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Irreducibility of the punctual 
quotient scheme of a surface 

Geir Ellingsrud and Manfred Lehn 

A b s t r a c t .  It is shown that  the punctual quotient scheme Qr parametrizing all zero-dimen- 1 
Or sional quotients OA2-~T of length I and supported at some fixed point 0CA 2 in the plane is 

irreducible. 

Let X be a smooth projective surface, E a locally free sheaf of rank r>_l 
on X,  and let l>_1 be an integer. Let Quot (E , l )  denote Grothendieck's quotient 

scheme [S] tha t  parametrizes all quotients E--+T, where T is a zero-dimensional 
sheaf of length l. Sending a quotient E-+T to the point ~ x c x  l(Tx)x in the sym- 
metric product  St(X) defines a morphism 7r: Quot(E,  1)--+Sz(X) [8]. It  is the pur- 
pose of this note to prove the following theorem. 

T h e o r e m  1. The scheme Quot(E ,  l) is an irreducible scheme of dimension 
l ( r + l ) .  The fibre of the morphism 7r: Q u o t ( E , l ) ~ S t ( X )  over a point ~ l~x is 
irreducible of dimension ~ (rl~ - 1). 

Using the irreducibility result, one can check that  a generic point in the fibre 
over l~cSt (X)  represents a quotient E-+T, where T~Ox ,x / ( s ,  t t) and s and t are 
appropriately chosen local parameters  in OX,x, i.e. T is the structure sheaf of a 

eurvilinear subscheme in X.  
If r = l ,  i.e. if E is a line bundle, then Quot(E,  l) is isomorphic to the Hilbert 

scheme Hilbl(X).  In this case, the first assertion of the theorem is due to Fogarty [6], 
whereas the second assertion was proved by Briancon [2]. For general r_> 2, the first 
assertion of the theorem is a result due to J. Li and D. Gieseker [9], [7]. We 
give a different proof with a more geometric flavour, generalizing a technique from 
Ellingsrud and Str0mme [5]. The second assertion is a new result for r_>2. After 
finishing this paper  we learned about  a different approach by Baranovsky [1]. 

The natural  generalizations of the theorem to higher dimensional or singular 
varieties are false, as is already apparent  in the r = l  case of the Hilbert schemes [3]. 
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1. E l e m e n t a r y  m o d i f i c a t i o n s  

Let X be a smooth projective surface and x E X .  If N is a coherent (gx- 

sheaf, then e(N~)=homx(N,  k(x)) denotes the dimension of the fibre N(x),  which 

by Nakayama's lemma is the same as the minimal number of generators of the 

stalk Nx. If T is a coherent sheaf with zero-dimensional support, we denote by 

i(:/x) = h o m x  (k(x), T) the dimension of the socle of T~, i.e. the submodule Soc(Tx) c 

T~ of all elements that  are annihilated by the maximal ideal in Ox,~. 

L e m m a  2. Let [q:E---~T] EQuot(E,  l) be a closed point and let N be the kernel 
of q. Then the soele dimension of T and the number of generators of N at x are 
related as 

e(N~)=i(T~)+r. 

Proof. Write e(Nx)=r+i  for some integer i_>0. Then there is a minimal free 

resolution 0 i ~ (.~r+i ~OX,x--~vx,x )Nx )0, where all coefficients of the homomor- 
phism c~ are contained in the maximal ideal of OX,x. We have Hom(k(x),T~) TM 

Ext , :  (k(x), Nx) and applying the functor Hom(k(x),. ) one finds an exact sequence 

0 , Ext , :  (k(x), Nx) , Ext~c (k(x), Ok,x) ~' , Ext~  (k(x), Ox,x).r+i 

But as a has coefficients in the maximal ideal, the homomorphism a r is zero. Thus 

Hom(k(x), T)~Ext2x(k(x), i Ox,x)~-k(x) i. [] 

The main technique for proving the theorem will be induction on the length 

of T. Let N be the kernel of a surjection E---~T, let x c X  be a closed point, and let 

)~: N---~ k(x) be any surjection. Define a quotient E--~T ~ by means of the push-out di- 

agram 

0 0 

T 
k(x) " T '  ~ > T  ~ 0  

T 
> N  ~ E  > T -  7 0  

T 
N / - -  N I 

T 
0 0. 
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In this way every element (A)cP(N(x))  determines a quotient E ~ T '  together with 
an element (p}eP(Soc(Ts (Here WV:=Homk(W,k) denotes the vector space 
dual to W.) Conversely, if E--+T ~ is given, any such (p) determines E---~T and a 
point (A}. We will refer to this situation by saying that  T ~ is obtained from T by 
an elementary modification. 

We need to compare the invariants for T and Tq Obviously, l(T~)=t(T)+l. 
Applying the functor Hom(k(x),.  ) to the upper row in the diagram we get an exact 
sequence 

0 , k(x) ) Soc(T') , Soc(T ) Ext ) (k (x ) ,  k(x)) k(x) 

and therefore li(Tx)-i(Ts Moreover, we have O<e(Ts Two cases 
deserve closer inspection. Firstly, if e increases, then T t splits. 

L e m m a  3. Consider the natural homomorphisms f: Soc(T~)~T~-*T'(x)  and 
g: N ( x ) ~ E ( x ) .  The following assertions are equivalent: 

(1) e(T;)=e(r~)+l,  
(2) (#} ~P(ker( f )v) ,  
(3) (A} eP(im(g)) .  

Moreover, if these conditions are satisfied, then T '~T |  and i(Ts l. 

Proof. Clearly, e (Tx ~ ) = e (Tz) + 1 if and only if #(1) represents a non-trivial ele- 
ment in T ~(x) if and only if # has a left inverse if and only if A factors through E. [] 

Secondly, if i increases for all modifications ,~ from T to any T/, then the same 
phenomenon occurs for all 'backwards' modifications #~ from T to any T- .  

L e m m a  4. Still keeping the notation above, let E--+T~ be the modification of 
E---~T determined by the point (A} eP(N(x ) ) .  Similarly, for (#')EP(Soc(Tx) v) let 
T, ,=T/#'(k(x)) .  If i(7~,~)=i(Tx)+ l for all (A}eP(N(x)),  then i(Tx)=i(T2,,~)- i 
for all (#/)eP(Soc(T~)V) as well. 

Pro@ Let 

(I): Homx ( N, k(x) ) --~ Homk (Ext~ ( k(x), N), Ext~ (k(x), k(x) ) ) 

be the homomorphism which is adjoint to the natural pairing 

Homx (N, k(x))| N) , Extlx (k(x), k(x)). 

By identifying Soc(Tx) ~ E x t ~  (k(z), N), we see that  i(T~,x) = l+i(Tx) - rank(~5(A)). 
The action of ~5(A) on a socle element #': k(x)--,T can be described by the following 
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diagram of pull-backs and push-forwards 

0 > N - -  > E  > T  ~ 0  

T 

0 , k ( x )  . k ( x ) -  - 0. 

The assumption that  i(T~,~)=l+i(T~) for all A, is equivalent to ~5=0. This implies 
that  for every #' and every A the extension in the third row splits, which in turn 
means that  every A factors through N~,, i.e. that  N(x) embeds into Ny (x). Hence, 
for T ,  =E/N~, =coker(#) we get i(T,,,~)=e(N~, ~)-r=e(N~)+ l -r=i(T~)+ l. [] 

2. T h e  global  case 

Let Yl=Quot(E,  l ) x X ,  and consider the universal exact sequence of sheaves 
Oil 17//, 

0 ) . A / - - ~  OQuot @ E  ~ T 70. 

The function y =  (s, x)Hi(T~,x) is upper semi-continuous. Let Yl# denote the locally 
closed subset {y= (s, x)EYI li(T~,x)=i} with the reduced subscheme structure. 

P r o p o s i t i o n  5. The scheme Yl is irreducible of dimension (r+l)l+2. For 
each i>O one has codim(Yl,i,Yz)_>2i. 

Clearly, the first assertion of the theorem follows fi'om this. 

Pro@ The proposition will be proved by induction on l, the case l=1 being 
trivial: Y x = P ( E ) x X ,  the stratum Y~,I is the graph of the projection P ( E ) ~ X  
and Yl,i 0 for i>_2. Hence suppose the proposition has been proved for some l_>l. 

We describe the 'global' version of the elementary modification discussed above. 
Let Z=P(IV)  be the projectivization of the family iV and let ~=(~1,  P~): Z-~ 
Yl=Quot(E, l )  x X  denote the natural projection morphism. On Z x X  there is a 
canonical epimorphism 

A: (Pl x idx)*iv  ~ (idz, P2).~*iV----* (idz, F2) .Oz (1) =:/~. 

As before we define a family T '  of quotients of length l + l  by means of A, 

0 - - - > ] C  > T '  > (~ l , i dx )*T  ~ 0 

0 - -  > (Fl , idx)*iV > Oz@E ~ ( F l , i d x ) * T  > 0. 
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Let r Z ~ Q u o t ( E , / + 1 )  be the classifying morphism for the family T ' ,  and define 
"~:=(~1, ~2:=~2): Z~YI+I .  The scheme Z together with the morphisms p: Z-~Yz 
and ~: Z--~Yt+I allows us to relate the strata ~, i  and Yz+lj. Note that  ~ ( Z ) =  

U j > a  Y / + I , j  �9 

The fibre of qD over a point (s,x)EYl# is given by P(2V's(x))~P r-a+i,  since 
dim(AY~(x))=r+i(T~,~)=r+i by Lemma 2. Similarly, the fibre of ~ over a point 
(s',x)CYZ+l,j is given by P(Soc(T~, x )V)~P  j - t .  If T '  is obtained from T by an 
elementary modification, then li(T')-i(T)I_< 1 a s  shown above. This can be stated 
in terms of ~ and ~ as follows: For each j >_ 1 one has 

U 
Ii-jl_<l 

Using the induction hypothesis on the dimension of Yz,i and the computation of the 
fibre dimension of ~ and ~, we get 

d im(Y~+l , j )+( j -1)  _< max {(r+l)l+2-2i+(r-l+i)} 
I i jl_<l 

and 

dim(Yz+lj) < (r+l) ( l+l)+2-2j -  rain { i - j + l } .  
' - li-jI_<l 

As minli_jk<1{i-j+l}_>O , this proves the dimension estimates of the proposition. 

It suffices to show that Z is irreducible. Then Quot(E, l+l)=~1(Z) and ~+I 
are irreducible as well. 

Since X is a smooth surface, the epimorphism OQuot QE--+q- can be completed 

to a finite resolution 

0 -----~ A ----+ B > OQuotGE > T-- -+  0 

with locally free sheaves .4 and B on Yz of rank n and n+r, respectively, for some 
positive integer n. It follows that  Z = P ( N ) c P ( B )  is the vanishing locus of the 
composite homomorphism ~* A-~ ~* B ~ Op(s) (1). In particular, assuming by in- 
duction that  Yz is irreducible, Z is locally cut out from an irreducible variety of 
dimension ( r + l ) / + 2 + ( r + n - 1 )  by n equations. Hence every irreducible compo- 
nent of Z has dimension at least ( r + l ) ( l + l ) .  But the dimension estimates for the 
s tratum Y~,i and the fibres of ~ over it yield 

dim(~-l(Yl,i))  < ( r + 1 ) / + 2  2i+(r+i--1) = (r+l)(l+l)-i ,  

which is strictly less than the dimension of any possible component of Z, if i > 1. This 
implies that  the irreducible variety ~-1 (Y1,0) is dense in Z. Moreover, since the fibre 
o f r  over Y~+1,1 is zero-dimensional, dim(Yl+~)=dim(Y~+l,1)+2=dim(Z)+2 has the 
predicted value. [] 
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3. T h e  local  case 

We now concentrate on quotients E--~T, where T has support in a single fixed 
closed point x E X .  For those quotients the structure of E is of no importance, and 
we may assume that  E~--O~ x .  Let Q[ denote the closed subset 

{[O k ~ T] C Quot(O~, l) I Supp(T ) : {x}} 

with the reduced subscheme structure. We may consider Q[ as a subscheme of Y41 
by sending [q] to ([q],x). Then it is easy to see that  ~-1 r -1 Q~ ( Q l ) = ~  ( z+l)- Let this 
scheme be denoted by Z ~. 

We will use a stratification of Q[ both by the socle dimension i and the number 
of generators e of T and denote the corresponding locally closed subset by Q~'~ 1,i �9 
Moreover, let Q}',i=U~ Qr'r and define Q~,e similarly. Of course, Qr'r is empty 1,i l 1,i 
unless l < i < l  and l<e<min{r ,  1}. 

To prove the second half of the theorem it suffices to show the following. 

P r o p o s i t i o n  6. The scheme Q[ is an irreducible variety of dimension r l -  1. 

L e m m a  7. We have dim(Q1, i )<_ ( r l -  1) -  (2 ( i -  1)+ (~)). 

Proof. The proof is done by induction on l. If l=  1, then '~lDr =.L~'~Dr--1 , and QI',~ =0 
if e>2 or i_>2. Assume that  the lemma has been proved for some I>1. 

Let [q':O~x-*T '] ~'~ cQl+l, j be a closed point. Suppose that  the map #: k(z)--~ 
T ' ( z )  represents a point in ~b-1 ([q']) =P(Soc(T~) v) and that  T~ =coker(#) is the cor- 
responding modification. If i=i(T~,x) and c=e(T~,x), then, according to Section 1, 
the pair (i, r can take the following values 

(i) ( i , c ) = ( j - l , e - 1 ) ,  ( j - l , e ) ,  (j ,e) or ( j + l , e ) ,  

in other words 

--1 r,e --1 r,e 1 - l / Q r  e, 
(Ql+l,J)C~) (Ql,J -1)U U (p ( l'i)" 

li-j[<l 

Subdivide A -Dr'~-~4j into four locally closed subsets Ai,~ according to the generic 
value of (i, c) on the fibres of ~. Then 

dim(A~,~) + ( j -  1) . . . .  < dim(Q1 i ) +di,~, 

where di,~ is the fibre dimension of the morphism 

-1 A N -1 r,~ r,e 
~ : r  (~,~) ~ (Q4 i ) - -~Q4 i"  
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�9 r ~ E  By the induction hypothesis we have bounds for dlm(Q~, i ), and we can bound di,~ 
in the four cases (1) as follows�9 

~r,e-- i (A) Let [q:O~x--*T] eql,j_ 1 be a closed point with N=ker (q ) .  As we are looking 
for modifications T '  with e(Ttx)=e, we are in the situation of Lemma 3 and may 
conclude 

~-1  ([q])Nr (Ae- l , j -1 )  TM P(im(g:  N(x) ~ k(x)r)) 
P(ker(k(x)  ~ --* T(x) ) ) ~ P~-~, 

since im(k(x)T--~T(x))~-k ~ 1. Hence dj_l,e_l=r-e and 

�9 r e - - 1  dim(Aj_<~_ J _< dim Qt,'j-1 +(r-e) - ( j -  1) 

< _ { ( r l - l ) - 2 ( j - 2 ) - ( e 2 1 ) } + ( r - e ) - ( j - 1 )  

= { ( r ( l + l ) - l ) - 2 ( j - l ) - ( : ) } - ( j - 2 ) � 9  

Note tha t  this case only occurs for j > 2 ,  so that  ( j - 2 )  is always nonnegative. 
(B) In the three remaining cases 

e = e  and i = j - 1 ,  j, o r j + l ,  

we begin with the rough estimate di,~ <_r+i-1 as in Section 2. This yields 

dim(A<~) < { ( r l - 1 ) - 2 ( i - 1 ) - ( ~ ) } + ( r + i - 1 ) - ( j - 1 )  
(2) 

= { ( r ( l + X ) - l ) - 2 ( j - 1 ) - ( : ) } - ( i - j ) .  

Thus, if i=j we get exactly the estimate asserted in the lemma, if i = j + l  the 
estimate is be t ter  than  what  we need by 1, but if i = j - 1 ,  the estimate is not 
good enough and fails by 1�9 I t  is this latter case tha t  we must further study�9 Let 
[q: O~c --~T] be a point in QT,~ <j-1 with N=ker (q ) .  There are two alternatives. 

(i) Either the fibre )9 -1 ([q])N• - I ( A j  1,~) is a proper closed subset of P ( N ( x ) )  

which improves the est imate for the dimension of the fibre qo -1 ([q]) by 1; 
(ii) or this fibre equals with P ( N ( x ) ) ,  which means tha t  the socle dimension 

increases for all modifications of T. In this case we conclude from Lemma 4 that  
also i(T-) =i(T) + 1 for every modification T -  = coker (#- :  k (x) --~T). But, as we just 
saw, calculation (2), applied to the contribution of Qz-l,j to Qz,j-1, shows that  the 
dimension estimate for the locus of such points [q] in Q~'~ 1,j-1 can be improved by 1 
compared to the dimension est imate for Q~'~ t,j-1 as s tated in the lemma. 
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Hence in either case we can improve estimate (3) by 1 and get 

dim(Aj 1,~)_< (r(l+ 1 ) - 1 ) -  2 ( j -  1 ) -  ( ~ )  

as required. Thus, the lemma holds for l + l .  [] 

L e m m a  8. We have ~(~ (Ql ))cQt+l" 

P r o 4  Let [q: (9 ) -~r ]  cQ[' :  be a closed point with N=ker(q).  Then s 1([@ = 

P ( N ( x ) ) ~ P  ~+i-1 and ~ l([q])C~r Since we al- 
ways have e > l ,  i>1,  a dense open part of p-~([q]) is mapped to Q~'~ [] 

-- -- l+l" 

L e m m a  9. If  r>_2 and if Q[-~ is irreducible of dimension ( r - i ) / - 1 ,  then 
Q~,<, j ,  Q . . . .  l : = ~ < <  l is an irreducible open subset of Ql of dimension r l -1 .  

Pro@ Let M be the variety of all r x ( r -  1) matrices over k of maximal rank, 
and let 0 ~ O K- 1 ~ O~--* s ~ 0 be the corresponding tautological sequence of locally 
free sheaves on M. Consider the open subset U C M x Q[ of points (A, [O ~ ~ T ] )  such 
that  the composite homomorphism 

0 r-I ~ O r ) T 

is surjective. Clearly, the image of U under the projection to Q[ is Qr,<r On the l ' 

other hand, the tautological epimorphism 

r--i r 
O v •  x ) O v •  x - - ~  ( O M | 2 1 5  x 

induces a classifying morphism g': U-~rv ' - I  The morphism " ~ l  " 

Q?' - - I  9: (pr l , g l ) :U  , M x  l 

is surjeetive. In fact, it is an anne  fibre bundle with fibre 

g ~(g(A, [O ~-1 ~ r ] ) )  ~I~om~(C(A) T ~ --~A ~ 
, ]-- k" 

Since Qr-I~ is irreducible of dimension ( r - 1 ) l - 1  by assumption, U is irreducible of 
dimension r l - l + d i m ( M ) ,  and Q<'<~ is irreducible of dimension rl 1. [] 1 

Proof of Proposition 6. The irreducibility of Q[ will be proved by induction 
over r and 1. The case /=1, r arbitrary is trivial; whereas the case l arbitrary, 
r =  l is the case of the Hilbert scheme, for which there exist several proofs ([2], [5]). 
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Assume therefore that  r_>2 and that  the proposition holds for (1, r) and ( l+ 1, r - 1 ) .  
We will show that  it holds for (l + 1, r) as well. 

Recall that  r -1 r r Z : p ( Q z ) - Q l  x ~ Z. Every irreducible component of Z'  has di- 
mension greater than or equal to d im(Q~)+r  1 = r ( / + 1 ) - 2  (cf. Section 2). On the 
other hand, dim(p-l(Q~,i))<rI-1-2(i-1)+(r+i 1)=r(l+l)-i. Thus an irre- 

ducible component of Z'  is either the closure of ~-1/Qr ~ (of dimension r(l+ 1 ) - 1 )  ~r~ \ 1,1) 

or the closure of p -1  (W) for an irreducible component W C Qt~,2 of maximal possible 
dimension rl-3. But according to Lemma 8 the image of p - I ( w )  under ~b will be 

D r ,  < r  contained in the closure of "~Z+l , unless W is contained in Q~'~ 1,2- But Lemma 7 

says that  Qr,~ has codimension > 2 +  ( ; ) > 3  if r > 2 ,  and hence cannot contain W for 
dimensional reasons. Hence any irreducible component of Z ~ is mapped by ~p into 
the closure of r)~'<~ which is irreducible by Lemma 9 and the induction hypothesis. " ~ l + l  
This finishes the proof of the proposition. [] 
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