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On local integrability of fundamental solutions 

Lars HSrmander 

1. I n t r o d u c t i o n  

Let P ( D ) ,  D=-iO/Ox, be a partial  differential operator  in R ~ with constant 
coefficients. In my thesis [1] I proved that  P(D) is hypoelliptic if and only if one of 
the following equivalent conditions is fulfilled: 

(i) I m r  if C ~ ' ~ r  and P ( r  
(ii) P ( ~ ) ~ 0  for large ~ e R  n, and P(~)(~)/P(~)---~O when R n ~ - - ~ o ~ ,  if a ~ 0 .  

The sufficiency was proved by constructing a fundamental  solution, that  is, a dis- 
tribution E with P(D)E=5, and verifying that  (ii) implies that  E C C ~ in R n \{0) .  
In a conversation with Marcel Riesz, who had been my mentor but was then retired, 
he reproached me for relying on the notion of distribution and told me that  I ought 
to prove that  E is in fact a locally integrable function. This reaction was quite 
typical of the reluctance of the mathemat ical  community to accept the notion of 
distribution. It  was not unexpected, and I had in fact avoided using distributions 
as far as I could. 

Although it is quite irrelevant for the purposes of [1], I have never quite been 
able to dismiss the question whether the fundamental  solutions of a hypoelliptic 
operator in R n are always locally integrable. In Section 2 we shall prove tha t  the 
answer is positive when n = 2 ,  but in Section 4 we shall give an example proving 

that  the answer is negative for every n>14.  At last this settles the question except 
for dimensions 3, ..., 13, and proves that  distributions are essential and not only 
convenient in this context. 

If  P(D) is an elliptic differential operator  then P(~) (D)E is essentially the in- 
verse Fourier t ransform of P(~)(~) /P(~) ,  which behaves at infinity as a function 
which is homogeneous of degree - l a l .  When l a l = l  it follows that  P(~)(D)E is 

singular at the origin as a homogeneous function of degree l - n ,  which gives that  
P(~)(D)eLPo~ if and only if p<n/(n-1). For arbi trary a ~ 0  we have P(~)(D)Ec 
L~o ~ if 1/p> 1-]a]/n. More generally, if P(D) is semielliptic in the sense of [2, Chap- 
ter XI, p. 67] of orders m~ >m2 >...  > m ~ ,  then it is easy to see that  P(~)(D)EEL~o ~ 
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if l<_p < ( E j ~ I  1 /m j) / (Ej~_2 1/m j)  and a r By the following simple result only 
hypoelliptic operators can have such a strong regularity property. 

P r o p o s i t i o n  1.1. Let F e D ' ( R  ~) be a parametrix of P(D), that is, P(D)F 
6oeC ~176 ff P(~)(D)FcL 1 in a neighborhood of 0 for all c~r then P(D) is hy- 
poelliptic, and 

(1.1) P(~)(D)FeL~oc(R'~), ar 

for every parametrix F of P(D). 

Proof. Let ~2 be an open neighborhood of 0 such that  P(~)(D)FELI(f~) when 
(~r and choose ~EC~(f~)  with ~(0)=1.  If G=~F then 

(D~)P(~)(D)F [-~(P(D)F-6o) C LI(Rn) ,  

/3! E LI (Rn) ,  if ~ 0 .  

Taking Fourier transforms we obtain when R~9~----~oc, 

P ( { ) G ( r  P(~)({)0(~)---~0, i f a r  

Hence P ( ~ ) r  when 1r is large, and 

P(r P(r162 

which proves hypoellipticity. Since parametrices of a hypoelliptic operator are 
smooth except at the origin and differ by functions which are smooth everywhere, 
we obtain (1.1) for every parametrix F.  

The converse of Proposition 1.1 is not even true when n=2 .  In fact, in Section 3 
we shall give for the two dimensional case a necessary and sufficient condition for 
the parametrices to have the property (1.1), and it is not fulfilled by all hypoelliptic 
operators. In Section 5 we shall discuss some consequences of the existence of 
parametrices with this property. They indicate that  there may be some interest in 
characterizing this class of hypoelliptic operators also in the case of several variables. 
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2. T h e  i n t e g r a b i l i t y  o f  t h e  f u n d a m e n t a l  s o l u t i o n  i t se l f  

Let P(D) be a hypoelliptic differential operator in R 2, of order m. By condition 

(ii) in the introduction we can choose M > 0  so large that  P ( ~ ) r  when I~I>M. 
Set Bt={{ER2;I{I<t}. If X e C ~ ( R  2) and X=0 in BM, X = I  in ~B2M , then the 
inverse Fourier t ransform F of x / P  is a parametr ix  which is rapidly decreasing at 

infinity. 

T h e o r e m  2.1. The .function )~/P belongs to Lq when q>(m+l)/m,  and FE 
L p when l < p < m + l .  

Proof. If m = l  then P is elliptic (essentially the Cauchy Riemann operator),  
and the s ta tement  follows then from the observations preceding Proposition 1.1. 
From now on we assume that  m > l .  If we can prove that  x/PELq when q> 
(m+l)/m, then it follows from the Hausdorff Young theorem that  FEL p when 
2 < p < m + l .  Since F is rapidly decreasing this implies FEL p when l < p < m + l .  

Thus it only remains to prove that  x/PELq when q>(m+l)/m. I f A  is a closed 
angle in a 2 containing no characteristic of P,  then I~1 "~ < C IP(~)I if ~ E A and I~1 > M. 

Since fM rl-'~q dr=M2-'~q/(mq- 2) if mq> 2 and since mq 2 > r e ( q - ( m + l ) / m ) ,  
it follows that  x/PcLq(A) when q>(m+l)/m. It  remains to prove that  this is 
also true when A is a small angular neighborhood of a characteristic ray. We can 
choose the coordinates so that  the ' r ay  is defined by ~ 2 - 0  while the ~2 axis is not a 
characteristic. Then we can write for large ~1 

(2.1) P (~)  ---- a H ( ~ 2  Tj (~1)) , 
j 1 

where a is a constant and each ~-j has a Puiseux series expansion with Tj(~I)= 

O(~1), as ~l--*+oc. (See e.g. [2, Appendix A].) When ~-j(~l) aj~l+o(~l) with 
aj r 0 t hen I~1 _< c1~2 - ~j (~1)1 for large ~1 if ~ C A and A is a sufficient ly small angular 
neighborhood of the positive ~1 axis. Denote by # the number of such factors. When 

a j = 0  we have for large positive ~1, 

(2.2) Tj (~ I ) :ECjk (~ / r )  k, 
kKs 

where r is an integer >1,  O<s<r, cjsTs and ImcjkTz0 for some k > 0  (by condi- 

tion (i)). Replacing sl by gives different zeros for L)=0, 1,.. . ,  r - 1 .  
The absolute values of their imaginary parts  are bounded below by a positive con- 

;1/r stant t imes Sl �9 Hence I~e-Tj (~ l ) ] (~ /" )  ~ 1 can be bounded by a constant times 
the product  of the corresponding factors in (2.1), when ~EA is large, and the factor 
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fzl/r [~2-rj(~,)l  can be replaced by another factor S l  " Let ~, be the number of such 
groups of zeros. Then we have for large {cA,  

~#v--i/r # 
I{~ ~1 Ig2- r (~ l ) l  _< CIP({) I ,  

where r denotes one of the zeros (2.2) and r is the number of zeros in the corre- 
sponding group. If q> 1 we have 

/ R  1~2-r({*)l -q d{2 = I Im T({1)I 1-q s It-Fil -q dt <_ Cq[{l[ (1-q)/r. 

Hence it follows that  

/A ~(~) q < [-~ el~ r vq-txq Ac dE Cq 
P(~ -- /2 %1 u~q 1' ]M 

The integral converges if (~+~)q>l+I/r. Since ~-,((1)=o(~) we have r_>2, so this 

is true for all q>_l if #+~>_2. Otherwise we must have # = 0  and z~: l ,  for u # 0 ,  and 
then r rn so the theorem is proved. 

Since parametrices of a hypoelliptic operator only differ by smooth functions, 
the following is an immediate consequence of Theorem 2.1. 

T h e o r e m  2.2. For every hypoelliptic operator P(D) in R 2 there is a paramet- 
rix F with F c L  p for l < p < m + l ,  and every parametrix is in L~o c when l _ < p < m + l .  

Example 2.1. For the heat operator P(D) O/Oxl-O2/Ox~ in R 2 we have the 
fundamental solution 

/ (4"a-z1) 1/2 exp(z92/4Zl) ,  when Xl > 0, 
E(x) 

I 0, when xl  <_ 0, 

f /x j l<lE(x)PdX=fol(4rrXl)(1-P)/2/ t l<l/  4x/aT~e ~rpt2dt. 

1 The integral converges if and only if ~ ( 1 - p ) > - 1 ,  that  is, p<3.  This proves that 
the L p class in Theorems 2.1 and 2.2 cannot be improved in general when m 2. 
More generally, for the semiel]iptie operator P(D)=iDI+D~ ~ of order m > 2  it is 
also true that  the L p class in these theorems is optimal. To prove this we choose 
qoEC~(R2\{0}) with f (~ ( { ) /P (~ ) )d{= l  and set qo,({)=p({1/.s m, ~2/s)/s. Then 

f ~ ( ~ )  d~ = 1 P ( 0 "  ' ~ * ( x ) = * ~ ( s ~ * ' s x ~ )  
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With F = x / P  as in Theorem 1 it follows that  for large s, 

1 /~(qzs) = F ( ~ , ) .  

Assume tha t  F E L p in a neighborhood ft of 0. Then F ~ s  converges rapidly to 0 in 
~f~ as s--~oc, and if 1/p+l/q=l it follows that  for large s, 

l ~ Y ( ~ s )  ~ 2 (/f~ 'Y'Pdx) 1/p(/ '([2s'qdx) 
1 (s (rnq-1)/q" <~+c 

Since we can choose t2 with C ( f  a IFI p dog) Up <1 if, this gives a contradiction when 
s ~ o o  unless m (m+l)/q>O, that  is, p < r n + l  as claimed. 

3. The strong local integrability property 

With P of the form (2.1) we have 

(3.1) 1 0 P ( { ) _ ~ - ~  1 
V(~) 0~2 j=l ~2 --TJ (~1) 

and similarly for derivatives of higher order. This suggests that  the study of the 
inverse Fourier t ransform of P(~) ({) /P({)  can be reduced to the s tudy of the inverse 
Fourier t ransform of one of the terms in the sum in (3.1). It suffices to examine 
those with r j(~l)  o({1), corresponding to a branch of the zeros asymptot ic  to the 
characteristic ~1 axis. To simplify notation we drop the subscript j temporari ly  and 
note that  the properties of the Puiseux series expansion prove that  rEC~176 oo)) 
for some c>0,  and that  there exist exponents %, 71 with 0 < %  < %  < 1 and constants 
c0EC\{0} ,  c l C R \ { 0 }  such that  for every integer j > 0 ,  

7(j)(~l){j "/o - ~ c 0 % ( % - 1 ) . . .  ( % - j + l ) ,  ~1 --4+00, 
(3.2) 

Imr(J)({1){{ -~1 -~ c171(%-1) . . .  (~Yl j + l ) ,  {1 -+ +oc.  

We may assume that  c I )0 ,  and replacing c by a larger number we may also assume 
that  

( 3 3 )  Im ( l) > , > e 
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If 7o ="/1 then Im co = c1, but otherwise co E R \  {0}. 
With aEC~~ vanishing in ( -oc ,  c] and a(41)=1 for large ~1 we wish to 

estimate the inverse Fourier transform u of a(~1)/(~2 r(41)) which is a C ~ function 
of ~ c R  2 bounded by C41 ~*. Thus 

(3.4) u(x) = f f  eVe'S)a({1) d{1 d~2 
{2-~({1) 

in the sense of distribution theory. The inverse Fourier transform with respect to 
~2 vanishes when x2<O, and when x2>0  we have 

i ffei(Xl~l+~2.~(~l))a(~l ) d41. (3.5) u(x) 

The following lemma proves that  uEL p for every p, outside an arbitrary neighbor- 
hood of the origin. 

L e m m a  3.1. If j is an integer with j ( 1 + 7 1 - 7 0 ) > 1  then xJucn~(R2) ,  and 
if j % > l  then xJueL~(a2) .  

Proof. The inverse Fourier transform of a(~1)(~2-r(~1)) - j - 1  is (ix2)Ju/j!. 
Since 1~2-~-[2=1~2-Re~-12+11mr[ 2, it follows when j > 0  that  

/ 1  
142__TIJ+I d~2 < Cjl [nlT I J. 

we have f la(~l)l I Im ~(41)1-J d ~  < ~  if J71 > 1. 
The inverse Fourier transform of 0'(a(~1)(~-~(~1)) 1)/04{ is (--ixl)Ju. Ex- 

panding by Leibniz' rule we obtain a number of terms vanishing for large 41 where 
a has been differentiated, and by (3.5) their inverse Fourier transform is obviously 
bounded. The terms where a is not differentiated are of the form 

a ( ~ l )  T ( k ' )  ( ~ 1 )  .-. T(kt*)(~1) 
({2 w(~l)) 1+/* , /*>0,  k l > 0 , . . . , / ~ , > 0 ,  k14-...q-k,----j. 

Such a term is bounded by a constant times 

~I~*'YO ]~1 "'" /~/* ~1~"/0 -- j 

[~2_r(~1)[1+, = 1~2_~_(~1)]1__t~" 

This is integrable if # 7 o - J  # 7 1 < - 1 ,  that  is, j > 1 + # ( 7 0 - 7 1  ). Here p_<j, so this 
is true if j (1+71 %)>1 .  The proof is complete. 
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From Lemma 3.1 it follows that  u~LP(R ~) if u~L~or 
and R is large, then 

If x~C~((O, oo)) 

i fe~(xl~l+,~(~l//x(~l/R ) d~l x( D1/ R)u(x) = UR(X) 
(3.6) 

_ iR2~ f e~(~xl~l• d~z, 

is also in L p, and IlURIIL~---+O, as R--+oo, provided that  l < p < o o .  In fact, x(DI/R) 
is equivalent to convolution with respect to xx with R~(Rxl), where ~ E S ( R ) ,  so 
the operator norm in L p is bounded by II~IIL1 <oc and x(D1/R)v--+O in n p, as 
R--~oc, if v c S ( R 2 ) .  We can choose x e C ~ ( ( ~ , 2 ) )  so that  E ,  ~ - ooX(~1/2")--1 
if [L>0. Then u = ~ , > , o  u2. if 2"~  so we shall be able to decide if u~L p by 
examining IlURIIL~, as R--+oc. This will be done in the following two lemmas. 

L e m m a  a.~.. If "/o=~'~ then ~ . ( y ~ / n , y ~ / n ~ o ) / n  c o . ~ g ~  in S to 

~(y)  __ ~ e ~ ( ~ l + ~  o~ )X(~) d~  

when R~oc  and y2>0. Hence 

(3.7) p 1 §  f f i II~IIL~R ~ I~(y) dy. 
J Jy  2>0 

Proof. Since 

~tR(Yl /R , y 2 / ~  "/~ : / f ~/(Yl~I~-Y2TR(~I))~(~I ) d~l , 
R 27r J 

where TR(~L)=R-7~ ~ in C ~ near suppx,  the stated convergence is 
obvious when Y2 is bounded. We can write 

u~(yx /n ,  y 2 / n  ~~ = ~ _ y ~ / 8  f e,y~la(y~, ~ )  d~ ,  
R 2~ J 

a(y~, 41) = e ~ ( ~ ( ~ ) + ~ / s ) x ( ~ ) ,  

1 1 a n d  since Re(iTR(r ~C1) 1 ~/1 _<cl (-5~1 +~)  < gcl in suppx  by (3.3), it follows that 
~i~+a(y2,(x) is bounded in C ~  when y2>0. Hence we have uniform bounds 

uR(y~/R, Y2/RT~ <CN(I§ ) N e c~ye/S, y 2 >0 ,  
R 

for all N. This proves the lemma, for similar estimates are obtained in the same 
way for the derivatives with respect to y. 
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(3.8) llURIfL~ 
R r 

wh~pg 

(3.9) 

L e m m a  3.3. If 7o>7~ and l < p < 4  then as R-~oo, 

(2~)-P/2 ff~2>o e - ~ 1 ~ ; ~  I~"(~a)Y2 la-P/21X({1) I ~ d{1 dye, 

Co,C"/o F = 7 o - 1 - 2 7 1 + p ( 1 - 1 ( 7 o - 7 1 ) ) ,  r  %1'  

Proof. With yl----/~l+Vl-V~ and y~=RV~x~ we have when R is large 

lZR(X ) __-- UR(/~3~~ 3'1y2) : - - i  [e iqoR(y ,~ l )X(~l )d~l  ' ] R R 2;r 
Im ~ ( y ,  ~1) : y~R - ~  Im ~(R~I) ~ y ~ I C  1 when R-~  oo, 

RVl vo Re ~R(Y, ~1) = y1~1 +Y2R -~~ Re ~-(R~I) ~ Ylf1+Y2~(~l) when R - ~  oc. 

Hence the stationary phase method proves that  

(3.10) I,U,R(/I~Go 1 "Tlyl,R-q'ly2)t~-l+(~/o ~1)/21__ , 
g--Y2 1tEl X({1) 

if yx +Y2~'(~1)=0. Let I c R \  {0} be a compact interval which is a neighborhood of 
{ -  g/(~1 ) ;~1 C supp X }- The stationary phase method also gives the bounds 

lun(RT~ R-7ly2)]R 1+(7o-~1)/2 < C[y I 1/~e-bY~ ' if Yl/Y2 6 I, Y2 > O, 

I~R(n~o-1 ~lyl,R-~ly2)l < C N ( l + R ~ o _ ~ l y l ) _ ~ ,  i f ~ / y ~ r  
R 

Here b>0, and N is axbitrary. Hence 

jfyy2>O luR(RT~ R-7~Y2)I p dy < C R  p+2(~1 -~o) 
1/Y2~I 

Since p + 2 ( 7 1 - 7 o ) + 7 o -  1-271 < F  when p < 4  and 

~x(~  ) dyx dy2 = 
e-'~2 1~1 1 e-Y2 1~1 X(~I) 1! d 

y2>O y2>O 
Yl --Y2 ~71 ({i):0 

(3.8) follows from the dominated convergence theorem. 

Note that although the proofs of Lemmas 3.2 and 3.3 were rather different, the 

exponent F in (3.9) reduces to the exponent p i-3'0 in (3.7) when ~Y1=~Y0. 
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P r o p o s i t i o n  3.4. The inverse Fourier transform u defined by (3.5) is in 
p 2 Llo~(R ) /f and only if 

- 3 7 1  - - ' ) 1 o  2 - -  271 
(3.11) 1 < p <  1+ 2 ~ - - -  ~ ~-71 --") / 2 , 

- -  2+71 --70 

and ucLP(R 2) then. 

Proof. This is an immediate consequence of Lemmas 3.1 3.3, for (3.11) means 
precisely that  F<0.  

Remark. Note that  (3.11) implies that  7o<3%.  If ~- has the Puiseux series 
expansion (2.2) and ")/o<3")/1, then 3 7 1 > 7 o + 1 / r  and 71>I/r. Hence 

37~ -~o > 1/r 1 > 1 > 1 
2+~/1-70 - 2 + 7 1 - 3 7 z + l / r  1 + 2 r ( 1 - 7 1 )  - 2r--1 2 m - 1  

if ~- is an algebraic function of degree m. Thus u E L  p if p < 2 m / ( 2 m - 1 ) .  

We can now return to studying the parametrices of a hypoelliptic operator 
P(D) in R 2. Let Po be the principal part of P,  set 

(3.12) z = { 4 ~ c ~ ; P ( 4 ) = 0 } ,  Zo={r  c2 ;P0(4)=0}, 

and denote by dzo (4) the distance from 4 to Z0, 

(3.13) dzo(4)=  inf 14-401- 
@EZo 

It is clear that  dzo(4) is homogeneous of degree 1, dzo(4)<_14l, and if V is a conic 
neighborhood of Z0 then 141 < Cvdzo (4) when 4 ~t V. If (1, 0) ~ Zo then dzo (~) = 1421 
when 4=(41,42) is in a sufficiently small conic neighborhood of (1, 0). When ~= 
(41, T(41)) with ~- as in (3.2), then 

dzo (4) = Ico 11411 ~~ (1 +o(1)) _< 2lco ](Re 41) ~Y~ (1+o(1)), 

lim412=lim4112+(el(Re41)-Y~+o(Re41).yl+O(1411-ro 1 im41))2> ~Cl(Re41 ) 1  2 2~, 

when 41---~ec and I Im 411 <Re  41' The condition 70 <371 in Proposition 3.4 is there- 
fore equivalent to 

(3.14) dzo(4) tO when Z~4--~cx~. 
llm413 
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T h e o r e m  3.5. If P(D) is a hypoelIiptic operator in R 2 of order m and (3.14) 

is fulfilled then P(~)(D)FELPor if F is a parametrix of P(D) and 

2m 
(3.15) l <_p< 

When l a l= rn  we conclude tha t  FEL~oc when 1_<p<2, which is a much weaker 
result than  Theorem 2.1. We have not aimed for the best exponent here since local 
integrability is the main issue. 

Proof. As in Section 2 we choose M > 0  so that  P ~ 0  in gBM, B e = { { ~ R 2 ;  
I{l<t}. If xEC~ vanishes in BM and x(t~)=X({) when t > l  and {~B2M, 
then X({)p(~)(~)/p({) is a classical symbol of order - l a l  if P 0 # 0  in suppx ,  so the 
inverse Fourier t ransform is in Lq(R 2) if 1 < q < 2  when l a l = l  and for all qE[1, oc) 
when la l>2.  Hence it is in L q when l<q<2m/(2rn-lcel).  

Assuming tha t  the {I axis is in Zo and writing P in the form (2.1) we note tha t  

(3.16) 1 O kP(~)_k! E 1-I 1 
IJl=k jGJ 

where J runs over subsets of {1 , . . . ,m}  with k elements. If X is as above with 
M replaced by a sufficiently large number and supp X is sufficiently close to the 
positive ~1 axis, then the inverse Fourier t ransform uj of X(~)(~2 rj(~l))  1 is in 
LP if l<_p<2m/(2m-1).  When vj(~l) is not o(41) as ~1-~+oc this follows at once 
from the beginning of the proof, for then we have a symbol of order - 1 .  When 

r j ( ~ ) = o ( { ~ )  it follows from Proposit ion 3.4 and the remark after its proof that  the 
inverse Fourier t ransform vj of a({1) ({2 - rj (is)) - 1 is in Lp when 1 < p  < 2 m / ( 2 m -  1) 
for some a which equals 1 in [M, cxD), and it is rapidly decreasing at infinity by 
Lemma 3.1. The inverse Fourier t ransform of X is rapidly decreasing and smooth 
outside the origin, so it is the s~tm of a function in S ( R  2) and a function of compact 
support  which as a convolution operator is continuous on L v for every pC( l ,  oc). 

Hence it maps vj to a function which is rapidly decreasing and belongs to L p when 
l < p < 2 m / ( 2 m  1) and therefore also when p = l .  Since uj=x(D)vj  we have proved 
the claim about  uj.  From the classical inequality 

k 
1 =  

/ 

*uk[[p<[[ul]]pl...][uk][pk, 1 E ( 1 - - ~ - ) '  
P j=l  \ t,j / 

it follows that  the inverse Fourier t ransform of (3.16) multiplied by X(~) k is in L p 
when p < 2 m / ( 2 m - k ) .  By choosing other ~2 axes we get the same conclusion for 
the inverse Fourier t ransform of ~({)kp(~)({)/p({) for all a with I< k. 
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Summing up, we can find functions Xd cC~ j = 0 ,  ..., #, where # is the number 
of real characteristics of P,  such that  the inverse Fourier t ransform of the function 
Xj(~)P(~ is in L p for l<p<2rn/(2m-lal) and " 

_ X=Ej=oXj is equal to 
1 outside a compact  set. Then the inverse Fourier t ransform F of X(~)/P(~) is a 
parametr ix  with the required L p class also globally; it is of course rapidly decreasing. 
The proof is complete. 

Our final goal in this section is to prove that  (3.14) is necessary in order that  
P(~)FCL~o c when I~l=l. When c~ (0, 1), this is essentially the inverse Fourier 

rn 1 t ransform of ~ j = I ( ~ 2 - T j ( ~ I ) )  . For the individual terms we know the necessity 
from Proposit ion 3.4, but we must prove that  there cannot be cancellations which 
make the sum locally integrable although the individual terms are not. The proof 
is fairly long so we shall first give an example where this problem does not occur. 

Example. For P ( ~ ) = ( ~ - 2 i ~ 1 ) 2 - ~ 1 ( ~ 1 - 1 )  2 the zeros are given by 

with the four possible determinations of ~1/4 Sl . For one of them we have T0=3=371  
_ 3 Hence the inverse Fourier t ransform of and for the other three we have 7 0 = 7 1 - a .  

4 a({1) Ej=l({2-rj({l)) is not integrable, for three of the terms are but the fourth 
is not, by Proposit ion 3.4. The assumption (3.14) in Theorem 3.5 is therefore not 
superfluous. 

To rule out the possibility of cancellations in general will require a more precise 
version of (3.10) which also takes into account the phase factor given by the method 

of s tat ionary phase. If 70 >3'1 then co E R  and the phase factor is equal to 

~1-~0 Rer'(R~l) O. exp (i Re PR(Y, ~1)-- ~ri sgn Co), where Yl ~-Y2~ = 

Assume now that  ~- has a Puiseux series expansion of the form (2.2). Then ~-(~1)~1 ~~ 

has a convergent expansion in powers of ~11/~, equal to co at infinity, and the 
equation for ~1 can be writ ten 

yl+Y2~Ck(~l)Qk=O, Lo=R l/r ,  
k--O 

where vo-1 C0(~1)=c0~0~1 , all the functions Ck are analytic when ~1>0, and the 
series converges in a neighborhood of { (~1, L)) ;~1 > 0, L)=0}. By the implicit function 
theorem this defines ~1 a s  an analytic function of Yl/Y2 EI and ~ which is equal to 

(-yl/y2coTo) 1/(~~ when ~=0. Hence 

k = 0  
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where 55k are analytic when y l / y 2 E I  and homogeneous of degree 1. With this 
notation (3.10) can be refined to 
(3.17) 

ttR( R~/~ t~ ~y2)R  -1+(~/~ "n)/2 e-i~(Y'R)+~ri/4sgnc~ 
x/12w.r 

Let %, v = l ,  ... ,#, be Puiseux series satisfying the hypotheses of Lemma 3.3 
with the same values of 70 and ~/1. Let u~, 55~, cj, I ~, ... also be defined as ua,  
55, cj, I, ... with r replaced by r , ,  and assume that  the coefficients c~ are positive. 
Then we claim that  for suitably chosen x c C ~ ( ( 0 ,  oc)) 

~_lu  u R(3~/1 "/o)/2 > 0. 
(3.18) R~o~lim R L 1 

For the proof we observe that 

tt tt 

_ > a e / K  ~-~u~(R~o 1 ~lyl, R -y, y2)R-l+(vo-v,)/2e-i,~'(v,R) dy 
u 1 

for every compact set K c { ( y l , y 2 ) ; y 1 / y 2 E I  1, y2>0}. We choose K so that  if 
55"(y,R)-551(y,R) is unbounded as R--~oo, then it is asymptotic to a positive 
power of R times a nonvanishing function of y in K. Then it follows from the 
homogeneity that  there is no stationary point in K,  so these terms converge to 0 by 
the RiemanmLebesgue lemma. For the other terms 55"(y, R)-551 (y, R) converges 
to a function which is homogeneous of degree 0. If K is chosen close to the origin 

1 then this limit takes its values in (-gee, ~r so the argument of the integrand 
belongs to the interval ( - 3  gTc, 37c), if X_>0. If X is chosen so that  the limit of the 
term with u=  1 is positive, this implies (3.18) since there cannot be any cancellation. 

We have now made the preparations required for the proof that (3.14) is a 
necessary hypothesis in Theorem 3.5. 

T h e o r e m  3.6. I f  a hypoeUiptic operator P(D) in R 2 has a parametrix F such 
that P(~)(D)FeLloc when Ic~l=l, then (3.14) is fulfilled. 

Proof. Since parametrices differ by smooth functions the hypothesis is fulfilled 
for every parametrix F,  so we can assume that  F e C  ~ and that  / v ( ( ) = l / P ( ~ )  
for large I~1. Then P(~)(D)F is rapidly decreasing so P ( ~ ) ( D ) F e L  1, when Ic~l=l. 
We may also assume the coordinates chosen so that  P(~) is of the form (2.1) for 
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large ~1>0. When a = ( 0 ,  1) the Fourier t ransform of P(~)(D)F is then equal to 
Euml 1/(~2--7u(~1)) for large positive ~1- With  xEC~((O, oc)) to be chosen later 

it follows that  the inverse Fourier t ransform x(D1/R)F of 

X(~I/R) 

converges to 0 in L 1 as R~cxD. 
As in the proof of Theorem 3.5 we choose M > 0  so that  P C 0  in CBM, where 

B t = { ~ c R 2 ; [ ~ I < t } .  Let h0 be the set of functions ~ b E C ~ ( R  2) with ~ = 0  in BM 
and %b(t~)=~b(~) when t > l  and ~B2M. If ~oEho and P o r  in suppg)o then 
~o(r162 is a classical symbol of order - [ a [ = - l ,  so the inverse Fourier 
t ransform is in Lq(R 2) if 1 < q < 2 .  If ~bl Eh0 and ~bo+~bl=l in ~B2M, then it follows 
that  the inverse Fourier t ransform of ~I(r162 is also in L 1, since that  of 

(~b0(~) +~bl(~))/P(~) is a parametrix.  Hence 

(F/P(~) (~) --~ 0 in F L  1, as R --* oc. (3.19) )~(~1/R)~)1,.,, p(~) 

We can choose r so that  r is a finite sum of functions CLjEho, j = l ,  ..., J ,  with 
disjoint supports,  each of which is equal to 1 in the intersection of B2M and a conic 
neighborhood of one of the real characteristics and vanishes in a neighborhood of the 
others. Then it follows tha t  (3.19) is valid with ~1 replaced by r  for j = l ,  ..., J .  
In fact, if By, j = l ,  ..., o r, are disjoint compact  sets in R 2 then 

J ~ Lz (3.20) I1~ IlL 1 ~ C ~j 
j=l j=l 

for all ujELI(R 2) with suppgjCBj. This is clear since we can choose djCS(R 2) 
J 

with c t j= l  in Bj and clj=0 in Bk for kT~j, which gives uj=dj*~-~k=luk and 
proves (3.20). A dilation shows that  (3.20) remains valid if supp~jcRBj, j= 
1, ..., J ,  for some R > 0 ,  and this proves that  ~1 may be replaced by r  in (3.19), 

for j - l ,  ..., J .  
If the ~1 axis is a characteristic we conclude in particular that  

"~ 1 
(3.21) X(~I/R)~2(~) E ~2--T,(~1) § in 9rL 1, as R--~oo, 

v 1 

for some r  which outside B2M is equal to 1 in a conic neighborhood of the 
positive (1 axis and vanishes in a conic neighborhood of the other characteristics. 
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W h e n  T.({) is not  o(~1) then ~2(4)/(~2 T,(41))E.YL 1 so the corresponding te rm 

converges to  0. The  summat ion  in (3.21) may  therefore be restr icted to the zeros 

with T,(4s) o(41). We may  assume tha t  the  zeros are labelled so tha t  they  are the 

zeros with 1_<u_<It, and we shall assume tha t  l < u < I t  in what  follows. 

To be able to use Lemmas  3.2 and 3.3, with the refinements preceding the 
s ta tement  of Theorem 3.6, we must  remove the factor  ~2. To do so we choose 

g?a E h0 equal to 0 in a conic ne ighborhood of the {1 axis so tha t  r + r  = 1 in CB2M. 
Then  r  is a classical symbol  of order 1, so the inverse Fourier t ransform is 

in L q when l < q < 2 .  Thus  X(41/1~)93(~)/42----§ in ~-L 1, as R ~ o c .  To prove tha t  
X(41/R)r 1~0 in $-L 1 it is therefore sufficient to  prove tha t  

(3.22) X(41/R)r --+0 in ~'L 1, as R--~c~, 1 _<._<It. 
4~(~-~- . (~1))  

The L 2 norm is O(R'~ 1)--+0, as R--*oc, so (3.22) follows from Parseval 's  formula 

if we prove tha t  the inverse Fourier t ransform is rapidly decreasing. The  L 1 norm of 

any derivative is O(R'~-I)--~O, as R---~oe. This is obvious for the derivatives with 

respect to  42. A differentiation with respect to 41 improves the L 1 norm by a factor  
R -1 if it falls on T,(~I), X(41/R) or ~3(4), and by a factor  R%" 2 - - O ( R  1) if it 

falls on the factor  (42 ~-,(41)) -1,  which proves the claim. Hence the inverse Fourier 

t ransform of the funct ion in (3.22) can be es t imated by CIxI-aR "~-1 outside the 

origin, which completes the proof  of (3.22). 

From (3.21), with the summat ion  restr icted to u-<It, and (3.22) it follows tha t  

(3.23) X(41/R) E 42-T, (41)  ~0 in .7-L 1, as R--~c~. 
1.-'~ 1 

For 1-<u-<p we know by Lemmas  3.2 and 3.3 tha t  

x(41/R) 5L1R(3 [_z )/2 

has a positive limit as R---*c>o. Let F maxl<u<t~ 1 v , if(70 - 3 %  ). If  we prove tha t  

1•__ ~ 1 ~L~/Rr > O, (3.24) X(41/R) ~ ~2-~-,(41) 

it will follow from (3.23) tha t  F < 0 ,  tha t  is, tha t  "y~<37~', u = l ,  ..., It, and this will 
prove the theorem. 
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In (3.24) the terms with [ ( ~ , ~ - 3 7 f ) < F  play no role so we can drop them and 
1 assume from now on that  when l < u < # .  Assume for example that  

cI>O. From (3.18) we know then that  

Ilu/~llL1 , 1 
li_mm R ~  > 0, if 5R(~) = X(~I/R) E 42-w,(~l) 

/:~---+ oo 

with the summation taken for the indices u with l<u_<#,  70"--70,1 71"=Y11, and 
c~'>0. The last condition can be dropped at once, for the terms in the inverse 
Fourier transform with c~<0 have their support in the half plane where x~<0. The 
proof of (3.18) gives more; it proves that  for some compact set K C { (y~, Y2) ;y~/Y2 �9 
11, y 2 > 0 } = Q  1, 

(3.25) lira f luR(x)ldx/R r >0, KR={(Xl,X2);(RI+'Y~-~lxl,R~x2) � 9  
l : t ~ o o  J I~l:t 

If ~ / [ r  or ~ r  then both inequalities are valid, and if xCKR then 

so Y stays outside any given compact subset of Q" for large R. Hence the proof 
of (3.8) using an integrable majorant proves that  the integral of the inverse Fourier 
transform of X(~ I /R) (~ : -~ , (~ I ) ) -~ /R  ~ over K .  converges to 0, as R-~o~. Now 
(3.24) follows from (3.25) and the proof is complete. 

4. A counterexample in high dimensions 

If P(D) is a hypoelliptic operator in R n, of order m, with principal part 
Po(D), then there are no simple characteristics, that  is, P0(~)=0 implies P~(~)=0 
if 0 r  ~. This follows from condition (ii) since P(t~)=O(t ~ 1), as t---,ec, and 
P'(t~)/tm-l-~P~(~). On the other hand, Theorem 11.1.12 in [2] shows that  the 
characteristic set may be quite arbitrary if the multiplicity is high. The following 
result is closely related. 

Proposit ion 4.1. Let P(~)=Po(~)+iQ(~) where Po>O is homogeneous of 
order m, Q is real valued and homogeneous of order m - l ,  and Q(~)?zO when 
0 r  n and P0(~)=0. Then P(D) is hypoelliptic. 

Proof. Since P0 is homogeneous and P0>0  we have (see e.g. [2, Lemma 7.7.2]) 

IP;(~)12<cP0([)l~l ~-2, ~ c R  n. 
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From the estimate 

iP'(~)[ ~ = IPZ(~)I~+IQ'(~)I ~ ~ CPo(~)l~l '~-~+ [Q'(~)I ~ 

<cP0(~)21~l 1+c1~]2"~ a+IQ'(~)I 2 

and the fact that  I~l "~-I<CIQ(~)I<C]P(~)I  in a conic neighborhood V of the char- 
acteristic set {~ERn;P0(~)=0},  it follows that  p'(~)/p(~)=O(l~1-1/2) in V, and 
this is obviously true also in CV. When 1~1>_2 we have 

P(~)(C) __o(1r (-~-~))_-o(ICI*-I<) O(l~l-1</2), P(~) 

which completes the proof of condition (ii). 

Remark. The preceding estimates show that  solutions of the differential equa- 
tion P(D)u=O are in fact of Gevrey class 2. 

The special case we shall study in this section is the square of the wave operator 

[] = (O/Oxo) ~ - ( o / o x d  : _ . . . _ ( o / o x ' d  ~ 

in R l+n, modified as in Proposition 4.1 by adding -(c9/c9Xo) 3. Thus we set 

p(~) ~ ~ ~ ~ .~  
= (~o - r  - - - - - G )  +~r 

and we shall examine if the parametrices of the hypoelliptic operator P(D) are 
locally integrable. If FE3'(R l+n) and F E C  ~,  F=I /P  outside a compact set, 
then F is a parametrix which is rapidly decreasing and smooth except at the origin, 
so F E L  1 if FEL~o c. 

We change notation now and write 

*0=~ ,  x = ( x ~ , . . . , x , d ,  & = ~ ,  ~=( r162  

If X c C ~  ( R ~ \  {0}) and x(D/R) is the convolution operator multiplying the Fourier 
transform by X({/R), then we see as in Section 3 that  x(D/R)F-+O in LI(R~) ,  as 
R--+oo, if F E L I ( R n ) .  We have for large R, 

(4.1) 

FR(t, x) = x(D/R)F(t, x) = (2rc)-1 n//ei(t~-+<x'~)) p(~_, ~) x(~/t~) d~- d~ 

= ( 2 7 c ) - l - n R 1 + n / /  eiR(tz+<x'()) 

To evaluate the integral with respect to ~- we must examine the zeros of P (G {). 
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L e m m a  4.2. The roots "G(r) of the equation 

(4.2) ( ~ 2 - r ~ ) 2 + i ~ 3 = o  

have Puiseux series expansions in powers of r - 1 / 2  at +oe, 

(4.8) 
~(~)=-r+�89 
T 3 ( r )  = r- t-  1c - -~r i /4u  --  l i q - O  ( 1 / ~ / ~ ) ,  

- ~ e ~ / % Z  - ~ i + O  O / v ; )  ~(r )  = - r  ~ 

At these roots the derivative of the polynomial with respect to 7- is 

(4.4) 
4~-j (r)('G (r) 2 - r2) + 3i~-j (r) 2 = rS/2 Aj (r), 

AI(OC) = - 4 e  ~i/4 =.~4(o0), A2(oc) = 4e ~ /4  = A3(oo), 

where Aj is a convergent power series in r 1/2. 

Pro@ With T = + r + s r  1/2 the equation can be writ ten 

(2sq-s2Q)2+i(i l+s~) 3=0,  o = r  -1/2. 

When ~=0  the equation reduces to 4s24- i=0 which has two simple zeros, so the 
implicit function theorem gives tha t  the equation is satisfied by an analytic function 
of ~ equal to a square root of ~:~i at 0. Differentiation of the equation at ~=0  gives 

ds 3 ds 
8 s ~ •  + 3 i s = 0 ,  that  is, 8 ~ 0 = ~ : 4 s 2 - 3 i : - 2 i  

which proves (4.3), and (4.4) is an immediate  consequence. 

The imaginary parts  of 7-1 and T2 are positive and those of ~-3 and ~-4 are negative. 
When t > 0  it follows tha t  

(4.1)' 

2 r ei(t~-j(l~l)-(x,r 
fR ( t , x )  x(D/R)F(t,x)=i(27r)'~j~lJ.= p;(Tj(l~l),~ ) 

= i(27r)-~Rn P;(Tj (RIll), Re) ~(~) d~. 

x(UR) d~ 

The fundamental  solution of [~2 is singular on the Lorentz cone {(t, x) ; t  2 -  Izl2=0}, 
and it is not locally integrable if n>_5. It  is natural  to expect that  as a smoothing 
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of this fundamental  solution, F is concentrated near the wave cone. This suggests 

that  we s tudy 

(4.5) aR(t, x) = Ft~ (Ixl/v~ +t/R, x / v~ )  

When Itl<lxpv~ it follows from (4.1)' and Lemma 4.2 that 

2 
(4.6) GR(t, x) = i(2~)-nR n-5/2 E / e i ~  ~ (x'~)aR(t' x, d~, 

j = l  

(4.7) 9~l(x,~) = Ixll~l+(x,~>, ~2(x,~) = - I x l  I~l+@,~)- 

Moreover, a n converges as R--~oc in the C ~ topology in a neighborhood of R l + n x  

supp X to 

ei(tl~l e ~i/41xlx/~J/2) 
aCe(t, x, ~) = 1~15/2A1(oc) , 

(4.8) e i( tl{l+e~/41xlv/~/2 ) 

a~ (t, x, 4) = 1~15/2A2 (ec) 

The phase function ~1 is critical with respect to ~ precisely when ~/l~l+x/lxl=O, 
that  is, ~ and x have opposite directions, and ~2 is critical when ~ and x have the 
same direction. The critical values are zero by the homogeneity in ~. Since the 
critical points are degenerate we introduce polar coordinates ~=0w where ~)>0 and 
Iczi=l. The phase functions w~• , ~) have non-degenerate critical points 
when w=• I and w=Tx/Ixl, but only the latter are relevant. Hence the method 
of s tat ionary phase gives when R---~oc, with some constants Cj r  which we do not 

have to specify (see e.g. [2, Theorem 7.7.14]), 

2 
l~512--nJ~(n--1)14CR(t , X) --> E Cj Ixl (1-n)12 / a?(t, x, ~o3j))~(~oJj)~ (n-1)12 d~ 

j = l  

for x r  where -w~ =w2=x/Ixl. If we take X with support  in a half space the two 
terms will have disjoint supports.  For a suitable choice of x E C ~ ( R n \ { 0 } )  and of 
a compact  set K C R x  (Rn\{O}),  it follows tha t  

lim ~(9--3n)/4 [ ]GR(t, X)] dtdx > O. 
R-~Oo JK 

Since 

fKI GR(t, X) l dt dx ~ /~l+n/2 f [FR(t, x)[dt dx 
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for large R, this implies that  

lim R (13-n)/4 [ IFR(t, x) l dt dx > O, 
R--+oc a 

and we conclude that  n < 1 3  if F ~ L  1. Thus we have proved the following proposi- 

tion. 

P r o p o s i t i o n  4.3. The differential operator D2-O~ in R 1+~ is hypoelliptic, 
but the parametrices are not locally integrable if 1+n_>14. 

5. A r e m a r k  o n  l o c a l  s p a c e s  

Let B c : D ' ( R  ~) be a Banach space which is semilocal in the sense of [2, Defini- 
tion 10.1.181, that  is, C ~ ( R n ) B c B .  If X c R  n is open, we denote by BI~ the 

corresponding local subspace of 7) ' (X),  

BI~  -- {u C 7P'(X) ; pu  �9 B if ~ C C ~ ( X ) } .  

T h e o r e m  5 .1 .  Let P ( D )  be a hypoeUiptic operator in R n which has a para- 
metrix F such that P(~)(D)FEL~o c when a r  Then 

(5.1) {u e D'(-X) ; P( D)u E Bl~ 

is a local space if B is a semilocal space containing C ~ ( R  n) which is invariant 
under convolution with functions in L 1 (R  n) with compact support. 

Proof. We must prove that  P(D)(~u) ~ D ~ P ( ~ ) ( D ) u / ~ ! E B  if ~ E C ~ ( X )  
and u is in the space (5.1). To do so we choose C e C ~ ( R  '~) equal to 1 in a neigh- 
borhood of the origin with support  so close to the origin that  supp ~ - s u p p ~ b c X .  
Then F I=~bF  is also a parametrix,  that  is, P(D)Fl=6o+CO where c0EC~.  Thus 

u = F 1 , P ( D ) u - w * u ,  P(~)(D)u (P(~)(D)F1)*P(D)u-(P(~)(D)w)*u 

in a neighborhood of suppg;. If ~ E C ~ ( X )  is equal to 1 in a neighborhood of 
supp g ) - supp  ~b then 

D ~ P  (~) (D)u = D ~ ~( (P(~)(D)F1) * (~P(D)u) - (P(~)(D)co) �9 (~u) ). 

Both terms are in B which proves that  (5.1) is a semilocal space. To prove tha t  it 
is local assume that  u E D ' ( X )  and that  P(D)(pu)EBI~ for every ~ocC~(X). 
If ~ E C ~ ( X )  we can choose g)GC~(X) equal to 1 in a neighborhood of s u p p ~  
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and obtain ~bP(D)u=r hence P ( D ) u E B l ~  which completes the 

proof. (The second part of the proof is of course valid for every differential operator.) 

When B = L  2 or more generally one of the spaces Bp,k in [2, Section 10.1] then 

Theorem 5.1 holds for every hypoelliptie operator. The point of Theorem 5.1 and 

of the strong integrability property of fundamental solutions is that  this is also true 
for L p spaces, HSlder spaces and so on which are not defined in terms of Fourier 

transforms. 
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