requires M > m + ( z ' , ~ ' )  resp. M <  
m+(z',~'). Thus for two-sided elliptic problems, M must equal m+(x' ,~ ')  (which 
must then be constant in (x',~')). It is well known that when n>3,  m+(z ' ,~ ' )=  
rn (x', ~ ' )= �89 (the properly elliptic case). 

Note that  injective ellipticity holds if and only if 

(7.16) v c c  Ne, s~ c (x' ,~ ')v=0 ~ v=0;  

i.e., the nullspaces of s o and c- are linearly independent. 

Example 7.3. The systems ( P )  and (cP+Q) are injeetively elliptic; they both 

have the left inverse ( Q+ K + ) (parametrix when Q is merely a parametrix of P). 
In fact, by (7.11), 

Q+P+K+t)=I,  Q+P+K+C+t)=I. 

This left inverse is also found from (7.8), when we use that ( c / )  and ( c + )  both 

have the left inverse ( C + C ). The case S=C + is studied in Section 4 when d = l .  
The formulas (7.11) also show that Q+ is a right inverse of P without boundary 

condition; i.e., in the case F = 0 .  This is also confirmed by the formulas in the 
theorem. 

Although an elliptic operator P cannot always be extended to a boundaryless 

manifold XDX such that the extension is invertible, we do have such a fact for 

the P-/~ satisfying Assumption 2.2(1); this is essential for the resolvent analysis in 

Section 8. 
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T h e o r e m  7.4. Let P be such that Assumption 2.2(1) is satisfied. Let ~2 be an 
admissible boundaryless n-dimensional manifold in which X is smoothly imbedded, 
the bundle E being extended to an admissible bundle F, there; take ~2 compact when 
X is compact. 

Each ray re i~176 in P has a neighborhood F'={i~=rei~ r > 0 }  in F 
so that for AEF ~, there is an extension P~ of P- ;~  to E (acting like P- )~  on 
X), which is a uniformly parameter-elliptic strongly polyhomogeneous ~bdo of degree 
d with respect to # E F ' - - ( - F ' )  Ud and has a parametrix Q,a for ;~EF' which is an 
inverse for [AI>r ' (some r'>O). Then when we define 

the assertions in Theorem 7.1 hold with Z~,+ { z~HS(X ,E) I (P- -A)z - -O  on X } ,  

Z~,, ={zcH*(X_,~lx_) l~: , z=O on x_  }, N~,,~ =-a:~Z~,,• 
Here C~ is a matrix of ~bdos C • C • ( X,jk)j,k 0 ..... d 1 with )~,jk strongly polyhomo- 

9eneous of order j - k  with respect to # c F  ~, and K 2 is a row of Poisson operators 
( K 2 : j ) j - o  ..... d 1 with K ~ j  strongly polyhomogeneous of order - j  (all belonging to 
the global calculus). 

Proof. We here use ideas from [$2], in particular from the appendix there. 
Define F(~)={rei~ ]0l<ct }. Consider a ray re i~ in F; multiplying P A by a 
complex constant we can obtain that 00=7r and that F ( 5 ) c - F  for some 6>0. Then 
for e<15 ,  

-A6F(z ) ,  - r C F ( ~ )  ~ [~]2d+A2 EF(2~) and --A--~-(l~I2dd-A2)l/2 EF(2e) 

p(x , ( ) - -A r([~[2d+A2) 1/2 is invertible. 

We can then, for ACF'=-F(~)  and 1{lUd+[AI2_>l, define a homotopy of p ~  
to the symbol p(~, ~)=(l~]2d+a2)*/2I. Let e be a curve in (-r(~)u{l~l  _<I}) \R_ 
encircling the eigenvahms of p({, A) l (p~ and set 

(7.18) 

(note that /~o is well-defined on g). Here iS~ {, ~, 0) equals p(~, A)I for 0=0  and 
equals p~ { ) - . M  for 0=1,  and it is homogeneous of degree d in (~, I.X[1/g), holo- 
morphic in ~, C ~176 and invertible for all 0C[0, 1], all f12a+]A12>l with hE F(~). 

We can assume that 0( contains the neighborhood U U U  of X '  (see the be- 
ginning of this section), where we can identify /~ with the pull-back of E ~. In 
view of the uniform parameter-ellipticity, there is a neighborhood V of X with 
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X U ( X ' x  [-c, 0 ] ) c V c X U U  so that  P extends to V as an admissible differen- 
tial operator satisfying Assumption 2.2(1). Moreover, we can deform the symbol 
p~ smoothly through uniformly parameter-elliptic ~bdo symbols homoge- 
neous in ({, I/~l l/d) t o  p({, ),)I by use of (7.18) when x~ goes from 1 2 - 5 c  to and 
then extend it as p(~, k)I  on the rest of X. This gives a principal symbol p~ {, A) 
defined on all of X, defining a uniformly parameter-elliptic ~bdo PI,x of order d; it 
is strongly polyhornogeneous for # c F ' .  Now take 

(7.19) Pa = ~ ( e -  aI)p+~bPl,x~b, 

where ~ and ~b are admissible (bounded with bounded derivatives) C ~ functions 
on X with ~02+~b2=1, such that  ~ is 1 on XU(X'x[-~c ,O])  and ~b is 1 on the 

complement of X U ( X ' •  [ -2 ,0 ] ) .  This Px is a uniformly parameter-elliptic and 
strongly polyhomogeneous ~bdo of order d that  acts like P - A  on distributions sup- 
ported in a neighborhood of X. The operator/Sx,+ has the same Green's formula 
as P,  (2.1). 

The operator / 5  has a parametrix 0~ for AE-F(~), uniformly parameter- 
elliptic and strongly polyhomogeneous of order -d ,  by the usual formulas. Since 
PxQ~=I+,Sx, where Sa is strongly polyhomogeneous of order -1 ,  hence has an L2 
operator norm going to 0 for I~1~or in - r (c) ,  I + $ x  can be inverted within the 

calculus (by a Neumann series) for sufficiently large A; here % Qa can be modified to 
the true inverse Q)~=Qi(Iq-8.x) -1. This is strongly polyhomogeneous with global 
spatial estimates, by Theorem 6.5. 

We now simply define K~  and c2 by (7.17); then the verification that  they 
have the mentioned mapping properties goes exactly as in Theorem 7.1. The result- 
ing operators are strongly polyhomogeneous by [GS1, Lemma A.1, Theorem 1.16] 
and have global spatial estimates since Qh and .4 do so. [] 

For use later in Corollary 8.3 let us also note that  L)Q)x,+ (as a function of 
> = ( s  is a strongly polyhomogeneous trace operator of class 0, ef. [GS1, 
Lemma A.l(ii)]. 

Let us finally observe the following result on adjoints. 

T h e o r e m  7.5. Under the assumptions of Theorem 7.1, denote by C '+ the 
Calderdn pTvjector for P* (defined according to Theorem 7.1 with Q replaced by Q*). 
Then 

(7.20) c,+ __ (.4*) 1 ( i -c+*) .4" .  

Pro@ The operator P* has a Green's formula similar to (2.1) with .4 replaced 
by -.4*, so the Calderdn projector C '+ and associated Poisson operator K '+ for 
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P* are K '+=r+Q*~%4 *, C'+=or+Q*~*.A *. Let K e be a Poisson operator lifting 
sections ~E~a(E[ d) to sections u=Ko~EHd(E~) such that p u =p ,  cf. e.g. [G3, 
Lemma 1.6.4J or the text before Lemma 2.3 above. Then (7.11) gives by application 
of p, 

(7.21) K+~u=u-Q+Pu, C+~ ~oK+cou=cou-oO+Pu=~a-~oO+PKe~. 

For the term ~Q+Pu we note that  when ~Tt~ 

(~)Q+Pu, ~)x' = (~Qe§ Pu, ~)x, = (e+ Pu, Q*o*~) ~ 

= (Pu, r+Q*p*r = (Pu, K'+(A*)-Ir 

: (P~, K/§ (A*)-  ~r  - (~, P*K '+ (A*) -~r  

= (~, A*C'+(A ") -~9)x,. 

It is used here that  Qe+PuEHd(E~) so that  ~ and L)r § give the same result, and 
that P*K~+=0.  Taking this together with (7.21), we find 

(c+~,r , =(~,r  *) ~ ) x ,  for all ~, r 

this implies (7.20). [] 

For systems without the invertibility assumption there are similar formulas with 
smoothing terms. For first order systems, the orthogonalized Calderdn projector 
for P* was investigated earlier by Booss and Wojciechowski in [BW1] (see also 
Example 5. I above), playing an essential role in their at~alysis of the index. 

8. Analys i s  of  the  resolvent  

Consider Ps  as defined in Section 2; in particular it can be equal to 7)u as 
introduced in Section 5. We shall find a constructive expression of its resolvent in 
a form that  allows showing asymptotic expansions of traces. 

The strategy in [GS1] for characterizing the resolvent ( A l + #  2) 1 associated 
with a Dirac-type problem with a boundary condition (II_> +B0)v0u=0  was essen- 
tially to express the general resolvent as a suitable perturbation of the product case 
re,solvent, by a term that is of lower order at the boundary. When P is not of 
Dirac-type, we do not have a simpler reference problem (Iike the product case) to 
depart from, so a new strategy is needed. Here we establish the analysis directly 
by use of a Calderdn projector for P - A .  

a system ( e - x )  satisfying Assumptions 2.1 and 2.2. By Lemma 2.3, Consider so 
it is surjeetive from Ha(E) to L2(E)• for each large ACF. For suitably 
small subsectors F/ of F (covering F) we can define the Calderdn projector C~ by 
Theorem 7.4. 
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L e m m a  8.1. Let ACF~ (with P' as in Theorem 7.4 and r so large that Qa= 
~f f l  and Assumption 2.2 is satisfied). Then SC~ has the following right inverse, 
where Kx is defined by Lemma 2.3, 

it is a Odo mapping ~ ' ~ ( F )  into ~s,~(E'd) with norm uniformly bounded in p= 
[A[U4 for any s>d.  

Proof. By the converse part of Theorem 7.2(1), (8.1) is a right inverse of SC~. 
The mapping property follows from the second statement in (2.10) by composition 
with ~. [] 

We would like to use Theorem 6.5 to show that  S~ is weakly polyhomogeneous 
in terms of p = ( - A )  1/d. One difficulty in this is that  S~ is just a right inverse of 
SC~, not a two-sided inverse (and such right inverses are not uniquely determined). 
Another difficulty is that  S and C~ are multi-order systems. 

To eliminate the effects of the multi-order, we conjugate the operators with 
�9 d - - j - - 1  O.,a  ((SjkAdT,~-l)y,k=0 ..... g-1 and Oz~,d X=(~jkAE, .  )j,k 0, ,a-1 (in each subsec- 

tor P',.); the entries are defined as in the proof of Theorem 6.5. The following 
operators are of order 0, 

(8.2) A -- E~d,A A~E~d,A" 

Since C~ and the Ox are strongly polyhomogeneous, so is C~. Then by the remark 

after Definition 6.3, C~ is special parameter-dependent of order 0. For Sx it follows 

from the lower triangular form of S that  SA is again lower triangular. The entries in 
A d-1 JS A k+l-d and below the diagonal are of the form Fj, ,  jk z,,~ with j > k and thus, since 

Sjk ~ S j k c S j-k '~ they are seen to have symbols in S ~176 with p-derivatives of order 
m in S- '~ ,~  ~ "~ for any m, by calculations as around (6.15). (For k < j < d - 1  
one needs the observation that S j - k ' k - j  N S j + l - d ' d - l - j  C S 0'0 by interpolation since 

j - k > O ,  j + l - d < 0 . )  Thus S~ is special parameter-dependent of order 0. We also 
define 

( 8 . 3 )  N, , - 1  Sx = OZ,d,xSaOF, ~. 

T h e o r e m  8.2. Let P and S satisfy Assumptions 2.1 and 2.2. For A in trun- 
cated subsectors F',, of F (as in Lemma 8.1), the operator SC~ has a right inverse 

S ,  ~ 1 ~ , ~  where S-~ is special parameter-dependent of order 0 (in terms of A --tTJE~d,,k~ 

p (-A)l /d) .  
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The right inverse S~ defined in Lemma 8.1 equals ~A,r:+q" and S AN defined by 
(8.3) is special parameter-dependent of order O. 

Proof. The operator S-~C~- is continuous from Ht'"(E 'd) to Ht'"(F) for any t. It 
has the right inverse S~, which is continuous froin H t , " ( f )  to Ht'"(E'd), uniformly 
in It, for t>�89 in view of (8.1), (2.10) and the mapping properties of the A ~ _ Fs,/z" 
In particular, the continuity holds with t = l .  We can then apply Theorem 6.5(2) 
with l=  1, which shows the existence of a right inverse S~ that  is special parameter- 
dependent of order 0. 

The right inverse we have constructed in this way need not be the same as S-~ 

defined after Lemma 8.1 in (8.3). However, since ( % A )  is bijective, we infer from 
% 

( S ) i s  injective and SC~ is the converse parts of (1) and (2) in Theorem 7.2 that  c ;  

surjective, hence S defines a bijection of N~,,+ onto J-t~(F), and so does SC~. Then 
SC~ has only one right inverse ranging in N;~,+. Now S~ in (8.1) does map into 
N ~ since (P -A)KA=0 ,  so it is the right inverse of SC~ ranging in N ~ When A,+ A,+" 
S~" is an arbitrary right inverse, then ~=~A/- ~g?+qm~,A =~Aq~+gT+qm~A - A  , so ~A~+qm~'A is a right 
inverse ranging in NA,+; hence it must equal S~. In particular, for the right inverse 
S~ found above, 

(8.4) S i - , ~  o A- 

It then follows from the rules of calculus that  also  SA=OE,d,ASAOF, A ~ t  ! 1 CASA+ " is a 

special parameter-dependent ~do of order 0. [] 

Since Q)A is the inverse of /SA, we can now apply the direct part of Theo- 

7.2(1) to describe the inverse of /P-A)se . This gives an immediate corollary. r e d  

C o r o l l a r y  8.3. For A in truncated subseetors F',. of F (as in Lemma 8.1), the 
resolvent R~ ( P s - A )  -~ and the Poisson solution operator KA in (2.6) satisfy 

(8.5) RA = O~,+-GA with GA = K~SiSpQ, A,+, KA = K ; S  i, 

where S~ is as in Theorem 8.2. 
In terms of I t= ( -A)  Ud, K ;  resp. OOA,+ are a strongly polyhomogeneous Pois- 

son resp. trace operator, and , -~ , 1 OE,d,ASAOF, A and OE,a,ASAS(gF, X are special param- 
eter-dependent r of order O. In particular, we can write 
(8.6) 

_ + i t --1 GA:]C~SATA with ]CA--K;~ OE,<A , SA:OE,d,ASASOE,d,A, TA OE,d,A~QA,+, 

where ;Ca is a strongly polyhomogeneous Poisson operator of order l - d ,  8A is a 
special parameter-dependent ~pdo on X ~ of order 0, and T~ is a strongly polyhomo- 
geneous trace operator of order - 1  and class O. 
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Here S~, and S~S are covered by the analysis in Theorem 8.2, whereas K~ and 

L)~)~,+ were described in Theorem 7.4ff. 

9. T r a c e  f o r m u l a s  

We can finally obtain trace formulas, by the methods of [GS1]. 

T h e o r e m  9.1. Let Ps be the realization (2.3) defined from a differential op- 
erator P of order d in a bundle E over a manifold X together with a boundary 
condition (2.2) (all admissible), such that Assumptions 2.1 and 2.2 are satisfied. 
When (m + l )d> n=dim X , the resolvent Ra=( P s -  A ) -1 satisfies for any compactly 
supported morphism ~ in E, 

(3O 

T r ( p 0 ~  (Ps  _/~)-1)  r.o ao(-A)~/d- '~-I + E ( a  j +bj)(-A)(n-J)/d . . . .  1 

(9.1) j.-a 
o o  

- k / d  ' "  1 

k=o 

for )~-~cc in closed subsectors of F. The coefficients aj, by and ck are integrals, 
f xl aj(x) dx, f x~ bj(x') dx' and f x~ ck(x') dx', of densities aj locally determined 
by the symbols of P, reap. bj and ck locally determined by the symbols of P and 
S at X~; here X1 is a smooth compact neighborhood of s u p p ~  in X such that 

l X [ = X 1 N X '  is a neighborhood of supp ~ N X  ~ in X' .  The % are in general globally 
determined. 

Proof. The operator pO~Ra is trace class, since it maps the space L2(E) into 
H('~+I)d(EIx1) and the injection H('~+I)d(EIx~)~-~L2(EIxI) is trace class. The 

kernel is continuous and the trace is the integral of the fiber trace of the kernel on 
the diagonal, so one only has to integrate over X1. Consider a t runcated subsector 
F~ as in Lemma 8.1. From Corollary 8.3 follows tha t  

oi (Ps- = 

r n + l  

(9.~) = T/t! (Q.k,+)fn-r-l§ E pOlk (l~'k'+' C)~) 
k I 

rn+l 
polk(~)x,+, G x ) ,  

k~l 

where the expressions pol k are "polynomials" in the two (non-commuting) terms 
in Rx, in the sense that  they are linear combinations of compositions with m - k  
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factors ~)~,+ and k factors GA. The term GA is the singular Green operator (cf. 

e.g. lea, (1.2.35)]) 

(9 .3 )  Gx = m [ ( ( 0 . k , + )  "~+1 - - ( 0 ~ + 1 ) + ) .  

In the dependence on  It=(-A) 1/d, we have in view of the rules of calculus of [GS1], 
[G3] that ~ + 1  is a strongly polyhomogeneous r of order - ( m + l ) d  on X, Ga 
is a strongly polyhomogeneous singular Green operator of order - ( m + l ) d  on X, 
and the sum over k is a sum of compositions containing strongly polyhomogeneous 
operators (of all types) together with the special parameter-dependent r $~, 
cf. (8.6). 

Consider the trace 
/ ,~+l \ 

Trx FOr R;~-- Trx ~ml(~)~+l)+ + Trx qokax + E P~ (~)a,+' G;~)). 
k = l  

By the construction of /3x in Theorem 7.4, the restriction (~)r+l)+ of ~)r +1 is 
the restriction of a strongly polyhomogeneous parametrix of (P-A) "~+1 defined 
on a neighborhood of X, so Trx Fm!(0~+l)+ contributes a well-known expansion 

E j%0 aj(-a)( 
The singular Green operator pG~ is of order - ( m +  1)d and strongly polyhomo- 

geneous, hence of regularity +oc in the sense of [G3], so it contributes an expansion 
Ej~_I bo,j(-A)(n-J)/d-'~-x, by the proof of [G3, Theorem 3.3.10ff.], also recalled 
in [G4, Appendix]. 

In view of (8.6), the terms in the polynomials pol k contain 8~ as one or several 
factors. Here we use the invariance of the trace under cyclic permutation of the 
operators, to reduce to the study of an operator on X ~. Since Q~,+ composes 
with strongly polyhomogeneous Poisson and trace operators to give Poisson resp. 
trace operators that are again strongly polyhomogeneous, each term in pol k has the 
structure 

(9.4) Gx = (tg]~I, ,kSA~I,A]~2,ASA~2,A ... KJ, NSATJ, N, 

with Ga of total order - ( m + l ) d  and the ~j,~ and Tj,a strongly polyhomogeneous 
Poisson and trace operators of order <0 and class 0. Let ~ denote a morphism over 
X ~ that is the identity over a neighborhood of supp ~NX ~ and is supported in X~; 
then ~](;1,;~(I--~9) is strongly polyhomogeneous of order -oc,  so its norm in Sobolev 
spaces is O((A) M), any M, and Trx (p~l,,x(l-r ...KJ, ASATJ, A 
is O((A}-M), any ~/I. For the remaining part, 

Trx ~](~I,A~JSA~I,A](~2,ASAT2,A ... ]~ J, AS  kTJ, A = Tr  x , S i 

(9.5) with S~ = ~$;,7-1,;~1C2,;~3;~7-2,;~ ... ]Cj,;~S;~Tj,;,plC1,;,; 
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here the factors Tj,flCj+l,x and ~ J , ~ ) ? ] ( ] l , k  a r e  strongly polyhomogeneous Cdos on 
X '  of orders _<0. It follows that  the Cdo S~ is a special parameter-dependent 
Cdo of order - ( m + l ) d .  We can now apply [GS1, Theorem 2.1] to this by in- 
tegration over X~, using a reduction to local trivializations and a parti t ion of 
unity. Since X ~ has dimension n - 1  and the symbol has degrees (m+l )d -k ,  
k_>0, and p-exponent - ( m + l ) d ,  we get an expansion in a series of locally deter- 
mined terms bk( ;~)(n-k)/d . . . .  1, k_> 1, together with a series of terms (~k log ( -A)+  
~ ~( A~k/d ~ 1 k>0,  with ~k locally determined. k ) \ - -  ] ~ - -  

Collecting all the contributions, we find (9.1). [] 

We have as an immediate consequence. 

1 C o r o l l a r y  9.2. When J in Assumption 2.2 contains [~%, 37c] in the interior, 
and R~ exists on W (cf. Section 1), then the heat operator e -tPs has an expansion 
for t~O, when ~ has compact support, 

(9.6) Tr(7)e tPs)--aot *Vd+E(gj+bj)t(J-~)/d+~(~klogt+~;)tk/d; 
j>l  k>0 

here the coefficients are proportional to those in (9.1) by universal factors. 

Proof. The expansion (9.6) is shown by inserting in (1.4) sums of terms from 
(9.1) down to a certain order plus a remainder O((A} N), and letting N--*oc. Here 
one uses simple calculations such as 

d 
/ o w e  ta( A ) S l o g ( _ A ) d A = _ ~ S / o w e  tx(_A)~dA 

(9.7) -- dsd t_~_ 1 ~tow e-e(-g)s dg 

= const, t ~- 1 log t. [] 

Theorem 9.1 holds in particular for ( /9~+p) -1, giving expansions of the form 

(9.8) 
n - 1  

n j ~ 1 l ogp+%)f f  
j=0 k_>0 

for p--+cc in closed subsectors ofF0. We apply this to (5.1) by use of (5.3) as in [GS1, 
Section 3.4], taking ~=(Pkl)k,z=l,2 with just one block different from zero in order 
to get the traces of the individual blocks in (5.3), and setting ~ = _ p 2 .  This gives 
trace expansions of the ruth derivatives of ~ ( A i - A )  -1 ( i - 1 , 2 ) ,  ~bDB(AI-k)  -1 
and ~D~(A2 ~) 17 with consequences for heat trace expansions. 
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T h e o r e m  9.3. Let DB be the realization of a first-order uniformly elliptic dif- 
ferential operator D from E1 to E2 with a uniformly well-posed boundary condition 
BT0u=0 (manifolds, bundles and operators being admissible). Then when ~ and #J 
are compactly supported morphisms (in Ei resp. from Ej to Ei, i , j = l ,  2), there are 
resolvent trace expansions in closed truncated subsectors of C \ R + ,  for m>_n, 

(9.9) 

n--1 
Tr((/gc~n(mi_/~) 1) r~ E ai,3 n (  /~)(n--j)/2 . . . .  1 

j--O 

k~O 
n 1 

T r ( r  n(---~) (n - j§  t 
j - - i  

+~-~(~l,klog(_A)+~i,k)(_A)( k§ 1, 
k>0 

with a similar formula for Tr( r  -1) with coefficients b2,k and b2, k. I f  
I?ts is bijective (so A~>0), or X is compact, there are heat trace expansions for 
~---~0+ , 

(9.10) 

n 1 
Tr(~e-tZ~) ~ E ai , j -n t (J -n) /2+E(a i , k  l~ k)tk/2' i =  1,2; 

j--O k>O 

Tr(~DBe tzx~) ~ E bm,j-~tO n m)/2+E(bi ,  k logt+b~,~)t(k-1)/2, 
j--1 k_>O 

with a similar formula for Tr(r -tzx2) with coefficients b2,k and b~, k. The co- 
efficients in (9.10) are proportional to those in (9.9) by universal factors. The 
unprimed coeJficients are locally determined; the primed coefficients depend on the 
operators in a global way. 

The terms Di, n(--/~) 1 /2- rn-1  and  bi,_nt (~+1)/2 have been left out, since their 
coefficients are formed by integration in ~ of functions that are odd in 4, which gives 
zero. When the Ai >0, (1.4) is used to get (9.10). When X is compact, the resolvent 
has a pole at 0 when ker/)Br and we use [GS2, Corollary 2.10, Theorem 5.3] as 



Trace expansions 83 

( J'~2,# ]~2,# ) = ( ~-~1,# 

= ( T e l , .  

which implies that 

in [GS1]. Then one also gets zeta expansions, with the same ai,k, a~, k, b~,k and b~,k, 
(9.11) 

n 1 t F(s)Tr(pAj~)~j~0 ai,j-~ T rT)~ (DB)  + V ~ / /  -ai,k ai,k "~ 
-=  +l(j n) 

n 1 bl,j n ( --bl,k b_i,k 
r(s)Tr(~bDBAl~)~.j~l s+�89 j n 1)]-k~>0_ \ ( s + l ( k _ l ) )  2 [ s + � 8 9  

with a similar formula for Tr(~bD~A~ ~) with coefficients b2,k and b~, k. (The left- 
hand side is meromorphic on C and the right-hand side gives the full pole structure.) 

The results apply of course to all the cases presented in the examples in Sec- 
tion 4. 

For comparison with earlier results it is of interest to see how the expansions 
vary under perturbations of B. Let us consider two choices B1 and B2 of B, setting 
B'=B2-B1.  Let Bi=(B~ (I-B*)cr*), for i 1,2; B'=132-B1. Let ( ~ i , .  K2i,~) 

be the inverse of (z~+u~ for # G C \ i R .  Then 

( ,  0 ) 
tSl,. ) _B~7o7r I_B,7ol~, .  , 

(9.12) 7~2,. -T~l,/z = -]~I,/zBt")/0T~2,#, ]~2,# -~l,tL = -K21,t~B'q~0]~2,t~ �9 

T h e o r e m  9.4. In the above notation, when B ~ is a ~bdo of order -1,  

(9.13) 

n--1 
n m 1 - j  , , . o 6 ~ - c k J ~  , Tr 990~n (7~2 t~ - T4.1 . )  ~ Z Cj--np ~ _ Z ( C k  t m--l--k 

j = 2  h>O 

Tr ~0 u'~ (7~2,,-T~1,,) ~ Z ck' # . . . .  l-k, if B' is moreover of order oc. 
k>0 

Pro@ We find by circular perturbation (as in Theorem 9.1) of the expression 
in (9.12), 

k_<rn 
m T r x ,  0t~ (B'"~0"~2,/z(/9]~I,/z) = T r x ,  S ; ,  

where S.  =0"~ (13 70(Qt.,+ K;S2,,~13270Q.,+)~ # S I , . ) ;  
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the S{,~ denote the right inverses of/3,iC[, constructed for the respective problems 
in Lemma 8.1 and Theorem 8.2. It is found fi'om the composition rules that  S~ has 
symbol in S 2 ,~,0AS-1,-1-~, (in S ~ '  1 ,,~ if B ! is of order - o c ) .  Then [GS1, 

Theorem 2.1] implies (9.13), when rn_>n-2 (resp. for any m). [] 

In the case with X compact and a product structure near X !, the Calder6n 
projector differs from H> by an operator of order - e c  by Proposition 4.1, so for 
B C +, the expansions (9.9) (9.11) only differ in the primed coefficients from the 
expansions known for B- -H>,  by (9.13). Here it was shown in [GS2] that  all the 
logarithmic terms vanish when n = d i m X  is odd; when n is even, the logarithmic 
terms with k even >0 vanish, and the logarithm at the power zero vanishes if in 
addition p I (exact formulas were also given). So we get the following corollary. 

C o r o l l a r y  9.5. Consider the product case with X compact, B C +. Then 
the expansions (9.9)-(9.11) differ from those known for B--H> only in the primed 
coefficients. In particular, when n is odd, all the logarithmic terms vanish, when n 
is even, the logarithmic terms with k even >0 vanish in (9.9) (9.10); also the gt~,o 
and ai,o vanish if p = I .  The same holds for smooth perturbations of II>_ or C +. 

Note that  it is the global coefficients that  may be changed when we replace 
H> by C + in the product case, whereas the locally determined coefficients are 
unchanged. Their values are in principle determined from the precise formulas 
in [GS2]. 

Remark 9.6. Our results show that  the boundary conditions considered in [BL] 
give heat operators with trace expansions (9.10) also when the structure is not of 
product type near X!; this is a new result. Comparison with perturbations as in 
Theorem 9.4ff. 

Let us finally observe the resulting index formula. 

C o r o l l a r y  9.7. Let X be compact and let B be well-posed for D. Let ~ 1 
in (9.10). Then the index of DB equals 

(9.14) 
! ! 

index DB = al,o -a2,0. 

Furthermore, all the other coefficients coincide for i=1  and 2, al,k=a2,k for all 
k>_-n and all,k--a12, k for all k>O. 

Proof. This follows fi'om the well-known fact (cf. e.g. [G3, Section 4.3]) that  
i n d e x D B = T r e  - t A 1 - T r e  t/,~ for t ) 0 .  Since this expression is constant in t, the 
variable terms must vanish. (One can make a successive elimination of the terms 
(al, n - a 2 - n ) t  ~/2, ( a l , l -n -a2 ,1  ~)t -(7~-1)/2, etc., by order of magnitude.) [] 
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