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On local integrability of fundamental solutions

Lars Hormander

1. Introduction

Let P(D), D=—i9/8x, be a partial differential operator in R™ with constant
coefficients. In my thesis [1] I proved that P(D) is hypoelliptic if and only if one of
the following equivalent conditions is fulfilled:

(i) Im¢{—o0 if C*23(—00 and P({)=0;

(i) P(£)#0 for large £€R™, and P(®)(£)/P(£)—0 when R™>&— o0, if a#0.
The sufficiency was proved by constructing a fundamental solution, that is, a dis-
tribution E with P(D)E=6, and verifying that (ii) implies that F€C* in R™\{0}.
In a conversation with Marcel Riesz, who had been my mentor but was then retired,
he reproached me for relying on the notion of distribution and told me that I ought
to prove that E is in fact a locally integrable function. This reaction was quite
typical of the reluctance of the mathematical community to accept the notion of
distribution. It was not unexpected, and I had in fact avoided using distributions
as far as I could.

Although it is quite irrelevant for the purposes of [1], I have never quite been
able to dismiss the question whether the fundamental solutions of a hypoelliptic
operator in R™ are always locally integrable. In Section 2 we shall prove that the
answer is positive when n=2, but in Section 4 we shall give an example proving
that the answer is negative for every n>>14. At last this settles the question except
for dimensions 3,...,13, and proves that distributions are essential and not only
convenient in this context.

If P(D) is an elliptic differential operator then P(®)(D)E is essentially the in-
verse Fourier transform of P(*)(¢£)/P(€), which behaves at infinity as a function
which is homogeneous of degree —|a|. When |a|=1 it follows that P(®(D)E is
singular at the origin as a homogeneous function of degree 1—n, which gives that
P)(D)eL?  if and only if p<n/(n—1). For arbitrary a#0 we have P(*)(D)E¢
L? if1/p>1—|a|/n. More generally, if P(D) is semielliptic in the sense of [2, Chap-

loc

ter XI, p. 67] of orders mq>ms>...>m,, then it is easy to see that P(O‘)(D)EGL{DOc
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if 1<p< (Z;;l 1/”%‘)/(2?;2 1/m;) and a#0. By the following simple result only
hypoelliptic operators can have such a strong regularity property.

Proposition 1.1. Let FeD'(R™) be a parametriz of P(D), that is, P(D)F —
SocC>®. If PC)(DYFeL' in a neighborhood of O for all a0, then P(D) is hy-
poelliptic, and

(L1) PO(D)F € DL (RY), a0,

for every parametriz F of P(D).

Proof. Let Q be an open neighborhood of 0 such that P(®)(D)Fe L' () when
a#0, and choose e CF (1) with p(0)=1. If G=¢F then

(D) P (D)F

- +¢(P(D)F—60) € L'(R™),

P(D)G—8p=Y

a#0

Pl (D)G = Z (D'B@)P(a—i_ﬂ) (D)F
B

7 e L*R™), if a£0.

Taking Fourier transforms we obtain when R"3¢—o00,
PEGE)-1-0, PEEEGE)—0, if a0,

Hence P(£)#0 when |£] is large, and

Pl JCTaYE:
©) = (Q\G(E) —0, asR"3&— o0,
P& PEGE)
which proves hypoellipticity. Since parametrices of a hypoelliptic operator are
smooth except at the origin and differ by functions which are smooth everywhere,
we obtain (1.1) for every parametrix F.

The converse of Proposition 1.1 is not even true when n=2. In fact, in Section 3
we shall give for the two dimensional case a necessary and sufficient condition for
the parametrices to have the property (1.1), and it is not fulfilled by all hypoelliptic
operators. In Section 5 we shall discuss some consequences of the existence of
parametrices with this property. They indicate that there may be some interest in
characterizing this class of hypoelliptic operators also in the case of several variables.
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2. The integrability of the fundamental solution itself

Let P(D) be a hypoelliptic differential operator in R2, of order m. By condition
(ii) in the introduction we can choose M >0 so large that P(£)#0 when [£|>M.
Set B,={¢€R?;|¢|<t}. If x€C>®(R?) and x=0 in Bys, x=1 in CBaps, then the
inverse Fourier transform F of x/P is a parametrix which is rapidly decreasing at
infinity.

Theorem 2.1. The function x/P belongs to LY when ¢>(m+1)/m, and Fe&
L? when 1<p<m+1.

Proof. If m=1 then P is elliptic (essentially the Cauchy—Riemann operator),
and the statement follows then from the observations preceding Proposition 1.1.
From now on we assume that m>1. If we can prove that x/P€L? when ¢>
(m+1)/m, then it follows from the Hausdorfl-Young theorem that F€LP when
2<p<m+1. Since F is rapidly decreasing this implies F'€ LP when 1<p<m+1.

Thus it only remains to prove that x/P€ LY when ¢>(m+1)/m. If Ais a closed
angle in R? containing no characteristic of P, then [£|™" <C|P(£)|if {€ A and |£]|>M.
Since [,y r*=™ dr=M?""7/(mq—2) if mq>2 and since mqg—2>m(q—(m+1)/m),
it follows that x/Pe€L%(A) when ¢>(m+1)/m. It remains to prove that this is
also true when A is a small angular neighborhood of a characteristic ray. We can
choose the coordinates so that the ray is defined by £ =0 while the £, axis is not a
characteristic. Then we can write for large &

(2.1) H &-7i(&))

where a is a constant and each 7; has a Puiseux series expansion with 7;(£1)=

O(&1), as & —+oo. (See e.g. [2, Appendix A].) When 7;(&)=a;& +0o(&1) with

a;#0 then |£|<C|&—7;(&1)| for large & if £€ A and A is a sufficiently small angular

neighborhood of the positive £; axis. Denote by p the number of such factors. When
=0 we have for large positive &3,

(2.2) ()= (&,

k<s

where 7 is an integer >1, 0<s<r, ¢;s#0, and Im¢;;#0 for some k>0 (by condi-
tion (i)). Replacing ffi/r by Ei/rezm@/r gives different zeros for ¢=0, 1,..., r—1.
The absolute values of their imaginary parts are bounded below by a positive con-
stant times fi/r. Hence & —7;(&1)|( i/r)T*I can be bounded by a constant times
the product of the corresponding factors in (2.1), when £€ A is large, and the factor
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|§2—7;(&1)| can be replaced by another factor fi/ ". Let v be the number of such
groups of zeros. Then we have for large £€ A,

&1 ]1e T e — 7 (61)| < CIP(E)),

where 7 denotes one of the zeros (2.2) and r is the number of zeros in the corre-
sponding group. If ¢>1 we have

[ termr@ dea= Tl = [ vl e Cyler 0
R R

Hence it follows that

x(£)

©)

J

The integral converges if (u+v)g>1+41/r. Since 7;(&1)=0(£1) we have r>2, so this
is true for all g>1 if y+v>2. Otherwise we must have p=0 and v=1, for v#0, and
then r=m so the theorem is proved.

q [ee)
<, / gL/r v ge
M/2

Since parametrices of a hypoelliptic operator only differ by smooth functions,
the following is an immediate consequence of Theorem 2.1.

Theorem 2.2. For every hypoelliptic operator P(D) in R? there is a paramet-
riz F with FE€LP for 1<p<m+-1, and every parametriz is in L}, . when 1<p<m+1.

Ezample 2.1. For the heat operator P(D)=08/0z1—08?/9z% in R? we have the
fundamental solution

(4mwx1) /2 exp(—x3/4x1), when z1 >0,
0, when z; <0,

1
/ / E(z)P do— / (4my)(1-P)/2 / e dt.
251<1 0 <1/ VT

The integral converges if and only if %(1—]))>—17 that is, p<3. This proves that
the L? class in Theorems 2.1 and 2.2 cannot be improved in general when m=2.
More generally, for the semielliptic operator P(D)=iD,+ D} of order m>2 it is
also true that the LP class in these theorems is optimal. To prove this we choose

peC5e(R2\{0}) with [(p(€)/P(€)) dé=1 and set ¢s(€)=p(&1/s™,&2/s)/s. Then

o)

ws(&) R o
/P(é) dE=1, @s(z)=sTp(s" 1, s23).
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With ﬁ:x/ P as in Theorem 1 it follows that for large s,

1=F(ps) = F($,).

Assume that F'€LP in a neighborhood Q of 0. Then F%, converges rapidly to 0 in
CQ as s—o0, and if 1/p+1/g=1 it follows that for large s,

o e (f o)
% </ |FP dx) m—(m+1)/q_

Since we can choose ) with C( [, |F|? da:)l/p<—é—, this gives a contradiction when
s—o0 unless m—(m+1)/¢>0, that is, p<m+1 as claimed.

3. The strong local integrability property
With P of the form (2.1) we have

and similarly for derivatives of higher order. This suggests that the study of the
inverse Fourier transform of P(®)(£)/P(¢) can be reduced to the study of the inverse
Fourier transform of one of the terms in the sum in (3.1). It suffices to examine
those with 7;(§1)=0(&;), corresponding to a branch of the zeros asymptotic to the
characteristic £; axis. To simplify notation we drop the subscript j temporarily and
note that the properties of the Puiseux series expansion prove that 7€ C([e, c0))
for some ¢>0, and that there exist exponents -y, 71 with 0<~1 <y9<1 and constants
co€C\ {0}, ¢1 €R\ {0} such that for every integer j>0,

TOE)ET™ - coro(ro—1) .. (Yo—j+1), & — +oo,

(3.2) . .
ImT(J)(fl)ﬁ T oeam(n—1) . (m—j+l), & — oo

We may assume that ¢; >0, and replacing ¢ by a larger number we may also assume
that

(3.3) Im7(&)> 2", & >c
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If 7o=1 then Imecy=c;, but otherwise cgeR\{0}.

With aeC*(R) vanishing in (—oo,c] and a(&1)=1 for large & we wish to
estimate the inverse Fourier transform u of a(€1) /(&2 —7(£1)) which is a C* function
of £eR? bounded by C¢, ™. Thus

Hea(g))
3.4 ua::27r_2//€—d d
(3.4) (z)=(2n) & T(E) €1 d&2
in the sense of distribution theory. The inverse Fourier transform with respect to
&5 vanishes when 22 <0, and when x5 >0 we have

7 .
(3.5) (@)= / elmbatzar€))g(g)) d;.
The following lemma proves that uwe€ LP for every p, outside an arbitrary neighbor-
hood of the origin.

Lemma 3.1. If j is an integer with j(1+y1—"0)>1 then x{uGLOO(R2), and
if jy1>1 then zhue L°(R?).

Proof. The inverse Fourier transform of a(£1)(€2—7(&1))7 1 is (ima)u/j!.
Since £, —7|?=|¢&—Re7|2+|Im 7|2, it follows when 5 >0 that

1 .
I, . —J
/ |Eo—T |t dé> < Cj| Imr|™7.

We have [ |a(&)| [ Im 7 (&) 77 déi1<oo if jy1>1.

The inverse Fourier transform of 87 (a(£,)(€2—7(£1)) 1) /8¢ is (—ix1)u. Ex-
panding by Leibniz’ rule we obtain a number of terms vanishing for large & where
a has been differentiated, and by (3.5) their inverse Fourier transform is obviously
bounded. The terms where a is not differentiated are of the form

a(&)r® (&) . (&)
(fa—T7(&1))Hm ’

>0, k1 >0,..,k,>0, k1+...+ku =7.

Such a term is bounded by a constant times

wyo—ki—..—ky byo—j
1

62— (€[ Fr T G —r (€I

This is integrable if pyo—j—py1 <—1, that is, 7>14+p(v—y1). Here p<j, so this
is true if j(14~v1 —70)>1. The proof is complete.
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From Lemma 3.1 it follows that ue LP(R?) if ue LL
and R is large, then

(R?). If x€C§((0,00))

loc

X(D:/Ryu(z) = un(e) = o / elmbrtmarl@y(e/R) de,

iR
= i(Rz1&1 4227 (RE)) d
o / (51) 517

(3.6)

is also in L?, and |Jug| r» —0, as R— oo, provided that 1<p<oo. In fact, x(D1/R)
is equivalent to convolution with respect to 1 with R¥(Rxz1), where Y€S(R), so
the operator norm in LP is bounded by ||¥|/r: <oo and x(D;/R)v—0 in LP, as
R—s00, if v€S(R?). We can choose x€C°((%,2)) so that 00 x(&/27)=1
if £,>0. Then “:Zuzuo ugv if 270 <¢ so we shall be able to decide if ueL? by
examining ||ug||z», as R—oo. This will be done in the following two lemmas.
Lemma 3.2. If vo=mv then ug(yi/R,y2/R7°)/R converges in S to
‘I/(y):i/ei(ylgﬁyzcogo)x(ﬁl)dfl
2m

when R—oo and y2>0. Hence

(3.7) g, R0 7 / / WP dy.
y2>0

Proof. Since

UR(yl/R7 yZ/RVU) - L/ W(y1&1+y27Tr(E1)) (§1)d51;

R 27

where 7r(§1)=R™ " T(R{1)—co€!° in C* near supp x, the stated convergence is
obvious when 3 is bounded. We can write

2 ) i
ur(y1/R, y2/R?°) - Le—wcl/s/ezylgla(y%fl)d&’
R 2m

a(yz,&1) = eyz(”R(El)-i-01/8)x(€1)7

and since Re(itg(&1)+3¢1) <c1 (—2£7* + %) <— 31 in supp x by (3.3), it follows that

&1—a(ys2,£1) is bounded in C§° when y,>0. Hence we have uniform bounds

IUR(QI/Ra ya/R°) <

R CN(1+‘yl|)7Neicly2/83 y2>05

for all N. This proves the lemma, for similar estimates are obtained in the same
way for the derivatives with respect to y.
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Lemma 3.3. If vo>v1 and 1<p<4 then as R—oc,

@r) Ll ny s [ ey e desde,
where
(3.9) L=y —-1-2714p(1—3(vn-7)), %(&)=co&)".

Proof. With y; =R =72, and yg=R" x5 we have when R is large

’U,R(LE) ’LLR(R 0o—1 13/1,1B ’yly‘_).) 1 / ipr(3,61)
= B 51 d
— € X(gl) €1,
IIII(PR(?/: gl) "yzR * Tm ’T(Rgl) yQleih hen 12 ’

R™ ™ Repr(y,§1) =y1&1+y2 R Re7(RE1) — y1§1+y2p(§&1) when R—o0.

Hence the stationary phase method proves that

—yzc1€]?
(3.10) |UR(R7071771 y1, R™M yZ)R_1+(’YO*71)/2| N _e_;ﬁ’
|2my21)" (&1)]

if y1+yat' (£1)=0. Let TCR\{0} be a compact interval which is a neighborhood of
{—¢/(&1);&1 €supp x}. The stationary phase method also gives the bounds
1uR(R7°~1_'yly1, R‘71y2)|R*1+(7°‘71)/2 < C|y[*1/26*by2, ity /y2 €1, y2>0,

|u1‘.i(R'm—lf"r1y17 R—™M
R

Here >0, and N is arbitrary. Hence

Y2l oL ROy )N, iy e T,

/ ya>0 Jur(RY Ty, R y)|P dy < CRPHn—10),
y1/y2¢1

Since p+2(y1—70)+v —1—271 < when p<4 and

I e

y1+y2¢ (51) 0

e—vzc1é]?t x(€1)

V 2y [ ()]

e~vzadl’ y emvali x(&) P

1 d d ,
o Y2|v"(61) | dyz d&y

dyl dys =

(3.8) follows from the dominated convergence theorem.

Note that although the proofs of Lemmas 3.2 and 3.3 were rather different, the
exponent I' in (3.9) reduces to the exponent p—1—-g in (3.7) when 1 =";.
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Proposition 3.4. The inverse Fourier transform u defined by (3.5) is in

LP (R?) if and only if
37— 22
(3.11) 1<p<ly 70 o o
2+v1— 2471 -

and uc€ LP(R?) then.

Proof. This is an immediate consequence of Lemmas 3.1-3.3, for (3.11) means
precisely that T'<0.

Remark. Note that (3.11) implies that y9<37y;. If 7 has the Puiseux series
expansion (2.2) and o <371, then 3y; >v9+1/r and v, >1/r. Hence

31— S 1/r _ 1 S 1 1
24y1—v ~ 24 —-3m+1/r 1+2r(1—7y) T 2r—1 " 2m—1

if 7 is an algebraic function of degree m. Thus ueLP if p<2m/(2m—1).
We can now return to studying the parametrices of a hypoelliptic operator
P(D) in R2. Let P be the principal part of P, set
(3.12) Z={CeC?;P(()=0}, Zo={¢€C?; R(¢)=0},
and denote by dz,({) the distance from ¢ to Zp,

(313) (€)= it 1C=Gol

It is clear that dz,(¢) is homogeneous of degree 1, dz,(¢)<|(|, and if V is a conic
neighborhood of Zy then |¢|<Cydz,(¢) when (¢V. If (1,0)€Zy then dz,(¢)=|(2]
when (=((3,¢2) is in a sufficiently small conic neighborhood of (1,0). When (=
(¢1,7(¢1)) with 7 as in (3.2), then

dz,(¢) = lcol [¢1]7(1+0(1)) < 2|ep[(Re (1) (1+0(1)),
[Tm ¢* = [Im G1*+(e1(Re (1) " +o(Re (1) " +0(|¢: [ 1 Im (1)) > Sef(Re (1),

when ¢; —oo and |Im ;| <Re (;. The condition y9<3~; in Proposition 3.4 is there-
fore equivalent to

dZo (C)
[ Im (3

(3.14) —0 when Z3(— 0.
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Theorem 3.5. If P(D) is a hypoelliptic operator in R?* of order m and (3.14)
is fulfilled then P\®)(DYFeLk  if F is a parametriz of P(D) and

2m
2m—|al

(3.19) 1<p<

When |o|=m we conclude that FeL] when 1<p<2, which is a much weaker
result than Theorem 2.1. We have not aimed for the best exponent here since local
integrability is the main issue.

Proof. As in Section 2 we choose M >0 so that P#0 in 0By, Bi={¢€R?;
|€|<t}. If x€C®(R?) vanishes in By and x(t£)=x(¢) when t>1 and £¢ Bowu,
then x(£)P(™(£)/P(£) is a classical symbol of order —|a| if Py0 in supp ¥, so the
inverse Fourier transform is in L9(R?) if 1<g<2 when |a|=1 and for all g€[1,o0)
when |«|>2. Hence it is in L? when 1<¢<2m/(2m—|al).

Assuming that the £; axis is in Zy and writing P in the form (2.1) we note that

1 9P(e) _ 1
(3.16) g _klzkg——ﬁz—%(&)’

where J runs over subsets of {1,...,m} with k elements. If x is as above with
M replaced by a sufficiently large number and supp x is sufficiently close to the
positive £; axis, then the inverse Fourier transform u; of x(&)(&2—7;(&1))~* is in
LP if 1<p<2m/(2m—1). When 71;(£1) is not o(¢1) as & — —+oo this follows at once
from the beginning of the proof, for then we have a symbol of order —1. When
7;(&1)=0(£) it follows from Proposition 3.4 and the remark after its proof that the
inverse Fourier transform v, of a(£;)(&2—7;(&1)) ™" isin LP when 1<p<2m/(2m—1)
for some a which equals 1 in [M,o0), and it is rapidly decreasing at infinity by
Lemma 3.1. The inverse Fourier transform of y is rapidly decreasing and smooth
outside the origin, so it is the sum of a function in S(R?) and a function of compact
support which as a convolution operator is continuous on LP for every pe(1, 00).
Herce it maps v; to a function which is rapidly decreasing and belongs to L” when
1<p<2m/(2m—1) and therefore also when p=1. Since u;=x(D)v; we have proved
the claim about u;. From the classical inequality

k
1 1
el < sl o el 12 =32 (122 ),

=18 Pi

it follows that the inverse Fourier transform of (3.16) multiplied by x(&)* is in L?
when p<2m/(2m—k). By choosing other £&; axes we get the same conclusion for
the inverse Fourier transform of x(£)*P(*)(£)/P(€) for all a with |a|=k.
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Summing up, we can find functions x; €C, j=0, ..., u, where y is the number
of real characteristics of P, such that the inverse Fourier transform of the function
x;(E)P(&)/P(€) is in LP for 1<p<2m/(2m—|a|) and X=>_5-oX; is equal to
1 outside a compact set. Then the inverse Fourier transform F' of x(£)/P(£) is a
parametrix with the required LP class also globally; it is of course rapidly decreasing.
The proof is complete.

Our final goal in this section is to prove that (3.14) is necessary in order that
P@FcL}  when |a|=1. When a=(0,1), this is essentially the inverse Fourier
transform of Z;nzl(fg—Tj (&1))7!. For the individual terms we know the necessity
from Proposition 3.4, but we must prove that there cannot be cancellations which
make the sum locally integrable although the individual terms are not. The proof

is fairly long so we shall first give an example where this problem does not occur.

Ezample. For P(£)=(¢%~2i&1)?—&1(€; —1)? the zeros are given by
=6 vig/

with the four possible determinations of Ei/ *. For one of them we have 70:%:371
and for the other three we have 70:71:%. Hence the inverse Fourier transform of
a(&1) Zj.:l(fg—Tj (&1)) is not integrable, for three of the terms are but the fourth
is not, by Proposition 3.4. The assumption (3.14) in Theorem 3.5 is therefore not
superfluous.

To rule out the possibility of cancellations in general will require a more precise
version of (3.10) which also takes into account the phase factor given by the method
of stationary phase. If 75>~ then ¢y€R and the phase factor is equal to

exp(iRe pr(y, &)~ imisgnco), where g +y, R Rer'(R;) =0.

Assume now that 7 has a Puiseux series expansion of the form (2.2). Then 7(&)¢; ™
has a convergent expansion in powers of & Y ", equal to ¢y at infinity, and the
equation for &1 can be written

vity2 Yy Cr(€1)e¥=0, o=R'",
k=0
where Co(gl):cw@gl%“l, all the functions Cj are analytic when & >0, and the
series converges in a neighborhood of {(£1, 0);&1 >0, 0=0}. By the implicit function
theorem this defines &; as an analytic function of y; /ya €I and p which is equal to
(—=y1/y2¢070)Y (=1 when p=0. Hence

Repr(y,&1) = (y, R) =R Y " ®y(y) R,
k=0
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where ®; are analytic when y;/y2€7 and homogeneous of degree 1. With this
notation (3.10) can be refined to
(3.17)

_ YL
UR(R“/o—l—'nybRfﬂ/lyz)R—1+('yo*71)/2e~i<1>(y,R)+7ri/4sgnca4) eTvreld X(él)

2y (€1)]

Let 7, v=1,..., 11, be Puiseux series satisfying the hypotheses of Lemma 3.3
with the same values of 7 and v1. Let u%, ®¥, ¢, IY,... also be defined as ug,
®, ¢;, 1,... with 7 replaced by 7, and assume that the coefficients ¢} are positive.
Then we claim that for suitably chosen xc€Cg°((0,00))

(3.18) lim R<371*7°>/2 >0.

R—oo

For the proof we observe that
i

Dk

v=1

H
D wh(RTI Ty, R y) | dy

v=1

ROM—0)/2 _ g=1+(10—7)/2 /

Ll

uw
ZRG/ Zuy{(R’Yo*lf’Ylyl’R*’Yly2)R41+(’70—71)/2e—i<1>1(y,R) dy

for every compact set K C{(y1,92);vy1/y2€1", y2>0}. We choose K so that if
d¥(y, R}—®'(y, R) is unbounded as R—oo0, then it is asymptotic to a positive
power of R times a nonvanishing function of y in K. Then it follows from the
homogeneity that there is no stationary point in K, so these terms converge to 0 by
the Riemann-Lebesgue lemma. For the other terms ®¥(y, R)—®*(y, R) converges
to a function which is homogeneous of degree 0. If K is chosen close to the origin
then this limit takes its values in (—§m, §7), so the argument of the integrand
belongs to the interval (——7r 7r), if x>0. If x is chosen so that the limit of the
term with v=1 is positive, this implies (3.18) since there cannot be any cancellation.

We have now made the preparations required for the proof that (3.14) is a
necessary hypothesis in Theorem 3.5.

Theorem 3.6. If a hypoelliptic operator P(D) in R? has a parametriz F such
that P1)(DYFeLl  when |a|=1, then (3.14) is fulfilled.

loc

Proof. Since parametrices differ by smooth functions the hypothesis is fulfilled
for every parametrix F, so we can assume that F€C® and that ﬁ({):l/P(f)
for large |£]. Then P(®)(D)F is rapidly decreasing so P(*)(D)FeL', when |a|=1
We may also assume the coordinates chosen so that P(£) is of the form (2.1) for
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large & >0. When a=(0,1) the Fourier transform of P(*(D)F is then equal to
S 11/ (§a—7,(&1)) for large positive &. With x€C§°((0,00)) to be chosen later
it follows that the inverse Fourier transform x(D;/R)F of

(f1/R P(a) Zg_l/R)

Ty 51

converges to 0 in L' as R—o0.

As in the proof of Theorem 3.5 we choose M >0 so that P#0 in CBs, where
By={¢cR?;|¢|<t}. Let ho be the set of functions € C™(R?) with =0 in By
and P(t&)=v(¢) when t>1 and £¢Boy. If Yo€hy and Py#0 in supp o then
ho(E)P()(£)/P(€) is a classical symbol of order —|a|=—1, so the inverse Fourier
transform is in LI(R?) if 1<q<2. If 4, €hg and o +1=1 in CBaps, then it follows
that the inverse Fourier transform of 1, (€)P(®)(¢)/P(€) is also in L', since that of
(1o (&) +1(€))/P(€) is a parametrix. Hence

P ()
P

We can choose 1y so that 17 is a finite sum of functions ¥n ;€hg, j=1,...,J, with
disjoint supports, each of which is equal to 1 in the intersection of Baps and a conic

—0 in FL', as R— 0.

(3.19) x(&1/R)¥1(8)

neighborhood of one of the real characteristics and vanishes in a neighborhood of the
others. Then it follows that (3.19) is valid with 4 replaced by 11 ;, for j=1,..., J.
In fact, if B;, j=1,...,.J, are disjoint compact sets in R? then

>,

(3.20) Z Jujfi <C

for all u;€ L' (R?) with supp @i;C B;. This is clear since we can choose d;€S(R?)
with d =1 in B; and d =0 in By for k#j, which gives u;=d; *Zk L Uk and
proves (3.20). A dilation shows that (3.20) remains valid if suppi; CRB;,
1,...,J, for some R>0, and this proves that 1; may be replaced by %1 ; in (3.19),
for j=1,...,J.

If the & axis is a characteristic we conclude in particular that

m

(3.21) X(fl/R)d’?(f)Zg_Ti(g)HO in FL', as R— oo,

v=1

for some 15 €hg which outside Bgjys is equal to 1 in a conic neighborhood of the
positive £; axis and vanishes in a conic neighborhood of the other characteristics.
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When 7, (€) is not o(&;) then v2(£)/(é2—7,(€1))€FL! so the corresponding term
converges to 0. The summation in (3.21) may therefore be restricted to the zeros
with 7,(£1)=0(&1). We may assume that the zeros are labelled so that they are the
zeros with 1<v<p, and we shall assume that 1<v <y in what follows.

To be able to use Lemmas 3.2 and 3.3, with the refinements preceding the
statement of Theorem 3.6, we must remove the factor 2. To do so we choose
13 Ehg equal to 0 in a conic neighborhood of the ¢ axis so that 1o +13=11in CBayps.
Then 93(§) /&2 is a classical symbol of order —1, so the inverse Fourier transform is
in L? when 1<g<2. Thus x(&1/R)¥3(€)/é2—0 in FL!, as R—oo. To prove that
x(&1/R)3(&)(a—7,(€1)) "t —0 in FL! it is therefore sufficient to prove that

x(&1/R)s(€)m,(&1)
§2(&2—T(61))

(3.22) —0 in FL', as R—oo, 1<v<p.

The L? norm is O(R ~1)—0, as R—o0, so (3.22) follows from Parseval’s formula
if we prove that the inverse Fourier transform is rapidly decreasing. The L' norm of
any derivative is O(R" ~1)—0, as R—oc. This is obvious for the derivatives with
respect to &;. A differentiation with respect to &1 improves the L' norm by a factor
R™1if it falls on 7,(&1), x(&1/R) or ¥3(£), and by a factor R 2=0(R™!) if it
falls on the factor (£2—7,(£1)) ™1, which proves the claim. Hence the inverse Fourier
transform of the function in (3.22) can be estimated by Cl|z|~*R" ~! outside the
origin, which completes the proof of (3.22).

From (3.21), with the summation restricted to v <y, and (3.22) it follows that

I
; — 1 1 —
(3.23) X(@/R);1 &) 0 in FL', as R— oo.

For 1<y <y we know by Lemmas 3.2 and 3.3 that

has a positive limit as R—oo. Let I'=maxi<,<, 3(7§ —37Y). If we prove that

x(1/R)

§2—7,(&1)

R —1)/2
FL

/RY >0,
FL

R—oo

. - 1
(3.24) lim HX(&/R) ; [

it will follow from (3.23) that I'<0, that is, that v§ <3v¥, v=1,..., 4, and this will
prove the theorem.
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In (3.24) the terms with (% —37)<I play no role so we can drop them and
assume from now on that %(’y(‘)’ —3v¥)=T when 1<v<y. Assume for example that
¢1>0. From (3.18) we know then that

: ”'u’R”L1 PN ’ 1
lim ——= >0, ifar(§)=x(&/R —
e O =x(6/R) 2 e e
with the summation taken for the indices v with 1<v<y, v§=+¢, ¥¥=v{, and
¢y >0. The last condition can be dropped at once, for the terms in the inverse
Fourier transform with ¢ <0 have their support in the half plane where 5 <0. The
proof of (3.18) gives more; it proves that for some compact set K C{(y1,y2);91/y2€

Ila y2>0}:Q17

(3.25) lim lup(z)|dz/RY >0, Kp=1{(z1,22); (R xRz, e K}.
R—ooJKg

If v £~} or 45 #~¢ then both inequalities are valid, and if € K then

v_ v v v_ 1 v 1 v_ 1
Y = (R Wy, R gg) = (R M~y R M),

1 1
y= (R Mg RNz € K,

so Y stays outside any given compact subset of ¥ for large R. Hence the proof
of (3.8) using an integrable majorant proves that the integral of the inverse Fourier
transform of x(&/R)(é&2—7,(&1))" /R over Kg converges to 0, as R—oo. Now
(3.24) follows from (3.25) and the proof is complete.

4. A counterexample in high dimensions

If P(D) is a hypoelliptic operator in R", of order m, with principal part
Py(D), then there are no simple characteristics, that is, Py(£)=0 implies P}(¢£)=0
if 0#££€R™. This follows from condition (ii) since P(t£)=0O(t™ '), as t—o0, and
P'(t€)/tm™=1—P}(¢). On the other hand, Theorem 11.1.12 in [2] shows that the
characteristic set may be quite arbitrary if the multiplicity is high. The following
result is closely related.

Proposition 4.1. Let P(§)=Fy(£)+iQ(§) where Py>0 is homogeneous of
order m, @ is real valued and homogeneous of order m—1, and Q(£)#0 when
0#££cR™ and Py(&)=0. Then P(D) is hypoelliptic.

Proof. Since Py is homogeneous and Py >0 we have (see e.g. {2, Lemma 7.7.2])

IP(E)* <CP(8)lE™ %, E€R™
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From the estimate
[P/ = PP +1Q (€)> < CPy(&) €™ +1Q' (9)?
SCPR()lE| 1+ P2 +1Q" (&)

and the fact that [¢|™~1<C|Q(£)|<C|P(£)] in a conic neighborhood V of the char-
acteristic set {£€R™;Py(€)=0}, it follows that P’(¢)/P(&)=0(]¢|"'/?) in V, and
this is obviously true also in 0V. When |o|>2 we have

‘P(“)(f)
P(£)

which completes the proof of condition (ii).

[ O(jm=1=tm=1) — O(le]1el) = (g 1172,

Remark. The preceding estimates show that solutions of the differential equa-
tion P(D)u=0 are in fact of Gevrey class 2.
The special case we shall study in this section is the square of the wave operator

=(8/02¢)*—(8/0x1)*—...—(8/0z,)*
in R modified as in Proposition 4.1 by adding —(8/8z¢)3. Thus we set
P(§) = (65— &1 —--—&)* +ikg,

and we shall examine if the parametrices of the hypoelliptic operator P(D) are
locally integrable. If Fe& (RY*") and FeC®, F=1/P outside a compact set,
then F' is a parametrix which is rapidly decreasing and smooth except at the origin,
so FeLlif FeL] .

We change notation now and write

£C():t, .CC:(Cﬂl,u.,In), £0:T7 £:(£1,~~-,€n)~

If xeC5e (R"\{0}) and x(D/R) is the convolution operator multiplying the Fourier
transform by x(£/R), then we see as in Section 3 that x(D/R)F—0 in L'(R™), as
R— 00, if FEL!(R™). We have for large R,

ettT+(z.£))
Fa(t,2) = x(D/R)F(t,z) = (27)" // ) (€/R) drde

(41) SIR(tTH(2,6))
= (2x)" 17" Rl / / P(Rr. RE) —————x(€) dr d¢.

To evaluate the integral with respect to 7 we must examine the zeros of P(1,£).
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Lemma 4.2. The roots 7;(r) of the equation
(4.2) (2 —rH)2 +ir® =0
have Puiseut series expansions in powers of /% at 400,
r—ie ’”/4\fA—z+O(1/\/—),
ry=—r+i em/4\/‘~_z+0(l/\/_)7
r)=r+ge ™A — Lt O(1/VT),
Ty=—1— fem/‘l\/_ — H—O(l/\/_)
At these roots the derivative of the polynomial with respect to T is

A (r) (7 (r)? =) 37 (r)? = /2 45(r),
A1 (00) = —4e T4 = Ay(00), Ag(o0) =4e™/* = Az(c0),

B

H

17")

3

73

(
(
4.3
(4:3) (
(

I

N

(4.4)

where A; is a convergent power series in rl/2,

Proof. With 7=4r+sr'/2 the equation can be written
(25+520)% +i(x1+s0)° =0, o=r"Y2

When 0=0 the equation reduces to 4s?2+i=0 which has two simple zeros, so the
implicit function theorem gives that the equation is satisfied by an analytic function
of p equal to a square root of q:ii at 0. Differentiation of the equation at o=0 gives

d d
852 L4573 43is=0, thatis, 8 —rds?- 3i= —2
do do

which proves (4.3), and (4.4) is an immediate consequence.

The imaginary parts of 71 and 79 are positive and those of 73 and 74 are negative.
When ¢>0 it follows that

et (1€) +{x,))

Py (a8 X/

Fr(t,z)=x(D/R)F(t,z)=1(27)~ Z/

(4.1)
it (RIED+R(.6)

=i(2m) "R"Z/ Pr(r,(RIE]), RE) x(§) dé.

The fundamental solution of [1? is singular on the Lorentz cone {(¢,z);t>—|z|?=0},
and it is not locally integrable if n>5. It is natural to expect that as a smoothing
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of this fundamental solution, F' is concentrated near the wave cone. This suggests
that we study

(4.5) Gr(t,z)=Fr(jz|/VR +t/R,z/VR).

When |t|<|z]v/R it follows from (4.1)" and Lemma 4.2 that

2
(4.6) Gr(t, ) =i(2m) "R )" / eVEe @R (1 1 €)y(€) dE,
j=1

7)o@ &) = lallEl+ .6 pale.8)= |l ]+ (z.€).

Moreover, af converges as R— o0 in the C topology in a neighborhood of R'*™ x

supp x to

i(tEl—e ™zl /lg] /2)
[€[7/2A1(00)

ci(—tlel+e™ /el \/I¢] /2)
|€15/2 Az(o0)

a®(t,x,€) =
(4.8)

ago (t7 x? 5) =

The phase function ¢; is critical with respect to & precisely when &/|¢|+x/|z|=0,
that is, £ and x have opposite directions, and 5 is critical when & and = have the
same direction. The critical values are zero by the homogeneity in £. Since the
critical points are degenerate we introduce polar coordinates £=pw where ¢>0 and
lw|=1. The phase functions w+ =|z|e+¢{z,w) have non-degenerate critical points
when w=+z/|z| and w=Fz/|z|, but only the latter are relevant. Hence the method
of stationary phase gives when E— oo, with some constants C;70 which we do not
have to specify (see e.g. [2, Theorem 7.7.14]),

2
R RODAGR(tz) = Y Cyla|/2 /a?(t,x, ow;)x(ow;)e" D% de
j=1

for £#£0, where —w; =wqs=1/|z|. If we take x with support in a half space the two
terms will have disjoint supports. For a suitable choice of x€C§*(R™\{0}) and of
a compact set K CRx(R™\{0}), it follows that

lim R<9*3">/4/ |Gr(t, x)| dt dz > 0.
R—o0 K

Since
/ |GR(t,x)|dtdx§R1+"/2/[FR(t,x)ldtda:
K
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for large R, this implies that

lim R(13_”)/4/|FR(t,x)|dtdx>O,

R—oo

and we conclude that n<13 if FeL!. Thus we have proved the following proposi-
tion.

Proposition 4.3. The differential operator (1 —383 in R'™ is hypoelliptic,
but the parametrices are not locally integrable if 1+n>14.

5. A remark on local spaces

Let BCD'(R™) be a Banach space which is semilocal in the sense of [2, Defini-
tion 10.1.18], that is, C§°(R®)BCB. If X CR™ is open, we denote by B'°°(X) the
corresponding local subspace of D'(X),

B(X)={ucD'(X);pucB if o C(X)}.

Theorem 5.1. Let P(D) be a hypoelliptic operator in R™ which has a para-
metriz F such that P()(D)Fe L] when a#0. Then

(5.1) {ueD'(X); P(D)uc B (X)}
is a local space if B is a semilocal space containing C§°(R™) which is invariant

under convolution with functions in L'(R™) with compact support.

Proof. We must prove that P(D)(pu)=>" Do P (D)u/atc B if p€C§(X)
and u is in the space (5.1). To do so we choose € C§°(R"™) equal to 1 in a neigh-
borhood of the origin with support so close to the origin that supp p—suppyveX.
Then Fy=1v¢F is also a parametrix, that is, P(D)F)=68y+w where weC§°. Thus

u=F xP(D)u—wxu, P(D)u=(P(D)F)*P(D)u—(P(D)w)*u

in a neighborhood of suppy. If TeC§*(X) is equal to 1 in a neighborhood of
Supp @ —supp % then

D*pP® (Dyu=Dp((P)(D)F,)x(¥P(D)u) - (P (D)) «(Tu)).

Both terms are in B which proves that (5.1) is a semilocal space. To prove that it
is local assume that u€D’(X) and that P(D)(¢u)eB¢(X) for every peCg°(X).
If veC5e(X) we can choose peCy°(X) equal to 1 in a neighborhood of supp ¥
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and obtain ¥ P(D)u=vyP(D)(pu)€ B, hence P(D)ue B*°(X) which completes the
proof. (The second part of the proof is of course valid for every differential operator.)

When B=L? or more generally one of the spaces B, in [2, Section 10.1} then
Theorem 5.1 holds for every hypoelliptic operator. The point of Theorem 5.1 and
of the strong integrability property of fundamental solutions is that this is also true
for LP spaces, Holder spaces and so on which are not defined in terms of Fourier
transforms.
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