Singular solutions to p-Laplacian type equations

Tero Kilpeläinen(1)

Abstract. We construct singular solutions to equations
\[\text{div } \mathcal{A}(x, \nabla u) = 0, \]
similar to the p-Laplacian, that tend to ∞ on a given closed set of p-capacity zero. Moreover, we show that every G_δ-set of vanishing p-capacity is the infinity set of some \mathcal{A}-superharmonic function.

1. Introduction

Suppose that u is a solution of the p-Laplacian equation
\[\text{div}(|\nabla u|^{p-2}\nabla u) = 0 \]
in an open subset Ω of \mathbb{R}^n. If $u(x)$ tends continuously to ∞ as x approaches the boundary $\partial \Omega$ of Ω, then it is easily seen that the complement of Ω is of p-capacity zero, i.e.
\[C_p(\mathbb{C}\Omega) = 0; \]
see e.g. [HK, 3.4], [HKM, 10.5 and 10.6], or [R, Theorem 5.9]. The p-capacity of a set E is defined as
\[C_p(E) = \inf \int_{\mathbb{R}^n} (|\nabla \varphi|^p + |\varphi|^p) \, dx, \]
where φ runs through all $\varphi \in W^{1,p}_{\text{loc}}(\mathbb{R}^n)$ such that $\varphi \geq 1$ on an open neighborhood of E. In this paper we are interested in the converse problem: given a set E of p-capacity zero, can one construct a solution to the p-Laplacian whose singularity is the set E?

(1) The research is financed by the Academy of Finland (Project #8597).
In the precise treatment we use the language of nonlinear potential theory [HKM]. We consider more general equations
\begin{equation}
\text{div} \mathcal{A}(x, \nabla u) = 0
\end{equation}
that are similar to the \(p \)-Laplacian; see Section 2.1. The continuous solutions to (1.1) are called \(\mathcal{A} \)-harmonic and \(\mathcal{A} \)-superharmonic functions are defined via a comparison with the \(\mathcal{A} \)-harmonic functions. The precise definitions and properties of \(\mathcal{A} \)-harmonic and \(\mathcal{A} \)-superharmonic functions are listed in Section 2.1 below. Roughly speaking, \(\mathcal{A} \)-superharmonic functions \(u \) are solutions of
\begin{equation}
-\text{div} \mathcal{A}(x, \nabla u) = \mu
\end{equation}
with nonnegative Radon measures \(\mu \).

It has been known for about a decade that sets of \(p \)-capacity zero can be characterized as \(\mathcal{A} \)-polar sets; a set \(E \) is called \(\mathcal{A} \)-polar if there is an \(\mathcal{A} \)-superharmonic function \(u \) on \(\mathbb{R}^n \) such that \(u = \infty \) on \(E \). This was first established by Lindqvist and Martio for the \(p=n \) case in [LM] and later for all \(p \) in [HK] (see [HKM, Chapter 10]). Note that the definition of an \(\mathcal{A} \)-polar set does not require that it be exactly the infinity set for some \(\mathcal{A} \)-superharmonic function. Since each \(\mathcal{A} \)-superharmonic function \(u \) is lower semicontinuous, we have that its set of infinity is a \(G_\delta \)-set, a countable intersection of open sets:
\[
\{ x : u(x) = \infty \} = \bigcap_j \{ x : u(x) > j \}.
\]
Therefore it is natural to ask whether, for a given \(G_\delta \) set \(E \) of \(p \)-capacity zero, there exists an \(\mathcal{A} \)-superharmonic \(u \) that is \(\infty \) exactly on \(E \). The first result in this direction is Theorem 1.7 in [K] which states that an \(\mathcal{A} \)-superharmonic function can be chosen to be \(\infty \) on \(E \) but finite at a given point outside \(E \). In this paper we give a complete affirmative answer to the question and prove the following.

1.3. Theorem. Suppose that \(E \) is a \(G_\delta \)-set of \(p \)-capacity zero. Then there is an \(\mathcal{A} \)-superharmonic function \(u \) in \(\mathbb{R}^n \) such that
\[
E = \{ x : u(x) = \infty \}.
\]
Moreover, if \(1 < p < n \), then \(u \) can be chosen to be positive.

We want to emphasize that according to Theorem 1.3 the “true \(\mathcal{A} \)-polarity” is independent of the actual operator: if \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) are two mappings that satisfy the assumptions listed in Section 2.1 and \(u_1 \) is \(\mathcal{A}_1 \)-superharmonic, then there is an \(\mathcal{A}_2 \)-superharmonic \(u_2 \) in \(\mathbb{R}^n \) such that
\[
\{ x : u_1(x) = \infty \} = \{ x : u_2(x) = \infty \}.
\]
Moreover, we show that the function \(u \) given by Theorem 1.3 can be chosen to be \(\mathcal{A} \)-harmonic outside \(E \) if \(E \) is closed.
1.4. Theorem. Let E be a relatively closed subset of an open set Ω. If E is of p-capacity zero, then there is a continuous A-superharmonic function u in Ω such that

$$E = \{x \in \Omega : u(x) = \infty\}$$

and u is A-harmonic in $\Omega \setminus E$.

Since A-superharmonic functions solve equations like (1.2), we may interpret Theorem 1.4 as follows: there is a Radon measure μ supported on any given closed set E of p-capacity zero so that μ is concentrated at each point of E. The precise meaning of this statement will be made clear later.

In the classical linear case Theorem 1.4 was first proven by Evans [E] whence such a function is often called an Evans potential. Later Choquet [C] extended it for a general G_δ-set E of capacity zero. In the case where E is countable and compact Theorem 1.4 is established in Holopainen’s thesis [H]. In Section 3 we prove a slightly more general result than Theorem 1.4: any G_δ-set E of p-capacity zero that is also an F_σ-set (a countable union of compact sets) is the infinity set for some A-superharmonic function that is also A-harmonic in the complement of the closure of E.

Our method of proof is based on the potential estimate of the author and Malý [KM2] (see Theorem 2.12 below) that allows us to convert the construction of solutions of nonlinear equations into the construction of Radon measures with certain density properties. Indeed, there is a correspondence between Radon measures μ and A-superharmonic functions u by

$$\mu = -\text{div} A(x, \nabla u).$$

Moreover, the local behavior of an A-superharmonic function u whose “Riesz mass” is μ can be controlled in terms of a nonlinear potential, the Wolff potential of μ,

$$W^{\mu}_{\frac{n}{p}-p}(x, r) = \int_0^r \left(\frac{\mu(B(x, t))}{t^{n-p}}\right)^{1/(p-1)} \frac{dt}{t}.$$

In particular, it was proven in [KM2] that $u(x) = \infty$ exactly when $W^{\mu}_{\frac{n}{p}-p}(x, r) = \infty$. So the proof of Theorem 1.3 reduces to constructing a measure μ such that E is the set of infinity of its Wolff potential and then pick an A-superharmonic function whose Riesz mass μ is.

The main new trick in this paper is the “sweeping” of the nonlinear Riesz mass onto E so that the Wolff potential does not get essentially smaller; this is done in Section 2.14 below.

I would like to thank Seppo Rickman whose questions persuaded me to reconsider these problems.
2. Measures, potentials, and \mathcal{A}-superharmonic functions

2.1. Preliminaries

Throughout the paper we let Ω denote an open set in \mathbb{R}^n and $1 < p \leq n$ is a fixed number; note that the case $p > n$ is trivial since then no nonempty set is of p-capacity zero. Moreover, we assume that $\mathcal{A}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is a mapping which satisfies the following assumptions for some constants $0 < \alpha \leq \beta < \infty$:

\begin{align*}
\text{(2.2)} & \quad \text{the function } x \mapsto \mathcal{A}(x, \xi) \text{ is measurable for all } \xi \in \mathbb{R}^n, \text{ and} \\
\text{(2.3)} & \quad \text{the function } \xi \mapsto \mathcal{A}(x, \xi) \text{ is continuous for a.e. } x \in \mathbb{R}^n,
\end{align*}

for all $\xi \in \mathbb{R}^n$ and a.e. $x \in \mathbb{R}^n$,

\begin{align*}
\text{(2.4)} & \quad \mathcal{A}(x, \xi) \cdot \xi \geq \alpha |\xi|^p, \\
\text{(2.5)} & \quad |\mathcal{A}(x, \xi)| \leq \beta |\xi|^{p-1}, \\
\text{(2.6)} & \quad (\mathcal{A}(x, \xi) - \mathcal{A}(x, \zeta)) \cdot (\xi - \zeta) > 0,
\end{align*}

whenever $\xi \neq \zeta$, and

\[\mathcal{A}(x, \lambda \xi) = \lambda |\lambda|^p \mathcal{A}(x, \xi) \]

for all $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

We define the divergence of $\mathcal{A}(x, \nabla u)$ in the sense of distributions, i.e. if $\varphi \in C_0^\infty(\Omega)$, then

\[\text{div } \mathcal{A}(x, \nabla u)(\varphi) = - \int_\Omega \mathcal{A}(x, \nabla u) \cdot \nabla \varphi \, dx, \]

where $u \in W^{1,p}_{\text{loc}}(\Omega)$. A solution $u \in W^{1,p}_{\text{loc}}(\Omega)$ to the equation

\[\text{div } \mathcal{A}(x, \nabla u) = 0 \]

always has a continuous representative; we call continuous solutions $u \in W^{1,p}_{\text{loc}}(\Omega) \cap C(\Omega)$ of (2.7) \mathcal{A}-harmonic in Ω.

A lower semicontinuous function $u: \Omega \to (-\infty, \infty]$ is called \mathcal{A}-superharmonic if u is not identically infinite in each component of Ω, and if for all open $D \subset \subset \Omega$ and all $h \in C(\bar{D})$, \mathcal{A}-harmonic in D, $h \leq u$ on ∂D implies $h \leq u$ in D.

The following connection between \mathcal{A}-superharmonic functions and supersolutions of (2.7) is fundamental.
2.8. Proposition. ([HKM, 7.25]) (i) If \(u \in W^{1,p}_{\text{loc}}(\Omega) \) is such that

\[- \text{div} \mathcal{A}(x, \nabla u) \geq 0,\]

then there is an \(\mathcal{A} \)-superharmonic function \(v \) such that \(u = v \) a.e. Moreover,

\(v(x) = \text{ess lim inf}_{y \to x} v(y) \quad \text{for all } x \in \Omega. \) \hspace{1cm} (2.9)

(ii) If \(v \) is \(\mathcal{A} \)-superharmonic, then (2.9) holds. Moreover, \(- \text{div} \mathcal{A}(x, \nabla v) \geq 0\) if \(v \in W^{1,p}_{\text{loc}}(\Omega).\)

(iii) If \(v \) is \(\mathcal{A} \)-superharmonic and locally bounded, then \(v \in W^{1,p}_{\text{loc}}(\Omega) \) and

\[- \text{div} \mathcal{A}(x, \nabla v) \geq 0.\]

Because an \(\mathcal{A} \)-superharmonic function does not necessarily belong to \(W^{1,p}_{\text{loc}}(\Omega) \), we extend the definition for the divergence of \(\mathcal{A}(x, \nabla u) \): If \(u \) is an \(\mathcal{A} \)-superharmonic function in \(\Omega \), then we define

\[- \text{div} \mathcal{A}(x, \nabla u)(\varphi) = \int_{\Omega} \lim_{k \to \infty} \mathcal{A}(x, \nabla \min(u, k)) \cdot \nabla \varphi \, dx, \quad \varphi \in C_0^\infty(\Omega).\]

By [KM1, 1.15]

\[\lim_{k \to \infty} \mathcal{A}(x, \nabla \min(u, k)) \]

is locally integrable and hence \(\text{div} \mathcal{A}(x, \nabla u) \) is its divergence. (Since the truncations \(\min(u, k) \) are in \(W^{1,p}_{\text{loc}}(\Omega) \) and

\[\nabla \min(u, k) = \nabla \min(u, j) \quad \text{a.e. in } \{ u < \min(k, j) \}, \]

the limit exists. It is equal to \(\mathcal{A}(x, \nabla u) \) if \(u \in W^{1,1}_{\text{loc}}(\Omega), \) which is always the case if \(p > 2 - 1/n. \) Our definition treats the difficulty that arises from the fact that for \(p \leq 2 - 1/n \) the distributional gradient \(\nabla u \) need not be a function. Indeed, the above definition of \(\text{div} \mathcal{A}(x, \nabla u) \) is merely a technical tool to treat all \(p \)'s simultaneously.

Since \(- \text{div} \mathcal{A}(x, \nabla u)\) is a nonnegative distribution in \(\Omega \) for an \(\mathcal{A} \)-superharmonic \(u \) it follows that there is a nonnegative Radon measure \(\mu \) such that

\[- \text{div} \mathcal{A}(x, \nabla u) = \mu \]

in \(\Omega \); this measure \(\mu \) is sometimes referred to as the \textit{Riesz mass of } \(u. \) Conversely, given a finite measure \(\mu \) in a bounded \(\Omega \), there is an \(\mathcal{A} \)-superharmonic function \(u \) such that \(- \text{div} \mathcal{A}(x, \nabla u) = \mu \) in \(\Omega \) and \(\min(u, k) \in W^{1,p}_{0}(\Omega) \) for all integers \(k. \) We refer to [KM1] and [HKM, Chapter 7] for details.

The existence of \(\mathcal{A} \)-superharmonic solutions to \(- \text{div} \mathcal{A}(x, \nabla u) = \mu \) in bounded \(\Omega \) is not adequate for us. Hence we establish the following theorem.
2.10. Theorem. Let μ be a finite Radon measure in \mathbb{R}^n. Then there is an A-superharmonic function u in \mathbb{R}^n such that

$$- \text{div } A(x, \nabla u) = \mu$$

in \mathbb{R}^n. If $1 < p < n$, then u can be chosen to be positive.

Proof. The case $1 < p < n$ is easy and it follows by employing an argument similar to that used in [KM1]; an existence result is also proven in [BGPV, Theorem 8.1] except for the fact that u is A-superharmonic. The details are left to the reader.

We outline how the argument of [DHM] should be modified to obtain our theorem in the case $p=n$. (I thank Stefan Müller for showing me an early draft of the paper [DHM].)

Choose a sequence $\mu_k \in C^\infty_0(B(0,k))$ of nonnegative functions (measures) such that $\mu_k \to \mu$ weakly in the sense of measures. Let v_k be the A-superharmonic solution of the problem

$$\begin{cases} - \text{div } A(x, \nabla v_k) = \mu_k & \text{on } B(0,k), \\ v_k = 0 & \text{on } \partial B(0,k). \end{cases}$$

Using a rescaling argument similarly as in [DHM] we infer that for $u_k = v_k - c_k$, where c_k is a constant, it holds that

$$\int_{B(0,1)} u_k \, dx = 0$$

and

$$[u_k]_{\text{BMO}} \leq c \|\mu_k\|^{1/(n-1)} \leq c(\|\mu\| + 1)^{1/(n-1)}.$$

Since u_k is bounded in BMO and since its mean value in the unit ball vanishes, it follows that u_k is bounded in $L^n(B)$, where B is any large ball. Now we obtain from the estimate [HKM, 3.36] that the sequence u_k is uniformly bounded from below in $\frac{1}{2}B$. Hence it follows from [KM1, 1.15] that a subsequence of u_k converges a.e. to an A-superharmonic function u in \mathbb{R}^n. Moreover, $\nabla u_j \to \nabla u$ both a.e. pointwise and in $L^q_{\text{loc}}(\mathbb{R}^n)$ for $q < n$. In conclusion,

$$- \text{div } A(x, \nabla u) = \mu$$

in \mathbb{R}^n, as desired. \(\square \)

2.11. Wolff potentials

The fact that an A-superharmonic function can be locally estimated in terms of its Riesz mass is very useful. In our problem these estimates enable us to change
the construction of \mathcal{A}-superharmonic functions (solutions to nonlinear equations) to a much easier task: to construct certain Radon measures.

To make this precise we recall that \textit{the Wolff potential of the measure μ is}

$$W_{1,p}^\mu(x_0, r) = \int_0^r \left(\frac{\mu(B(x_0, t))}{t^{n-p}} \right)^{1/(p-1)} \frac{dt}{t}, \quad r > 0.$$

We next record the fundamental potential estimate.

\textbf{2.12. Theorem. ([KM2, 1.6]) Suppose that u is a nonnegative \mathcal{A}-superharmonic function in $B(x_0, 3r)$. If $\mu = -\text{div}\mathcal{A}(x, \nabla u)$, then}

$$c_1 W_{1,p}^\mu(x_0, r) \leq u(x_0) \leq c_2 \inf_{B(x_0, r)} u + c_3 W_{1,p}^\mu(x_0, 2r),$$

where c_1, c_2, and c_3 are positive constants, depending only on n, p, and the structural constants α and β.

In particular, $u(x_0) < \infty$ if and only if $W_{1,p}^\mu(x_0, r) < \infty$ for some $r > 0$.

The following simple lemma will be used to estimate $\inf u$ that appears in the potential estimate above.

\textbf{2.13. Lemma. ([KM2, 3.9]) Suppose that $u \in W^{1,p}_0(\Omega)$ is \mathcal{A}-superharmonic in Ω and $\mu = -\text{div}\mathcal{A}(x, \nabla u)$. Then for $\lambda > 0$ it holds that}

$$\lambda^{p-1} \text{cap}_p(\{x \in \Omega: u(x) > \lambda\}, \Omega) \leq \frac{\mu(\Omega)}{\alpha}.$$

Recall that $\text{cap}_p(E, \Omega)$ stands for the relative p-capacity of E in Ω which for $E \subseteq \Omega$ is defined as

$$\text{cap}_p(E, \Omega) = \inf_{G \subseteq \Omega \text{ open}} \sup_{K \subseteq G \text{ compact}} \text{cap}_p(K, \Omega),$$

where

$$\text{cap}_p(K, \Omega) = \inf \int_\Omega |\nabla u|^p \, dx;$$

here u runs through all $u \in C_0^\infty(\Omega)$ with $u \geq 1$ on K.

\textbf{2.14. Sweeping the measure}

Let $K \subseteq \mathbb{R}^n$ be a closed set and let μ be a finite Radon measure. Our goal is to find a new Radon measure $\tilde{\mu}$, supported on K, such that the total mass of μ is preserved and the Wolff potential of $\tilde{\mu}$ is not essentially smaller than that of μ on K. More precisely, we prove the following theorem.
2.15. Theorem. Let $K \subset \mathbb{R}^n$ be a closed set and let μ be a finite Radon measure. Then there is a Radon measure $\tilde{\mu}$ such that

(i) the support of $\tilde{\mu}$ is contained in K and thus $\tilde{\mu}(\partial K) = 0$,
(ii) $\mu(\mathbb{R}^n) = \tilde{\mu}(\mathbb{R}^n)$, and
(iii) there is $c = c(n,p) > 0$ such that

$$W^\tilde{\mu}(x, 7t) \geq c W^\mu(x, t)$$

for each $x \in K$ and $t > 0$.

Later we sometimes refer to the measure $\tilde{\mu}$ with the above properties as the swept out measure of μ into K.

Proof. Let W be the Whitney decomposition of \mathbb{R}^n, i.e. W is a countable collection of pairwise disjoint cubes Q (with parts of the boundaries included) such that

$$\bigcup_{Q \in W} Q = \mathbb{R}^n$$

and

$$\text{diam}(Q) \leq \text{dist}(Q, K) \leq 4 \text{diam}(Q).$$

For each $Q \in W$ choose a point $x_Q \in K$ with

$$\text{dist}(x_Q, Q) \leq 5 \text{diam}(Q).$$

Define

$$\tilde{\mu} = \mu|_K + \sum_{Q \in W} \mu(Q) \delta_{x_Q},$$

where δ_y is the Dirac measure at y and and $\mu|_K$ stands for the restriction to K of the measure μ, i.e.

$$\mu|_K(E) = \mu(E \cap K) \quad \text{for} \quad E \subset \mathbb{R}^n.$$

Then $\tilde{\mu}$ defines a finite Radon measure supported on K with $\tilde{\mu}(K) = \mu(\mathbb{R}^n)$. Moreover, we have the estimate

$$\tilde{\mu}(B(x, 7r)) \geq \mu(B(x, r))$$

for $x \in K$ and $r > 0$. Indeed, fix $x \in K$ and $r > 0$, and let

$$W_r = \{Q \in W : Q \cap B(x, r) \neq \emptyset\}.$$

If $Q \in W_r$, choose $y \in Q \cap B(x, r)$. Then

$$|x_Q - y| \leq 6 \text{diam}(Q) \leq 6 \text{dist}(Q, K) \leq 6|x - y| < 6r,$$
and hence
\[|x_Q - x| \leq |x_Q - y| + |x - y| < 7r, \]
or \(x_Q \in B(x, 7r) \). Consequently,
\[
\mu(B(x, r)) \leq \mu(B(x, r) \cap K) + \sum_{Q \in W_r} \mu(Q) \\
\leq \mu(B(x, 7r) \cap K) + \sum_{x_Q \in B(x, 7r)} \mu(Q) = \tilde{\mu}(B(x, 7r)).
\]

Next we write the estimate of the Wolff potential: if \(x \in K \) and \(t > 0 \), then by (2.16)
\[
W^{\tilde{\mu}}(x, 7t) = \int_0^{7t} \left(\frac{\mu(B(x, r))}{r^{n-p}} \right)^{1/(p-1)} \frac{dr}{r} \\
= \int_0^{7t} \left(\frac{\mu(B(x, r/7))}{r^{n-p}} \right)^{1/(p-1)} \frac{dr}{r} \\
= \int_0^{7t} \left(\frac{\mu(B(x, s))}{s^{n-p}} \right)^{1/(p-1)} \frac{ds}{s} = \frac{7(p-n)/(p-1)}{7(p-n)/(p-1)} W^{\mu}(x, t),
\]
and the theorem follows. \(\square \)

3. The \(F_\sigma \) case

In this section we prove the following.

3.1. Theorem. Suppose that \(E \) is a \(G_\delta \)-set of \(p \)-capacity zero. If \(E \) is also an \(F_\sigma \)-set, then there is an \(\mathcal{A} \)-superharmonic function \(u \) in \(\mathbb{R}^n \) such that
\[E = \{ x : u(x) = \infty \} \]
and \(u \) is \(\mathcal{A} \)-harmonic in \(\overline{\mathbb{R}^n} \).

Proof. Choose an increasing sequence \(K_j \) of compact sets and a decreasing sequence \(G_k \) of open sets such that
\[E = \bigcup_{j=1}^\infty K_j = \bigcap_{k=1}^\infty G_k. \]
Let \(u \) be an \(\mathcal{A} \)-superharmonic function in \(\mathbb{R}^n \) such that \(u = \infty \) on \(E \) and write
\[\mu = - \text{div} \ A(x, \nabla u). \]
Sweep the measure μ onto K_j by Theorem 2.15: obtain a Radon measure μ_j supported on K_j such that $\mu_j(R^n) \leq 1$ and

$$W^{\mu_j}(x, 1) = \infty \quad \text{for each } x \in K_j.$$

By multiplying μ_j with a positive constant ≤ 1 we may assume that

$$W^{\mu_j}(x, 1) < 4^{-j} \quad \text{whenever } x \notin G_j;$$

observe that $\text{dist}(K_j, CG_j) > 0$ and $\text{supp} \mu_j \subset K_j$.

Let

$$\sigma = \sum_{j=1}^{\infty} 2^{-j} \mu_j.$$

Then σ is a finite Radon measure with $\sigma(\mathcal{L}E) = 0$. Moreover,

$$W^\sigma(x, 1) \geq 2^{-j/(p-1)} W^{\mu_j}(x, 1) = \infty \quad \text{for } x \in K_j$$

whence

$$W^\sigma(x, 1) = \infty \quad \text{for each } x \in E.$$

We next show that

$$W^\sigma(x, 1) < \infty \quad \text{if } x \notin E.$$

For this we use the estimate

$$\sigma(A)^{1/(p-1)} \leq \begin{cases} \sum_{j=1}^{\infty} 2^{-j/(p-1)} \mu_j(A)^{1/(p-1)}, & \text{if } p \geq 2, \\ \left(\sum_{j=1}^{\infty} 2^{-j/(2-p)}\right)^{(2-p)/(p-1)} \sum_{j=1}^{\infty} \mu_j(A)^{1/(p-1)}, & \text{if } p < 2. \end{cases}$$

Hence

$$W^\sigma(x, 1) \leq \begin{cases} \sum_{j=1}^{\infty} 2^{-j/(p-1)} W^{\mu_j}(x, 1), & \text{if } p \geq 2, \\ \left(\sum_{j=1}^{\infty} 2^{-j/(2-p)}\right)^{(2-p)/(p-1)} \sum_{j=1}^{\infty} W^{\mu_j}(x, 1), & \text{if } p < 2. \end{cases}$$

Next we observe that if $x \notin E$, then $x \notin G_j$ except possibly for finitely many, say k_x, j's, and therefore $W^\sigma(x, 1)$ does not exceed

$$\sum_{j=1}^{k_x} 2^{-j/(p-1)} W^{\mu_j}(x, 1) + \sum_{j=k_x+1}^{\infty} 2^{-j/(p-1)} W^{\mu_j}(x, 1) \quad \text{if } p \geq 2.$$
and
\[
\left(\sum_{j=1}^{\infty} 2^{-j/(2-p)} \right)^{(2-p)/(p-1)} \left(\sum_{j=1}^{k_x} W^{\mu}(x, 1) + \sum_{j=k_x+1}^{\infty} W^{\mu}(x, 1) \right) \quad \text{if } p < 2.
\]

Finally since
\[
W^{\mu}(x, 1) < \begin{cases} 4^{-j}, & \text{if } x \notin G_j, \text{ i.e. } j > k_x, \\ \infty, & \text{if } x \notin E, \text{ i.e. } j < k_x, \end{cases}
\]
we infer that
\[
W^{\sigma}(x, 1) < \infty \quad \text{for all } x \notin E,
\]
as desired.

Now we are in the position to conclude the proof: by Theorem 2.10 there is an A-superharmonic function v on \mathbb{R}^n such that
\[- \operatorname{div} A(x, \nabla v) = \sigma.\]
The potential estimate Theorem 2.12 implies that $v(x) = \infty$ if and only if $x \in E$. Moreover, v is A-harmonic in \overline{E}, for $\sigma(\overline{E}) = 0$ (see [M, 3.19]).

\section{4. Polar set as the set of infinity of an A-superharmonic function}

In this section we prove Theorem 1.3. We start with a lemma whose proof is displeasingly technical.

\textbf{4.1. Lemma.} Suppose that Ω is a bounded open set and $E \Subset \Omega$ is of p-capacity zero. Let $F \subset \overline{E}$ be closed. Then there is an A-superharmonic function u in \mathbb{R}^n such that $u \in W^{1,p}_0(\Omega)$, $u = \infty$ on E, and $u \leq 1$ on $F \cap \Omega$. Moreover, u can be chosen so that $\mu(\Omega) = 1$, where $\mu = - \operatorname{div} A(x, \nabla u)$.

\textbf{Proof.} We assume, as we well may, that F contains a neighborhood of $\partial \Omega$. Then choose open sets $G_1 \supset G_2 \supset \ldots \supset \bigcap_j G_j = F$. Let v be an A-superharmonic function in \mathbb{R}^n such that $v = \infty$ on E and let $\sigma = - \operatorname{div} A(x, \nabla v)$. Now sweep the measure σ into $\Omega \setminus G_j$ and let σ_j stand for the swept out measure (see Theorem 2.15). As in the proof of the F_σ case (Theorem 3.1) we find positive constants c_j such that for the measure
\[
\mu = \sum_{j=1}^{\infty} c_j \sigma_j
\]
it holds that $\mu(\mathbb{R}^n) \leq 1$,
\[
W^{\mu}_{1,p}(x, 1) \leq 1 \quad \text{for all } x \in F,
\]
and
\[W_{1,p}^{\mu}(x,1) \geq W_{1,p}^{c_{j}(x,1)} = \infty \quad \text{for all } x \in E \setminus G_j, \]
whence
\[W_{1,p}^{\mu}(x,1) = \infty \quad \text{for all } x \in E. \]

To complete the proof we let \(w \) be an \(\mathcal{A} \)-superharmonic solution of the problem
\[
\begin{cases}
- \text{div} A(x, \nabla w) = \mu & \text{in } \Omega, \\
w = 0 & \text{on } \partial \Omega.
\end{cases}
\]

Now \(w \) is not quite that function we are looking for but close to it. To find the final function we choose an open set \(D \Subset \Omega \) such that \(E \Subset D, \partial D \subset F, \partial D = \partial \overline{D} \), and that all points on \(\partial D \) are regular points for the Dirichlet problem in \(\Omega \setminus \overline{D} \) (for instance, \(D \) may be a polyhedron; see [HKM]). Since the distance between \(D \) and \(\partial \Omega \) is positive, there is \(r_0 > 0 \) such that \(B(x,3r_0) \subset \Omega \) whenever \(x \in \overline{D} \). Now we infer from the estimate Lemma 2.13(2) that
\[
\inf_{B(x,r_0)} w \leq C \left(\frac{\mu(R^n)}{\text{cap}_p(B(x,r_0),\Omega)} \right)^{1/(p-1)} \leq C < \infty,
\]
where \(C \) is independent of the point \(x \in D \). Hence the potential estimate in Theorem 2.12 implies that \(w \leq c_0 \) in \(F \cap \overline{D} \).

Next we observe that the function \(\log(w+1) \) is a positive \(\mathcal{A} \)-superharmonic function in \(\Omega \), uniformly bounded from above in \(F \cap \overline{D} \), and \(\in W^{1,p}_{0}(\Omega) \) (see [HKM, 7.48]). If \(h \in W^{1,p}(\Omega \setminus \overline{B}) \) is the \(\mathcal{A} \)-harmonic function in \(\Omega \setminus \overline{B} \) that agrees with \(\log(w+1) \) on \(\partial D \) and with \(0 \) on \(\partial \Omega \) (in the Sobolev sense), then the function
\[
\tilde{u} = \begin{cases}
\log(w+1) & \text{in } \overline{D}, \\
h & \text{in } \Omega \setminus \overline{D}
\end{cases}
\]
is a positive \(\mathcal{A} \)-superharmonic function in \(\Omega \) by the pasting lemma [HKM, 7.9], since \(h = \min(h, \log(w+1)) \) in \(\Omega \setminus D \). Moreover, \(\tilde{u} \in W^{1,p}_{0}(\Omega) \), \(\tilde{u} = \infty \) on \(E \), \(\tilde{u} \) is uniformly bounded from above in \(F \cap \Omega \), and its Riesz mass \(- \text{div} A(x, \nabla \tilde{u}) \) is finite in \(\Omega \). In conclusion, we may choose a constant \(\lambda > 0 \) such that the function \(u = \lambda \tilde{u} \) enjoys the desired properties of the lemma. \(\square \)

(2) Of course, \(w \notin W^{1,p}_{0}(\Omega) \) contrary to the assumptions of Lemma 2.13. However, following the standard construction of \(\mathcal{A} \)-superharmonic solutions to (4.2) as done e.g. in [KM1] one is easily convinced that there is a solution \(w \) of (4.2) for which the estimate of Lemma 2.13 holds. Let us pick such a function \(w \).
Proof of Theorem 1.3. Let $B_k = B(0, 2^k)$ and $E_k = E \cap B_{k-1}$. Suppose that G_j are open sets such that $G_1 \supset G_2 \supset \ldots \supset \bigcap_j G_j = E$. Fix k. Let u_j be an A-superharmonic function in B_k with finite Riesz mass $-\text{div} A(x, \nabla u_j)$ such that $u_j = \infty$ on E_k, $u_j \in W_0^{1,p}(B_k)$, and $u_j \leq 1$ on $B_k \setminus (G_j \cap B_{k-1})$ (Lemma 4.1). Let

$$ v_j = \min\left(4^j/(p-1), \lambda_j u_j\right), $$

where $0 < \lambda_j < 1$ is chosen so that $v_j \leq 2^{-j}$ on $B_k \setminus (G_j \cap B_{k-1})$ and $\mu_j(B_k) \leq 1$, $\mu_j = -\text{div} A(x, \nabla v_j)$; for the last property observe that μ_j agrees with the Riesz measure of $\lambda_j^{p-1} u_j$ on $B_k \setminus B_{k-1}$ and

$$ \mu_j\left(\frac{3}{2} B_{k-1}\right) \leq \int_{B_k} \varphi \ d\mu_j = \int_{B_k} A(x, \nabla v_j) \cdot \nabla \varphi \ dx $$

$$ \leq c \left(\int_{B_k} |\nabla v_j|^p \ dx \right)^{(p-1)/p} \left(\int_{B_k} |\nabla \varphi|^p \ dx \right)^{1/p} \leq c \lambda_j^{p-1} \left(\int_{B_k} |\nabla u_j|^p \ dx \right)^{(p-1)/p}, $$

where $\varphi \in C_0^\infty(B_k)$ is any nonnegative function with $\varphi = 1$ on $\frac{3}{2} B_{k-1}$.

Now by the estimate Lemma 2.13 we have for $x \in B_{k-1}$ that

$$ \inf_{B(x,1)} v_j \leq c \left(\frac{\mu_j(B_k)}{\text{cap}_p(B(x,1), B_k)} \right)^{1/(p-1)} \leq M, $$

where M is independent of j. Thus by the potential estimate in Theorem 2.12

$$ c W_{1,p}^{\mu_j}(x, 2) \geq v_j(x) - c \inf_{B(x,1)} v_j \geq 3^{j/(p-1)} $$

if $x \in E_k$ and j is large enough.

Setting

$$ \mu^{(k)} = \sum_{j=1}^{\infty} 2^{-j} \mu_j $$

we obtain a finite Radon measure on \mathbb{R}^n with the properties

\[
\begin{align*}
W_{1,p}^{\mu^{(k)}}(x, 1) &< \infty \quad \text{for all } x \notin E_k, \\
W_{1,p}^{\mu^{(k)}}(x, 1) &= \infty \quad \text{for all } x \in E_k.
\end{align*}
\]

Indeed, the finiteness of $W_{1,p}^{\mu^{(k)}}(x, 1)$ outside E_k is proven similarly as in the F_σ case (see 3.1). Further, if $x \in E_k$, then for j large enough it holds that

$$ W_{1,p}^{\mu^{(k)}}(x, 2) \geq c 2^{-j/(p-1)} 3^{j/(p-1)} \geq \left(\frac{3}{2}\right)^{j/(p-1)}, $$
whence $W_{1,p}^{\mu^{(k)}}(x,1) = \infty$.

To complete the proof we write

$$
\mu = \sum_{k=1}^{\infty} \mu^{(k)}|_{B_k \setminus B_{k-2}},
$$

where $\mu^{(k)}|_{B_k \setminus B_{k-2}}$ stands for the restriction to $B_k \setminus B_{k-2}$ of the measure $\mu^{(k)}$, and $B_0 = B_{-1} = \emptyset$. Then μ is a finite Radon measure in \mathbb{R}^n and

$$
W_{1,p}^{\mu}(x,1) = \infty \quad \text{if and only if} \quad x \in E.
$$

An \mathcal{A}-superharmonic solution of $-\operatorname{div} A(x, \nabla u) = \mu$ on \mathbb{R}^n is the desired function u (see Theorems 2.10 and 2.12). \qed

References

Received October 13, 1997

Tero Kilpeläinen
Department of Mathematics
University of Jyväskylä
P.O. Box 35 (MaD)
FI-40351 Jyväskylä
Finland
email: terok@math.jyu.fi