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Estimates and solvability 

Nils Dencker 

1. I n t r o d u c t i o n  

In this paper  we shall prove an est imate similar to the well-known N i r e n b e r ~  

Treves estimate. The Ni renber~Treves  estimate involves operators on the form 

(1.1) P=Dt+iA(t)B+R(t) on L 2 ( R •  

where A(t) is a uniformly bounded non-negative operator on L2(R  ~) and R(t) is 
uniformly bounded for all t E R ,  B is self-adjoint and constant in t. If  the commuta-  
tors [B, g(t)]  and [B, [B, m(t)]] are uniformly bounded on n2(Rn) ,  then we obtain 

from the Ni renber~Treves  estimate that  

] Ilull2(t)dt ~ CT 2 f HPuH2(t)dt (1.2) 

for n) having support where Itl_<T is smart enough. Here ll ll(t) is the 
L2(R ~) norm for fixed t, and we let (u, v)(t) be the corresponding inner product. 
(See for example Theorem 26.8.1 in [9] for a more precise statement.)  The estimate 
(1.2) also holds if B(t) is a non-constant self-adjoint operator,  whose sign in the 
spectral sense is non-decreasing in t, i.e., the spectral  projection on the eigenvectors 

with non-negative eigenvalues is non-decreasing (see [11]). In the applications, A is 
usually a pseudo-differential operator of order 0 and B a pseudo-differential operator 
of order 1. Then the commuta tor  conditions are trivially satisfied. 

We shall consider the case when B=B(t) is self-adjoint and non-decreasing, 

that  is, B(s)<B(t) for any s<t on a common dense domain inchlding S(R'~), and 
A(t) is a uniformly bounded non-negative operator  on L2(Rn).  We shall assume 

that  the operators depend measurably on t in a weak sense, i.e., tha t  t~-~(A(t)u, v) 
is a measurable function when u, v E S ( R ~ ) .  We also need the condition that  there 

exists 7 < 1 and C E R so that  

(1.3) Im{B(t)u,R(t)u} <~/(AB(t)u,B(t)u}+ClluH e, u E $ ( R n ) ,  t ~ R .  
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This is satisfied with 7 = 0  if R(t) are bounded, symmetric  maps from S ( R  n) to 
S(R~) ,  and have uniformly bounded commutators  with B(t), since in that  case 
Im(Bu, Ru)=(1/2i)([R,B]u,u). This condition with 7 > 0  is convenient for es- 
t imat ing Im(Bu, Ru) in the case when R=ARo and R0 is bounded, since then 

I(Bu, ARoU) I<7(ABu, Bu) +C~[bll 2 for any 3'>0. For these operators, we obtain 
from Theorem 2.1 the est imate 

(1.4) f b l IN( t )d t  <_ CT 2/(Im(Pu, Bu}(t)+ColIrull2(t)) dt 

for u c C ~ ( R x R  n) having support  where ltl<_T is small enough. Except  in the 
trivial case when B is bounded, this will not give an estimate of the L 2 norm of u in 
terms of the L 2 norm of Pu. In the case when we also have A(t)>0 for all t, we find 
that  A(t) has a left inverse A-I(t) with domain D(A-I(t))={A(t)v:vEL2(Rn)}. If  

Pu(t)r for all t, we also obtain from Theorem 2.1 tha t  

f IluH2(t)dt <_ CT 2 f IIA-1/2Pull2(t)dt (1.5) 

when u E C ~ ( R x  R n) has support  where Itt _<T is small enough. Thus, when A(t)>_ 
c>0  for all t, we get a local est imate of the L 2 norm of u in terms of the L 2 norm 

of Pu. 
Observe that  we do not need any conditions on the commutators  [B(t), A(t)] 

(but instead conditions on R), that  the operators may depend measurably on t 
and it suffices tha t  the conditions hold for almost all t c R .  If one has R - 0 ,  then 
the conditions are weaker than for the Nirenberg-Treves lemma but  the conclusion 
is also weaker, unless B is L 2 bounded. In the applications, A could be a pseudo- 
differential operator of order 0 and /3  a pseudo-differential operator of order 1. Then 
condition (1.3) is satisfied if R is a pseudo-differential operator  of order - 1 ,  or a 

symmetric  pseudo-differential operator of order 0. 
We are actually going to prove stronger estimates of the type LI (L2(R~))  to 

L~(L2(Rn)). One can also formulate the results with L2(R n) replaced with a 

separable Hilbert space ~ ,  containing a continuously embedded and dense Fr~chet 
space 9 r replacing ,S(Rn). 

As an example, let us consider the case when A(t)=a(t)>_O is a function in 

Lloc(R), B(t) is self-adjoint for any t, B(s)<_/3(t) when s<_t, and R - 0 .  When 

a(t)>_c>O for almost all t, we may replace the variable t by S=foa(r)dr, which 
transforms P into a(D~+iB~). Thus, by a change of integration variables we easily 
obtain the estimate (1.2) (see also [8, p. 84]). In the case when a(t) vanishes on a 
set of positive measure one cannot in general obtain a local est imate of the L 2 norm 
of u in terms o f the  L 2 norm of Pu, as was shown by Lerner 's  counterexamples [12]. 
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But the estimate (1.4) gives in this case a local estimate of the L 2 norm of u in 
terms of a suitable stronger norm of Pu. 

As an application of the estimate (1.4) we prove an estimate for pseudo- 
differential operators on the form 

(1.6) P = D t + i F ( t , x , D ~ ) ,  ( t ,x)  E R x R  ~, 

with the operator F E L ~ ( R ,  ~l,0(Rn)) having principal symbol f=ab, where aC 
L ~ ( R ,  0 n S1,0(R )) has non-negative real part, and bEL~(R,  1 S1,0(R )) is real and 
non-decreasing. Then, for any s C R  we obtain from Corollary 2.6 a local estimate 
of the H(s) norm of u in terms of the H(s+l) norm of Pu, where H(~) is the Sobolev 
space. (See also [15] for a similar result.) This gives local solvability of the adjoint 
operator P*, with loss of at most two derivatives. In the case when Re a>_c for some 
positive constant c, we also get local L 2 estimates which gives local L 2 solvability 
of the adjoint. Corollary 2.6 follows from Theorem 2.4, where we prove estimates 
for more general classes of pseudo-differential operators. 

Local solvability for P* means that  the equation 

(1.7) P* u = v  

has a local solution nET)' for any vEC ~ in a set of finite codimension. Local L 2 
solvability for P* means that  the equation (1.7) has a local solution u E L  2 for any 
vEL 2 in a set of finite codimension. 

When f is homogeneous of degree 1, we find from the conditions on a and 
b that  P* satisfies condition (~): the imaginary part of the principal symbol does 
not change sign from - to + along the oriented bicharacteristics of the real part 
of the principal symbol. By the oriented bicharacteristics we mean the positive 
flow of the Hamilton vector field on the zero set. This condition is invariant under 
conjugation with elliptic Fourier integral operators and multiplication with elliptic 
pseudo-differential operators (see Lemma 26.4.10 in [9]). 

It was conjectured by Nirenberg and Treves [19] that  condition (~) was equiv- 
alent to local solvability for classical pseudo-differentiM operators of principal type. 
It is known that  condition (~) is necessary for local solvability of classical pseudo- 
differential operators of principal type (see [9, Corollary 26.4.8]) and sufficient for 
solvability in two dimensions (see [11]). Lerner [12] constructed counterexamples 
to the sufficiency of (~) for local L 2 solvability of first order pseudo-differential op- 
erators. It was proved by the author [3] that  Lerner's counterexamples are locally 
solvable with loss of at most two derivatives (compared with the elliptic case). In 
fact, Lerner's counterexamples in [12] can be written on the form (1.1) satisfying the 
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conditions in Theorem 2.1. Observe that  local L 2 solvability of first order pseudo- 
differential operators means loss of one derivative (for example when condition (P) 
is satisfied). Lerner [14] has also proved that  every first order pseudo-differential 
operator of principal type which satisfies condition (~),  is a sum of a solvable oper- 
ator and an L 2 bounded operator. But it is still an open problem whether condition 
(q~) is sufficient for local solvability in three or more dimensions. For some other 
results on local solvability for principal type pseudo-differential operators, see [6], 
[7], [10], [13], [17] and [18]. 

The plan of the paper is as follows. Section 2 presents the results of the paper. 
In Section 3 we state the corresponding semi-global estimate, which is proved in 
Section 4. The proof relies on Lemma 5.1, which is stated and proved in Section 5. 
Finally, we shall use these estimates to prove Theorem 2.4 in Section 6. We shall 
use the Weyl calculus of pseudo-differential operators. For references and calculus 
results, see Chapter 18 in [9]. 

Acknowledgement. The author wishes to thank Anders Melin for some valuable 
comments. 

2. S t a t e m e n t  o f  r e s u l t s  

We assume that  7-/is a separable Hilbert space with inner product {u, v}. We 
also assume that  5c_c7-/ is a Fr6chet space, which is continuously embedded and 
dense in 7/. In the following we shall assume that  7-/=Le(R n) and 5 c $ ( R  n) but 
the arguments also work in the general case. 

We say that  a mapping R~t-~u(t) C L 2 (R n) is weakly measurable if t---~ (u(t), v} 
is measurable for every fixed vcL2(Rn) ,  clearly it suffices to take vES(R'~).  Let 
B(L2(Rn))  be the set of bounded linear operators A: L2(R~) -~L2(R n) with norm 
IIAII, and let B(S(R~),  L2(R~)) be the set of bounded linear operators from S ( R  n) 
to L2(Rn). These can be considered as unbounded operators on L2(R n) with S ( R  n) 
included in the domain :D(A). In the following, we shall assume that  all operators 
are preclosed on L2(Rn),  thus the adjoints have dense domains. If R~tHA( t )C 
B(S(Rn), L 2 (R~)), then we say that  A(t) is weakly measurable if t~-~A(t)u is weakly 
measurable for every fixed uE5 c. 

Observe that  if u(t) is weakly measurable with values in $ ( R  n) and A(t)E 
B($(Rn) ,  L2(Rn)) is weakly measurable, then A(t)u(t) is also weakly measurable. 
In fact, if {uk}~__l is an orthonormal basis for L2(R '~) such that  ukES(R n) for ev- 
ery k, then we find that  {A(t)u(t), v} Ek~_l(u(t), uk}(uk, A*(t)v} for vC:D(A*(t)). 
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Since A* (t) has a dense domain (depending on t), we find 

N 

(2.1) (A(t)u(t),v}= lim E ( u ( t ) u k } ( A ( t ) u k , v ) ,  
k = l  

v C L2 (R~), 

where the sum in the right-hand side is measurable. It follows that  if both A(t)C 
B(L2(Rn)) and B(t )cB(8(Rn) ,  L2(Rn)) are weakly measurable and u(t) is weakly 
measurable with values in 8(R~),  then A(t)B(t)u(t) is weakly measurable. We also 
find that  (u(t), v(t)} is measurable when u(t) and v(t) are weakly measurable with 
values in L2(R~). When A(t)>0 with left inverse A l(t), we find that  t H A - l ( t )  is 
weakly measurable. In fact, this follows because the resolvent ( z - A ( t ) ) -  ~ is weakly 
measurable (in t) outside the spectrum of A(t). 

Assume that  

(2.2) P = Dt +iA(t)B(t) +R(t), t C R, 

where A(t) is weakly measurable and uniformly bounded in B(L2(Rn)), i.e., 

(2.3) IIA(t)ll <_ C1 for almost all t, 

such that  

(2.4) A(t) = A* (t) >>_ 0 for almost all t. 

When A(Q>0 we find that  A(t) has a left inverse A l(t) with domain ~ ( A - l ( t ) ) =  
{A(t)v:vffL2(R'~)}. We assume that  B(t) is weakly measurable and uniformly 
bounded in U(8(Rn), L2(Rn)) such that  B(t) is symmetric on S(R~),  i.e., 

(2.5) (B(t)u, v) = (u, B(t)v}, u, v C 8(Rn) ,  

for almost all t. Observe that  the operator tH(B(t)u ,  u} eL~oc(R ) has weak deriv- 
ative (d/dt){B(t)u,u}cTP'(R) for any uCS(R'~), i.e., 

(2.6) 
d f 
~--{B(t)u, u)(~) = -  l (B ( t )u ,  u)~'(t) dt, ~ c C~(R).  
dt J 

We assume that  there exists C2 E R such that  

(2.7) d ~<B(t)~,~) 2-C211~112 in ~D'(R) 
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for any u � 9  We also assume that  R(t) is weakly measurable and uniformly 
bounded in B(S(R~),L2(R'~)) such that  the imaginary part ImR(t)  is uniformly 
semi-bounded. Thus we have, for some choice of sign and C 3 � 9  

(2.8) J:Im(R(t)u,u} ~Callullh u � 9  

for almost all t. We also assume that  there exist V < 1 and C~ �9 R such that  

(2.9) Im(B(t)u, R(t)u) < ~/(ABu, Bu> +C~ IIu II 2, ~ �9 S<R~), 

for almost all t. This condition is satisfied with ~/=0 if R(t)=R*(t), B(t) and R(t) 
maps S ( R  ~)--*S(R~), and [B(t), R(t)] is uniformly bounded in ~(L2(Rn)).  We find 
that  Pu(t) is defined for almost all t when u e C l ( R , $ ( R n ) ) ,  and that  tHPu( t )  is 
weakly measurable. 

T h e o r e m  2.1. Assume that P in (2.2) satisfies (2.3) (2.9). Then, there exists 
To>0 such that 

(2.1o) sup~ Ilnll~(t)+T /(AB~, ~u> dt <_ Co/(TIm(Pu, Bu)(t)+C~l(Pu, u)(t)l ) dt 

for ue C~ (R, S(R~)) having support where It I <T<To. If A(t) >0 with left inverse 
A -1 (t), and Pu(t) eT)(A -1 (t)) for almost all t e I-T,  T], then we obtain 

(2.11) supllull2(t)+T/<ABu'Bu}dt<-C~ 

for ueC~(R,$(Rn))  having support where ttl<T<_To. The constants Co, C~, C~ ~ 
and To only depend on the constants Co, Cl, C2, C3, C~ and V in (2.3), (2.7)-(2.9), 
they do not depend on the seminorms of B and R. 

Theorem 2.1 follows directly fi'om Theorem 3.1 in Section 3. In fact, since 
IIIAIIIT=fT_T(IIA(t)II+I)dt<_C3T, we find that  condition (3.6) is satisfied for any 
c>0 if T is small enough. Also, we find that  R satisfies condition (3.8) for any 
0<A<�89 and 6=0 when T is sufficiently small. 

Remark 2.2. If Pu(t)cD(B*(t)) for all t, we find that  (2.10) implies 

(2.12) s~p 11~ll2(t)+T f lAB~, Bu> dt <_ c~ f (T311B*P~II2(t)+TIIP~II2(t)) dt 

for uECI(R ,S(Rn) )  having support where [tl<T<To. In fact, since we have 
f Ilull2(t) dt<2Tsup t IlulI2(t) we may use the Cauchy Schwarz inequality. 
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We have that Lerner's counterexamples in [12] can be written on the form (2.2) 
satisfying the conditions in Theorem 2.1. This gives a proof of solvability with loss 
of two derivatives compared with the elliptic case for these counterexamples (as was 
also shown in [3]). Lerner [14] has proved that every first order classical pseudo- 
differential operator of principal type which satisfies condition (~) is mierolocally on 
the form Dt +lAB § where 0 < A < C, t ~-~ B (t) is non-decreasing and R is bounded, 
so that Dt+iAB is solvable by Theorem 2.1, but R need not satisfy condition (2.9). 

It is possible to relax the conditions on A(t), B(t) and R(t). See Theorem 3.1, 
Remarks 3.3 and 3.4 for more general conditions. A simpler version of Theorem 2.1 
was proved in Appendix A in [4]. (See also [15, Lemma 2.1] for a related result.) 

Condition (2.9) involves estimating the term Im(Bu, Ru}. If REI3(L2(Rn)) 
then we may define the symmetric part ReR= �89 and the antisymmetric 
part ImR=(1 /2 i ) (R-R*) .  If R maps S(Rn)--~8(Rn), then we obtain that 

Im(Bu, Ru> = �89 Re R]u, u>-Re(B(Im R)u, u>, u C $(Rn). 

A way of estimating this term is given by the following proposition. 

Propos i t ion  2.3. Assume that R=AU2RI+R2B,  where O-<AcB(L2(R~)), 
RleB(S(R~),  nu(Rn)) and R2 eB(L2(R'~)) satisfy 

(2.13) IlRlull 2 <_ g(ABu, Bui+Ctlul l  2, u e $(a~) ,  

(2.14) Im(R2u, u) >_ -5(Au,  u>, u C L2 (R~), 

for some 0, ScR .  If  A>0 with left inverse A -1 and R = R I + R 2 B ,  where R1 
maps 8(Rn)-~T)(A-1), we may write Rl=A1/2A-1/2R1 with A• and re- 
place (2.13) with 

(2.15) (A-1RlU, RlU)<p(ABu,  Bu>+C[[uH 2, u e S ( R n ) .  

We obtain in both cases that 

(2.16) Im(Bu, Ru> < 7<ABu, Bu) +Co Ilull 2, u �9 S(Rn), 

if either t)<0, or 020 satisfies x/~ +5_<7. 

Observe that we do not have to assume any bounds on IIR2 II if R~ =R2 (compare 
Remark 3.4). 

Proof. By the Cauchy-Schwarz inequality and (2.13) we find when 6_>0 that 

21( A1/2 Bu, Rl u> I _< II A1/2 BulI2 + ),- II utl 2 
(2.17) < (A+~o/A)(ABu, Bu> +CA -111~,11 

= <ABu, Bu> + C o  tl, ll 
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by choosing A=x/o. When g<0 we may choose A>0 so that  A+t)/A in (2.17) is 
smaller than any given negative number. In the case A > 0  and RI: $(R'~)-~TP(A -1) 
we find that  

(2.18) 2l{Bu, Rtu)l = 2[(A1/2Bu, A 1/2RlU) l< AIIA1/2Bu[[2+A-I(A-1RlU, J~l u} 

and obtain the corresponding estimate. Also, if R=R2B we find from (2.14) that  

(2.19) Im(Bu, Ru) = Im(Bu, RzBu) < ~{ABu, Bu). 

By summing up, we obtain (2.16). [] 

We shall also apply the estimates to pseudo-differential operators. Let the 
metric g~,~(dx, dE) be a temperate  on T* (R~), constant in t, such that  sup 9/g ~= 
h2_<1. Let S(h'~,9), mER,  be the class of symbols aEC~176 for which 
lalg<Ckh ~ for all k, where the semi-norms of a are given by 

la(k)(x,~,rl, ... , rk)] 
(2.20) lal~(x,~) = sup k 1/2 for k_>0. 

TiC0 I ~ j = l  gx,c~(rJ) 

We consider the operator 

(2.21) P = D t + i f w ( t , x ,  Dz)+r~(t ,x ,  Dx), (t,x) C R x R  n, 

where f E S ( h  1,g)  i8 real valued, and rcS(1,9)  for t E R .  Here 
(2.22) 

1 IT ei(X-Y'r uCS(Rn) '  f~( t , x ,  Dx)u(x)-- (27c)n *(R~) 

is a Weyl operator in x for tER .  For the Weyl calculus notation and results, see 
[9, Section 18.5]. As before, we assume that  all symbols depend measurably on t 
and are uniformly bounded in the symbol classes, so that  the weak derivatives in t 

exist. 

T h e o r e m  2.4. Assume that P is on the form P=Dt+i fw( t , x ,D~)+  
r"(t, x, D~) with ren~ S(1, g)) and f =ab where a e n ~ ( R ,  S(1, g)) has real part 
Re a > -ch,  be L ~176 (R, S( h - t , g) ) is real valued with weak derivative Otb > - C  , and g 
is constant in t. Then, there exist real valued b0EL~ S(h-  l, g) ) and constants 
Co, C1 and T0>0, depending only on c, C and the semi-norms of a, b and r and 
on the constants in the slow variation and cr temperance of g, such that 

Ilul12(~) _< CoTf( Im{b~Pu,  u)(t)+C111Pull2(t)) dt (2.23) s o p  
t J 
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f o r u E C ~ ( R •  n) having support where ]t]<_T <<To. If  Rea_>c0 for some constant 
c0>0, we obtain that 

Ilull2(t) <_ C~T [ IIPull2(t) df (2.24) s u p  
t J 

for u e C ~ ( R •  '~) having support where Itl<T<To. 

Remark 2.5. Since g is a temperate we find I b0(t, x, 5)]< c0h -1 (x, ~)_< CN (~)N 
locally in x and t, thus (2.23) gives, after integration in t, that 

(2.25) J llull' (t) ,t _< C' T'/llfull ,<,n§ 
for u C C ~  (R x R n) having support where Ix I _< 01 and It[ _< T. This gives local solv- 
ability of the adjoint P* near (t, x) = (0, 0). If (2.24) holds, we obtain local L 2 
solvability of P* near t=0 .  Here (~)= V / ~ 2 +  1, and 

(2.26) Ilull .)(t)- 1 /R n s e R ,  

is the square of the Sobolev norm in the x variables, for fixed t 02 is the Fourier 
transform of u in the x variables). Observe that (2.23) may be microlocalized with 
respect to the metric g, for small enough T. In fact, if eES(1 ,g )  is constant in t, 
then [P, r ~ {f, r modulo Op S(h, g) which implies that [ Im(b~ [P, r r  l < 
C]lull 2. We may also allow the metric g to be t dependent, as long as it is continuous 
and conformal in t for fixed (x, ~). But then we have to assume that Im (r ~ �89 {a, b}) �9 
S(h,g) and R e a > - c h  2 for almost all t (see Remark 6.3). 

Theorem 2.4 will be proved in Section 6. In the case when S ( h - 1  g)=SL0(  R 1  n) 
we obtain the following result from Theorem 2.4. 

C o r o l l a r y  2.6. Assume that P is on the form P--Dr+iF(t ,  x, D~) with FE 
~1 I~n~ for ahnost all t having principal symbol f =ab, where a � 9  Sl~ 1 ,0 \  ~'~ ] 

has real part Re a(t, x, ~) > -c(~) 1, and b �9 L ~ (R, S~, o (R ~)) is real valued with weak 
derivative Otb>_-C. For any s E R  we can find Cs and T~>0, so that 

(2.27) sup Ilull(2~)(t) < C ~ T f  IlPull~+l)(t) dt 
t J 

when u ( t , x ) � 9 2 1 5  ~) has support where ItI<T<T~. If  Rea>c for some con- 
stant c>0,  we obtain that 

sup  Ilu[l .)(t) < C'Tf IIPull~,)(t) (2.28) dt 
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when u E C ~ ( R •  n) has support where [tI<<_T<_T~. The constants C~, C" and T~ 
only depend on c, C, on the semi-norms of the symbols a, b, and r in their symbol 
classes, and on the constants in the slow variation and cr temperance of g. 

This gives local solvability of the adjoint operator P* with loss of at most two 
derivatives. 

In the ease f is homogeneous of degree 1, we find that  Re a and b/l{l may only 
vary with a fixed factor on the rays R+ 9 r ~-+r{ where f ~ 0. We find that  Re all#0 _> 0 
and that  t~-~blir is non-decreasing. This implies that  P* satisfies condition (~),  
which we know is necessary for solvability. In fact, we find that  b does not change 
sign from + to - along the flow of HRe~(p)=Ot--Himab when fg~0, since then 
//Re ~ (P) b >_ {b, Im a} b in D', where the Poisson bracket { b, Im a} E L ~176 . When f -  0 
we find Hae~(g)=0 t  and we have seen that  blfr cannot change sign from + to 

- for increasing t. Thus b{/r cannot change sign from + to - along the flow of 
Hae~(e) , which gives the same result for Im a ( P ) = R e  f = R e  ab. 

Observe that  F~o(t ,x,D~)~F(t ,z ,  Dx) modulo an operator in ~0 rR,~ for 1,0k  ] 

almost all t. Thus, Corollary 2.6 follows from Theorem 2.4 by putting S(h-] ,g)= 
1 n w 1 S1,0(R ) and conjugating with (Dx}% since b 0 E ~ , 0 ( R  ~) maps H(~+z) continuously 

into H(~) for almost all t. 

Remark 2.7. Observe that  the estimate (2.27) also holds with different Ts, 
if we perturb the operator P with R for any RC~~ In fact, by us- 
ing the Malgrange preparation theorem and a partit ion of unity, we may write 
a(R)=r(r+i f )+ro  where r e ~ 7 , ~ ( R  ~+1) and ro(t ,x ,{)eC~ S~ Then, 
by multiplying P with I - r ( t ,  x, Dr, Dx), we obtain an operator which satisfies the 
conditions in Corollary 2.6 modulo a term in ~ - l g R ' + l )  By perturbing the esti- 1,0\ 
mate (2.27) for small enough T we obtain the result. It is known that every first 

order c]assical pseudo-differential operator of principal type which satisfies condi- 

tion (~) is a sum of a solvable operator and an L 2 bounded operator, but the L 2 

operator could be in a "bad" symbol class (for example S~ 

3. T h e  s emi -g loba l  e s t i m a t e  

In this section, we assume that  7-/ is a separable Hilbert space with inner 
product (u, v). We also assume that  9~C~ is a Fr6chet space, which is continuously 
embedded and dense in 7-/. We assume that the operator is on the form 

(3.1) P=Dt+iA( t )B( t )+R( t ) ,  t c R ,  

where A(t) is weakly measurable in/3(7-/) such that  

(3.2) A(t) = A*(t) > 0 for almost all t, 
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and 

(3.3) t, , IlA(t)lI �9 L~o~(R). 

Thus, A(t) need not be uniformly bounded. When A( t )>0  we find that  A(t) has a 
left inverse A l(t) with domain 7?(A-l( t ))={A(t)v:vC~}.  We assume that  B(t) 
and R(t) are weakly measurable in B(~ c, ~ )  so that  

(3.4) t, , B(t) and t, ~ R(t) are locally equicontinuous in B(J c , ~ ) .  

We find that  t~-~Pu(t) is weakly measurable when ur  ~). We also assume 
that  B(t)  is symmetric on )r, 

(3.5) (B(t)~,  v) = (~, B(t)v) ,  ~, v e y ,  

for almost all t. Observe that  the function t ~  (B(t)u, u} C L~c (R) has weak deriv- 
ative (d/dt)(B(t)u, u}CT?'(R) for any u E )  c. We assume that  there exists ? < 2  so 
that  for some e > 0 we have 

(3.6) ~i(B(t)u,d u)+2Im(R(t)u,B(t)u}+?(AB(t)u,B(t)u) > 

in D ' (R)  for any uC$-, where 

e(ttA(t) ll + 1)Ilult2 

IIIA III~, + Itl A III T 

f (3.7) IIIAIIIT = (llA(t)ll +1)  dr. 
T 

We also assume that  there exists A< 1 C o E R  and g>0 so that ,  for a choice of sign, 2'  

(3.8) ~cIm(R(t)u,u) ~ (ColIIAIIIT+~)(AB(Ou, B(t)u}4 )'(tlA(t)ll+l)llul{2 
rllAIk 

for any u C Y  and almost all t. 

T h e o r e m  3.1. For any ? < 2 ,  )~< 1 5, C 0 r  and g_>0, there exist positive con- 
stants e~x e and Czxe, with the property that if P in (3.1) satisfies conditions (3.2)- 
(3.8) with e < e ~  o when Itl<_T, then 

(3.9) 
sup~ IlulI~(O+/(IIIAIIIT+~)<AB~, B~>(t) dt 

<_ c~o / ( (IItAIIIT+ ~) Im(Pu, Bu} (t)+Cx[ Im(fu, u}(t)l ) dt 
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for u E C ~ ( R , 5  ~) having support where Iti<T. The constants c~o, C~Q and CA 
only depend on the constants )b % Co and 0 in (3.6) and (3.8). If A(t)>O with left 
inverse A- l ( t )  and Pu(t)CT)(A-I(t)) .[or almost all tE [-T, T], then we find from 
(3.9) that 
(3.10) 

HA-1/~puIl2(t) dt 

for  eC0 (a,  :) having support where ItX_<T. 
Remark 3.2. It  follows from Theorem 3.1, after integration in t, that  we get 

L 2 solvability in the case when A(t)>c>0 for almost all It I < T .  If Pu(t)E~D(B*(t)) 
for almost all t, then by using the Cauchy Schwarz inequality, we obtain from (3.9) 

tha t  

sup llull2(t) + / (IIIiIlIT+ o)( iBu,  Bu)(t) dt 
(3.11) 

" (I]IAIll3 + 0 2 ]]]All]T ) lIB*Pull 2 (t) + IHAHIT IIPull2(t) dt 
< IIA(t) II + 1 

for all u c C ~ ( R , ~ - )  having support  where Itl<T. Here we use the fact that  

f(HA(t) I{ + 1)Hull 2 (t) dr<_ ]]IAIIIT sup t Hull2(t) when u has support  where It I < T .  

Remark 3.3. We may generalize the conditions and assume tha t  there exists a 

function co(t)EL~o~(R ) and constants "y<2, c>0  and Co ER,  such that  when Itl <c  
we have 

(3.12) 
d (B(t)u, u) +2  lm(R(t)u, B(t)u} +7(AB (t)u, B(t)u} > co (t)(B(t)u, u) - Co Ilull 
dt 

in TY(R) for any uE9 ~. We may also assume that  there exists constants C1 and C2 
so that ,  for a choice of sign, 

(3.13) • Im(R(t)u, u) <_ C1 (AB(t)u, B(t)u) +C2 Ilu]] 2 

for any uE.P and almost all lt]<c. Then, we obtain the est imate (3.9) with any O_> 
C1 for sufficiently small T. If  A(t) >0  with left inverse A -1 (t) and Pu(t) CT)(A -a (t)) 
for almost all tE[-T,T],  then we also obtain (3.10) with any o>C1.  In fact, we 

may replace A(t) and B(t) by w(t)A(t) and w-l( t )B(t) ,  where w(t)=exp f t  Co(S) ds. 
Since IIIAIIIT--~O when T-*0 ,  we find that  condition (3~6) is satisfied for any c > 0  if 
T is small enough. Also, we find that  R satisfies condition (3.8) with Q>C1 for any 
0 < A <  ~ ~, when T is sufficiently small. By applying Theorem 3.1 we obtain (3.9) 

and (3.10) since IIIwAIIIT~_CIIIAIIIT. 
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Remark 3.4. By inspecting the proof we find that  we may essentially obtain 
Theorem 3.1 with IFIAIIIT replaced by JllAl~m.lllT (see Remark 4.1). It is also possible 
to weaken the conditions on A(t)EB(~), which need not be symmetric. In fact, we 
may define the symmetric part Re A =  �89 (A+A*) and the antisymmetric part Im A =  
(1/2i)(A-A*). We let ReA=A+-A , where t~-~A• is weakly measurable 
since the resolvent is weakly measurable outside the spectrum. For the symmetric 
part of A we assume that  

(3.14) t~ -~  IlA+(t)II c L~or ) 

and 

(3.15) <A_B(t)u,B(t)u} ~Cllu[I 2, ~ e S ,  for almost all t. 

We also need to assume that  

(3.16) +Re( (A A+)B(t)u,u)<C'Re(AB(t)u,B(t)u}+C"llul[ 2, u e ~ ,  

for almost all t, with the same choice of sign as in condition (3.13). Then, if 
(the real part of) conditions (3.12) and (3.13) are satisfied, we obtain (3.9) with 
A replaced by A+. If A+(t)>0 with left inverse A+l(t) and Pu(t)EZ~(A+I(t)) for 
almost all tE I-T,  T], then we obtain (3.10) with A replaced by A+. In fact, we may 
write P=Dt+iA+B+Ro, where Ro=R+i(A-A+)B, and then conditions (3.12) 
and (3.13) are satisfied for some other constants Cj with A replaced by A+. In 
order to obtain (3.16) it sumces that  (3.15) holds, IIA_ II <_c, ImA maps 5c~5 c and 
II [B, Im A] II <_C, since 

(3.17) 21(A Bu, u}l<(A Bu, Bu)+{A u, u} 

and Reli(ImA)Bu, u}=-hn((hnA)Bu,u}=(1/2i)([B,ImA]u,u }. Thus, we need 
not assume any bounds on il ImAll (compare Proposition 2.3). 

4. P r o o f  of  T h e o r e m  3.1 

First, we observe that  by changing t variable, letting 

(4.1) s =  (]]A(r)ll+l)dr, 

thus ds/dt=ild(t)l]+l almost everywhere. Hence Dt=(ISd(t)ii+l)D8 almost ev- 
erywhere, dt = (//A(t) II + 1)-1 ds, it transforms P into (llA(t)II + 1) (Ds +iAoB + Ro), 
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where Ao(t)=A(t)/(HA(t)l[ + 1) and Ro(t)=R(t)/(HA(t)ll + 1) almost everywhere. 
We find that  It[<T implies that  S=supltl<T [s[<I[JA[[IT<2S. By a translation in s 
we might assume that S=�89 Thus, after changing P where [t]>T to make 
(3.2)-(3.8) hold for almost all tER ,  and changing the t variable, we inky assume 
that  IIA(t)JJ<l, 

(4.2) d (B(t)u,u)+2Im(R(t)u,B(t)u}+7(AB(t)u,B(t)u) > - 
s 2 

- 4T2+2T 

in ~Dt(R) for any u E ~ ,  and (for a choice of sign) 

(4.3) i Im(R(t)u, u) < (2CoT+o)(AB(t)u, B(t)u)-~ ~ll~ll2 
- -  2T 

for any uE9 ~ and almost all tE[--T,T]. Now, to prove (3.9) it suffices to prove that  
for ~ small enough we have, independently of T, the estimate 

IIulI2(t)+ f (2T+a)(ABu, Bu)(t) dt s u p  

(4.4) t J 

<_ c ~  J((2~+o) rm(P~, B~)(t)+c~l  Im(P~, ~)(t)I) dt 

when uEC0i(R,b c) has support where [t]<_T. 
First we observe that,  by choosing - t  as t variable, we change P to the operator 

- ( D t - i A B - R ) ,  which changes B to - B  and R to - R .  Thus, we may assume that  
(4.3) holds with the positive sign, observe that  condition (4.2) is not changed. 

We shall prove (4.4) by first using that  

(4.5) 

N o w  

(4.6) 

t 

I lul l i ( t )  = 2 Re(0tu, u)(s) ds. 
- T  

Re(0tu, u) = Re(iPu, u} + Re(ABu, u I + Re(-iRu, u} 
= - Im{Pu, u)+Re(ABu, u)+Im{Ru, u) 

for almost all t, which gives 

f (4.7) ]lull2(t) = 2(Im(u, Pu)+Re(ABu, u} +Im(Ru,  u)) de, 
- T  

if u E C~ (R, b~). Since condition (4.3) holds with the positive sign, we obtain that  
(4.8) 

/ 

A[[ull2~ 
sup liul] ~ ( t ) < 2  / ([ Im (Pu, u)[+[(ABu, u) l+(2CoT+O)(ABu, Bu)+ 

- . i  \ 2 T  ] dt, 
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and since A < �89 we find 

(4.9) supll~llU(t)< 2 / t - 1 - 2 ~  (]Im(Pu'u}l+l(ABu'~)l+(2C~ 

for u E C J ( R , 5  c) having support where Itl<_T. 
Since A(t)>_O for almost all t, we may construct At/2(t)>_O such that  A( t )=  

A1/2(t)A1/2(t) and ][Aa/2(t)tl=llA(t)lll/2<_l for almost all t. Then we obtain 

(4.m) IIAUull 2 <_ IIAI} IIA1/2 Bul} 2 < IIA1/2 Bull 2 = {ABu, Bu), u e.T. 

By the Cauchy Schwarz inequality we have 

1 iiABull~+rl]ull2 < ~(ABu, Bu)+r[[ull2 r > O ,  (4.11) I(ABu'u)l <- 4r 

for uE9 t-. By taking r = ( 1 - 2 A ) / S T  in (4.11), we obtain from (4.9) that 

(4.12) suPllull2(t)< 4 f t - 1 -2~  (lIm(Pu'u)l+C~(T+o)(ABu'Bu))dt 

for u E C~ (R, 5 c) having support where I tl _< T. Thus, it remains to estimate the term 
with (ABu, Bu}. We find from Lemma 5.1 and (4.2) that  

(4.13) 1( )dt, /(T+p)(ABu, Bu) dt<_ 2_T / 2(T+o)Im(Pu, Bu}d Coe~ ulP 

which implies that 
(4.14) 

supll~ll2< 4 / (  2c@~( c o ~ 1 1 2 ) )  t - 1 -2A IIm(Pu'u}l+ 2(r+g)Im(Pu, Bu)-t dt, 

for ucCI(R,~') having support where Itl<T. For small enough e>0,  we obtain 
(4.4) from these estimates, which gives (3.9). 

When A( t )>0  we may write I d = A  1/2(t)A~/2(t) for almost all ]tl<_r, where 
A• satisfies (A•177 If Pu~2)(A -~) we obtain that Pu= 
AI/2A-1/2Pu, thus 

(4.15) (Pu, Bu} = (AI/2A X/2pu, Bu) = (A-1/2Pu, A1/2Bu}. 

Thus it follows from the Cauchy Schwarz inequality that 

(4.16) 2Im(Pu, Bu) <_r(ABu, Bu}+~(A-1Pu, Pu}, r>O.  
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The Cauchy Schwarz inequality also gives 

(4.17) ](Pu, u}l < r(HAIt+l)llull2 IIIAIIITHPuII2 r > O ,  
_ IIIAIIIT b 4r( l lAll+l  ) , 

and since PuETP(A -1) we find that  IIp~l12_< IIAII IIA-a/2P~II2. Since 

(4.18) f (llA( t ) II 4-1) Ilull 2 (t) dt < IIIAIlIT sup Ilull (t) 
J t 

when u has support where Itl<r, we obtain the estimate (3.10) from (3.9) by 
choosing r small enough in (4.16) and (4.17). [] 

Remark 4.1. The condition that  IIAII<x is only used in (4.10) and then we 
only need that  IIAllm B II--< 1. Thus, we may use the t variable 

(4.19) s (llA(r)limU(r)[l+l) dr 

to get the estimates (3.9) with ]IIAIIIT replaced by IIIAII~BIIIT. We also obtain (3.10) 
if we add the term IIPull2/(llAllmBll+l) in the integral on the right hand side. 

5. T h e  m a i n  l e m m a  

As before, we assume that  

(5.1) P = Dt +iA(t)B(t)  +R(t),  t e R, 

where A(t) is weakly measurable and locally equicontinuous in B(~) ,  and B(t) and 
R(t) are weakly measurable and locally equicontinuous in B(jr,  7-/). We also assume 
that  B(t) is symmetric on jr,  i.e., 

(5.2) (B(t)~,  v} = (~, B( t )v ) ,  ~, v c jr, 

for almost all t, and assume that  for some constants 7 < 2  and ~,CR we have 

(5.3) d (B( t )u ,u}+2Im(R( t )u ,B( t )u )+~Re{AB( t )u ,B( t )u )  >_-ulluH 2 

m :D'(R) for any uCjr .  
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L e m m a  5.1. If P in (5.1) satisfies conditions (5.2) and (5.3), then we find 
that 

(5.4) (2-7)Re f (ABu, Bu)(t)dt <_ ](2Im<Pu, Bu)(t)+.llull2(t))dt 

when uC C01 (R, 9~). 

Observe that  we do not have to assume that A(t) is symmetric, and that the 
left-hand side may be negative. Also, we do not have to impose any conditions on 
the support of u. 

Proof. Since B(t)CB(9 ~, 7-/) is weakly measurable and locally equicontinuous, 
we may define the regularization 

=-l[(B(s)u,u}~((t-s)/z)ds, c > 0 ,  u C ~ ,  (5.5) 
C g 

where 0_<~EC~(R) satisfies f~dt=1. Then tH(B~(t)u,u I is in C~(R) with 

derivative at t r equal to 

d d 
(5.6) <~B~(r)u,u>= ~ /(B(s)u,u)~'((r-s)/c)ds= ~(Bu, u}(~,r) 

where p~,~(s)=c-l~((r-s)/c). Thus, we find from (5.3) that  

dB (5.7) <~ ~(t)u,u> >- /(2Im(R(s)u,B(s)u) 
+7 ReiAB(s)u, B(s)u} +,llull 2) g)~,e (s) ds 

when u E S  and tER .  
Now we define 

(5.8) M~u(t) - (B~u, u}(t) 

for u C C~ (R, ~-). By differentiating we obtain that Meu(t)EC 1 (R), with derivative 

(5.9) d M~u= I ( d B~)u, @+ 2ae(B~,O~u I. 

By integrating with respect to t, we obtain 

d B (5.10) 0 = / ( ( ~  ~)u, u> dt + / 2 Re(Beu, Otu} dt 
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when uCCol(R, SV). By using (5.7) we find that 

0 > I f  (2 ReIB(s)u(t), Otu(t)}- 2 Im{R(s)u(t), B(s)u(t)} 
(5.11) J J  

-~/Re{AB(s)u(t), B(s)u(t)}- ~H~II2(0) ~,ds) & dt 

when uEC~(R, ~). By letting e ~ 0  we obtain by dominated convergence that 

0 > / ( 2  ae<B(t)u(t), Otu(t))-2Im{R(t)u(t), B(t)u(t)} 
(5.12) 

-~/Re{AB(t)u(t), B(t)u(t))-,IMl~(t)) dt 

when ucC~(R,  5C). By using that Otu=iPu+ABu-iRu, we find 

(5.~a) 0 _> f ( 2  a e ( ~ ,  iP~,)+ (2-~) Re(ABe, B~) --IMI ~) dt, 

as 2 Re{Bu, -iRu} =2 Re{-iRu, Bu} =2 Im{Ru, Bu}. We also have 2 Re{Bu, iPu} = 
-2 Im{Pu, Bu}, thus we obtain 

(5.14) (2-7)  / R e { A B u ,  Bu}dt <_/(2Im<Pu, Bu}+,llull2) dt 

when uECol(R, Jr). This proves the lemma. [] 

6. P r o o f  of T h e o r e m  2.4 

For the proof of Theorem 2.4, we are going to use the Wick operators in [4, Ap- 
pendix B] and [13, Section 4]. Choose {r ~)}~-1 and {r ~)}~-1 cS(1, g) with 
values in 12, such that Cj_>0 and Cj_>0, ~j~--1 0~=1, r  on suppr and r is 
supported where g~-gj=gxj,~j and h~-hj=h(xj, ~j) (which are constant in t). For 
each 9j there exists a unique sympleetie intermediate metric g~, such that 

(6.1) h;lgj _< ~ = (g~)~ _< hjg]. 

We define the local Wick quantization as follows: for fEL~176 we let 

= f(y, ,)~,y,,,(x, Dx) dy d, (6.2) fWlckj (x, Dx) *(Rn) 

where Ej,y,u(x , ~)=Tr -n exp(--g~ (x--y, E--r])). We obtain that fWickj is symmetric 
on 8 ( R  n) if f is real valued, 

(6.3) f >__ 0 ~ fWickj (x, Dx) >_ 0 on S (R  ~) 
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and 

(6.4) IIf wickj (x, D~)IIL(L~(R~))--< IIflIL~(T*(R~)) 

(see [13, Proposition 4.2]. When fES(h~l ,gj)  we also obtain from [13, Proposi- 
tion 4.2] that 

(6.5) fWickj = fw +r2, 

where rj ES(1, gj). For measurable f satisfying Ifl <- Ch-g, we define 

o o  

~w ~cWickj oSw (6.6) fwick J5 
j--1 

where f j - r  Since Ifj(x,()i<ch-N(xs,~j) we find f j c L ~ ( r * ( a n ) ) ,  so this is 
a well-defined quantization. If f c S ( h  -1, g) we find that fj ES(h~ 1, gj). 

The following result shows that different choices of cut-off functions in the 
definition of fWick only changes the operator with terms in Op S(1,g) when f c  

P r o p o s i t i o n  6.1. We find that fWick m a p s  S ( R  n) --+L 2 (Rn), with the follow- 
ing properties: fWick is symmetric on S ( R  ~) if the symbol f is real valued, and 

(6.7) f > 0 ===> fWick _> 0 On ,.5'(Rn). 

For f cS (h - l , 9 )  we find fWick=fw+rW for some rcS(1,9). 

Pro@ If u, v c S ( R n ) ,  we find from (6.4) that 

o o  

(6.8) ](fWicku, v)l<_CEh-N(xj,~j)l(r162 Ilvll, 
j=l  

where q~={h-N(xj, ~j)r c O p  S(h N, g) with values in 12. This gives IlfW~kull _< 
C'II~ulI_<C0 when u is bounded in S(Rn) .  

We have that f_>0 implies fTi~kj >0  in L 2 by (6.3), thus we find fWick>0 in 
L 2. Now, we find from (6.5) that  

cx~ 

(6.9) fWtck = E 052 (~7 +r7)057' 
j=l  

V, oo ,~w fwcw~ fw where rjGS(1,gj) uniformly. By the calculus, we find that z_~j=l~'j aj 5 - - J  
o o  o o  and Ej=I 05~r~05~0 modulo OpS(1 ,g) .  In fact, we find that  y'~j 10~Vr~Vq~3~- 
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OO I/]  ~/2 W ~j=l  r (r r modulo OpS(hN,g) for all N, since 9 is a temperate,  where 
CjrjffS(1, g) uniformly. [] 

Now we continue with the proof of Theorem 2.4. By replacing g by an equiva- 
lent metric, using a parti t ion of unity, we may assume that hES(h, 9). By adding 
ch to a and subtracting ichbEL~ S(1, g)) to r we may assume that  Rea_>0. 

First we are going to consider the case when 

(6.1o) I m r + � 8 9  b} E S(h,g), 

where {Im a, b} is the Poisson bracket. The general case will be reduced to this 
case by conjugation. Assuming (6.10), we are going to show later on that  P can be 
written on the form 

(6.11) P = D~+iA(B + R1) +Ro = Dt +lAB +Ro +JAR1, 

where A =a ~  EOp S(1, g), Re A_> 0, B = b  wick, R1 =r~ with real rl cS(1,  g) and R0 = 
r~ E Op S(1, g) with Im ro ES(h, g). In the case when Re a_> c>0  we shall also obtain 
that  Re A_> c. 

Before reducing the operator to the normal form (6.11), we are going to show 
that  if P is on the form (6.11) then we have the estimate (6.17) for small enough T. 
Observe that  Otb>_-C implies that  the weak derivative 0tbWick>-c  on 8(Rn) .  In 
fact, we find that  b+Ct is non-decreasing in t, which implies that  bWicklt--bWiCkls > 

o n  S(Rn) .  

We also need to estimate the term IIm (gu, (Ho +iAR1)u)l. Since Im ro ff S(h, 9) 
and bWick~b  "w modulo Op S(1, g) by Proposition 6.1, we find that  

(6.12) Im BRo ~ Im(b~r~) ~ 1 .bW [ , Re r;fl 0 modulo Op S(1, g)- 
/ 

For R2 =iAR1 we have that  

(6.13) Im(Bu, R2u) : - Re(Bu,  (Re A)I~lu) - I m ( B u ,  (Irn A)/~lU > . 

Since 0 < R e A < C  we find that  

(6.14) 2[ ( Bu, (Re A ) R, u) I < ( (Re A ) Bu, Bu) + C I]u]] ~. 

Now Im(Bu, Ru) = �89 Re R]u, u) - R e ( B ( I m  R)u, u) when RE Op S(1, g). Since 
rl  is real we have Im((Im A)R1)=(1/2i)[(Im ao) ~, r~] c O p  S(h, g), which implies 
that  

(6.15) I Im(Bu,  (Ira A)RIU) I < C' Ilull 2. 
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Summing up, we find that  

(6.16) 211m(Bu, (R0 + iAt~ )u) l < Re(ABu, Bu} +C" I1 11 =, 

which gives that  the real part of (3.12) is satisfied with 7=1.  Since Ro,R1c 
Op S(1, 9) we obtain that  the real part of (3.13) is satisfied with C~ =0. We also find 
that  II[B, ImA]II<C since [b~,ImA] [b ~', (Imao)~]eOpS(1,g), which gives (3.16) 
since ReA>0 .  Thus, we obtain from Theorem 3.1 and Remarks 3.3 and 3.4, that  
if P is on the form (6.11) then 

(6.17) sup  II 11 Co/(TIm(Pu, Bu)+Cll(Pu, u)]) dt 

when u c C ~ ( R x R  ~) has support where Itl < T  is small enough. Since B~b ~ mod- 
ulo L 2 bounded operators, we obtain the estimate (2.23) with b0 b for the operator 
in (6.11) by using the Cauchy-Schwarz inequality. When Re A > c > 0  we find that  
II(ReA) i l l<e - l ,  so Theorem 3.1 gives 

(6.18) sup  Ilull2(t) ~ GT/IIP ll (t) dt 

for uEC~ (R x R '~) having support where It I <_T<_To. 
The next step in the proof is to show that  P can by written on the form (6.11) 

in the ease when Imr+�89 b}~S(h,g). Since f ab, we obtain that  

(6.19) ~w a w . . . . .  j z o ~ - r  2 , 

where r2~--(1/2i){a, b} modulo S(h, g), which implies that  Im(rW +ir~) cOp S(h, g). 
Since B = b  Wick, it follows from Proposition 6.1 that  b~=B+r~, where rlcS(1, g) 
is real valued since b is real valued. 

L e m m a  6.2. Assume that O<a(t,x,~)EL~(R, S(1,g)). Then there exists a 
real symbol el c L ~ ( R ,  S(h 2, g)) such that 

(6.20) a ~ >_ c~ for almost all t. 

Proof. First we localize the operator. Choose {r and {~j}j cS(1,g)  with 
values in l 2, such that  g)j>0 and Cj_>0, ~ j  r g?j=l  on supp Cj and ~j is sup- 
ported where g~gj gxj,ej and h-~hj h(xj,{j). Let O<aj=~jaEL~176 
the calculus gives d ~  r162 ~~ where r c L ~ ( R ,  S(h2,g)). By using the 
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uniform Fef fe rma~Phong estimate in [9, Lemma 18.6.10] we obtain for almost all 

t E R that  

(a~ (t, x, Dx)v, v) >_ - C h  2 ]lvll 2 uniformly in j for v C S(Rn) .  

r~d9 2 %U ~J) This gives the result with c ~ = -  - C E j  hjr  r c L ~ ( R ,  OpS(h2,g)) .  [] 

Remark 6.3. We may also allow the metric g to be t dependent, as long as it 

is continuous and conformal in t for fixed (x, ~). In fact, in the definition of Wick 

operators (6.6), the metric may vary in t as long as it has a constant symplectic 

intermediate metric. In this case though, it may not be possible to conjugate 

away imaginary parts of the symbol, thus we have to assume that  Im( r  + �89 {a, b})e 
S(h, g) and that R e a > - c h  2 for almost all t. For a sufficient condition for such a 

preparation, see [6, Proposition 7.1]. 
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