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Estimates and solvability

Nils Dencker

1. Introduction

In this paper we shall prove an estimate similar to the well-known Nirenberg—
Treves estimate. The Nirenberg—Treves estimate involves operators on the form

(1.1) P =D, +iA()B+R(t) on L*(RxR"),

where A(t) is a uniformly bounded non-negative operator on L?(R™) and R(t) is
uniformly bounded for all teR, B is self-adjoint and constant in ¢. If the commuta-
tors [B, A(t)] and [B, [B, A(t)]] are uniformly bounded on L?(R™), then we obtain
from the Nirenberg—Treves estimate that

(12) [1urwae<cr [ipope a

for uc Cg° (R x R™) having support where |¢|<T is small enough. Here ||ul|(t) is the
L?(R™) norm for fixed ¢, and we let {u,v)(¢) be the corresponding inner product.
(See for example Theorem 26.8.1 in [9] for a more precise statement.) The estimate
(1.2) also holds if B(t) is a non-constant self-adjoint operator, whose sign in the
spectral sense is non-decreasing in ¢, i.e., the spectral projection on the eigenvectors
with non-negative eigenvalues is non-decreasing (see [11]). In the applications, A is
usually a pseudo-differential operator of order 0 and B a pseudo-differential operator
of order 1. Then the commutator conditions are trivially satisfied.

We shall consider the case when B=DB(t) is self-adjoint and non-decreasing,
that is, B(s)<B(t) for any s<t on a common dense domain including S(R"), and
A(t) is a uniformly bounded non-negative operator on L?(R™). We shall assume
that the operators depend measurably on ¢ in a weak sense, i.e., that t— (A(t)u, v)
is a measurable function when u,v€S(R™). We also need the condition that there
exists y<1 and C€R so that

(1.3) Im({B(t)u, R(t)u) < Y(AB(t)u, B(t)u)+Cllu|*, ueSR"), teR.
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This is satisfied with y=0 if R(t) are bounded, symmetric maps from S(R") to
S(R™), and have uniformly bounded commutators with B(t), since in that case
Im{Bu, Ru)=(1/2){[R, Blu,u). This condition with v>0 is convenient for es-
timating Im{Bu, Ru) in the case when R=ARy and Rg is bounded, since then
|(Bu, ARyu)|<v(ABu, Bu)+C,||u||? for any v>0. For these operators, we obtain
from Theorem 2.1 the estimate

(1.4) / ul|2(t) di < CT? /(Im(Pu, Bu)(®)+Col| PulX(2)) dt

for ueC§°(RxR"™) having support where |[t|<T is small enough. Except in the
trivial case when B is bounded, this will not give an estimate of the L? norm of u in
terms of the L2 norm of Pu. In the case when we also have A(t)>0 for all ¢, we find
that A(t) has a left inverse A~*(t) with domain D(A~1(t))={A(t)v:veL*(R™)}. If
Pu(t)eD(A7L(t)) for all ¢, we also obtain from Theorem 2.1 that

(1.5) /||u||2(t) dth’TQ/[[A‘l/zPullz(t) dt

when u€C§° (R x R™) has support where [¢|<T is small enough. Thus, when A(t)>
¢>0 for all ¢, we get a local estimate of the L2 norm of u in terms of the L? norm
of Pu. »
Observe that we do not need any conditions on the commutators [B(t), A(t)]
(but instead conditions on R), that the operators may depend measurably on t
and it suffices that the conditions hold for almost all teR. If one has R=0, then
the conditions are weaker than for the Nirenberg—Treves lemma but the conclusion
is also weaker, unless B is L? bounded. In the applications, A could be a pseudo-
differential operator of order 0 and B a pseudo-differential operator of order 1. Then
condition (1.3) is satisfied if R is a pseudo-differential operator of order —1, or a
symmetric pseudo-differential operator of order 0.

We are actually going to prove stronger estimates of the type L'(LZ(R™)) to
L(L?(R™)). One can also formulate the results with L?(R™) replaced with a
separable Hilbert space H, containing a continuously embedded and dense Fréchet
space F replacing S(R"™).

As an example, let us consider the case when A(t)=a(t)>0 is a function in
L (R), B(t) is self-adjoint for any ¢, B(s)<B(t) when s<t, and R=0. When
a(t)>¢>0 for almost all £, we may replace the variable ¢ by s= fot a(r) dr, which
transforms P into a(D;+4B;). Thus, by a change of integration variables we easily
obtain the estimate (1.2) (see also [8, p. 84]). In the case when a{t) vanishes on a
set of positive measure one cannot in general obtain a local estimate of the L? norm
of u in terms of the L2 norm of Pu, as was shown by Lerner’s counterexamples [12].
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But the estimate (1.4) gives in this case a local estimate of the L? norm of u in
terms of a suitable stronger norm of Pu.

As an application of the estimate (1.4) we prove an estimate for pseudo-
differential operators on the form

(1.6) P=D,+iF(t,x,D,), (t,z)eRxR",

with the operator FeL>(R, \Il%’O(R")) having principal symbol f=ab, where ac
L>(R, 87 o(R™)) has non-negative real part, and be L°(R, S{ 4(R")) is real and
non-decreasing. Then, for any s€R we obtain from Corollary 2.6 a local estimate
of the H(,) norm of u in terms of the H, ;) norm of Pu, where H(y) is the Sobolev
space. (See also [15] for a similar result.) This gives local solvability of the adjoint
operator P*, with loss of at most two derivatives. Iu the case when Re a>c¢ for some
positive constant ¢, we also get local L? estimates which gives local L? solvability
of the adjoint. Corollary 2.6 follows from Theorem 2.4, where we prove estimates
for more general classes of pseudo-differential operators.
Local solvability for P* means that the equation

(1.7) Pru=v

has a local solution u€D’ for any vEC™ in a set of finite codimension. Local L?
solvability for P* means that the equation (1.7) has a local solution u€L? for any
veL? in a set of finite codimension.

When f is homogeneous of degree 1, we find from the conditions on a and
b that P* satisfies condition (¥): the imaginary part of the principal symbol does
not change sign from — to + along the oriented bicharacteristics of the real part
of the principal symbol. By the oriented bicharacteristics we mean the positive
flow of the Hamilton vector field on the zero set. This condition is invariant under
conjugation with elliptic Fourier integral operators and multiplication with elliptic
pseudo-differential operators (see Lemma 26.4.10 in [9]).

It was conjectured by Nirenberg and Treves [19] that condition (¥) was equiv-
alent to local solvability for classical pseudo-differential operators of principal type.
It is known that condition (V) is necessary for local solvability of classical pseudo-
differential operators of principal type (see [9, Corollary 26.4.8]) and sufficient for
solvability in two dimensions (see [11]). Lerner [12] constructed counterexamples
to the sufficiency of (¥) for local L? solvability of first order pseudo-differential op-
erators. It was proved by the author [3] that Lerner’s counterexamples are locally
solvable with loss of at most two derivatives (compared with the elliptic case). In
fact, Lerner’s counterexamples in [12] can be written on the form (1.1) satisfying the
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conditions in Theorem 2.1. Observe that local L? solvability of first order pseudo-
differential operators means loss of one derivative (for example when condition (P)
is satisfied). Lerner [14] has also proved that every first order pseudo-differential
operator of principal type which satisfies condition (¥), is a sum of a solvable oper-
ator and an L? bounded operator. But it is still an open problem whether condition
() is sufficient for local solvability in three or more dimensions. For some other
results on local solvability for principal type pseudo-differential operators, see [6],
[7], [10], [13], [17] and [18].

The plan of the paper is as follows. Section 2 presents the results of the paper.
In Section 3 we state the corresponding semi-global estimate, which is proved in
Section 4. The proof relies on Lemma 5.1, which is stated and proved in Section 5.
Finally, we shall use these estimates to prove Theorem 2.4 in Section 6. We shall
use the Weyl calculus of pseudo-differential operators. For references and calculus
results, see Chapter 18 in [9)].

Acknowledgement. The author wishes to thank Anders Melin for some valuable
comments.

2. Statement of results

We assume that H is a separable Hilbert space with inner product {u,v). We
also assume that FCH is a Fréchet space, which is continuously embedded and
dense in H. In the following we shall assume that H=L?(R") and F=S(R") but
the arguments also work in the general case.

We say that a mapping R3t—u(t)€ L2(R"™) is weakly measurable if t— (u(t), v)
is measurable for every fixed ve L2(R"), clearly it suffices to take veS(R™). Let
B(L?(R™)) be the set of bounded linear operators A: L?(R™)— L#(R™) with norm
| A, and let B(S(R™), L2(R™)) be the set of bounded linear operators from S(R™)
to L*(R™). These can be considered as unbounded operators on L2(R") with S(R")
included in the domain D(A). In the following, we shall assume that all operators
are preclosed on L2(R™), thus the adjoints have dense domains. If R2t— A(t)€
B(S(R™), L*(R™)), then we say that A(t) is weakly measurable if £+ A(t)u is weakly
measurable for every fixed ueF.

Observe that if u(t) is weakly measurable with values in S(R™) and A(t)€
B(S(R™), L*(R™)) is weakly measurable, then A(t)u(t) is also weakly measurable.
In fact, if {uz}$2, is an orthonormal basis for L?(R™) such that uy € S(R™) for ev-
ery k, then we find that (A(t)u(t),v)=>"rc (u(t), ug){uk, A*(t)v) for vED(A*(2)).
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Since A*(t) has a dense domain (depending on ¢), we find

N

(2.1) {(A)u(t),v) = lim_ > (), ue){A)ur, v),  ve LP(R™),
k=1

where the sum in the right-hand side is measurable. It follows that if both A(t)€
B(L*(R™)) and B(t)eB(S(R"), L2(R™)) are weakly measurable and u(t) is weakly
measurable with values in S(R"), then A(¢) B(t)u(t) is weakly measurable. We also
find that (u(t),v(t)) is measurable when u(t) and v(t) are weakly measurable with
values in L2(R™). When A(t) >0 with left inverse A~ (t), we find that t— A= (¢) is
weakly measurable. In fact, this follows because the resolvent (z— A(t)) ™! is weakly
measurable (in t) outside the spectrum of A(t).
Assume that

(2.2) P=D,+iA(t)B(t)+R(t), tcR,

where A(t) is weakly measurable and uniformly bounded in B(L*(R")), i.e.,

(2.3) |A@®)|| <Cy  for almost all ¢,
such that
(2.4) A(ty=A*(t) >0 for almost all ¢.

When A(t)>0 we find that A(t) has a left inverse A~1(¢) with domain D(A~1(¢))=
{A(t)viveL?(R™)}. We assume that B(t) is weakly measurable and uniformly
bounded in B(S(R™), L>(R™)) such that B(t) is symmetric on S(R™), i.e.,

(2.5) (B(t)u,v) = (u, B(t)v), u,veSR"),

for almost all ¢. Observe that the operator t—(B(¢)u,u)€ L2, (R) has weak deriv-
ative (d/dt)(B(t)u,u) €D’ (R) for any ucS(R™), i.e.,

(26) GBOuE = [(Bouwe©a, eecr®).

We assume that there exists Co€R. such that

(2.7 4By w > -Gl in D'(R)
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for any ueS(R™). We also assume that R(¢) is weakly measurable and uniformly
bounded in B(S(R™), L2(R™)) such that the imaginary part Im R(t) is uniformly
semi-bounded. Thus we have, for some choice of sign and C3€R,

(2.8) +Im(R(t)u,u) < Cs|ul?, ueSR"™),
for almost all . We also assume that there exist y<1 and C4{€R such that
(2.9) Im(B(t)u, R(t)u) < y(ABu, Bu)+Ciflu||?, uweS®R"),

for almost all ¢. This condition is satisfied with y=0 if R(¢)=R*(t), B(t) and R(¢)
maps S(R")—S(R™), and [B(t), R(t)] is uniformly bounded in B(L?(R")). We find
that Pu(t) is defined for almost all ¢ when ue C*(R,S(R™)), and that t— Pu(t) is
weakly measurable.

Theorem 2.1. Assume that P in (2.2) satisfies (2.3)~(2.9). Then, there exists
To>0 such that

(210) sup Jul*()+T / (ABu, Bu) dt < Co / (T Im(Pu, Bu)(t)+ C4|(Pu, u) (£)]) d¢

for ucC} (R, S(R™)) having support where |t|<T<Tpy. If A(t)>0 with left inverse
A=), and Pu(t)eD(AL(t)) for almost all te[—T,T), then we obtain

(2.11) sgp||u||2(t)~|—T/(ABu,Bu> dthé’T/HA“l/zPu“Z(t) dt

for ue CE(R, S(R™)) having support where |t|<T<T,. The constants Cp, C}, CY
and Ty only depend on the constants Cy, C1, Ca, C3, C4§ and v in (2.3), (2.7)-(2.9),
they do not depend on the seminorms of B and R.

Theorem 2.1 follows directly from Theorem 3.1 in Section 3. In fact, since
|||A|"TZITT(”A(t)“+1) dt<C3T, we find that condition (3.6) is satisfied for any
e>0 if T is small enough. Also, we find that R satisfies condition (3.8) for any
0<)\<% and p=0 when T is sufficiently small.

Remark 2.2. If Pu(t)eD(B*(t)) for all ¢, we find that (2.10) implies
(12) suplulP()+T [(ABu Bu) di<Cy |35 PuP)+T] Pul0)

for ueC}(R,S(R™)) having support where [t|<T<Tp. In fact, since we have
S lull?(t) dt<2T sup, ||ulj?*(t) we may use the Cauchy-Schwarz inequality.
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We have that Lerner’s counterexamples in [12] can be written on the form (2.2)
satisfying the conditions in Theorem 2.1. This gives a proof of solvability with loss
of two derivatives compared with the elliptic case for these counterexamples (as was
also shown in [3]). Lerner [14] has proved that every first order classical pseudo-
differential operator of principal type which satisfies condition (¥) is microloeally on
the form D;+i1AB+ R, where 0< A<C, t— B(t) is non-decreasing and R is bounded,
so that D;+iAB is solvable by Theorem 2.1, but R need not satisfy condition (2.9).

It is possible to relax the conditions on A(t), B(t) and R(t). See Theorem 3.1,
Remarks 3.3 and 3.4 for more general conditions. A simpler version of Theorem 2.1
was proved in Appendix A in [4]. (See also [15, Lemma 2.1] for a related result.)

Condition (2.9) involves estimating the term Im(Bu, Ru). If ReB(L?*(R"))
then we may define the symmetric part Re R:%(R—i—R*) and the antisymmetric
part Im R=(1/2¢)(R—R*). If R maps S(R")—S(R"), then we obtain that

Im(Bu, Ru) = 3i([B, Re R]u, u) —Re(B(Im R)u,u), u€S(R™).
A way of estimating this term is given by the following proposition.
Proposition 2.3. Assume that R=AY2R,+RyB, where 0<ACB(L?(R™)),
R1eB(S(R™), L2 (R™)) and R2€B(L*(R™)) satisfy
(2.13) | R1ul? < o(ABu, Bu)+Cllu|?, ueSR™),
(2.14) Im(Rou, u) > —6(Au,u), ue L2(R"),

for some p,6€R. If A>0 with left inverse A~ and R=R,+R»B, where R;
maps S(R™)—~D(A™Y), we may write Ri=AY2A='2R; with A*/?>0, and re-
place (2.13) with

(2.15) (A7 Ryu, Ryv) < o{ABu, Bu)+C|jul|?, ueS®R™).
We obtain in both cases that

(2.16) Im(Bu, Ru) < v(ABu, Bu)+Co||u|?, uecSR"),
if either 0<0, or >0 satisfies \/o +6<~.

Observe that we do not have to assume any bounds on || Ry || if R3=R; (compare
Remark 3.4).

Proof. By the Cauchy-Schwarz inequality and (2.13) we find when p>0 that
2|(AY2Bu, Ryu)| < M| AY2Bu|2+ A7 Ryul?
(2.17) < (A +o/N){ABu, Bu)+CA™ Hju|?
=2,/ (ABu, Bu)+Co™/?|ju|?



228 Nils Dencker

by choosing A=,/p. When 0<0 we may choose A>0 so that A+g/A in (2.17) is
smaller than any given negative number. In the case A>0 and R;: S(R®)—D(A™})
we find that

(2.18) 2|(Bu, Riu)| =2|(AY?Bu, A2 Ryu)| < M| A2 Bu|>+ A" (A"  Riu, Ryu)
and obtain the corresponding estimate. Also, if R=R,B we find from (2.14) that
(2.19) Im({Bu, Ru) =Im(Bu, Ry Bu) < §(ABu, Bu).

By summing up, we obtain (2.16). O

We shall also apply the estimates to pseudo-differential operators. Let the
metric g, ¢(dz, d€) be o temperate on T*(R™), constant in ¢, such that sup g/g° =
h?<1. Let S(h™,g), meR, be the class of symbols acC>*(T*(R™)) for which
la| <Cph™ for all k, where the semi-norms of a are given by

|a(k:)(x’§’ T17 >Tk)]

(2.20) la| (z,&) = sup - for k> 0.
770 [T5oq 9og(T5)?
‘We consider the operator
(2.21) P=Di+if"(t,z,Dy)+r"(t,x,Dy), (t,z) e RxR",

where f€S(h™1,g) is real valued, and r&€S5(1,g) for tcR. Here
(2.22)
1 .
F(t w, Dayu(z) = 75— / eV f (4, 3 (2 +y), €)uly) dy dE,  ue S(R),
(27[') T*(R")
is a Weyl operator in z for t€R. For the Weyl calculus notation and results, see
[9, Section 18.5]. As before, we assume that all symbols depend measurably on ¢

and are uniformly bounded in the symbol classes, so that the weak derivatives in ¢
exist.

Theorem 2.4. Assume that P is on the form P=D;+if“(t,z,Dy)+
r¥(t,x, D;) withre L°(R, S(1,9)) and f=ab where ac L (R, S(1, g)) has real part
Rea>—ch, be L®(R, S(h™ 1, g)) is real valued with weak derivative 0,b>—C, and g
is constant in t. Then, there exist real valued bo€ L (R, S(h™1,g)) and constants
Co, Cy and Ty>0, depending only on ¢, C and the semi-norms of a, b and r and
on the constants in the slow variation and o temperance of g, such that

(2.23) sup [ulP(1) < o / (I (b P, u) (£)+ C1 || Pul (1)) dé
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for ue C° (R xR™) having support where |t|<T'<Ty. If Rea>c¢y for some constant
co>0, we obtain that

(2.21) sup ul() < 5 [ | PulP(t)

for ueC§° (R xR™) having support where |t|<T<T,.

Remark 2.5. Since g is o temperate we find |by(t, , )| <coh™1(z, &) <Cn (£)V
locally in x and £, thus (2.23) gives, after integration in ¢, that

(2.25) J 1l ae<cir [1puli o de

for ueC§° (R x R™) having support where |z|<c; and |t|<T. This gives local solv-
ability of the adjoint P* near (t,z)=(0,0). If (2.24) holds, we obtain local L?
solvability of P* near t=0. Here {{)=+/]&[?+1, and

2 __1_ i 2 2s s
(2.26) [l 0= gy | NP de seR

(2m)"

is the square of the Sobolev norm in the = variables, for fixed ¢ (¢ is the Fourier
transform of u in the x variables). Observe that (2.23) may be microlocalized with
respect to the metric g, for small enough 7. In fact, if ¢€S5(1,g) is constant in ¢,
then [P, ¢*|22{f, $}* modulo Op S(h, g) which implies that | Im(b§' [P, ¢*|u, p¥u)| <
C||lu||?. We may also allow the metric g to be t dependent, as long as it is continuous
and conformal in ¢ for fixed (z, £). But then we have to assume that Im(r-+ 1 {a,b}) €
S(h, g) and Rea>—ch? for almost all ¢ (see Remark 6.3).

Theorem 2.4 will be proved in Section 6. In the case when S(h*, g)=51 o(R™)
we obtain the following result from Theorem 2.4.

Corollary 2.6. Assume that P is on the form P=D;+iF (¢, z, D) with Fe
U} o(R™) for almost all t having principal symbol f=ab, where a€ L= (R, 7 ((R™))
has real part Re a(t, x,£)>—c(€) ', andbe L (R, S{ ,(R™)) is real valued with weak
derivative 3,b>—C. For any s€R we can find Cy and Ts>0, so that

2.27) sup [ulfty (6 < C.T [ 1Pulf (0

when u(t,z) eCE (R XR™) has support where |t|<T<T,. If Rea>c for some con-
stant ¢>0, we obtain that

(2.29) sup [ulfy (8 < CLT [ [Pulfy 1) at
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when u€C(RxR™) has support where |t|<T<T,. The constants Cs, C’ and T
only depend on ¢, C, on the semi-norms of the symbols a, b, and r in their symbol
classes, and on the constants in the slow variation and o temperance of g.

This gives local solvability of the adjoint operator P* with loss of at most two
derivatives.

In the case f is homogeneous of degree 1, we find that Rea and /|¢| may only
vary with a fixed factor on the rays R, 3r+—r€ where f#0. We find that Re a|7£0>0
and that t—b|sxo is non-decreasing. This implies that P* satisfies condition (¥),
which we know is necessary for solvability. In fact, we find that b does not change
sign from + to — along the flow of Hge,(p)y=0;— Himar When f7#0, since then
Hgeo(pyb>{b,Ima}b in D', where the Poisson bracket {b,Ima}€L>. When f=0
we find Hge,(p)=0; and we have seen that b|r.o cannot change sign from + to
— for increasing t. Thus b|sxo cannot change sign from + to — along the flow of
Hpgeo(py, which gives the same result for Im o(P)=Re f=Reab.

Observe that F(¢,z, D;)=F(t,z,D;) modulo an operator in ¥9 ((R") for
almost all . Thus, Corollary 2.6 follows from Theorem 2.4 by putting S(h™1,g)=
51 o(R™) and conjugating with (D), since by € U1 o(R") maps H(s, 1) continuously
into H, for almost all .

Remark 2.7. Observe that the estimate (2.27) also holds with different 77,
if we perturb the operator P with R for any RE\II(I]]O(R”‘H). In fact, by us-
ing the Malgrange preparation theorem and a partition of unity, we may write
o(R)=r(r+if)+ro where re ¥ s(R™"!) and ro(t,z,£)€C®(R, S o(R™)). Then,
by multiplying P with I—r(¢,z, Dy, D), we obtain an operator which satisfies the
conditions in Corollary 2.6 modulo a term in Wié(R”“). By perturbing the esti-
mate (2.27) for small enough T we obtain the result. It is known that every first
order classical pseudo-differential operator of principal type which satisfies condi-
tion (¥) is a sum of a solvable operator and an L? bounded operator, but the L2
operator could be in a “bad” symbol class (for example S? 2.1 /2).

3. The semi-global estimate

In this section, we assume that M is a separable Hilbert space with inner
product (u,v). We also assume that F CH is a Fréchet space, which is continuously
embedded and dense in H. We assume that the operator is on the form

(3.1) P=D,+iAt)B()+R(), teR,
where A(t) is weakly measurable in B(H) such that
(3.2) A(t)=A*(t)>0 for almost all ¢,
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and
(3.3) t— [|A@®)] € Lipo(R).

Thus, A(t) need not be uniformly bounded. When A(¢)>0 we find that A(t) has a
left inverse A~!(t) with domain D(A~1())={A(t)v:veH}. We assume that B(t)
and R(t) are weakly measurable in B(F,H) so that

(3.4) t—— B(t) and t— R(t) are locally equicontinuous in B(F,H).

We find that t— Pu(t) is weakly measurable when ue C*(R, F). We also assume
that B(f) is symmetric on F,

(3.5) (B(t)u,v) = (u, BE)), wu,veF,

for almost all ¢. Observe that the function t—(B(t)u, u)€ L2, (R) has weak deriv-
ative (d/dt)(B(t)u,u)eD’'(R) for any u€F. We assume that there exists y<2 so
that for some >0 we have

4B w Bt w. Bt > _ EUAON+D lulf?
(3.6) — (B(t)u, u)+2Im(R(t)u, B(t)u) +v(AB(t)u, B(t)u) > AL+ Al

in D’'(R) for any u€F, where

(3.7 ke = [ (1A®]+)

—-T

We also assume that there exists A< %, Co€R and p>0 so that, for a choice of sign,

AUAB | +1)flu)?

(3.8) +Im(R(t)u, v) < (Coll Allr+0){AB(t)u, B(t)u)+
Al

for any ueF and almost all ¢.

Theorem 3.1. For any v<2, )\<%, Co€eR and >0, there exist positive con-
stants eyxo and C,x,, with the property that if P in (3.1) satisfies conditions (3.2)—
(3.8) with e<eyx, when |t|<T, then

o J1alr+oxaBu, Bu a
(3.9 K
< Coag [ (1Allr+ ) Tn(Pu, Bu () +Cx| (P, ) 0)
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for ueC§(R, F) having support where [t|<T. The constants yrp, Cyro and Cy
only depend on the constants X, v, Cy and p in (3.6) and (3.8). If A(t)>0 with left
inverse A™'(t) and Pu(t)cD(A™(t)) for almost all t<[-T,T), then we find from
(3.9) that

(3.10)

sup [ul*(0)+ [ (1Alr-+0)(ABw Bud(t) db < G (BAlr-+0) [ 142 Pul(e) d

for ueC} (R, F) having support where |t|<T.

Remark 3.2. Tt follows from Theorem 3.1, after integration in #, that we get
L? solvability in the case when A(t)>c>0 for almost all [¢|<T. If Pu(t)eD(B*(t))
for almost all ¢, then by using the Cauchy—Schwarz inequality, we obtain from (3.9)
that

sup ul2(1) + / (1Afr+0)(ABu, Bu)(t) dt

y [ (AR+ 1Al B Pul()+ | Allz | PullP(1)
SCW/ TAD]+1

(3.11)

dt

for all ueC§(R,F) having support where |¢{<7. Here we use the fact that
JUA@) |+ D)Juf?(t) de<||All7 sup, ||u||*(t) when u has support where |¢|<T.

Remark 3.3. We may generalize the conditions and assume that there exists a
function ¢o(¢t)€ L} (R) and constants y<2, ¢>0 and Co€R, such that when || <c
we have
(3.12)

d

= (B()u, u)+2Im(R(t)u, B(t)u)+y(AB)u, B(t)u) > co(t)(B(t)u, u)—Collul®
in D'(R) for any u€F. We may also assume that there exists constants C; and Cy
so that, for a choice of sign,

(3.13) + Im(R(t)u, u) < C1(AB(t)u, B(t)u)+Ca|lu?

for any u€F and almost all |¢|<ec. Then, we obtain the estimate (3.9) with any ¢>
C1 for sufficiently small 7. If A(t)>0 with left inverse A~ (¢) and Pu(t)cD(A1(t))
for almost all t€[--T,T], then we also obtain (3.10) with any ¢>C;. In fact, we
may replace A(t) and B(t) by w(t)A(t) and w1 (t) B(t), where w(t)=exp fo co(s) ds.

Since ||Allr —0 when T—0, we find that condition (3.6) is satisfied for any 6>0 if
T is small enough. Also, we find that R satisfies condition (3.8) with o> for any
0<A<2, when T is sufficiently small. By applying Theorem 3.1 we obtain (3.9)
and (3.10) since |JwAlr <C| Al 7.
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Remark 3.4. By inspecting the proof we find that we may essentially obtain
Theorem 3.1 with || A||r replaced by ||Alwm 5|7 (see Remark 4.1). It is also possible
to weaken the conditions on A(t)€B(H), which need not be symmetric. In fact, we
may define the symmetric part Re A=1(A+A*) and the antisymmetric part Im A=
(1/24)(A—A*). We let Re A=A, —A_, where t— A, (t)>0 is weakly measurable
since the resolvent is weakly measurable outside the spectrum. For the symmetric
part of A we assume that

(3.14) t— AL (O] € Lige (R)
and
(3.15) (A_B(t)u, B(t)u) <C|lul|*>, ueF, for almost all t.

We also need to assume that
(3.16) +Re((A—AL)B(t)u,u) <C'Re(AB(t)u, B(t)u)+C"||u||®>, weF,

for almost all ¢, with the same choice of sign as in condition (3.13). Then, if
(the real part of) conditions (3.12) and (3.13) are satisfied, we obtain (3.9) with
A replaced by A,. If A, (t)>0 with left inverse A7'(¢) and Pu(t)eD(A[*(t)) for
almost all t€[—T", T, then we obtain (3.10) with A replaced by A,. In fact, we may
write P=D,+iA, B+ Ry, where Ry=R-+i(A—A,)B, and then conditions (3.12)
and (3.13) are satisfied for some other constants C; with A replaced by A,. In
order to obtain (3.16) it suffices that (3.15) holds, ||A_||<C, Im A maps F—F and
B, Im Al||<C, since

(3.17) 2|{A_Bu,u)| <(A Bu,Bu)+{A_u,u)
and Re(i(ITm A)Bu, u)=— Im{(Im A) Bu,u)=(1/2i){[B,Im AJu,u). Thus, we need

not assume any bounds on || Im A|| (compare Proposition 2.3).

4. Proof of Theorem 3.1

First, we observe that by changing ¢ variable, letting

(4.1) 5= /0 (LA@)+1) dr,

thus ds/dt=||A(¢)||+1 almost everywhere. Hence D;=(||A(t)||+1)D, almost ev-
erywhere, dt=(||A(t)||+1)7ds, it transforms P into (|A(t)||+1)(Ds+iAqB+Ry),
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where Ao(t)=A(t)/(||A)||+1) and Ro(t)=R(t)/(||A(¢)[|+1) almost everywhere.
We find that [¢|<T implies that S=sup,<r |s|<[JAllr<2S. By a translation in s
we might assume that S=1||A|l7. Thus, after changing P where |t|>T to make

(8.2)—(3.8) hold for almost -all t€R, and changing the ¢ variable, we may assume
that [|A®)) <1,

d eflul?
4. — b S L bl |
(4.2) p (B(t)u, w)+2Im(R(t)u, B(t)u)+v(AB(t)u, B(t)u) > T2 1oT
in D'(R) for any ueF, and (for a choice of sign)
Mll®
27

for any ueF and almost all t€[—T,T]. Now, to prove (3.9) it suffices to prove that
for ¢ small enough we have, independently of T, the estimate

(4.3) £ Im(R(t)u, u) < (2CoT+0) (AB(t)u, B(t)u)+

sup||uH2(t)+/(2T+Q)<ABu,Bu)(t) dt
(4.4)
<Cony / (2T +0) Tm(Pu, Bu) (t)+C | Im(Pu, u) ()]} dt

when u€C3 (R, F) has support where [¢|<T.

First we observe that, by choosing —t as ¢ variable, we change P to the operator
—(Dy—tAB— R), which changes B to —B and R to —R. Thus, we may assume that
(4.3) holds with the positive sign, observe that condition (4.2) is not changed.

We shall prove (4.4) by first using that

(4.5) ull2(6) = /  2Re(0y0,1)(s)ds.

Now

L6 Re(0yu, u) = Re(iPu, u) +Re(ABu, u) + Re(—iRu, u)
(46) = —Im(Pu,u)+Re{ABu, u)+Im{Ru, u)
for almost all ¢, which gives

(4.7 lul2() = /_  2(1mn(u, Pu)+Re(ABu, )+ Ton R, ) ds,

if ueC§(R, F). Since condition (4.3) holds with the positive sign, we obtain that
(4.8)

slt1p||u||2(t) 32/(IIm(Pu,u)I+|(ABu,u)}+(2CoT+g)(ABu,Bu)+%) dt,
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and since )\<% we find

@9) sup ulP(0) < 15 [ (Tm(Pu,u) [+ |(ABu,w) |+ (0T + o) ABu, Bu)) dt,

for uc C3 (R, F) having support where |t|<T.
Since A(t)>0 for almost all ¢, we may construct A/2()>0 such that A(t)=
AY2(£)AV/2(¢t) and ||AY2(t)l|=||A(t)]|}/2<1 for almost all . Then we obtain

(4.10) | ABull® <|| A} | AY2Bulj®> < || AY%Bu|? = (ABu, Bu), ucF.
By the Cauchy-Schwarz inequality we have

(411)  [(ABuw)|< 211;||ABu||2—|—rHu||2 < %(ABu,Bu)—i—rHuHQ, >0,
for ue F. By taking r=(1—2A)/87 in (4.11), we obtain from (4.9) that

(4.12) sgp||u||2(t) (| Im(Pu, u)|+C4(T+0){ABu, Bu)) dt

<
T 1-2A

for ue C§ (R, F) having support where |¢|<T. Thus, it remains to estimate the term
with (ABu, Bu). We find from Lemma 5.1 and (4.2) that

(4.13) /(T—l—,g)(ABu,Bu) dt < % /(Q(T+Q) Im(Pu,Bu)—kCQi’I}’u“z) ”

which implies that
(4.14)
7

4 C C 6Hu||2
2 < A e
S\ip | 1—ox <|Im(Pu,u>l+2 (2(T+,Q) Im(Pu, Bu)+ T dt,

for ucCY(R, F) having support where [t|<T. For small enough £>0, we obtain
{4.4) from these estimates, which gives (3.9).

When A(t)>0 we may write Id=A"1/2(t)A'/2(¢t) for almost all |t|<T, where
AFV2(4)>0 satisfies (AF1/2(8))2=A11(t). If PueD(A™!) we obtain that Pu=
AY2A-1/2py, thus

(4.15) (Pu, Bu) = (A2 A~Y2 Py, Bu) = (A='/2 Pu, AY?Bu).
Thus it follows from the Cauchy—Schwarz inequality that

1
(416) 21H1<PU,BU> ST<ABU) BU>+;<A*1PU,PU>, r>0.
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The Cauchy—Schwarz inequality also gives

r(lAl+Dlul® | 14z Pull®

(4.17) [(Pu, u)| < 1Al ~ 4r(J|Al|+1)°

r>0,

and since PueD(A™!) we find that ||Pul2<| A| |A~/2Pu||?. Since

(4.18) /(IIA(t)IIH)HUIIZ(t) dt < YA sup [|ul(2)

when u has support where [t|<T, we obtain the estimate (3.10) from (3.9) by
choosing 7 small enough in (4.16) and (4.17). O

Remark 4.1. The condition that ||A||<1 is only used in (4.10) and then we
only need that ||A|mm g||<1. Thus, we may use the ¢ variable

(4.19) 5= / (AW i 50y +1) dr

to get the estimates (3.9) with || Af|z replaced by [|A|im sll7. We also obtain (3.10)
if we add the term || Pul|?/(||Altm || +1) in the integral on the right hand side.

5. The main lemma

As before, we assume that
(5.1) P=D,+iA{t)B(t)+R(t), teR,
where A(t) is weakly measurable and locally equicontinuous in B(H), and B(t) and
R(t) are weakly measurable and locally equicontinuous in B(F,H). We also assume
that B(t) is symmetric on F, i.e.,

(5.2) (B(t)u,vy=(u, B(t)v), u,verF,

for almost all ¢, and assume that for some constants v<2 and v€R we have

d B(t)u,u) +2Tm(R(t)u, B(t)u)+vRe{AB(t)u, B(t)u) > —v|ul?

(5.3) 7R

in D'(R) for any ueF.
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Lemma 5.1. If P in (5.1) satisfies conditions (5.2) and (5.3), then we find
that

(54)  (2-7)Re / (ABu, Bu)(t) dt < / (2Im(Pu, Bu)(t)+v||u]2(t)) dt

when ueC} (R, F).

Observe that we do not have to assume that A(t) is symmetric, and that the
left-hand side may be negative. Also, we do not have to impose any conditions on
the support of u.

Proof. Since B(t)eB(F,H) is weakly measurable and locally equicontinuous,
we may define the regularization

(5.5) (B.(t)u, u) = 2 /(B(s)u,u)go((t—s)/s)ds, e>0, ucr,

1)

where 0<peC§°(R) satisfies [@dt=1. Then t—(B.(t)u,u) is in C®(R) with
derivative at t=r equal to

(5.6) <%Bs(r)u, u> = %2 /(B(s)u, w' ((r—s)/e)ds= %(Bu, u) (e )

where ¢, (s)=¢ '¢((r—s)/e). Thus, we find from (5.3) that

(5.7) <%Bg(t)u,u> z —/(21m<R(s)u’B(3)u>
+yRe(AB(s)u, B(s)u) +v|[ull*) pe,i(s) ds

when u€F and teR.
Now we define

(5.8) Meu(t) = (Beu, w)(t)

for ue C§ (R, F). By differentiating we obtain that M. u(t) €Ca(R), with derivative

d d
(5.9) aMgu:<<EBs>u,u>+2Re<BEu, Opu).

By integrating with respect to ¢, we obtain

(5.10) 0:/<(%B£>u, u> dt+/2Re<BEu,8tu> dt
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when u€C}(R, F). By using (5.7) we find that

0> / / (2Re(B(s)u(t), 8yu(t)) —2 Im(R(s)u(t), B(s)u(t))
—~yRe(AB(s)u(t), B(s)u(t)) —v||ull*(t)) e,+(s) ds dt

(5.11)

when u€C3 (R, F). By letting e —0 we obtain by dominated convergence that

0> / (2Re(B(t)u(t), pu(t)) —2 Im(R(t)u(t), B(t)u(t))
~7Re(AB(t)u(t), B(t)u(t)) —v|ul*(t)) dt

(5.12)

when v€C3 (R, F). By using that 8;u=1iPu+ABu—iRu, we find
(5.13) 0> /(2 Re(Bu, iPu)+(2—+) Re(ABu, Bu) —v|ul?) dt,

as 2 Re(Bu, —iRu)=2Re{—iRu, Bu)=2Im(Ru, Bu). We also have 2 Re{Bu, iPu)=
—2Im(Pu, Bu), thus we obtain

(5.14) (2—7)/Re<ABu, Bu) dtg/(Q Im(Pu, Bu)+vlul?) dt

when u€C} (R, F). This proves the lemma. [

6. Proof of Theorem 2.4

For the proof of Theorem 2.4, we are going to use the Wick operators in [4, Ap-
pendix BJ and [13, Section 4]. Choose {¢;(z,£)}32, and {;(z,£)}52, €S5(1,g) with
values in /2, such that 1, >0 and ¢;>0, die1 ¢3=1, ¥;=1 on supp ¢; and y; is
supported where g=g;=g. ¢ and h=h;=h(z;,;) (which are constant in ¢). For
each g; there exists a unique symplectic intermediate metric g’}, such that

(6.1) hilgi <gh=(g})" <h;gs.

We define the local Wick quantization as follows: for feL>(T*(R™)) we let

(6.2) fYViki (2, Dy) = e )f(y,n)EE-”,y,n(:c,Dw)dy dn

where %, , ,(z,&)=n"" exp(—gg (z—y,€—n)). We obtain that fVi%i is symmetric
on S(R™) if f is real valued,

(6.3) f>0 = fWVicki(z D,)>0 on S(R")
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and

(6.4) ViR (3, Do)l £p2mmy) < I K poo (e mmy)

(see {13, Proposition 4.2]. When f eS(hj_l,gj) we also obtain from [13, Proposi-
tion 4.2] that

(©5) £V = o,

where 7;€S5(1, g;). For measurable f satisfying |f|<Ch™, we define
(6.6) Friek = Zqﬁ’“ ;e

where f;=1;f. Since |f;(z,£)|<Ch~"(z;,¢;) we find f; €L (T*(R™)), so this is
a well-defined quantization. If f€S(h~1, g) we find that f;€S5 (hj“l, 9i)-

The following result shows that different choices of cut-off functions in the
definition of fWick only changes the operator with terms in Op S(1,g) when fe€

S(h1.g).
Proposition 6.1. We find that V' maps S(R™)— L*(R™), with the follow-
ing properties: fV'K is symmetric on S(R™) if the symbol f is real valued, and

(6.7) [>0 = fWik>0 onSR™).

For fcS(h™1,g) we find fWVick=fw 1 y¥ for some r€S(1,g).
Proof. If u,veS(R"), we find from (6.4) that

(6.8) [(fWicku, i<CZh (25, &){@%u, ¥ v)| < C'[|@ul ||v]),

where ®={h~"(z;,£;)¢¥}cOp S(h~",g) with values in [>. This gives || fVi%u <
C'||®u||<Cy when u is bounded in S(R™).

We have that f>0 implies f;Niij >0 in L? by (6.3), thus we find fWi%>0 in
L?. Now, we find from (6.5) that

(6.9) FUR=S v (2 40y,

j=1

where r;€5(1, g;) uniformly. By the calculus, we find that ZJOO LY fP ey
and }:J 1 #¥7Y¢¥ =0 modulo Op S(1,9). In fact, we find that ZJ L BT Y
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Z;’il ¢F (¥;ry)*' ¢y modulo Op S(hY,g) for all N, since g is o temperate, where
¥;r;€8(1, g) uniformly. O

Now we continue with the proof of Theorem 2.4. By replacing g by an equiva-
lent metric, using a partition of unity, we may assume that h€ S(h, g). By adding
ch to a and subtracting ichb€ L=(R, S(1,g)) to r we may assume that Rea>0.

First we are going to consider the case when

(6.10) Imr+3{Ima,b} € S(h,g),

where {Ima,b} is the Poisson bracket. The general case will be reduced to this
case by conjugation. Assuming (6.10), we are going to show later on that P can be
written on the form

(6.11) P:Dt+iA(B+R1)+R0:Dt—i—’iAB—FR()JriARh

where A=ay €0p 5(1,9), Re A>0, B=bWi*, Ry =r¥ with real r;€5(1, g) and Ry=
ry€Op S(1, g) with ImrgeS(h, g). In the case when Re a>¢>0 we shall also obtain
that Re A>c.

Before reducing the operator to the normal form (6.11), we are going to show
that if P is on the form (6.11) then we have the estimate (6.17) for small enough T
Observe that 9;b>—C implies that the weak derivative 8;6Vc>—C on S(R"). In
fact, we find that b+C* is non-decreasing in ¢, which implies that pWVick|, —pWick| >
~C(t—s) on S(R™).

We also need to estimate the term | Im{Bu, ( B+t ARy )u)|. Since ImrgeS(h, g)
and bWik2=2p* modulo Op S(1,g) by Proposition 6.1, we find that

(6.12) Im BRy 2 Im(b¥ry) & %[bw, Rerf|=0 modulo OpS(1,9).
For Ry=iAR; we ha\je that

(6.13) Im{Bu, Rou) = — Re{Bu, (Re A) Riu) —Im{Bu, (Im A)Ryu).
Since 0<Re A<C we find that

(6.14) 2|(Bu, (Re A)Ryu)| < ((Re A) Bu, Bu)+C||u)?.

Now Im(Bu, Ru)=3i({[B, Re RJu,u) —Re(B(Im R)u,u) when ReOpS(1,g). Since
ry is real we have Im((Im A)R1)=(1/2i)[(Imag)*,r¥]€O0p S(h, g), which implies
that

(6.15) | Tm(Bu, (Tm A)Ryu)| < O ||ull?.
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Summing up, we find that
(6.16) 2| Im(Bu, (Ro+iAR, Ju)| < Re(ABu, Bu)+C" |Jull?,

which gives that the real part of (3.12) is satisfied with v=1. Since Ry, Ri€
Op S(1, g) we obtain that the real part of (3.13) is satisfied with C1=0. We also find
that ||[B,Im AJ||<C since [b*,Im A]=[b%, (Imag)*]€O0p S(1, g), which gives (3.16)
since Re A>0. Thus, we obtain from Theorem 3.1 and Remarks 3.3 and 3.4, that
if P is on the form (6.11) then

(6.17) sup llull? < Co /(Tlm(Pu, Bu)+C1|{Pu,u)|) dt

when ue C§° (R xR™) has support where || <T' is small enough. Since B&b* mod-
ulo L? bounded operators, we obtain the estimate (2.23) with by=b for the operator
in {6.11) by using the Cauchy-Schwarz inequality. When Re A>c¢>0 we find that
[(Re A)~!||<c™?, so Theorem 3.1 gives

(6.18) sup [Jul2(t) < C4T / | Pul(t) dt
t

for ue C§°(R x R™) having support where |{|<T<Tj.
The next step in the proof is to show that P can by written on the form (6.11)
in the case when Imr+1{Ima,b}€S(h,g). Since f=ab, we obtain that

(6.19) f=a"b"+ry,

where r92(1/24){a, b} modulo S(k, g), which implies that Im(r* +ir¥)€Op S(h, g).
Since B=bWVick it follows from Proposition 6.1 that b%=B+4r¥, where 7, S(1, g)
is real valued since b is real valued.

Lemma 6.2. Assume that 0<a(t,z,£)eL™(R,S(1,g)). Then there exists a
real symbol c; €L=(R, S(h?,g)) such that

(6.20) a¥>cl  for almost all t.

Proof. First we localize the operator. Choose {¢,}; and {,},€5(1,¢) with
values in {2, such that 1, >0 and ¢;>0, >, ¢3=1, 1;=1 on supp ¢; and v; is sup-
ported where =g, =g, ¢, and h=h;=h(x;,£;). Let 0<a;=1y;acL>®(R, S(1, g;)),
the calculus gives =3 ¢¥a¥ ¢}’ +r*, where reL>®(R, S(h?,9)). By using the
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uniform Fefferman-Phong estimate in [9, Lemma 18.6.10] we obtain for almost all
teR that

(a¥ (t,z, Dy)v,v) > ~Ch?|v||* uniformly in j for ve S(R™).

This gives the result with ¢f'=—r"-C3". h?qb}"qb;" cL>®(R,0pS(h%,g)). O

Remark 6.3. We may also allow the metric g to be ¢t dependent, as long as it
is continuous and conformal in ¢ for fixed (z,£). In fact, in the definition of Wick
operators (6.6), the metric may vary in ¢ as long as it has a constant symplectic
intermediate metric. In this case though, it may not be possible to conjugate
away imaginary parts of the symbol, thus we have to assume that Im (r—i—%{a, b}) €
S(h,g) and that Rea>—ch? for almost all t. For a sufficient condition for such a
preparation, see [6, Proposition 7.1].
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