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Sobolev functions whose inner 
trace at the boundary is zero 

David  Swanson and  Wi l l i a m  P. Ziemer  

Abs t r ac t .  Let f~CR n be an arbitrary open set. In this paper it is shown that if a Sobolev 
function fEWl,P(ft) possesses a zero trace (in the sense of Lebesgue points) on 0ft, then f is 
weakly zero on 012 in the sense that f ~W~'P(f~). 

1. N o t a t i o n  a n d  p r e l i m i n a r i e s  

If  f t c R  n is an open  set ,  W~'P(f t ) ,  p_>l,  will denote  the  Sobolev  space  of 

funct ions  f E LP(ft)  whose d i s t r i bu t iona l  der ivat ives  of order  up  to  and  inc luding  k 

are  also e lements  of LP(~2). The  no rm on Wk'P(f t )  is defined by  

HfHwk,,(fl) : Q ~l<_k /n 'D~ f'P dx) 1/p 

and  W0k'P(•) is defined as the  closure in Wk'P(~) of the  fami ly  of  C ~ funct ions  in 

wi th  compac t  suppor t .  I t  is well known t h a t  the  space of Bessel  po ten t i a l s  

Lk 'P (R  ") : =  { f :  f = Gk*g, g e L P(Rn)}  

wi th  no rm IlfHk,p:=llgllp is i somet r ic  to  W k ' P ( R n ) .  For  a r b i t r a r y  a > 0 ,  the  Bessel 

kernel  G~ is t h a t  funct ion  whose Four ier  t r ans fo rm is 

~ (  x) = ( 2 . ) - ' / :  ( X + ]x]2) -•/2 

The  Bessel c apac i ty  of an a r b i t r a r y  set E c R  ~ is defined as 

Ck,p(E) :=  inf{]]g]]p : g �9 LP(Rn) ,  g > 0, Gk*g  > 1 on E} .  
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When k = l  and l < p < o c ,  this capacity is equivalent to the p-capacity, 7p, whose 
definition is given by 

~/p(E) = inf { /Rn('f'P +'D f'P) dx} , 

where the infimum is taken over all fEWI'P(R ~) for which E is contained in the 
interior of {f_> 1}. When p>n the p-capacity of any non-empty set is positive. The 
Lebesgue measure of a set ECR n is denoted by ]E] and B(x, r) is the open ball of 
radius r centered at x. The dimension of the Euclidean space on which Lebesgue 
measure is defined will be clear from the context. Hausdorff (n-1) -d imens iona l  
measure will be denoted by H n-1. The integral average of a function f over a set 

E is denoted by 

f =  f(x) dx. 

An integrable function f is said to possess a Lebesgue point at Xo if there is a 
number l=l(xo) such that  

lira [ If(y)-ll dy = O. 
r--~o J B(xo,r) 

Recall tha t  l=f  almost everywhere. Also, f is said to be approximately continuous 
at x0 if there is a measurable set E with metric density one at x0 such tha t  

lim [f(x)-  f(xo)l=O. 
X ~ X  o 

x c E  

Note tha t  if f has a Lebesgue point at x0 and l(xo) = f ( x 0 ) ,  then f is approximately 
continuous at x0. 

If  fEWk'P(~), then the function f* defined as 

f ( x )  if x Eft ,  
(1.1) f*(x) := 

0 i f x ~ f ~  

is an element of wk'p(R~). It  is well known that  a Sobolev function fEWk,P(R n) 
possesses a Lebesgue point everywhere except for a Ck,p null set, cf. [Z, Theo- 

rem 3.3.3]. ~ r t h e r m o r e ,  if fEW~'P(ft), it is not difficult to prove t h a t  

/B 1 / ,  f(y)dy-=O (1.2) ~-~01im (x,~) f* (y) dy = lim ~ iB(x ' r) I (x,r)na 

for Ck,p-q.e. xCRn\12,  in particular for Ck,p-q.e. xCO~. The converse of this is one 

of the main results in [AH] which states the following. 
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1.1. T h e o r e m .  ([AH, Theorem 9.1.3]) Let k be a positive integer, let l < p < o c  

and let feWk'P(Rn) .  If ~ t c R  "~ is an arbitrary open set, then feWko'P(12) if and 
only if 

lira / IDZ f(y) l dy = 0 (1.3) 
r-~o JB(x,r) 

for Ck IN,p-q.e. x E R ~ \  ~ and for all multiindices /~, 0_< l~ l<k -1 .  

For WI 'B(Rn),  l < p < o c ,  this result is due to Havin [H] and Bagby [B]. 

A natural  question arises whether the assumption tha t  f E w k ' P ( a  n) can be 

replaced by the weaker one, fEWk'P(~),  in which case (1.3) would have to be 

replaced by 

lim - -  ID /(y) l dy = 0. 
r ~ O  r n (x,r)Nft 

A similar question is raised in [AH, Section 9.12.1] concerning a different result. 
The purpose of this note is to provide an affirmative answer to this question. 

In the course of this development, we will utilize the space BV, the class of 

functions of bounded variation. 

1.2. Definitions. The space BV(ft) consists of all real-valued integrable func- 
tions f defined on 12 with the proper ty  tha t  the distributional partial  derivatives 
of f are totally finite Radon measures. The total  variation measure of the vector 
valued measure associated with the gradient of f is denoted by IIDfll. When viewed 
as a linear functional, its value on a nonnegative real-valued continuous function g 

supported in ft is 

, ,Df, ,(g)=sup{ fagd ivvdx :vCC~(~2;R~) ,  ,v(x), < f(x),  x E f t } ,  

and its value on a set E is IIDfll(E). The space BVloc(ft) consists of all functions 
f defined on ft with the property tha t  fEBV(fY)  for every open set fY compactly 
contained in fL The measure theoretic boundary of a set E c R  n is defined as 

OmE= x:0<limsup~_~0 IB(x,r)l IB(x,r) l  < 1 .  

If  Hn-I(0, ,~EAf~) <oc,  then E is said to have finite perimeter in ~. 

Functions in B V ( R  n) can be characterized in terms of their behavior as func- 
tions of one variable. For this, consider a real valued function g defined on the 

interval [a, b]. The essential variation of g on [a, b] is defined as 

k 

x / = 1  
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where the supremum is taken over all finite partitions of [a, b] induced by a<to <tl  < 
t2 <... <tk < b, where g is approximately continuous at each point of {to, t~,...,  tk}. 

Now consider f c B V ( R  ~) as a function of a single variable x~ while keep- 
ing the remaining (n 1) variables fixed. Thus, let 2~:=(x~,x2, . . . ,Xn-1) and 
define fe,~(t):=f(3cn, t). In a similar manner, we can define the remaining func- 
tions f~l,f~2, ... , f~n-l '  A function fEBVloc(R ~) if and only if for almost every 
~kER ~ 1, essVb2f~k(.)<oc and 

(1.4) ~ ess vb2 f ~k ( . )  dk k < oe 

for each rectangular cell R C R  '~ 1, kE{1, 2, ..., n}, and - -oc<ak<bk<oc.  
Another characterization of BV(ft) is due to Fleming and Rishel [FR], and its 

statement most suitable for our purposes can be found in [Z, Theorem 5.4.4]. 

1.3. T h e o r e m .  I f  t2CR n is open and fEBV(f~), then 

(1.5) IlDfll(t2) = / a l  Hn-I(O'~AtAf~) dr, 

where A t : = { x : f ( x ) > t } .  Conversely, if f E L l ( a )  and At has finite perimeter in a 
for almost all t with 

(1.6) /R~ Hn l (O'~dtM~)dt  < c~' 

then f E B V ( a ) .  

In addition we will need the following known results concerning BV and Sobolev 
functions. 

1.4. T h e o r e m .  ([F, Theorem 4.5.9(29)]) I f  f e B V ( R  n) is approximately con- 
tinuous at H~- l -a lmos t  all points of R ~, then f is continuous on almost all lines 
parallel to the coordinate axes. 

1.5. T h e o r e m .  ([GZ, Theorem 7.45]) A function f defined on [a,b] is abso- 
lutely continuous if and only if f is of bounded variation, continuous, and carries 
sets of measure zero into sets of measure zero. 

1.6. T h e o r e m .  ([Z, Theorem 2.1.4]) Suppose fEW~'P(f~), p> l. Let f Y c c f L  
Then f has a representative f that is absolutely continuous on almost all line 
segments of fY that are parallel to the coordinate axes, and the classical par- 
tial derivatives of f agree almost everywhere with the distributional derivatives 
of u. Conversely, if f has such a representative and the classical partial deriva- 
rives DLf,  ..., D n f  together with f are in LP(~ ') then f E W I ' p ( ~ ' ) .  
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2. T h e  main  result  

We are now in a position to prove our theorem. 

2.1. T h e o r e m .  Let f t c R  ~ be an arbitrary open set and let f be a function 

defined on ~ with the property that fEBV(f~  ~) for every open bounded subset ~ C~2. 
I f  f* is approximately continuous H n l-a.e, in R n, then f*cBV]o~(Rn) .  

Proof. Let A t : = { f > t }  and A~:={ f*>t } .  We claim tha t  H~-~[OmA~\Q]=O 
for each t #0 .  For this purpose, let x0 c R n \ f t  be a point of approximate continuity 

of f*.  Then f * ( x 0 ) = 0  and 

(2.1) lim f*(x)  = 0  
x - ~ . x  o 
x ~ E  

for some set E c R n  whose metric density is one at Xo. If  t > 0  this implies that  

l im IA;OB(x~ r)l = 0 
~-~0 I B ( x o , ~ ) l  

and therefore tha t  Xo~O,~A~[. Similarly, if t < 0  let B~ :={ f*  <t}.  Then equation 
(2.1) implies tha t  

lim IB2nB(xo,r)l =0  and therefore lim [AZnB(xo,r)l =1,  
~ o  IB(xo,r)l ,-~o IB(xo,r)l 

thus showing that  xo~O,,,A~. Since H n 1-a.e. point of Rn \ f~  is a point of approx- 

imate continuity of f*,  this shows tha t  Hn-lr0[ ,~A*\f~]=0t for all t r  
Having established our claim, it follows tha t  for any bounded open set U c R  ~, 

F F Hn-I(OmA~NU) dr= Hn-I (O.~A~N~NU) dt 
O0 O0 

/$ = H n - l ( O . ~ A t N a n g )  dt = ] lDfH(~ng)  < ~ ,  
o o  

where the third equality is implied by (1.5) and is finite by the assumption that  

fEBV(~2NU).  Tha t  f* EBV(U) now follows from the first equality and (1.6). Since 
U is arbitrary, we conclude tha t  f*EBVloc(Rn) ,  as desired. [] 

2.2. T h e o r e m .  Let ~ C R  ~ be an arbitrary open set and assume f cwl 'p( f~) ,  

l < p < o c ,  has the property that 

(2.2)  lira - -1 /B  I f (Y) ldy=O 
r~O r n (x,r)ngt 
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for 7p-q.e. xCOft. Then feW~'P(ft). 

Except for a factor of 1 ~, the leR side of (2.2) could be interpreted as the inner 
trace of f on domains with sufficient regularity, for example, on domains of finite 
perimeter.  Thus our theorem states tha t  if the inner trace of f is zero 7p-q.e. on 

Oft, then fEW~'P(ft). 

Proof. Define f* as in (1.1). The proof consists of the following steps. 

Step 1. The function f* is approximately continuous H n 1-a.e. in R ~. 
Recall that  f has a Lebesgue point at vp-q.e, point in ft. Furthermore, for 

any set E,  7 p ( E ) = 0  implies H n P+~(E)=0 for all ~>0, cf. [Z, Theorem 2.6.16]. In 

particular, H ' - I ( E ) = 0 .  Consequently, f* has a Lebesgue point at H* ' - l - a lmos t  
all points in ft. Furthermore,  for 7p-q.e. xcOft, we know that  

l i m / B  i f , (y) ldy= lim __1/B If(Y)IdY = O, 
r-*0 (x,r) r~O r n (x,r)n~2 

so f* has a Lebesgue point at H n - l - a . e .  point in Oft. Finally, f* is identically 
zero on R ~ \ f t  and therefore we conclude tha t  f* is approximately continuous at 
H n - l - a . e .  on a n. 

Step 2. We know from Theorem 2.1 that  f*EBVloc(Rn) .  

Step 3. The function f* is continuous on almost all line segments parallel to 
the coordinate axes. 

This follows from Steps 1, 2 and Theorem 1.4. 

Step 4. The function f* is of bounded variation on each bounded interval of 
almost all lines parallel to the coordinate axes. 

This follows from Step 2 and (1.4). 

Step 5. The function f* is absolutely continuous on almost all line segments 
parallel to the coordinate axes. 

In view of Theorem 1.5 we must show tha t  on almost all line segments parallel 
to the coordinate axes, f* (as a function of one variable) carries sets of Lebesgue 
measure zero (linear measure zero) into sets of Lebesgue measure zero. For this, 
consider for example a line segment A parallel to the n th coordinate axis passing 
through the point x = ( 2 ,  xn) with the property that  f * ( 2 , . )  is continuous and of 
bounded variation and tha t  f ( 2 , .  ) is absolutely continuous on each bounded interval 
contained in An~2. Recall from Steps 3 and 4 and Theorem 1.6 that  almost all ~? 
in  R n - 1  have this property. Let ECA be a set of linear measure zero and let I be 
any bounded, open interval of .XNfs For any closed interval JCI ,  it follows from 
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Theorem 1.6 that  f* (JNE) is of measure zero and therefore, by a limiting process, 

f* ( InE)  is of measure zero. Hence, EnANf t  is carried into a set of measure zero. 

Finally, f* is constantly zero on E n A A ( R  n \ f  t), and so f* carries sets of measure 
zero into measure zero. 

Step 6. From Step 5 we see that  the distributional partial derivatives of f* 

are functions and Step 2 implies that  IDf* I eLiot(R1).  Since the classical partial 
derivatives of f* exist almost everywhere on R n, we have that  Dr* =0 a.e. on R n \  f~ 

and that Dr* =Dr  on f~. Consequently, IDf*IELP(R~). Theorem 1.6 implies that  

f* EWI,P(R ~) and since 

lim [ lf*(y)ldy=O 
~ o  Js(x,~) 

for ~p-q.e. xCRn\ f} ,  it follows from Theorem 1.1 that  f*EI/V~'P(f~). As f * = f  on 

f~, it follows that  fEW~'B(~2) as desired. [] 

3. E x t e n s i o n s  t o  Wk'P(f~) 
As in Theorem 2.2, we address the problem of replacing the requirement that  

fEWk,P(R n) with fEWk'P(f~). This will be an easy consequence of Theorems 1.1 

and 2.1. 

For this, we begin with the following observation. If ~ c R  n is an arbitrary 

open set and feWok'P(~), then f*EWk,P(R n) and 

(3.1) D~f  * = (D~f) * 

for each multiindex 0_< [a[_<k. 

We now are in a position to prove the following. 

3.1. T h e o r e m .  Let k be a positive integer, let l < p < o c  and let f cWk'P(f~). 
If f t c R  n is an arbitrary open set, then f~Wok'P(ft) if and only if 

(3.2) 
1L 

lim - -  ]DZ f(y)] dy = 0 
r~o r n (x,r)nf~ 

for Ck_l~l,p-q.e. x E R n \ ~  and for all multiindices /3, O< If~i_<k- 1. 

Proof. The proof of sufficiency is immediate and thus we will consider only 

necessity. This proceeds by induction on k with the case k =  1 having been estab- 

lished by Theorem 2.2. Assume that  fEWk,P(~) satisfies condition (3.2). Then 

fcWk-l 'P(f~),  and since Ck_l_l~l,p<_Ck_l~l,p for every multiindex/3, 0< ]~]_<k-2, 
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it follows that f satisfies condition (3.2) as an element of wk-I 'P(~) .  Thus by the 

induction hypothesis we conclude that  f ~ Wok-~'P(~t) and hence f* C W k I'P(R~). 

Let /3 be a multiindex with I ~ l = k - 1 ,  and define g:=D;Jf. Then gcWI'P(~2) 
satisfies the hypotheses of Theorem 2.2, which implies that g* EWI 'p(Rn) .  Thus by 

(3.1), we have that  D Z f * = ( D Z f ) * c W I ' P ( R  ~) whenever I ~ l = k - 1 .  It follows that 

f*EWk,P(R~).  Now we may apply Theorem 1.1 to conclude that f*cW~'P(~2). 
This yields our desired conclusion since f * = f  on ~2. [] 
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