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Singular solutions to 
p-Laplacian type equations 

Tero Kilpelginen(1) 

Abstract .  We construct singular solutions to equations 

div .A(x, Vu) -- 0, 

similar to the p-Laplacian, that tend to oc on a given closed set of p-capacity zero. Moreover, 
we show that every Gs-set of vanishing p-capacity is the infinity set of some ~4-superharmonic 
function. 

1. I n t r o d u c t i o n  

Suppose t ha t  u is a solut ion of the p-Laplac ian  equa t ion  

div(IVulP-2Vu) =0 

in an open subset  ft of R n. If u(x) t ends  cont inuously  to c~ as x approaches the 

b o u n d a r y  Oft of ft, t hen  it is easily seen tha t  the  complement  of ft is of p-capaci ty  

zero, i.e. 

cp(Cft) =0; 

see e.g. [HK, 3.4], [HKM, 10.5 and  10.6], or [R, Theorem 5.9]. The  p-capacity of a 

set E is defined as 
g ~  

Cp(E) = i n f / R ~  (IVwlP+ I~10 dx, 

where ~ runs  th rough  all 1,p n pCWlo c ( R )  such tha t  ~ > 1  on an  open ne ighborhood 

of E.  In  this paper  we are interested in the converse problem: given a set E of 

p-capaci ty  zero, can one const ruct  a solut ion to the  p-Laplac ian  whose s ingular i ty  

is the set E ?  

(1) The research is financed by the Academy of Finland (Project ~p8597). 
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In the precise treatment we use the language of nonlinear potential theory 

[HKM]. We consider more general equations 

(1.1) div A(x, Vu) = 0 

that  are similar to the p-Laplacian; see Section 2.1. The continuous solutions to 

(1.1) are called A-harmonic and A-superharmonic functions are defined via a com- 

parison with the A-harmonic functions. The precise definitions and properties of 

A-harmonic and A-superharmonic functions are listed in Section 2.1 below. Roughly 

speaking, A-superharmonic functions u are solutions of 

(1.2) - div A(x, Vu) = p  

with nonnegative Radon measures #. 

It has been known for about a decade that sets of p-capacity zero can be 

characterized as A-polar sets; a set E is called A-polar if there is an A-super- 

harmonic function u on R n such that  u = ~  on E. This was first established by 

Lindqvist and Martio for the p = n  case in [LM] and later for all p in [HK] (see 

[HKM, Chapter 10]). Note that  the definition of an A-polar set does not require 
that it be exactly the infinity set for some A-superharmonic function. Since each 

A-superharmonic function u is lower semicontinuous, we have that its set of infinity 

is a Ge-set, a countable intersection of open sets: 

{x: u(x) = N{x:  u(x) > j}.  
J 

Therefore it is natural to ask whether, for a given G~ set E of p-capacity zero, 

there exists an A-superharmonic u that is oo exactly on E. The first result in this 
direction is Theorem 1.7 in [K] which states that an A-superharmonic function can 

be chosen to be oo on E but finite at a given point outside E. In this paper we give 

a complete affirmative answer to the question and prove the following. 

1.3. T h e o r e m .  Suppose that E is a Gs-set of p-capacity zero. Then there is 

an A-superharmonic function u in R ~ such that 

E: {x:u(x)--~}. 

Moreover, if l <p<n,  then u can be chosen to be positive. 

We want to emphasize that  according to Theorem 1.3 the "true A-polarity" 

is independent of the actual operator: if ,41 and A2 are two mappings that satisfy 

the assumptions listed in Section 2.1 and ul is Al-superharmonic, then there is an 

A2-superharmonic u2 in R ~ such that 

{x : u~(x) oo} : {x :u~(x) : o~}. 

Moreover, we show that the function u given by Theorem 1.3 can be chosen to 
be A-harmonic outside E if E is closed. 
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1.4. T h e o r e m .  Let E be a relatively closed subset of an open set ~2. If  E is of 
p-capacity zero, then there is a continuous A-superharmonic function u in ft such 
that 

E =  {x ~ ~:u(x)  = ~ }  

and u is A-harmonic in ~2 \ E. 

Since A-superharmonic functions solve equations like (1.2), we may interpret 

Theorem 1.4 as follows: there is a Radon measure # supported on any given closed 
set E of p:capacity zero so that  # is concentrated at each point of E. The precise 

meaning of this statement will be made clear later. 

In the classical linear Case Theorem 1.4 was first proven by Evans [E] whence 

such a function is often called an Evans potential. Later Choquet [C] extended 

it for a general G5-set E of capacity zero. In the case where E is countable and 

compact Theorem 1.4 is established in Holopainen's thesis [H]. In Section 3 we prove 

a slightly more general result than Theorem 1.4: any G~-set E of p-capacity zero 

that is also an F~-set (a countable union of compact sets) is the infinity set for 

some A-superharmonic function that  is also A-harmonic in the complement of the 

closure of E. 
Our method of proof is based on the potential estimate of the author and 

Mal:~ [KM2] (see Theorem 2.12 below) that allows us to convert the construction of 

solutions of nonlinear equations into the construction of Radon measures with cer- 
tain density properties. Indeed, there is a correspondence between Radon measures 

# and A-superharmonic functions u by 

# = - div A(x, Vu). 

Moreover, the local behavior of an A-superharmonic function u whose "Riesz mass" 

is # can be controlled in terms of a nonlinear potential, the Wolff potential of #, 

W~,p(X,r)---- [r  (p (V(x , t ) )  )l/(p-1) dt 

In particular, it was proven in [KM2] that  u (x )=oc  exactly when W~,p(X, r ) = e c .  
So the proof of Theorem 1.3 reduces to constructing a measure # such that  E is 

the set of infinity of its Wolff potential and then pick an A-superharmonic function 

whose Riesz mass # is. 

The main new trick in this paper is the "sweeping" of the nonlinear Riesz mass 

onto E so that  the Wolff potential does not get essentially smaller; this is done in 

Section 2.14 below. 

I would like to thank Seppo Rickman whose questions persuaded me to recon- 

sider these problems. 
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2. M e a s u r e s ,  p o t e n t i a l s ,  a n d  A - s u p e r h a r m o n i e  f u n c t i o n s  

2.1.  P r e l i m i n a r i e s  

Throughout  t h e p a p e r  we let ft denote an open set in R n and l<p<n is a 

fixed number; note tha t  the case p>n is trivial since then no nonempty set is of 
p-capacity zero. Moreover, we assume tha t  A:R? ~ x R ~ - - ~ R  ~ is a mapping which 
satisfies the following assumptions for some constants 0 < c~ G fl < oc: 

the function x ~-* A(x,  ~) is measurable for all ~ c R ~, and 
(2.2) 

the function ~ ~ A(x, ~) is continuous for a.e. x c Rn;  

for all ~ c R  n and a.e. x E R  ~, 

(2.3) 
(2.4) 
(2.5) 

A(~, ~).~ >_ al~l p, 

IA(~, ~)1 -< ~1~1 "-1, 
(A(x, ~)-A(x, 0 )  (~ -0  > 0, 

whenever ~ # r and 

(2.6) 

for all ) , c R ,  ) ,#0.  

We define the divergence of A ( x , V u )  in the sense of distributions, i.e. if pE  
C ~  (f~), then 

div A(x,  Vu)(T) = - ] a  A(x,  V u ) - V ~  dx, 

where ueWllo'P(a). A solution ueW, lo'P(ft) to the equation 

(2.7) div A(x, Vu) = 0 

always has a continuous representative; we call continuous solutions u E Wllof (f~) A 
C ( a )  of (2.7) A-harmonic in a .  

A lower semicontinuous function u: ~ - -+( -oc ,  ~ ]  is called A-superharrnonie if 
u is not identically infinite in each component of ft, and if for all open D c c f ~  and 
all h~C(D), .A-harmonic in D, h<_u on OD implies h<_u in D. 

The following connection between A-superharmonic functions and supersolu- 
tions of (2.7) is fundamental.  
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l p  2.8. P r o p o s i t i o n .  ([HKM, 7.25]) (i) If ueWlo' ~ (ft) is such that 

- div A(x, Vu) > 0, 

then there is an A-superharmonic function v such that u=v a.e. Moreover, 

(2.9) v(x) =ess l imin fv (y )  for all x e f~. 
y--~ x 

(ii) If  v is A-superharmonic, then (2.9) holds. Moreover, - d i v , 4 ( x ,  V v ) > 0  if 
l p  ve W o'; (a). 

l p  
(iii) If  v is A-superharmonic and locally bounded, then v E Wlo ~ (f~) and 

- div A(x, Vv) >_ 0. 

1,p Because an A-superharmonie function does not necessarily belong to Wlo c G2), 
we extend the definition for the divergence of A(x, Vu): If u is an A-superharmonie 
function in ft, then we define 

- div A(x, Vu)(~) = f lim ~4(x, V min(u, k)) -V~ dx, ~ C C ~ ( ~ ) .  
Ja  k----+ ~o 

By [KM1, 1.15] 
lim ,4(x, V min(u, k)) 

k--~oc 

is locally integrable and hence div A(x, Vu) is its divergence. (Since the truncations 
min(u, k) are in Wllo'P(ft) and 

V min(u, k) = V min(u, j )  

a.e. in {u<min(k , j )} ,  the limit exists. It is equal to ~4(x, Vu) " 1 1 if UCWlo ~ (ft), which 
is always the case i f p > 2 - 1 / n . )  Our definition treats the difficulty that  arises from 
the fact that  for p<_2-1/n the distributional gradient Vu need not be a function. 
Indeed, the above definition of div A(x, Vu) is merely a technical tool to t reat  all 
p's simultaneously. 

Since - div A(x, Vu) is a nonnegative distribution in f~ for an ~4-superharmonic 
u it follows that  there is a nonnegative Radon measure # such that  

- div A(x, Vu) = # 

in Q; this measure # is sometimes referred to as the Riesz mass of u. Conversely, 
given a finite measure # in a bounded f~, there is an A-superharmonic function u 
such that  - d i v A ( x ,  Vu)= t t  in f~ and min(u,k)eW~'P(ft)  for all integers k. We 
refer to [KM1] and [HKM, Chapter 7] for details. 

The existence of A-superharmonic solutions to - div A(x, Vu) = #  in bounded 
f~ is not adequate for us. Hence we establish the following theorem. 
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2.10. T h e o r e m .  Let # be a finite Radon measure in R n. Then there is an 

A-superharmonic function u in R n such that 

- div A(x ,  Vu) = # 

in R ~. I f  l < p < n ,  then u can be chosen to be positive. 

Proof. The case 1 < p < n  is easy and it follows by employing an argument similar 

to that used in [KM1]; an existence result is also proven in [BGPV, Theorem 8.1] 

except for the fact that  u is A-superharmonic. The details are left to the reader. 

We outline how the argument of [DHM] should be modified to obtain our 

theorem in the case p=n.  (I thank Stefan Miilter for showing me an early draft of 

the paper [DHM].) 

Choose a sequence #k e C~(B(O,  k)) of nonnegative functions (measures) such 

that #k--+# weakly in the sense of measures. Let vk be the A-superharmonic solution 

of the problem 
- d i v A ( x ,  Vvk) = # k  on B(O,k), 

vk = 0 on OB(O, k). 

Using a rescaling argument similarly as in [DHM] we infer that  for uk=vk- -ck ,  

where ck is a constant, it holds that  

and 

B(o,1) uk d x  = 0 

[Uk]BVO _< cllttkll 1/(=-1) < e(ll>ll+l) 1/(n 1). 

Since uk is bounded in BMO and since its mean value in the unit ball vanishes, it 

follows that  uk is bounded in Ln(B),  where B is any large ball. Now we obtain from 

the estimate [HKM, 3.36] that the sequence uk is uniformly bounded from below 
1 in ~B. Hence it follows from [KM1, 1.15] that a subsequence of uk converges a.e. 

to an A-superharmonic function u in R n. Moreover, V u j - ~ V u  both a.e. pointwise 
and in q n Lloc(R ) for q<n.  In conclusion, 

- div A(x, Vu) = p 

in R n, as desired. [] 

2 . 1 1 .  W o l f f  p o t e n t i a l s  

The fact that  an A-superharmonic function can be locally estimated in terms 

of its Riesz mass is very useful. In our problem these estimates enable us to change 
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the  cons t ruc t ion  of A- supe rha rmon ic  funct ions (solutions to  nonlinear  equat ions)  

to a much  easier task: to cons t ruc t  cer ta in  Radon  measures .  
To make  this precise we recall t h a t  the Wolff potential of the measure # is 

W~l p(Xo,r)= f o r ( # ( B ( x o , t ) ) )  1/(p-1) dt 
- -  r > 0 .  

' \ t ~ ; t '  

We next  record the fundamenta l  po ten t ia l  es t imate .  

2 .12 .  T h e o r e m .  ([KM2, 1.6]) Suppose that u is a nonnegative A-supcrhar- 
monic function in B(xo, 3r).  If  p = -  div ,4(x, Vu) ,  then 

ClW~,p(XO, r)  ~ u(x0)  ~ e2 inf u+caW~p(XO 2r),  
B(:~o,~) 

where el, c2, and c3 are positive constants, depending only on n, p, and the structural 
constants ct and/3. 

In particular, u ( x 0 ) < o c  if and only if W~,p(Xo,r)<oc for some r > 0 .  

The  following s imple l e m m a  will be  used to es t imate  inf u t ha t  appea r s  in the  
potent ia l  e s t ima te  above.  

2 .13.  L e m m a .  ([KM2, 3.9]) Suppose that uEW~'P(f~) is ~4-superharmonic in 
and p= div A(x, Vu). Then for ),>O it holds that 

A p-1 eapp({X �9 f i :  u(x) > A}, f~) < #(f t )  
a 

Recall  t ha t  capp(E, ~) s tands  for the  relative p-capacity of E in ft which for 
E Cf~ is defined as 

where  

capp(E ,  ft) = inf sup . c a p p ( K ,  f~), 
GCf] open I42CC, 

E c G K compact 

f 
. capp (K, f~) = i n f / ~  IVul p dx; 

here u runs th rough  all uEC~( f t )  with  u > l  on K .  

2 .14.  S w e e p i n g  t h e  m e a s u r e  

Let  K c R n  be a closed set and let # be a finite Radon  measure .  Our  goal is 
to find a new Radon  measure  /2, suppor t ed  on K ,  such t ha t  the  to ta l  mass  of # 

is preserved and  the  Wolff potent ia l  of fi is not  essentially smaller  t han  t ha t  of # 
on K .  More  precisely, we prove the  following theorem.  
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2.15. T h e o r e m .  Let K c R  ~ be a closed set and let # be a finite Radon mea- 
sure. Then there is a Radon measure fi such that 

(i) the support of fit is contained in K and thus fi(CK)=0, 
(ii) # (Rn)=f i (Rn) ,  and 

(iii) there is c=c(n,p)>O such that 

(x, 7t) >_ t) 

for each x E K  and t>0 .  

Later we sometimes refer to the measure fi with the above properties as the 
swept out measure of # into K.  

Proof. Let W be the Whitney decomposition of CK, i.e. W is a countable 
collection of pairwise disjoint cubes Q (with parts of the boundaries included) such 
that  

U Q = C K  
QEw 

and 
diam(Q) < dist (Q, K) _< 4 diam(Q). 

For each Q E W  choose a point XQEK with 

dist(xQ, Q) _< 5 diam(Q). 

Define 

QcW 

where 5y is the Dirac measure at y and and PtK stands for the restriction to K of 
the measure p, i.e. 

# I K ( E ) = p ( E N K )  f o r E C R  n. 

Then/2 defines a finite Radon measure supported on K with f i (K)=#(Rn) .  More- 
over, we have the estimate 

(2.16) fi(B(x, 7r)) > #(B(x ,  r)) 

for x E K  and r>0 .  Indeed, fix x E K  and r>O, and let 

Wr = {Q � 9  r  

If Q � 9  choose yEQNB(x ,  r). Then 

IxQ-yl  <_ 6 diam(Q) _< 6 dist(Q, K) < 6 l x - y  I < 6r, 
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and hence 

Ixq-xl <_ I~q-yl+l~-yl < 7r, 

or XQ cB(x,  7r). Consequently,  

, (s(x,  r)) < ,(B(x, r) nK) + y~ ,(Q) 
QE/42~ 

<~(B(x, Tr)nK)+ y]~ ~(Q):~(B(x, 7r)). 
xQ6B(x,Tr) 

Next we write the est imate  of the Wolff potential :  if x E K  and t > 0 ,  then  by 

(2.16) 

)1 fo7t ( t t(B(x,r/7))  ) 1/(p-l) dr . [Tt{fit(B(x,r) ) / (p- l)  dr > 
[ - \ r -p r 

: 7(p_n)/(p_l) ( # ( B ( x j ) )  ds : 7 (P_n) / (p_ l )Wt~(X ,  t), 
k s ~ - p  / s 

and the theorem follows. [] 

3. T h e  F~, c a s e  

In this section we prove the following. 

3.1.  T h e o r e m .  Suppose that E is a Go-set of p-capacity zero. I rE is also an 
F~-set, then there is an A-superharmonic function u in R n such that 

E : {x: u(x) : o~} 

and u is ~4-harmonic in CP,. 

Proof. Choose an increasing sequence K j  of  compac t  sets and a decreasing 
sequence Gk of open sets such tha t  

j = l  k= l  

Let u be an A-superharmonic  function in R n such tha t  u:cx~ on E and write 

# : - div A(x,  Vu).  
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Sweep the measure # onto Kj by Theorem 2.15: obtain a Radon measure #j sup- 
ported on Kj such that  # j ( R ~ ) < I  and 

W "~ (x,1) -- oo for e a c h x E K j .  

By multiplying #j with a positive constant _< 1 we may assume that  

W~J(x,1)<4 -j whenever x r Gj; 

observe that  dist(Kj,  CGj) >0 and supp [~j CNj. 
Let 

E 2-J pj 
j = l  

Then (T is a finite Radon measure with g(CE)=0.  Moreover, 

W~(x ,  1 ) > 2  J/(P-1)W"~ (x,1) oe f o r x E K j  

whence 
W ~  f o r e a c h x e E .  

We next show that  
W~(x ,  1) < oc ifz~E. 

For this we use the estimate 
o~  

E 2  J/(P-1)#j(A)I/(P-1),. 
j = l  

-- / cx> \(2--p)/(p--1) oo ~ < ( E 2  j/(2_p) ) E[.Lj(A)I/(p-1), 
--j--1 -- j 1 

Hence 

if p_>2, 

if p < 2 .  

o o  

E 2-J/(P-1)W'UJ (x, 1), if  p > 2, 
j = l  

W~(x,  1) _< ~ )(2 p)/(p-1) oo 

(j~l 2.j/(2-p) E W"r (x, 1), i f p <  2. 
- -  j = l  

Next we observe that  if x~E, then x~Gj except possibly for finitely many, say kx, 
j 's ,  and therefore W~(x ,  1) does not exceed 

~2-J/(P-1)Wt'5(x, 1)+ ~ 2-J/(P-1)Wt~(x, 1) 
j = l  j = k ~ + l  

if p_>2 
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and 

/ oo \(2--p)/(p 1)(k j~  1 oo ) 
W (x, 1)+ E W"~(x ,1)  i f p < 2 .  2-J / (  2 

\ j = l  -- -- j k~§ 

Finally since 

we infer that 

W"J(x ,  1 ) < {  4-#, i f x ~ G j ,  i . e . j > k x ,  

ec, if x ~ E,  i.e. j < kx, 

W~(x ,  1) < cc for all x ~ E ,  

as desired. 
Now we are in the position to conclude the proof: by Theorem 2.10 there is an 

A-superharmonic function v on R n such that  

- d i v  A ( x ,  V v )  = ~ .  

The potential estimate Theorem 2.12 implies that  v (x )=oo  if and only if x E E .  
Moreover, v is M-harmonic in CE, for cr(CE)=0 (see [M, 3.19]). [~ 

4. P o l a r  se t  as t h e  se t  o f  in f in i ty  of  an  A - s u p e r h a r m o n i c  f u n c t i o n  

In this section we prove Theorem 1.3. We start with a lemma whose proof is 
displeasingly technical. 

4.1. L e m m a .  Suppose that f~ is a bounded open set and E ~  is of p-capacity 
zero. Let F c C E  be closed. Then there is an A-superharmonie function u in f~ such 
that uEW~'P(f~), u=oo on E,  and u<_l on F N f L  Moreover, u can be chosen so 
that #(~2) < 1, where # = -  div A(x,  Vu). 

Proof. We assume, as we well may, that  F contains a neighborhood of 0f~. Then 
choose open sets GI~DG2=D...=DNj G j = F .  Let v be an A-superharmonic function 
in R ~ such that  v=oo  on E and let o r = - d i v  A(x ,  Vv). Now sweep the measure cr 
into f~\Gj and let c~j stand for the swept out measure (see Theorem 2.15). As in 
the proof of the F~ case (Theorem 3.1) we find positive constants cj such that  for 
the measure 

O 0  

P = E Cj O-j 
j = l  

it holds that  # ( R  ~) < 1, 

W~,p(x, 1) _< 1 for all x E F, 
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and 

whence 

Wf, p (x, 1) c~oj _>Wl,p (x, 1 ) = ~  for all x C E \ C j ,  

W~,p(x, 1) = oc for all x E E. 

To complete the proof we let w be an A-superharmonic solution of the problem 

f - d i v A ( x ,  V w ) = #  i n a ,  
(4.2) 

w = 0 on Oft. 

Now w is not quite tha t  function we are looking for but close to it. To find the 
final function we choose an open set D@f~ such that  E~D, ODcF, OD=OD, and 
that  all points on OD are regular points for the Dirichlet problem in f ) \ D  (for 
instance, D may be a polyhedron; see [HKM]). Since the distance between D and 

0f~ is positive, there is r0 >0  such tha t  B(x, 3r0)C~2 whenever xE/9.  Now we infer 
from the estimate Lemma 2.13(2) tha t  

inf w < c (  #(Rn) ~1/(p-1) 
B(x,ro) -- \ c a P p 0 ~ ( z , 7 0 ) , f ~ ) ]  _ < C < ~ ,  

where C is independent of the point x E D .  Hence the potential  est imate in Theo- 
rem 2.12 implies tha t  w<co in F N D .  

Next we observe tha t  the function l og (w+l )  is a positive A-superharmonie 
function in a ,  uniformly bounded from above in FMD, and EI/Vllo'~P(a) (see [HKM, 
7.48]). If  hcWl,p(fl\~) is the A-harmonic function in f ~ \ B  tha t  agrees with 
log(w+1) on OD and with 0 on 0f~ (in the Sobolev sense), then the function 

~2=~ log(w+1)  in D, 

L h in f l \ D  

is a positive A-superharmonic function in f~ by the pasting lemma [HKM, 7.9J, since 
h=min (h ,  l og (w+l ) )  in f~\D. Moreover, (zCW~'P(Ft), ~2=cxz on E,  ~2 is uniformly 

bounded from above in Fnf~,  and its Riesz mass - d i v A ( x ,  Vg) is finite in ft. In 
conlusion, we may  choose a constant )~>0 such tha t  the function u=)~g enjoys the 
desired properties of the lemma. [] 

(2) Of course, w~W~'P(f~) contrary to the assumptions of Lemma 2.13. However, following 
the standard construction of.A-superharmonic solutions to (4.2) as done e.g. in [KM1] one is easily 
convinced that there is a solution w of (4.2) for which the estimate of Lemma 2.13 holds. Let us 
pick such a function w. 
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Proof of Theorem 1.3. Let Bk=B(0,  2 k) and Ek=EnBk-1. Suppose that  Gj 
are open sets such that  G1DG2D.. .DNj Cj=-E. Fix k. Let uj be an A-superhar- 
monic function in Bk with finite Riesz mass -d iv .A(x ,  Vuj) such that  uj=oo on 
Ek, ujcW~'P(Bk), and uj<<l on Bk\(GjNBk_I) (Lemma 4.1). Let 

vj = min(4 j/(p-1) , ?Ajuj), 

where 0< ,~ j < l  is chosen so that  vj_<2 J on Bk\(GjNBk-1) and pj(Bk)_<l, p j =  
- div A(x, Vvj); for the last property obeserve that  #j agrees with the Riesz measure 
of A3P'--lltj on Bk\Bk_ 1 and 

~ J ( 3 B k - 1 )  ~ iB ~dPJ= fB A(x, Vvj)'V~dx 
k k 

(fB .,(p-l)/p[,f x lip IVvjlPdxJ riB iv< 

,,,B~ IVujlP dx) 
3 where qoEC~(Bk) is any nonnegative function with qo=l on ffBk-1. 

Now by the estimate Lemma 2.13 we have for xEBk-1 that  

where M is independent of j .  Thus by the potential estimate in Theorem 2.12 

cW~/p(X,2) >_vj(x)-c inf vj >3 jI(p-1) 
B(~,l) 

if x C Ek and j is large enough. 
Setting 

o o  

p(k) = ~ 2 J~j 
j = l  

we obtain a finite Radon measure on R n with the properties 

p(k) . 
Wl,  p (x, 1)<cx~ for a l l x C E k ,  

/z(k) 
Wl,  p (x, 1 )=oo  for a l l x E E k .  

Indeed, the finiteness of W~,~ ) (x, 1) outside Ek is proven similarly as in the F~ case 
(see 3.1). Further, if x~Ek, then for j large enough it holds that  
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#(k) . 
whence W l ,  p (x, 1)=oc.  

To complete the proof we write 

o~ 

It : ~ It(k)IB~\B~_2, 
k=l 

where It(k)IBk~B~_2 stands for the restriction to Bk \ B k - 2  of the measure It(k), and 
B 0 = B - t  0. Then It is a finite Radon measure in R n and 

W~l,p(x, 1 )=oc  if and only if x E E .  

An ~4-superharmonic solution Of div A(x,  Vu) =I t  on R n is the desired function u 
(see Theorems 2.10 and 2.12). [] 
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