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Rigidity of holomorphic 
Collet-Eckmann repellers 

Feliks Przytycki  and  Steffen Rohde(1) 

Abstract .  We prove rigidity results for a class of non-uniformly hyperbolic holomorphic 
maps. If a holomorphic Collet-Eckmann map f is topologically conjugate to a holomorphic map 
g, then the conjugacy can be improved to be quasiconformal. If there is only one critical point in 
the repeller, then g is Collet Eckmann, too. 

1. I n t r o d u c t i o n  

Collet E e k m a n n  maps  of the interval  were in t roduced by P. Collet and  J.-P. 

E e k m a n n  as a large class of non-un i fo rmly  expanding  maps  for which a probabil-  

ity absolutely  cont inuous  invar iant  measure exists. A theory  of ra t ional  Col le t -  

E c k m a n n  maps  was or iginated in [P2] and  cont inued  in [P3], [GS1] and  [PR]; 

see [PR] for a more detai led historical account.  This  paper  is a con t inua t ion  of [PR]. 

We consider repellers for holomorphic maps,  wi thout  assuming the maps  extend to 

ra t ional  maps.  

Consider  a compact  set X in the R i e m a n n  sphere C, together  wi th  a holomor- 

phic map  f :  U--~C with f ( X ) = X ,  where U is a ne ighbourhood  of X.  

We call the  pair  (X, f )  a holomorphic repeller if there exists a ne ighbourhood 

VCU of X such tha t  for every x E U  the assumpt ion  fn(x)EV for every n 0, 1, ... 

implies xEX.  We do not  assume a priori t ha t  X has empty  interior.  For instance,  

bo th  (D, z 2) and  (S 1, z 2) are repellers according to our definition. 

A point  c is called f-critical if f'(c)-O. The set of all f -cr i t ica l  points  is 

denoted by Cri t  or Cr i t ( f ) .  

(1) The first author acknowledges support by Polish KBN Grant 2 P03A 025 12 "Iterations 
of Holomorphic Functions" and support of the Hebrew University of Jerusalem, where a part of the 
paper was written. The second author is grateful for the hospitality and support of the Caltech, 
where a part of the paper was written. 
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We call a holomorphic repeller (X, f )  Collet-Eckmann, abbreviated CE, if there 
are constants C > 0  and A>I  such that  for every f-critical point c ~ X  such that  its 
forward trajectory does not meet other critical points, 

(CE) I(f'~)' ( f  (c) )I >_ C~ ~ 

for all n_>0. See ICE], [N], [P2], [P3]. Here and in what follows derivatives and 

distances are always with respect to the spherical metric of C. 
If there is no critical point at all in X,  we understand (X, f )  as a CE-repeller, 

too. In particular, Julia sets of expanding rational maps provide examples of CE- 
repellers. 

We are also concerned with the following notion, see Section 2 for a formal 
definition. We call a holomorphic repeller (X, f)  topological Collet-Eckmann, ab- 
breviated TCE, if the following holds: There is a constant d>_l and for each x E X  
a set G(x) of positive integers, of lower density > 1 _ g ,  such that  for every nEG(x) 
there is a connected neighborhood of x that  is mapped properly by ff~ to a large 
disc, with mapping degree bounded by d. 

If (X, f )  and (Y, g) are holomorphic repellers we say that  they are topologically 
conjugate if they are topologically conjugate on neighbourhoods Ux, Uy of X, Y 
respectively, i.e. there exists a homeomorphism h: Ux ~ Uy such that  go h=hof .  

In Section 3 we prove the following. 

T h e o r e m  A. If  (X, f )  and (Y, 9) are hoIomorphic repellers which are conju- 
gate by an orientation preserving homeomorphism ho and if  f is TCE then there 
exists a quasiconforrnal conjugacy h of f and g on neighbourhoods of X and Y 
satisfying hlx=ho]x.  

Notice that  TCE is a topological property, so the assumption that  (X, f )  is 
TCE immediately implies that  (Y, g) is TCE, too. Theorem A for rational maps f 
and g that  are expanding on their Julia sets is due to McMullen and Sullivan, [MS]. 

It is not hard to modify h0 to become quasiconformal off X. The main idea 
of our proof of Theorem A is to show that  for every x C X  there is a sequence of 
discs centered at x, of radii converging to 0, that  are mapped under h to bound- 
edly distorted topological discs. Indeed, TCE implies the existence of a sequence 
of boundedly distorted topological discs around x mapped by f~  for nEG(x) to 
large round discs, mapped next by the topological conjugacy h onto boundedly 
distorted large discs and finally back as components of the preimages under g ~ 
to small boundedly distorted discs centered at h(x). We then apply the following 
result of Heinonen and Koskela [HK] to the effect that  such homeomorphisms are 
quasieonformal. 
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T h e o r e m  H K .  Let H < o c  and h be a homcomorphism of a domain D in 
with 

(1.1) lim inf max{ Ih (x ) -h (Y ) l  : t x -Y l  = r }  
~--,o m in{ Ih (x ) -h ( y ) l  : l x - y l = r }  < g  

for all xED.  Then h is quasiconformal in D. 
A 

We proved in [PR] that  for a rational map f :  C--~C and its Julia set X,  CE 
implies TCE. With almost no changes the proof holds for every holomorphic repeller 
(X, f ) ,  see [P4, Proposition 4.1]. Therefore, from Theorem A we obtain the following 

corollaries. 

C o r o l l a r y  B.  I f  (X, f )  and (Y, g) are topologically conjugate holomorphic re- 
pellers, and if  (X, f )  is CE, then the conjugacy can be replaced by a quasiconformal 
conjugacy (without changing it on X) .  

C o r o l l a r y  C. I f  f and g are polynomials which are topologically conjugate by 
an orientation-preserving homeomorphism, if their filled-in Julia sets are connected 
and equal to their Julia sets, and if ( J ( f ) ,  f )  is CE (or TCE),  then f and g are 
conjugate by a conformal aJ~fine map. 

Corollary C has been obtained independently by Jones and Smirnov. Indeed, 
it is shown by Graczyk and Smirnov in [GS1] (and later in [PR]) that  for CE- 
polynomials f ,  the Fatou component at infinity is a HSlder domain. A conjugacy 
between f and another polynomial g easily leads to a conjugacy h conformal off 
the Julia set Y( f ) .  An improvement of the removability result [J] of Jones, due 
to Jones and Smirnov [JS], now gives Corollary C. In fact, using this removability 
result Graczyk and Smirnov [GS2] were able to obtain Corollary C under an even 
weaker (summability) condition. However, an advantage of our approach (using 
Theorem HK as a removability statement) is that  it does not need any assumptions 
on the geometry of the Julia set. In particular, it works in the rational case as well 
as for polynomials. 

As the referee pointed out, the special case of quadratic polynomials f and g 
in Corollary C follows from Yoccoz' rigidity theorem. Indeed, from Proposition 2.5 
below it follows that  TCE repellers are not infinitely renormalizable. 

In Section 4 we prove the following theorem. 

T h e o r e m  D. I f  (X, I )  and (Y, g) are topologically conjugate holomorphic re- 
pellers, if X contains at most one critical point and if (X, f )  is CE, then (K g) 
is CE. 

The proof uses the method of "shrinking neighbourhoods" from [P2] to control 
distortion, as well as Graczyk and Smirnov's [GS1] reversed telescope construction. 
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By Theorem A, we can assume the conjugacy to be quasiconformal. So this theorem 
corresponds to the theorem by Nowicki and Sands INS], tha t  f is CE implies tha t  
g is CE for S-unimodal maps of the interval if there is a quasisymmetric conjugacy. 

In [P4] a stronger theorem(2) is proved. For (X, f )  such that  X contains only 
one critical point, T C E  implies CE. This holds also in the interval case [NP], hence 
one does not need to assume that  the conjugacy above is quasisymmetric.  

If there is more than  one critical point in X,  this is no longer true. In Section 5, 
we provide an example of a semihyperbolic polynomial (i.e. no critical point in the 
Julia set is recurrent; this is stronger than TCE,  see Section 2) which is not Collet 
Eckmann. Hence T C E  does not imply CE in general. In our example, the forward 
t ra jectory of a critical point approaches a second critical point arbitrari ly closely. 
This is similar to an example in [CJY] of a semihyperbolic map where a critical 

point is mapped  into another critical point. 

Acknowledgement. We would like to thank the referee for his careful reading 
and various comments.  

2. D e f i n i t i o n s  

Fix numbers 6> 0 and l < d < o o  and consider the disc B =B( f  n (x), 5) together 
with the component W of f -n(B)  containing x. For xEX denote the set of integers 
n, for which the mapping degree of fn  on W is at most d (i.e. each point of B 
has at most d preimages in W, counted with multiplicities), by G(x) or G(x, 6, d) 
(sometimes even G(x, 6, d, f), if the map is not clear from the context). 

Definition 2.1. A repeller (X, f )  is called topological Collet-Eckmann (TCE),  
if there are 6>0  and d<e~  such that  

#(c(x,  6, d)n[1, > ! 
n - - 2  

for all x c X and all n > 1. 

Definition 2.2. A repeller (X, f )  is called expanding, if there is 6>0  such that  

G(x, 6,1)=N 

for all x E X.  

The standard definition of expanding requires the existence of constants C > 0  
and A > I  such that  l ( f ~ ) ' ( x ) l > C ~  n for all x E X  and all n E N .  It  is easy to see that  

(2) T h e  resul ts  of [P4] were ob ta ined  after  the  resul ts  of t he  present  paper .  
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this coincides with our definition, if X is nowhere dense. The nowhere density is 
discussed in the appendix. 

In between the properties T C E  and expanding is the notion of semihyperbolicity. 

Definition 2.3. A repeller (X, f )  is called semihyperbolic, if there are 5>0  and 
d<oo  such that  

G(x, 5, d) = N 

for all x C X.  

It  can be shown tha t  a repeller is expanding if and only if there is no critical 

point in X.  In [M], [CJY], [P4] it has been shown tha t  a repeller is semihyperbolic 
if and only if there are no recurrent critical points in X.  

If f is a polynomial without parabolic periodic points and X = J ( f )  is its Julia 
set, then (X, f )  is semihyperbolic if and only if the basin of at t ract ion to oc is a 
John domain by [CJY]. Next, (X, f )  is T C E  if and only if the basin is a HSlder 
domain, see [GS1], [PR, Section 3] and [P4, Section 4]. The basin of our example in 
Section 4 is a HSlder domain (it is even a John domain), so tha t  the HSlder property 
does not imply CE in general. However, it follows from the aforementioned result 
of [P4] tha t  the HSlder proper ty  of the basin at oo does imply CE if there is only 
one critical point in the Julia set. 

L e m m a  2.4. Let (X, f )  be a holomorphic repeller with X nowhere dense, 
and consider .for every disc B(x,25)  with 5 small enough and x E X  a compo- 
nent W of f - n ( B ( x ,  25)) that intersects X ,  together with a component W ' c W  
4 f-~(B(x,~)). If  the degree o f f  on W is at most d, we have d i a m W ' ~ 0 ,  as 
n ~ o o ,  uniformly, i.e. not depending on x or the choice of W q  

This has been shown by Marl5 [M] for rational f .  See [P4] for the adjustments  
to holomorphic repellers. 

In the appendix, we will show that  T C E  repellers different from the Riemann 
sphere are nowhere dense. Hence Lemma 2.4 applies to this case. From this it is 

possible to conclude tha t  diameters of preimages shrink to zero for TCE repeller. 
However, the following stronger s ta tement  holds. 

P r o p o s i t i o n  2.5. If (X, f )  is a T C E  repeller, then there exist 5>0  and 0< 
~<1 such that for every x c X  and n>O, 

diam Compx f *~( B( fn (x ) ,  5)) <_ {n. 

Here and in what follows we use the notation Compx M to denote the compo- 
nent of M tha t  contains x. See [PR] for the rational case and [P4, Proposit ion 4.1] 
for the repeller case. 
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From Proposition 2.5 (or just from the fact that  for all 5 there exists 5 ~ such that  
all diamComp~ f n(B(fn(x),5'))<<_5 for x C X - - t h i s  property is called backward 

1 in our Definition 2.1 of TCE Lyapunov stability, see [L]) it follows that  the density 
could be replaced by any other number between 0 and 1, at the cost of a respectively 
larger d and smaller 5. Indeed, set n = n j + l - n j  for any two consecutive integers 
in G(x, 5, d). Then the set nj + (G(fn~ (x), 5', d) n [1, n]) is contained in G(x, 5', d 2). 
Now continue filling gaps of G as long as necessary. 

Another consequence is that  preimages of (small) discs will always be simply 
connected. If a component of f - I ( B )  were not simply connected, B would contain 
at least two distinct critical values for f .  

Hence the degree of fn  on Compx f n(B(Zn(x), 5)) is controlled by the number 
of critical points, so that  we get the following alternative definition of TCE. 

There exist M > 0 ,  P>_I and 5>0 such that  for every x C X  there exists an 
increasing sequence of positive integers nj,  j = l ,  2, ..., such that  nj <_Pj and 

(2.1) ~:{i:O<_i<nj, Compl~(~)f (~'J-i)(B(fnJ(x),6))nCritT~O} <_M 

for each j .  

Notice that  this is equivalent to the following: There exists 5>0,  such that  for 
all P > I  there is M > 0  such that  (2.1) holds for sufficiently large j and all x. The 
proof is easy. Of course, 5 can be replaced by any smaller positive number. 

3. I m p r o v i n g  t h e  c o n j u g a c y  

L e m m a  3.1. Let E be a compact metric space, X a compact subset and U 
an open neighbourhood of X.  Let f: U---~E be a continuous and open map such 
that f ( X ) = X .  Suppose that ( X , f )  is a repeller (i.e. there exists a neighbourhood 
V = V x c U  of X such that for every x E V  with f n ( x )EV  for every n ~ 0 ,  1, ..., we 
have x c X ) .  

Then for every V as above there exists an open neighbourhood W c V  of X,  
such that W ' = ( f l w ) - I ( W ) c W ,  and such that all components of W'  intersect X.  

Proof. This is similar to 1 ~ in the proof of Proposition 1.1 in [P1], using [S] 
(in [P1] an at tractor  was considered, whereas here we have a repeller. So instead of 
f we apply f - l ) .  [] 

The next lemma provides a quasiconformal conjugacy outside X, thus proving 
a part of Theorem A. 
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L e m m a  3.2. If (X, f )  and (Y,g) are holomorphic repellers which are topo- 
logically conjugate by an orientation preserving homeomorphism ho, then there ex- 
ist neighbourhoods Wx  and Wy of X and Y respectively, and a homeomorphism 
h: Wx---~Wy conjugating f and g, such that h is quasieonformal on Wx  \ X  and h 
is equal to ho on X.  

Proof. (Cfl [MS] in the rational expanding case.) We can assume that  V is 
small enough so that  (V\X)NCri t ( f )=O,  and that  V is contained in the domain 
of ho. Take Wx = W  from Lemma 3.1. By a small change we can assume that  Wx 
has smooth boundary 0o. Let H: [0, 1] x 00--* C be a homotopy from H I {0} • = ho Ioo 
to a smooth embedding hl=Hl{1}• We assume that  each ht=Hl{t}• is C o_ 
close to ho. Then we can lift ht from COo to Ol:=(flw)-l(COo), by requiring that  
on 01 we have htf=ght (this means that  the same branch of g-1 has to be used; 
we have denoted the extension of ht to 01 again by ht) and ht is C~ to ho. 
Moreover, the mutual positions of the curves COo, COl and their identifications by f 
are the same as for their ht images and the identifications by g. 

Therefore, ht can be extended to a homotopy H: [O,l]• I(Wx)--+C, 

again C~ to ho, and such that the restriction hl of H to {I} x Wx \ f- i (Wx) 
is a diffeomorphism, hence quasiconformal. 

Next, by consecutive lifts of H via f-1 and g i we obtain a quasiconformal con- 

jugacy h of f and g on neighbourhoods of X and Y (with the sets X and Y removed). 

The map h extends continuously to h0 on X because diamH([0, i] • as 

n--+oe, for xE(flw)-n(Wx\f l(Wx) ). The latter follows from the fact that for a 

neighbourhood N of H([0, 1] x{x}) ,  for x E W x \ f - l ( W x )  and for every choice of 
branches Fn of f - ~  on N,  we have Fn(N)--~X. Hence the only limit functions of 
Fn are constant functions by Hurwitz' theorem. [] 

L e m m a  3.3. (Distortion Lemma in finite criticality, see [P2] and Lemma 2.1 
in [PR].) For every c>0  every l < d < o e  there are constants C1 and C2 such that 

1 < t < l  and every holomorphic proper map F: W---~D the following holds for every ~_ 

of degree ~_d of a simply connected domain W in C to the unit disc D, for which 
d i a m ( C \ W )  >~: 

Assume that W'  is a simply connected component of F- l ({Iz l<t}) .  Then for 
every x E W' 

(3.1) IF'(x)l diam W' < C l ( 1 - t )  c~. 

Furthermore, there exist C3=C3(T) and C4=C4(T) such that C3, C4"~0, as 
~---~0, satisfying the following: 

1 O<T< 1, let W"  be a component of F-~({Izl<~}) in W'. Then Let t= ~ and 

(3.2) diam W" < C3 diam W'. 
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Moreover, for every xEW", 

(3.3) If'(x)l diam W"  < Ca. 

On the other hand, 

(3.4) W" D B(y, C4 diam W') 

for every y ~ F - I ( 0 ) ~ W  ''. 

Proof of Theorem A. Take a conjugacy h from Lemma 3.2. It satisfies the 
Heinonen-Koskela condition (1.1) for every x~X,  with a suitable number H < o c .  
Indeed, by quasiconformality it even satisfies the stronger quasisymmetry condition 

tim sup max{ Ih(x) - h(y) I : I x -  Y l = r } 
~ o  min{Ih(x)-h(Y)l: lx-yl=r} < H  

for all x 6 X. 
Now take an arbitrary xCX, fix (5>0 and d <o c  satisfying Definition 2.1 of TCE 

and consider an increasing sequence of integers r~j CG(x, (5, d, f)  (el. Section 2). By 
the uniform continuity of h on X there exists (5' such that  nj cG(h(x), (5', d, g). 

For an arbitrary j ,  set W : - C o m p x  f-n~B(fnJ (x), (5) and apply Lemma 3.3 to 
F=fnJ: W---~B(f nJ (x), 6) (with D replaced by B( f  nj (x), 5)). The existence of e 
required in Lemma 3.3 follows from the fact that  the diameters of the components 
of f -n(B(f~(x) ,  (5) tend to zero, Lemma 2.4 or Proposition 2.5. 

For ~- small enough so that  C3(r)<C4(1), we obtain with 

W'  : Comp:~ f - n '  B (f'~5 (x), �89 and W" : Comp x f '~j B ( f  n~ (x), r(5), 

that  
W" c B(z,  r) c W' 

for r=C4(�89 diamW'. 
By a compactness argument and the homeomorphy of h there exist constants 

al >a2 >0 such that  for every yEX 

diam h(B(y, �89 <_ al and h(B(y, r6)) D B(h(y),a2). 

Choosing 5 small enough (without changing 5') we may assume al <5'  and obtain 

diam h(B(x, r)) < diam Comph(x ) g nj (B(hfnj (x), al)) =: r ' .  
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From (3.4) we conclude that  h(B(x, r)) contains B(h(x),  Ca(a2/2al)r'). 
Notice finally that  r -~0 ,  as n j ~ o c ,  by Lemma 2.4 or Proposit ion 2.5. There- 

fore (1.1) is satisfied and h is quasiconformal by Theorem HK. [] 

Proof of Corollary C. We start  the construction of h in Lemma 1.2 with a 
holomorphic conjugacy in a neighbourhood of oo. This gives h in Theorem A 

A 

quasiconformal in C and conformal outside the Julia set J( f ) .  By [P3] (for f CE), 
[GS1] or [PR], the area of J ( f )  is 0. Hence h is 1-quasiconformal and therefore 
conformal. [] 

4. Rigidity 

Let us s tar t  with a quasiconformal version of the Koebe distortion theorem 
needed in this section. It  is an immediate consequence from the H61der continuity 
of quasiconformal selfmaps of a disc. 

L e m m a  4.1. For every c > 0 and K > 1 there exist C5, C6 > 0 such that for every 
K-quasiconformal g~: D-~U and every conformal map F: U--~C with d i a m ( C \ U ) >  

and d i a m ( C \ F ( V ) ) > c ,  for every 0 < t < l  and x ,y  with Ixl, lyl<_t, we have 

IF'(O(x))l 
IF'(~(y))I <_ c 5 ( 1 - t )  -co 

Proof of Theorem D. We need to prove that  (Y, g) is CE, namely to prove the 
condition (CE) in the introduction. Due to Corollary B we can assume tha t  the 
conjugacy h is quasiconformal. 

Step 1. Derivatives for periodic orbits. We have l(g'~)'(y)l_>{ - m  for every pe- 
riodic y E Y  with g '~ (y )=y .  This follows immediately from the H61der continuity of 
h and by the above proper ty  for f .  The following is a more direct explanation of 
the same fact. 

Consider the components Bn of g-'~(B(y, 5)) that  intersect the periodic orbit 
O(y) of y. As the diameters of B,~ tend to zero, we can choose 5 small enough 
(depending on y) so tha t  the B,~ are disjoint from Crit. Now f being T C E  implies 
that  9 is TCE.  By Proposition 2.5 and the Koebe distortion theorem, applied to 
the branches of g n along O(y), we have 

[(gn)'(z)[ >_ C7 diam(B,~) 1 > C7~-~ 

for zEg ~(y)AO(y), with a constant C7 depending on y. Applied to all multiples 
n of m, this gives I(g '~) ' (y) l>~ "~. 
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Step 2. Derivatives far from Crit. Fix an arbitrary positive integer n. Denote 
by c I (and cg) the only f-critical (respectively g-critical) point in X (resp. Y). Let 
0 < i  < n be the largest integer such that  dist (gi (c g), c 9) _< 61, for a positive constant 

(~1 to be determined later. Arguing as above we obtain 

(4.1) i(gn 

with a constant C8 depending on 61. 

Step 3. Capture of a periodic orbit. We shall w r i t e  Cfj:fJ(c f) a n d  cJ:gJ(cg). 

Suppose that  i>0.  Let B=B(c{+l,a ) for a:=4dist(c{+l,Jl). By tile continuity of 
h 1, we may assume that  a is as small as we need by choosing 61 sufficiently small 

in Step 2. 
Now we consider preimages according to the "shrinking neighbourhoods" pro- 

cedure. 
Fix a subexponentially decreasing sequence bj>O with P : = I ] j = I (  bj)>~. 

Consider the sequence of discs 

n( B~= B c 1,a 1 bj 
j 1 

and preimages 

W~ := Comps{+ 1 ~ f '~(Bs). 

Fix now s to be the largest positive integer such that  cIr  for 2<j<_s. Of 

course such s exists and s<_i because cf EW, i+l as e I cfo . 
Thus W~+19c f, hence f(W~+l)gcfl and fs  1 is univalent on Ws, hence f~ has 

only one critical point in W~. 
The point i f(c{) is in Bs+ 1 so the annulus B~\B~+I allows to control distortion. 

If we assume 61 (hence a) small enough, then B~ and W~ have complements of 
diameters at least s (say half of the diameter of the sphere) and we can apply 
Lemma 3.3 (to F = I  s, W=W~, t = l - G + l  and W'=f(W~+I)). We obtain 

(4.2) diam f (Ws+l)  

diam(Bs+l) 
[~,J ) (, J_)l{*s'~'{cf'~ - - 1 ~  z. C2 

<_ ~ l U s §  �9 

Due to P_> 1 we have also 

1 (4.3) c{ c 

where 1B(z,r) for any ball B(z,r) denotes the ball B(z, �89 
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By (4.2) and (CE) applied to f ,  

(4.4) diam f(W~+l) < CA_~b2+C12 < C(O)A_~O~. 
diam(Bs+l) - 

Here 0> 1 is arbitrarily close to 1 and C(O) depends on 0. This is possible because 
bj shrink subexponentially. 

By (4.3), if s is large enough, we obtain 

f(W~+l) C ]~s+l- 

By choosing 51 small enough we can assume that  s is large. Indeed, the time 
s between two consecutive approaches of an orbit to c f is long, otherwise there 
would be a periodic sink in X which is not possible by CE. More precisely: Set 
d=2  max{dist(c f,  c{_s), dist(c f,  c/)}; it is small for a small by (4.4). Then the ball 
D=D(c f, d) has the i f - image of diameter at most C(f)L~(diamD) 2 (where L is 
the Lipschitz constant of f ) ,  hence D will be mapped into itself, i f ( D ) c D ,  unless 
s is sufficiently large. 

Thus f~: f(Ws+l)---+Bs+l is polynomial-like, and we call fs: f(Ws+l)__+Bs+ 1 a 
tube of the reversed telescope construction. 

Hence there exists a periodic point of period s in f(W~+l). We consider next 
its h-image pEh(f(W~+l)). 

Step 4. Derivatives alon 9 a tube of the reversed telescope. We already know 
s I c g  that  [(gQ'(p)l>~ -s ,  see Step 1, and we want to estimate I(g ) ( i-~+l)l- 

To this end, notice tha t  f - l :  h(Ws)_~h(ff-l(W~)) is univalent, hence its in- 
verse G exists. By Lemma 4.1 (with ~=hof - loToz  d, where T is a MSbius trans- 

formation from the unit disc onto Be mapping 0 to c{, and d is the degree of f 
at c f) we obtain 

la'(4)l 
- -  C 6  <_ C9b~+1 �9 la'(g -X(p))l 

Finally, recall that by the construction 

1 dist(c{, h -1 dist (Cl f,  c{+1) _> a (P)), 

so that  we obtain 

dist(cf c{)>_cdist(cf,f.~ l (h  l(p))) 

for some universal constant c. 
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Under the change of coordinates given by the quasiconformal map h, relative 

distances change by at most a constant,  hence there exists C >  0 such tha t  lg'(cf)l>_ 
C lg,(gS-1 (p))l. We conclude tha t  

(4.5) s l e g  10 ) ( _> c(o) 

where again 0>1 is arbitrarily close to 1 and C(O) depends on 0. 

Step 5. Conclusion. If i-s>O we build a tube star t ing with i - s  rather  than i. 

Notice tha t  dist(c{,+l,C{)<a by (4.4), since s is large. Hence, we can repeat  

the argument of Step 3 with a : = 4 d i s t ( c f s + l ,  cf).  We find a new s for which we 

write s2. Write 51 for the first s. We continue until we end up with E j > I  8j = i .  This 

divides f i  into tubes f s l ,  f*=,--., (each one from the critical value to the critical 
value) such that  (4.5) holds for the h-image of each tube. Together with (4.1) this 
gives (CE) for g. [] 

By choosing (~1 sufficiently small, our proof shows that  9 is CE with ~ arbitrarily 
close to ~-1. 

5. An example  

Let f l(z)=z 2 2 and f2(z)=(z-25)2+a, with a an arbi trary real number in 

[-2,  2]. Define D:={Iz[<100},  Dl=f[ l (D)  and D2=f~<(D). Notice tha t  

{[ZI<9}cD1c{IzI<11} and {Iz 251<9}cD2c{lz-251<11 }. 

Therefore, D I A D 2 - - 0  and D1,D2cD. 
Now we choose a so that  the lower Lyapunov characteristic exponent for f l  at  

a i s  - - o o ,  

X(fl ,  a) := lim inf _1 log [(/~') '(a) I = - o c .  
n---+ o c  n 

Such a exists by a Baire category argument.  Let 

An = {z C [-2 ,  2]: If~(z)l < e x p ( -  exp n)}. 

Then A = ~ N = I  Un~176 A,~ is nonempty  as it is the intersection of a sequence of open, 
o o  - - n  dense sets. Here we used the fact that  for each N the set Un N f (0) is dense 

in [ 2, 2]. It  follows from straightforward estimates that  _x (a )= -oo  for every aCi.  
Let F be defined as f l  on D1 and f2 on D2. This is a so called generalized 

polynomial-like map. I t  is well known that  one can change coordinates on C by a 
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quasiconformal homeomorphism h so that  G=hoFoh 1 extends to a polynomial, 
of. [DH, Straightening Theorem], [LM, Lemma 7.1] and [LS, Lemma 2.1]. 

The critical points in the Julia set J(G) are e l=h (0 )  and c2=h(25).  We have 
G2(cl)=h(2) which is a repelling fixed point, and the forward G-tra jectory of c2 is 
confined by h([ 2, 2]), so it stays far away from c2. Therefore G is semihyperbolic. 

Notice finally tha t  h is Hhlder continuous, so for a constant a > 0  we have 
]Gn(h(a))-h(O)l=lGn(G(c2))-Cll<exp(-ceexpn) for a sequence of n's. Hence 

I(Gn)'(G(c2))l<3 e x p ( - a  exp n), and thus x_(G, h(a)) = - o o .  Therefore the map- 
ping G is not Collet Eckmann. 

Appendix 

P r o p o s i t i o n .  If (X, f)  is a holomorphic repeller with the TCE property, then 
X is nowhere dense provided that XT~C. 

Proof. As f is an open map and X is forward invariant, every component C of 
int X is mapped  into a component of int X. By the repelling property, C is mapped  
properly onto a component of int X.  

Case 1. Suppose there exists a sequence nj--+oo such that  l im( f l c )  '~j exists 
and is non-constant.  Then there exists j such tha t  the component  N of int X 
containing fnJ (C) is periodic. As f n r  on N (since X is a repeller), N is a Siegel 
disc or Herman ring by the usual proof of the classification theorem. 

Consider a disc D of a definite small radius intersecting ON. By the repelling 
property of X,  for every sequence of components D,~ of f - n (D)  which intersect N 
we have 

~:(Crit(fn[D,~) ) --~ 

(counted with multiplicities) uniformly, i.e. independent of D~, as n--~oo. Other- 
wise there would exist branches g~t of f nt on a subdisc of D for a sequence nt, 
convergent to a constant in OX on the complement of X,  and to the identity on N.  

I t  follows tha t  no point xEON satisfies (2.1) because its forward t ra jectory 

stays in a finite number of discs D discussed above. This contradicts TCE. 

Case 2. Suppose tha t  all limit functions of the sequence f n l c  are constant. 
Then there exists a disc C '  with closure in C such that  I(f~)'l--~0 on C' .  Suppose 
C is wandering. Then we can assume that  there are no critical points in f n ( c )  for 

1 theorem n_>0. Hence by Koebe 's  

(A1) dist(fn(x0),  Ofn(C)) --+ 0 
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for an arbi t rary xoEC' .  If C is eventually periodic and fn(C')--~OX, then (A1) 
holds automatically. The possibility that  C is eventually periodic and fn  ( C ' ) ~ O X  
leads to an at t ract ing periodic point, at which T C E  is not satisfied. 

Hence there exists a finite family of discs B ( j ) = B ( x j ,  r) for an arbi trary r > 0  

small enough, each intersecting C \ X ,  such tha t  for each large n there exists j = j ( n )  
and a component  D~ of f -~ ' (B( j (n ) ) )  tha t  contains C ' .  

As in the first case we deduce tha t  the criticality of fn  on D~ tends to oe. 
Otherwise some branches gn, of f--n~ tend to constants on a little disc outside X 
by the repeller property, but the sets g~, (fn~ (C'))  are equal to C' ,  i.e. they have a 

definite size. 
The criticality tending to ce contradicts TCE.  
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