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Vector-valued Hardy 
inequalities and B-convexity 

O s c a r  Blaseo(1)  

A b s t r a c t .  Inequalities of the form Eke_0 ]f(mk)l/(k4-1)~Cllflll for all fEH 1, where {ink} 
are special subsequences of natural numbers, are investigated in the vector-valued setting. It is 
proved that Hardy's inequality and the generalized Hardy inequality are equivalent for vector 
valued Hardy spaces defined in terms of atoms and that they actually characterize B-convexity. It is 
also shown that for 1 < q < oc and 0 < a < oc the space X = H(1, q, (~) consisting of analytic functions 
on the unit disc such that f01 ( 1 -  r)qa 1M q (f, r) dr < oc satisfies the previous inequality for vector 
valued functions in H 1 (X), defined as the space of X-valued Bochner integrable functions on the 
torus whose negative Fourier coefficients vanish, for the case {ink} {2 k} but not for {rnk}={k a} 
for any a c N .  

1. I n t r o d u c t i o n  

In  th i s  p a p e r  we sha l l  dea l  w i t h  t h e  v e c t o r - v a l u e d  f o r m u l a t i o n  of  c e r t a i n  in- 

equa l i t i e s  in t h e  t h e o r y  of  H a r d y  spaces .  T h e  first  one,  due  to  G. H. H a r d y  ([Du,  

p. 48]), r e ads  

(H) ~ If(n)l <cl l f l l l  for all  f e l l  1 
n + l  - 

r t=0  

w h e r e  H l = { f e L l ( T ) : f ( n )  0 for n < O }  and,  as usual ,  T s t a n d s  for t h e  un i t  c i rc le  

a n d  f(n)=f"_~ f(t)e -~n~ dt/2~ for n E Z .  

R e c e n t l y  K. M. D y a k o n o v  [D] c o n s i d e r e d  t h e  fo l lowing  g e n e r a l i z e d  H a r d y  in- 

equa l i t y :  T h e r e  ex is t s  a c o n s t a n t  C > 0  such  t h a t ,  for any  i n c r e a s i n g  s u b s e q u e n c e  

{nk} of  N sa t i s fy ing  

(*) 5 =  inf  k nk+l -nk  >0 
kcN nk 

(1) The author has been partially supported by the Spanish DGICYT, Proyecto PB95-0291. 
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one has 

(1) 
(OH) I/(nk)l<c l-l- IlfII~ f ~  CH1 

k=o k + l  - ~ 

In particular, besides the classical Hardy 's  inequality (H), we have the cases 
nk=k a for any a E N  and n k = 2  k (or any other lacunary sequence), the last case 
being also a consequence of Paley 's  inequality (see [Du, p. 104]). 

All of these facts can be regarded as special cases of multiplier inequalities 
between H 1 and l 1. Recall that  a sequence {m,~} is an (H~-I 1) multiplier, to be 

denoted by { m ~ } e ( H  1 /1), if T{mn}(f)={f(n)mn} defines a bounded operator 
from H 1 into 11. 

The (H I /1)-multipliers were characterized by C. Fefferman in the following 
way (see [AS] and [SW], [SS] for a proof): 

(k+l)s 

(**) (H1 ll)=l{mn}:Sup(~.j~ks+llT~J[)2)l/2<~176 " k  s>l  \ k > l  

The proof of this fundamental  result depends upon the atomic decomposition 
of functions in H 1. 

In [BP] the vector valued analogues of several classical inequalities in the theory 

of Hardy spaces were investigated. Here we use several techniques from that  paper  
and from [B2] to deal with the properties corresponding to the vector valued version 
of (GH) and some of its particular cases. 

A complex Banach space X is said to satisfy the vector valued Hardy inequality 
(for short X is an (HI)-space) if there exists a constant C > 0  such that  

(H) ~ Ilf(n)ll <cII/ll~ for all fEHI(X), 
n + l  - 

n - - 0  

where HI(x)={fcLI(T, X):f(n)=O for n<0} .  
A complex Banach space X is said to have (H  1 /1)-Fourier type if for any 

{ m ~ } E ( H  x I x) there exists a constant C > 0  such that  

(F) ~ Ilf(n)ll Irnnl <_cI]flll for all f e Hl(X). 
n--0 

Given 2_<q<oc, a complex Banaeh space X is said to be a q-Paley space if 
there exists a constant C > 0  such that  

(Pq) Ilf(2k)ll q <c[Iflll for all f e g l ( x ) .  
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The reader is referred to [BP] for examples of spaces with or without these 
properties and for their connection with other well-known properties in the theory 
of Banach spaces. 

Let us now introduce the vector-valued extension of (GH) and some of its 
particular cases. 

Definition 1.1. Let aEN.  A complex Banach space X is said to satisfy the 
vector valued Hardy inequality for {nk}={k a} (fox" short X is an (HI)a-space) if 

(3O II](na)ll (Ha) ~ <CIIfH 1 fox-all fEHI(X). 
n + l  

n - - 0  

Definition 1.2. A complex Banach space X is said to satisfy the vector val- 
ued Hardy inequality for nk=2  k (for short X is an (HI)l~c-space) if there exists a 
constant C > 0  such that  

(Hlac) ~ tlf(2n)H <CIIfll~ for all fEHI(X). 
n + l  n 0 

Definition 1.3. A complex Banach space X is said to satisfy a generalized 
vector valued Hardy inequality (for short X is a (GHI)-space) if there exists C > 0  
such that  for any {nk} verifying (*), 

(GH) f i  IIf(nk)ll < C ( l + ~ ) l [ f l l l  for a l l f c H l ( X ) .  
k=o k + l  - 

Using (**) it is easy to see that  any space of (Hl- l l ) -Four ier  type must be a 
2-Paley space (hence q-Paley for any q_>2) and an (HI)-space (see [BP]). 

Actually repeating the proof in [D] one sees that  any space of (H 1 /1)-Fourier 
type must be a (GHI)-space. 

It should be noted that  now the use of vector-valued atoms is still at our disposal 
but the spaces H I(X) and H~t(X ) (see definition below) are not isomorphic. The 
aim of this paper is to make it clear that  actually one can get the generalized Hardy 
inequality for Hit (X) using only the classical Hardy inequality fox" Hit  (X). 

Let us now recall the following definitions (see [B1], [Bo2]). 

Definition 1.4. Given a complex Banach space X,  we denote by H,~,ax(X ) the 
space of functions fELI(T,X) such that  P* ( f ) ( t )  suP0<r<l HP,.*f(t)[IcLl(T), 
where P,. stands for the Poisson kernel. 

We endow this space with the norm Ilfllm~x,x=llP*(f)lll. 
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Definition 1.5. Given a complex Banach space X, we denote by HI t (X)  the 
space of functions fcLI(T,X) such that  f ~ n e N  Arian (in the sense of distri- 
butions), where ~ n E N  IAnl <OC and an are X-valued atoms, that  is an is either a 
constant function or it has the following three properties: 

(i) anCL~(T,X) and supp(an)CIn for some interval In; 

(ii) fI~ an(t) dr=0; 
(iii) UanUo~<l/lIn], where IIn] stands for the normalized Lebesgue measure 

on T. 
As usual the norm is given by I I f I Ia t ,x=inf{~nc N IA, I}, where the infimum is 

taken over all possible decompositions. 

The facts that  Hl~ax(X)=Hlat(X) and Ilfllat,X~ll.fllmax,X can be established 
by repeating the scalar-valued proof in [CW]. 

It is also well known (see [B1]) that  HI(X)cH~ax(X) but they are not the 
same space unless X has the so-called UMD property, i.e., the X-valued martingale 
differences are unconditionally convergent. 

Because of this, it makes sense to consider the analogues of (H), (H)~ and (H)la~ 
with Hit  (X) in place of H 1 (X). The arising "atomic" properties, denoted by (H)at, 
(H)at (H~a t  /a , ~ /lac, are stronger than their respective counterparts discussed above. 

Let us now recall some fundamental notions in the geometry of Banach spaces to 
be used in the sequel. Although they are usually defined in terms of the Rademacher 
functions we shall replace these by lacunary sequences e i2~t, which gives an equiv- 
alent definition ([MP], [Pi]). 

Given l<p_< 2_< q< oc, a Banach space X has cotype q (respectively type p) if 
there exists a constant C > 0  such that  for all N c N  and for all zo, xl, . . . ,  X N E X  

one has 
N N 

Q~_oIIxkllq)l/q<--C k~oXkei2kt 1 

(respectively 

~_oZkei2~t (~-~ \I/p) < c  IIx ll 

A Banach space is called B-convex if it has type > 1. 
G o  ~b 

Given a complex Banach space X and a function f(z) = ~ n = O  xnz with z ,  EX, 
G o  2 n we write P ( f ) = ~ , , = 0  z~nz for the vector-valued version of the Paley projection 

acting on f .  
It is well known that  X is a B-convex space if and only if the Paley projection 

is bounded o n  HP(X) for some (or any) l < p < e c .  This can be extended to p - 1 .  It 
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is a result due to Pisier (see [BP, Proposit ion 4.2]) that  X is B-convex if and only 

if IIP(f)llat,x<_CIIflLat,x for all IcHlt(x). 
Definition 1.6. We say that  X satisfies the Paley projection property (for short 

X C (PP)) if the Paley projection is bounded in H 1 (X). 

In [LPP] this proper ty  was studied for the case of Schatten classes. 

Remark 1.1. Observe that,  since X = c 0 ~ ( P P ) ,  the property X c ( P P )  implies 
that  X has finite cotype. 

Remark 1.2. If X E ( P P )  and X has cotype q for some 2_<q<ec then XE(P)q. 

Combining both remarks one easily gets the following result. 

P r o p o s i t i o n  1.1. If X has the Paley projection property then it also has the 
q-Patey property for some 2_<q<oe and satisfies the Hardy inequality for nk =2  k. 

We shall also be using the notion of Fourier-type introduced by J. Peetre ([P]). 
Let us recall that  for l_<p_<2, a Banach space X is said to have Fourier type p if 
there exists a constant C > 0  such tha t  

~ ^ \I/P ~ 
IIf(n)II p') <Cllfili~(x ) for all f e L P ( T , X ) .  

It is not hard to see tha t  X has Fourier type p if and only if X* has Fourier 
type p. Typical examples are the spaces L r for p<r<<p I, where 1/p+l/pt=l, or 
those obtained by interpolation between any Banach space and a Hilbert space. 

Let us now state the fundamental  theorem, due to J. Bourgain, which connects 
the last two properties. 

T h e o r e m  A. ([Boll, [Bo3]) Let X be a complex Banach space. Then X has 
Fourier type strictly greater than ] if and only if X is B-convex. 

Throughout  the paper  Lp(tt ,Y)  (respectively LP(Y)) stands for the space of 
Y-valued strongly measurable functions f on a ~r-finite measure space (f~, E, #) 

(respectively (T,B, dt/21r)) such tha t  IIIHELp(~), and we denote by Hp(y) the 
subspace of LP(Y) consisting of functions such tha t  f (n)  ~ -i~t =f~ f(t)e dt/27r=O 
for n<0 .  We write HP(D,X) for the space of analytic functions f from D into X 

such t ha t  suP0<r<l  Mp,x (I, r) < oo, where Mp,x (f, r) = (f~_~ II f ( rd t )  II p dt /2@/~.  
Clearly, if f eHP(X)  then f(re it) f*P~.(t)eHP(D,X), but in general the 

space HP(D, X) cannot be identified with HB(X) or, in other words, the functions 

in HP(D, X) do not necessarily have radial boundary limits. 
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A complex Banach space X for Which any function in H ~ 1 7 6  has radial 
boundary limits a.e. is said to have the analytic Radon Nikodym property, for short 
XE(ARNP) .  This was first introduced in [BD], where it was shown, among other 
things, that  L s (#) E (ARNP). 

2. Hardy type inequalities for H I(X)  

We shall first show an extension to the vector valued setting of one inequality 
by Hardy and Littlewood (see [Du], [HL]). Our proof follows ideas in [F] and uses 
the Marcinkiewicz interpolation theorem. 

T h e o r e m  2.1. Let X be a Banach space and let l < p < o c .  If f C H I ( X )  then 

fo~(1-~) ~/~M~,~(f, ~) d~ <_ Cllflll. 

Pro@ Let us first recall that  if 0 < p < q < o c  and g is an X-valued analytic 
function then (see [Du, p. 84]) 

(2.1) M~,x (g, ~) _< (1-~)l/~-~/~Mp,x(g, ~'). 

To prove the result let us first fix pl<l<p2<p.  For j = l ,  2, using (2.1) one 
has 

( 1 . r ) - l / P M v , x  (f, r) < ( l - r )  -Up' IIf t[HPJ (D,X). 

Hence 
PJ 

IIfIIHPJ(D,X) 
I{r E [0, 1] : ( l - - r ) l / v M v , x ( f , r ) > i a } l < C  kpj 

This actually gives that  

f~ > F(r, e ~t) = ( l - r )  1/Pf(reit) 

defines a bounded operator from H pj (D, X) into the space LVJ'~176 LP(X)), where 
LVJ,~(dr, Lv(X)) stands for the corresponding vector valued Lorenz space. 

Now using the standard real method of interpolation for 0E(0, 1) such that  

1 - 0  0 
- - + - -  =1 ,  
Pl P2 

we have (see [BL]) 

(Lm'~176 LP(X)), LP2'~176 LP(X)))o,1 = Ll(dr, LP(X)). 
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On the other hand, since the Banach space X is the same for both  indices, it is not 
difficult to extend the scalar-valued proof (see [BX] and references there) to get 

(H p' (D, X),  H p~ (D, X))o,1 = H 1 (D, X) .  

Hence the operator is bounded from H~(X)  to Ll(dr, LP(X)), tha t  is 

L * ( 1 - r )  ~/P~p(f ,r )  dr<_Cllf[ll. [] 

C o r o l l a r y  2.1. ([BP], [Bo3]) I f  X is a B-convex space then X satisfies the 
vector valued Hardy inequality, i.e. 

oo 1 

n 0 n + l  n - -O  

Proof. From Theorem A we have tha t  X has Fourier type p for some p >  1. 
Then applying HSlder's inequality and Theorem 2.1 for such a p, one has for f ( z )  = 
En%0x~z n 

/:'(ns ";"( .. . .  )'" n o n + l  - I l x n l l r n  d r  -< I Ix~l lP ' r  '~ } - ~ ' r  n dr 
n 0 n--O 

5 C L ~ ( 1 - r ) - U P M p , x ( f , r ) d r < C I I f l l l .  [] 

The following is a simple modification of a proof in [B2] regarding Paley spaces 
(corresponding to the 2-Paley property).  

L e m m a  2.1. Let 2<_q<oo and l<p<q,  f l Y  is a q-Paley space then so is 
Lp (~, Y)  

Proof. Put  r (q /p) '=q/ (q-p) .  Let us take f(t)=E~>_oX~e i'~t, where x,~e 
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Lp(#, Y). Then we have 
l/q .~q/p'~l/q 

: s u p  ~ 'C~k' ~=1 (Ej~l,X2k(W)llPlozkldll,(w)) lip 

\ J f ~  \k_>O / 

_ C 1 7r p 1/p 

J--Tr IIn> 0 t l g  / / 

=C IlhHp 'sup 1 J~ f /~Tr- E xn(w)eint y th(w)]dtdp(w) 

<_ C x,~ (w) e int dt 
~TrUn>_O 

/: = C  Hf(t)tlLp(•,y)dt. [] 
77 

T h e o r e m  2.2. Let 2_<q<oc. Then Lpl(p, Lp~(~)) is a q-Paley space if and 
only if l <<pl,p~<_q. 

Proof. It  is clear from the definition that  a q-Paley space must have cotype q. 
Now the cotype q condition forces the values of pl and P2 to be in the required 

range. 
To get the converse, observe tha t  the classical Paley inequality together with 

Lemma 2.1 for Y = C  gives tha t  Lp~ is a q-Paley space for l<_p2<q. Now apply 

Lemma 2.1 again. [] 

L e m m a  2.2. Let i_<p<c~ and X E ( P P ) .  Then Lp ( p ,X ) E( PP) .  

Pro@ Using Kahane 's  inequality we can write 

HI(Lp(tt,X)) \ ~2Hn_ 0 IIH (X) 

< C  x , , ( w ) z  n 
\ J r 2  I]n_ 0 ]IHI(X) 

<C 

\ l /p 

~ p \l /p dt [] 



Vector-valued Hardy inequalities and B-convexity 29 

T h e o r e m  2.3. Let l <p,q<oo. Then Lp(#,Lq(u)) is an (HI)lac-space if and 
only if l<p, q<cc. 

Proof. Observe first that  co is not an (HI)lac-space (take the canonical example 
N fN(z)=~,~= 1 e~z n to check this fact). Consequently, if X is an (HI)l~c-space then 

it must have finite cotype. 
Assume that  Lp(#, Lq(u)) is an (HI)l~o-space. Now the cotype condition forces 

the values of p and q to be finite. 
To get the converse, observe that  the classical Paley inequality gives that  Y =  

C E( P P ) .  Now, applying Lemma 2.2 twice, one has that  Lp(p, Lq(u))c(PP) for 
1 <p, q< oo. Finally apply Proposition 1.1 to finish the proof. [] 

Now we shall consider some classes of analytic functions that  will serve us to 
get examples of spaces satisfying (HI)lac but failing to satisfy (HI)a. The reader is 
referred to [B2] for the fact that  lP(H ~) fails to satisfy (HI) for 1<p_<2 but it is a 
2-Paley space. 

Let us recall that,  given l<p,q<_oc and 0<c~<c~, H(p,q,c~) stands for the 
space of analytic functions on the unit disc such that  

T h e o r e m  2.4. Let l < q < o %  0<c~<oc and aEN. Then H(1,q,  ct) is an 
(HI)lac-spacc but fails to be an (HI)a-space. 

Pro@ That  H(1, q, c~) is an (HI)l~c-space follows from Theorem 2.3, since 

Ilflll,q,  : IlgllL (drm r ) ,L ICT) ) ,  

where g(r, O)----(1-r)af(rei~ 
To see that  it does not satisfy (H)a, let us consider the function 

OO 

1 Z : ~ anzn" 
r ( i - -Z)  a+l  log 1/(1 z) ~=0 

It is known (see [L, pp. 93-96]) that  

n c~ 

(2.2) a,~ log n 

and 

(2.3) ~ r-+ i-. 
log 1 / ( 1 - r ) '  
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Consider now f(z)(w) r -~-'~-2-,~=0 anwnz ~ and write x~(w)=a~w n. 
Since we have 

IIx~lll,q,~ = lanl IIw~tr~,~,~ = lanlgl/q(c~q, qn+l) 

then, (2.2) together with the estimate B(/3, rn)~rn -~, as rn--+cx~, give 

1 
(2.4) Ilxnlll,q,~ 

l o g n  

This allows us to say that f(z) o~ n --~n o xnz is an analytic function on the open 
unit disc with values in H(1, q, a). 

Using now (2.3) and the assumption q> 1 we have that 

I X f ( z ) l l l , q , ~  = (f01(1-r)C~q-lM](r Izlr) dr) 1/q 

1 (1 r) ~q dr~ 1/q 
- < C ( ~  0 ( i - r )  ~q l logql/(l_r ) / 

(~01 1 dr)l/q<oo. 
_< C ( l - r )  log q 1 / ( 1 - r )  

Therefore fEH~ q,a)). Using the fact that H(1, q,a)  has the an- 
alytic Radon-Nikodym property (recall that  Lq(dr/(1-r), L 1 (T)) c (ARNP)) ,  we 
can show that the radial limits exist almost everywhere and hence, in particular 
fEHI(H(1, q,a)). 

On the other hand, from (2.4) we have ~ n ~ o  Ilxnoll~,q,~/(n+l)=~.  [] 

3. Generalized Hardy inequalities for Halt(X) 

Let us start by showing the differences appearing when dealing with the vector- 
valued versions Halt(X) and H 1 (X). 

It follows rather easily, using Fubini's theorem and the scalar-valued result by 
K. Dyakonov, that L~(#) verifies the generalized Hardy's inequality, i.e. L~(#)E 
(GHI). Actually the same argument shows that LI(p)  even has (H  1 /1)-Fourier 
type (see [BP]). 

Nevertheless LI (T)  fails to have (HI)~ t for any value of a C N  as the following 
proposition shows. 
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P r o p o s i t i o n  3.1. Let aCN, Then LI (T)  is not an (HI)~t-spaee. 

Proof. It is well known (see [Z]) that  r 2 eint/log InlELI(T) .  

Now consider f :  T--+L 1 given by f(t)(s)=r It is clear that  fcL~ 1) 
and that  

f ~__ n~r rlnle in(t§ ds P*(.f)(t) = sup o<~<1 ~ log]nJ ~ < IIr 

Therefore, in particular, f c Hi,  a• (L1). 

aowever,  ] ( n )  (t) = e ~n~/log n for ~ e N ,  which gives E ~ N  I I f (n~)  ll~/n = ~ for 
all a ~ N .  [] 

Let us now prove a couple of lemmas to be used later on. 

L e m m a  3.1. Let f E L l ( X )  and J be an interval in Z. If g( t )=f( t ) (1-e  -it) 
then 

(3.1) sup IIf(J)lt <- 1 
j c J  card(J~ E II f (J)II+Z IIg(J)ll. 

j E J  j C J  

Pro@ Let us fix j E J.  For any k E J we can write 

II](J)ll-< Ilf(k)ll+ll](k)- ](j)ll <_ II](k)ll+ 
1 rain(J) 

ll](l)-/(l+l)ll. 

Averaging over k C J we get 

ma,x(J)--I 
1 

II](J)ll-< c a r d ( J ~ E l l ] ( k ) l l +  ~ IIf(l)-f(l+l)ll 
k c J  l rain(J) 

Finally, taking into account that  f (1)- / ( l+l)=~(l) ,  we get (3.1). [] 

L e m m a  3.2. Let M E N  and let {nk} be an increasing sequence in NU{0} 
such that there exists a constant A > 0  for which 

nk--nk-1 > _A kcN. 
nk -- k' 

Then for any IEN, 

i <  1+ -. 

{k:lM <nk <1~f + ]~1} 
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Proof. For a fixed l � 9  we m a y  assume tha t  there exists nkE(1M, IM+M]. 
Let kz be the smallest index with this property,  so tha t  nkt ~ <lM<nkz. 

Observe now tha t  

kz+l 
1 1 1 nk 

n k  
{ k : l M < n k < l M + M }  k kz+ l  

1 1 <_ g+~--(n~,+l-~k,). 
~ t n k  t 

Since kl>l, nk~>IM and nkz+l--nkz<M we get (3.2). [] 

T h e o r e m  3.1.  Let X be a Banach space. The following statements are equiv- 
alent: 

(1) There exists a constant C > 0  such that 

o o  

IIf(n)ll ~ CIIflla~,x 
n 

'n~l 

for all f �9 H~t (X). 

(2) For any increasing sequence {nk} in NU{0}  satisfying that 

(3.3) nk--nk-1 > A 
nk _-s  k E N ,  

for some A > 0 ,  there exists a constant C > 0  such that 

Ilf(nk)Hk _<C(l+~)]]fltat,x for all f cH~t (X  ). 
k = l  

Proof. Obviously (2) implies (1). 

To see tha t  (1) implies (2) let us fix a sequence {nk} satisfying (3.3). ~t suffices 

to show tha t  there exists a constant  C > 0  such tha t  

k = l  

for any M c N  and any X-valued  a tom a suppor ted  on (-Tr/M, It~M). 
Take such an X-a t om ,  say a. Given n E N ,  using tha t  a has zero mean, we have 

(3.4) ll~(n)ll= ~/Ma(t)(e ~'~ 1)~ <nllall~j_~/M Itl <CL  
- -  - -  M "  

Let us write F = { k : n k < M }  and G=(k:nk>M}.  
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On the one hand 

(3.5) C 

k E F  kEN k c F  

On the other hand, letting Gl={k:lM<j<_IM+M}, we have 

E II&(nk)lI--Ek E Ila~k]l<~k -- ,M<j<,M+MSUp II&(J)ll E ~" 
kEG /=1 kCGt = -- kEGl 

Now applying Lemmas 3.1 and 3.2 and letting bl(t):a(t)(1-e -u) we have 

( A )  1 1 1 'M+M 
~ ,  I]g(nk)ll< 1+ lM ~ Ila(J)ll+ 1+~  ~- ~ Ill)l(j)ll 
kEG ~ -- l 1 j = l M + l  l=1 j I M + l  

( 1 ) ~  I M 4 - M I +  ~ II&(J)ll: ~ ( A )  ~ 1 +  E IM--ME IIMDI(J)IIj 

l=1 j = I M + I  3 /=1 j = l M + l  

< ( I + A )  ~ Ha(J)I--[-}-(I§ ~ .  HMbl(J)H 
-- j = M + I  J J j M--1 

To finish the proof note that b(t)=M(b~(t)-F ~/M ~ / M  bl(S) ds/21r) is also an X- 
valued atom and b(j)=Mbl (j). 

Therefore applying Hardy's inequality to a and b we get 

k c G  

We now finish the proof by combining this last estimate with (3.5). [] 

Corollary 3.1. (See [BP], [Bo3]) Let X be a Banach space. The following 
statements are equivalent: 

(1) X is B-convex; 
(2) X is an (HI)~t-space; 
(3) X is a (GHI)at-space. 

Proof. (1) ~ (2). As in the previous theorem it suffices to show that there 
exists a constant C>0 such that 

n 
n ~ l  
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for any M e N  and any X-valued atom a supported on ( -rr /M,  rr/M). 
Using Theorem A we may assume that X has Fourier type p > l .  It is clear 

that  if a is such an X-valued atom then Ilal]p<_M 1/p'. Hence, in view of (3.4), 

ft n n 
n = l  n = l  n = M + l  

< c +  I/a(n)lF' --1 /p 
n 1 n 1 T L P ' ]  

< c  llalb 
d d m I 

_ . c ~  < C .  

(2) ~ (3). This follows from Theorem 3.1. 

(3) ~ (1). By a finite representability argument (see Proposition 2.6 in [BP]) it 
is enough to show that L 1 fails (GHI) ~t. This now follows from Proposition 3.1. [] 

As a corollary of our previous theorems we get some improvements of results 

by H. K5nig and V. Tarieladze (see [K] and Proposition 3 in [T]). 

C o r o l l a r y  3.2. Let X be a B-convex Banach space and let aEN.  I f  f E  
Up>l LP(X) with f(O) 0 and Y(t) f~ f (s)  ds/2~ then 

n E Z  

Proof. Since f E H ~ t ( X  ) and IIf(n)ll In[ IIt~(n)ll we can apply Corollary 3.1 for 
n k = k  a to the function f.  [] 
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