Polynomials on dual-isomorphic spaces

Félix Cabello Sánchez, Jesús M. F. Castillo and Ricardo García(${ }^{1}$)

In this note we study isomorphisms between spaces of polynomials on Banach spaces. Precisely, we are interested in the following question raised in [5]: If X and Y are Banach spaces such that their topological duals X^{\prime} and Y^{\prime} are isomorphic, does this imply that the corresponding spaces of homogeneous polynomials $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every $n \geq 1$?

Díaz and Dineen gave the following partial positive answer [5, Proposition 4]: Let X and Y be dual-isomorphic spaces; if X^{\prime} has the Schur property and the approximation property, then $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every n. Observe that the Schur property of X^{\prime} makes all bounded operators from X to X^{\prime} (and also from Y to Y^{\prime}) compact. That hypothesis can be considerably relaxed. Following [6], [7], let us say that X is regular if every bounded operator $X \rightarrow X^{\prime}$ is weakly compact. We prove the following result.

Theorem 1. Let X and Y be dual-isomorphic spaces. If X is regular then $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every $n \geq 1$.

In fact, it is even true that the corresponding spaces of holomorphic maps of bounded type $\mathcal{H}_{b}(X)$ and $\mathcal{H}_{b}(Y)$ are isomorphic Fréchet algebras. Observe that the approximation property plays no rôle in Theorem 1. This is relevant since, for instance, the space of all bounded operators on a Hilbert space is a regular space (as every C^{*}-algebra [7]) but lacks the approximation property.

Our techniques are quite different from those of [5] and depend on certain properties of the extension operators introduced by Nicodemi in [10]. For stable spaces (that is, for spaces isomorphic to its square) one has the following stronger result.

Theorem 2. If X and Y are dual-isomorphic stable spaces, then $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every $n \geq 1$.
$\left.{ }^{1}\right)$ Supported in part by DGICYT project PB97-0377.

At the end of the paper we present examples of Banach spaces X, Y with $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ isomorphic for every $n \geq 1$ despite the following facts.

Example 1. All polynomials on X are weakly sequentially continuous, while Y contains a complemented subspace isomorphic to l_{2} (thus there are plenty of polynomials which are not weakly sequentially continuous).

Example 2. The space X is separable and Y is not.
Example 3. Every infinite-dimensional subspace of X contains a copy of l_{2}, X has the Radon-Nikodym property and Y is isomorphic to c_{0}.

1. Multilinear maps and Nicodemi operators

Our notation is standard and follows [5]. Let Z_{1}, \ldots, Z_{n} be Banach spaces. Then, for each $1 \leq i \leq n$, there is an isomorphism

$$
(\cdot)_{i}: \mathcal{L}\left(Z_{1}, \ldots, Z_{n}\right) \longrightarrow \mathcal{L}\left(Z_{1}, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_{n} ; Z_{i}^{\prime}\right)
$$

given by

$$
\left\langle A_{i}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right), z_{i}\right\rangle=A\left(z_{1}, \ldots, z_{n}\right)
$$

The inverse isomorphism will be denoted $(\cdot)^{i}$. Thus, for any vector-valued multilinear map $B \in \mathcal{L}\left(Z_{1}, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_{n} ; Z_{i}^{\prime}\right)$, we have

$$
B^{i}\left(z_{1}, \ldots, z_{i-1}, z_{i}, z_{i+1}, \ldots, z_{n}\right)=\left\langle B\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right), z_{i}\right\rangle
$$

Our main tool are the extension operators introduced by Nicodemi in [10] whose construction we briefly sketch (see also [6]). Let X and Y be Banach spaces. Given an operator $\Phi: X^{\prime} \rightarrow Y^{\prime}$, one can construct a sequence of bounded operators $\Phi^{(n)}: \mathcal{L}\left({ }^{n} X\right) \rightarrow \mathcal{L}\left({ }^{n} Y\right)$ between the spaces of multilinear forms as follows. For $1 \leq i \leq$ n, define

$$
\Phi_{i}^{(n)}: \mathcal{L}(X, \stackrel{(i)}{\stackrel{ }{2}}, X, Y, \stackrel{(n-i)}{\cdots}, Y) \longrightarrow \mathcal{L}\left(X,{ }^{(i-1)}, X, Y,{ }_{(n-i+1)}^{\cdots}, Y\right)
$$

as

$$
\Phi_{i}^{(n)}(A)=\left(\Phi \circ A_{i}\right)^{i}
$$

Finally, define $\Phi^{(n)}$ by

$$
\Phi^{(n)}=\Phi_{1}^{(n)} \circ \Phi_{2}^{(n)} \circ \ldots \circ \Phi_{n-1}^{(n)} \circ \Phi_{n}^{(n)}
$$

Clearly, if $\Phi: X^{\prime} \rightarrow Y^{\prime}$ is an isomorphism, so is every $\Phi_{i}^{(n)}$. Hence we have the following lemma.

Lemma 1. Let $\Phi: X^{\prime} \rightarrow Y^{\prime}$ be an isomorphism. Then $\Phi^{(n)}$ is an isomorphism for every $n \geq 1$.

Corollary 1. If X and Y are dual-isomorphic spaces, then $\mathcal{L}\left({ }^{n} X\right)$ and $\mathcal{L}\left({ }^{n} Y\right)$ are isomorphic for every $n \geq 1$.

We are ready to prove Theorem 2.
Proof of Theorem 2. The hypothesis on X and Y together with [5, Theorem 2(ii)] and Corollary 1 above yields $\mathcal{P}\left({ }^{n} X\right) \approx \mathcal{L}\left({ }^{n} X\right) \approx \mathcal{L}\left({ }^{n} Y\right) \approx \mathcal{P}\left({ }^{n} Y\right)$, as desired.

Identifying $\mathcal{P}\left({ }^{n} X\right)$ with the space of symmetric forms $\mathcal{L}_{s}\left({ }^{n} X\right)$ (and also $\mathcal{P}\left({ }^{n} Y\right)$ with $\mathcal{L}_{s}\left({ }^{n} Y\right)$) one might think that, given an isomorphism $\Phi: X^{\prime} \rightarrow Y^{\prime}$, the restriction of $\Phi^{(n)}$ to $\mathcal{L}_{s}\left({ }^{n} X\right)$ could give an isomorphism between the spaces of polynomials. Unfortunately, we are unable to prove that $\Phi^{(n)}(A)$ is symmetric when A is (we believe that not all isomorphisms Φ achieve this). Fortunately, this is always true when X is regular. The following result will clarify the proof of Theorem 1.

Proposition 1. Let X and Y be dual-isomorphic Banach spaces. If X is regular then so is Y.

Proof. Let \mathcal{B} denote bounded operators and \mathcal{W} weakly compact operators. It clearly suffices to see that $\mathcal{B}\left(Y, X^{\prime}\right)=\mathcal{W}\left(Y, X^{\prime}\right)$, which follows from the regularity of $X\left(\mathcal{B}\left(X, Y^{\prime}\right)=\mathcal{W}\left(X, Y^{\prime}\right)\right)$ together with the natural isomorphism $\mathcal{B}\left(Y, X^{\prime}\right)=$ $\mathcal{B}\left(X, Y^{\prime}\right)$ and Gantmacher's theorem $\left(\mathcal{W}\left(Y, X^{\prime}\right)=\mathcal{W}\left(X, Y^{\prime}\right)\right)$.

Our immediate objective is the following representation of Nicodemi operators.
Lemma 2. Let $\Phi: X^{\prime} \rightarrow Y^{\prime}$ be a bounded operator. For every $A \in \mathcal{L}\left({ }^{n} X\right)$ and all $y_{i} \in Y$ one has

$$
\Phi^{(n)}(A)\left(y_{1}, \ldots, y_{n}\right)=\lim _{x_{1} \rightarrow \Phi^{\prime}\left(y_{1}\right)} \cdots \lim _{x_{n} \rightarrow \Phi^{\prime}\left(y_{n}\right)} A\left(x_{1}, \ldots, x_{n}\right)
$$

where the iterated limits are taken for $x_{i} \in X$ converging to $\Phi^{\prime}\left(y_{i}\right)$ in the weak* topology of $X^{\prime \prime}$.

Proof. Let $B \in \mathcal{L}\left(X, \stackrel{(i)}{ }, X, Y,{ }_{(n-i)}^{i)}, Y\right)$. Then

$$
\begin{aligned}
\Phi_{i}^{(n)} B\left(x_{1}, \ldots, x_{i-1}, y_{i}, y_{i+1}, \ldots, y_{n}\right) & =\left(\Phi \circ B_{i}\right)^{i}\left(x_{1}, \ldots, x_{i-1}, y_{i}, y_{i+1}, \ldots, y_{n}\right) \\
& =\left\langle\left(\Phi \circ B_{i}\right)\left(x_{1}, \ldots, x_{i-1}, y_{i+1}, \ldots, y_{n}\right), y_{i}\right\rangle \\
& =\left\langle\Phi\left(B_{i}\left(x_{1}, \ldots, x_{i-1}, y_{i+1}, \ldots, y_{n}\right)\right), y_{i}\right\rangle \\
& =\left\langle B_{i}\left(x_{1}, \ldots, x_{i-1}, y_{i+1}, \ldots, y_{n}\right), \Phi^{\prime}\left(y_{i}\right)\right\rangle \\
& =\lim _{x_{i} \rightarrow \Phi^{\prime}\left(y_{i}\right)}\left\langle B_{i}\left(x_{1}, \ldots, x_{i-1}, y_{i+1}, \ldots, y_{n}\right), x_{i}\right\rangle \\
& =\lim _{x_{i} \rightarrow \Phi^{\prime}\left(y_{i}\right)} B\left(x_{1}, \ldots, x_{i-1}, x_{i}, y_{i+1}, \ldots, y_{n}\right)
\end{aligned}
$$

from which the result follows.
It is apparently a well-known fact that if X is a regular space, the iterated limit in the preceding lemma does not depend on the order of the involved variables.

Lemma 3. Suppose that X is regular. Then, for every $A \in \mathcal{L}\left({ }^{n} X\right)$ and every permutation π of $\{1, \ldots, n\}$, one has

$$
\lim _{x_{1} \rightarrow x_{1}^{\prime \prime}} \cdots \lim _{x_{n} \rightarrow x_{n}^{\prime \prime}} A\left(x_{1}, \ldots, x_{n}\right)=\lim _{x_{\pi(1)} \rightarrow x_{\pi(1)}^{\prime \prime}} \ldots \lim _{x_{\pi(n)} \rightarrow x_{\pi(n)}^{\prime \prime}} A\left(x_{1}, \ldots, x_{n}\right)
$$

for all $x_{i}^{\prime \prime} \in X^{\prime \prime}$, where the iterated limits are taken for $x_{i} \in X$ converging to $x_{i}^{\prime \prime}$ in the weak ${ }^{*}$ topology of $X^{\prime \prime}$.

We refer the reader to [2, Section 8] for a simple proof. It will be convenient to write the limit appearing in Lemma 3 in a more compact form. Thus, given $A \in \mathcal{L}\left({ }^{n} X\right)$, consider the multilinear form $\alpha \beta(A)$ given on $X^{\prime \prime}$ by

$$
\alpha \beta(A)\left(x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)=\lim _{x_{1} \rightarrow x_{1}^{\prime \prime}} \ldots \lim _{x_{n} \rightarrow x_{n}^{\prime \prime}} A\left(x_{1}, \ldots, x_{n}\right)
$$

This is the Aron-Berner extension of A (see [1, Proposition 2.1], or [2, Section 8]. Actually the extension operator $\alpha \beta: \mathcal{L}\left({ }^{n} X\right) \rightarrow \mathcal{L}\left({ }^{n} X^{\prime \prime}\right)$ is nothing but the Nicodemi operator induced by the natural inclusion $X^{\prime} \rightarrow X^{\prime \prime \prime}$. In this setting, it is clear that if $\Phi: X^{\prime} \rightarrow Y^{\prime}$ is an operator, then

$$
\Phi^{(n)}(A)\left(y_{1}, \ldots, y_{n}\right)=\alpha \beta(A)\left(\Phi^{\prime}\left(y_{1}\right), \ldots, \Phi^{\prime}\left(y_{n}\right)\right)
$$

From this, we obtain the following lemma.
Lemma 4. Let X be a regular space and let $\Phi: X^{\prime} \rightarrow Y^{\prime}$ be an operator. Then, for each $n \geq 1$, the restriction of $\Phi^{(n)}$ to $\mathcal{L}_{s}\left({ }^{n} X\right)$ takes values in $\mathcal{L}_{s}\left({ }^{n} Y\right)$.

Proof. It obviously suffices to see that $\alpha \beta(A)$ belongs to $\mathcal{L}_{s}\left({ }^{n} X^{\prime \prime}\right)$ for every symmetric $A \in \mathcal{L}\left({ }^{n} X\right)$. If $\pi \in S_{n}$, then

$$
\begin{aligned}
\alpha \beta(A)\left(x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right) & =\lim _{x_{1} \rightarrow x_{1}^{\prime \prime}} \ldots \lim _{x_{n} \rightarrow x_{n}^{\prime \prime}} A\left(x_{1}, \ldots, x_{n}\right) \\
& =\lim _{x_{1} \rightarrow x_{1}^{\prime \prime}} \cdots \lim _{x_{n} \rightarrow x_{n}^{\prime \prime}} A\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \\
& =\lim _{x_{\pi(1)} \rightarrow x_{\pi(1)}^{\prime \prime}} \ldots \lim _{x_{\pi(n)} \rightarrow x_{\pi(n)}^{\prime \prime}} A\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \\
& =\alpha \beta(A)\left(x_{\pi(1)}^{\prime \prime}, \ldots, x_{\pi(n)}^{\prime \prime}\right)
\end{aligned}
$$

as desired.

End of the proof of Theorem 1. If $\Phi: X^{\prime} \rightarrow Y^{\prime}$ is an isomorphism and X is a regular space, then, by the lemma just proved, for every $n \geq 1$ the Nicodemi operator $\Phi^{(n)}$ yields an isomorphism from $\mathcal{L}_{s}\left({ }^{n} X\right)$ to $\mathcal{L}_{s}\left({ }^{n} Y\right)$. It remains to prove that this map is surjective. This is an obvious consequence of Proposition 1, Lemma 4 and the following result which shows the (covariant) functorial character of Nicodemi's procedure on the class of regular spaces.

Proposition 2. Let X, Y and Z be regular spaces and let $\Phi: X^{\prime} \rightarrow Y^{\prime}$ and $\Psi: Y^{\prime} \rightarrow Z^{\prime}$ be arbitrary operators. Then $(\Psi \circ \Phi)^{(n)}=\Psi^{(n)} \circ \Phi^{(n)}$ for every $n \geq 1$.

Proof. We only need the regularity of X. It is plain from the definition that for every $A \in \mathcal{L}\left({ }^{n} X\right)$ the multilinear form $\alpha \beta(A)$ is separately weakly* continuous in the first variable. If X is regular, Lemma 3 implies that $\alpha \beta(A)$ is separately weakly* continuous in each variable. Thus,

$$
\begin{aligned}
\left(\Psi^{(n)} \circ \Phi^{(n)}\right)(A)\left(z_{1}, \ldots, z_{n}\right) & =\Psi^{(n)}\left(\Phi^{(n)}(A)\right)\left(z_{1}, \ldots, z_{n}\right) \\
& =\lim _{y_{1} \rightarrow \Psi^{\prime}\left(z_{1}\right)} \cdots \lim _{y_{n} \rightarrow \Psi^{\prime}\left(z_{n}\right)} \Phi^{(n)}(A)\left(y_{1}, \ldots, y_{n}\right) \\
& =\lim _{y_{1} \rightarrow \Psi^{\prime}\left(z_{1}\right)} \cdots \lim _{y_{n} \rightarrow \Psi^{\prime}\left(z_{n}\right)} \alpha \beta(A)\left(\Phi^{\prime}\left(y_{1}\right), \ldots, \Phi^{\prime}\left(y_{n}\right)\right) \\
& =\alpha \beta(A)\left(\Phi^{\prime}\left(\Psi^{\prime}\left(y_{1}\right)\right), \ldots, \Phi^{\prime}\left(\Psi^{\prime}\left(y_{n}\right)\right)\right) \\
& =(\Psi \circ \Phi)^{(n)}(A)\left(z_{1}, \ldots, z_{n}\right),
\end{aligned}
$$

and the proof is complete.
Remark 1. In general, $(\Psi \circ \Phi)^{(n)}$ may differ from $\Psi^{(n)} \circ \Phi^{(n)}$; see the instructive counterexample in [6, Section 9].

Corollary 2. Let X and Y be dual-isomorphic complex spaces. If X is regular, then the Fréchet algebras of holomorphic maps of bounded type $\mathcal{H}_{b}(X)$ and $\mathcal{H}_{b}(Y)$ are isomorphic.

Proof. (See [6] for unexplained terms.) Let $\Phi: X^{\prime} \rightarrow Y^{\prime}$ be an isomorphism. It is easily seen that the Nicodemi operators have the following property: for all $A \in \mathcal{L}\left({ }^{n} X\right)$ and all $B \in \mathcal{L}\left({ }^{k} X\right)$ one has $\Phi^{(n+k)}(A \otimes B)=\Phi^{(n)}(A) \otimes \Phi^{(k)}(B)$. Taking into account that the norm of $\Phi^{(n)}$ is at most $\|\Phi\|^{n}$, it is not hard to see that the $\operatorname{map} \bigoplus_{n=1}^{\infty} \Phi^{(n)}: \mathcal{H}_{b}(X) \rightarrow \mathcal{H}_{b}(Y)$ given by $\bigoplus_{n=1}^{\infty} \Phi^{(n)}(f)=\sum_{n=1}^{\infty} \Phi^{(n)} d^{n} f(0) / n!$ is an isomorphism of Fréchet algebras.

2. The examples

Example 2 can be obtained taking $X=C[0,1]$ and $Y=c_{0}(J, C[0,1])$, where J is a set having the power of the continuum. Clearly, X and Y are regular spaces.

Moreover, by general representation theorems, one has isometries

$$
X^{\prime}=l_{1}\left(J, l_{1}(\mathbf{N}) \oplus_{1} L_{1}[0,1]\right)=l_{1}\left(J \times J, l_{1}(\mathbf{N}) \oplus_{1} L_{1}[0,1]\right)=l_{1}\left(J, X^{\prime}\right)=Y^{\prime}
$$

so Theorem 1 applies.
The space X of Example 3 is Bourgain's example [3] of an l_{2}-hereditary space having the Radon-Nikodym property and such that X^{\prime} is isomorphic to l_{1} (which obviously implies that X is regular).

Finally, Example 1 is obtained from Theorem 2 taking $X=l_{1}\left(l_{2}^{n}\right)$ and $Y=$ $l_{1}\left(l_{2}^{n}\right) \oplus l_{2}$. Clearly, X has the Schur property (weakly convergent sequences converge in norm), and therefore all polynomials on X are weakly sequentially continuous. That Y admits 2-polynomials that are not weakly sequentially continuous is trivial. We want to see that X is stable (this clearly implies that Y is stable too) and that X^{\prime} and Y^{\prime} are isomorphic. Let $\left(e_{n}\right)_{n=1}^{\infty}$ be the obvious basis of X and consider the following subspaces of X

$$
\begin{aligned}
X_{1} & =\left[e_{1}, e_{3}, e_{4}, e_{7}, e_{8}, e_{9}, e_{13}, e_{14}, e_{15}, e_{16}, \ldots\right] \\
X_{2} & =\left[e_{2}, e_{5}, e_{6}, e_{10}, e_{11}, e_{12}, e_{17}, e_{18}, e_{19}, e_{20}, \ldots\right]
\end{aligned}
$$

It is easily verified that $X=X_{1} \oplus X_{2}$ and also that $X \cong X_{1} \cong X_{2}$, so that X and Y are stable. To finish, let us prove that X^{\prime} and Y^{\prime} are isomorphic. Since $Y^{\prime}=X^{\prime} \oplus l_{2}$ the proof will be complete if we show that l_{2} is complemented in X^{\prime}. (This was first observed by Stegall who gave a rather involved proof; for the sake of completeness we include a simple proof which essentially follows [4].) Let $Q: X=l_{1}\left(l_{2}^{n}\right) \rightarrow l_{2}$ be given by $Q\left(\left(x_{n}\right)_{n=1}^{\infty}\right)=\sum_{n=1}^{\infty} x_{n}$. Clearly, Q is a quotient map and therefore $Q^{\prime}:\left(l_{2}\right)^{\prime}=$ $l_{2} \rightarrow X^{\prime}$ is an isomorphic embedding. For each $k \geq 1$, consider the local selection $S_{k}: l_{2} \rightarrow l_{1}\left(l_{2}^{n}\right)$ given by $S_{k}=I_{k} \circ P_{k}$, where P_{k} denotes the projection of l_{2} onto the subspace spanned by the first k elements of the standard basis and $I_{k}: l_{2}^{k} \rightarrow l_{1}\left(l_{2}^{n}\right)$ is the inclusion map. Now, take a free ultrafilter U on \mathbf{N} and define $T: X^{\prime} \rightarrow\left(l_{2}\right)^{\prime}$ by

$$
T x^{\prime}(x)=\lim _{U} x^{\prime}\left(S_{k} x\right)
$$

for $x^{\prime} \in X^{\prime}$ and $x \in l_{2}$. Then T is a left inverse for Q^{\prime}. Indeed, let $f \in\left(l_{2}\right)^{\prime}$ and take $x \in l_{2}$. One has $T\left(Q^{\prime}(f)\right)(x)=\lim _{U} Q^{\prime}(f)\left(S_{k} x\right)=\lim _{U} f\left(Q S_{k} x\right)=f(x)$ since $Q S_{k} x$ converges in norm to x. This completes the proof.

Remark 2. In view of [5, Lemma 3], the following result may be interesting: Let X be a regular space whose dual is stable. Then, for every $n \geq 1$, the spaces $\mathcal{L}_{s}\left({ }^{n} X\right)$ and $\mathcal{L}\left({ }^{n} X\right)$ are isomorphic. (This can be proved by the methods of [5], taking into account that since X^{2} is a predual of X^{\prime}, Theorem 1 yields isomorphisms $\mathcal{L}\left({ }^{n} X^{2}\right) \cong \mathcal{L}\left({ }^{n} X\right)$ and $\mathcal{L}_{s}\left({ }^{n} X^{2}\right) \cong \mathcal{L}_{s}\left({ }^{n} X\right)$. We refrain from giving the details.)

Remark 3. An operator $T: X \rightarrow X^{\prime}$ is said to be symmetric if $T x(y)=T y(x)$ holds for all $x, y \in X$. A Banach space X is said to be symmetrically regular if every symmetric operator $X \rightarrow X^{\prime}$ is weakly compact. Observe that Theorem 1 and Corollary 1 remain valid (with the same proof) replacing " X regular" by " X and Y symmetrically regular". This observation is pertinent since Leung [9] showed that there are symmetrically regular spaces (the duals of certain James-type spaces) which are not regular. On the other hand, l_{1} seems to be (essentially) the only known non-symmetrically regular space (see [2, Section 8]). In this way, although the starting question of Díaz and Dineen remains open, the results in this paper show that no available spaces seem to be reasonable candidates for a counterexample (one of the spaces should be non-stable and non-symmetrically regular simultaneously). We do not know if a symmetrically regular space and a non-symmetrically regular space can be dual isomorphic. Again, observe that no predual of l_{∞} is symmetrically regular.

Acknowledgements. After a previous version of this paper had been written we received valuable feedback from several colleagues: Juan Carlos Díaz informed us that Silvia Lassalle and Ignacio Zalduendo had independently obtained Theorem 1 (see [8]); Ignacio Villanueva made us aware that Lassalle and Zalduendo had found an incorrect statement in our manuscript. It is quite a pleasure to thank each of them for helping us to improve the paper.

References

1. Aron, R. and Berner, P., A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3-24.
2. Aron, R., Cole, B. and Gamelin, T., Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93.
3. Bourgain, J., New Classes of \mathcal{L}_{p}-Spaces, Lecture Notes in Math. 889, SpringerVerlag, Berlin-Heidelberg, 1981.
4. Castillo, J. M. F. and González, M., On the DPP in Banach spaces, Acta Univ. Carolin. Math. Phys. 35 (1994), 5-12.
5. Díaz, J. C. and Dineen, S., Polynomials on stable spaces, Ark. Mat. 36 (1998), 87-96.
6. Galindo, P., García, D., Maestre, M. and Mujica, J., Extension of multilinear mappings on Banach spaces, Studia Math. 108 (1994), 55-76.
7. Godefroy, G. and Iochum, B., Arens regularity of Banach algebras and the geometry of Banach spaces, J. Funct. Anal. 80 (1988), 47-59.
8. Lassalle, S. and Zalduendo, I., To what extent does the dual Banach space E^{\prime} determine the polynomials over E?, Preprint, 1998.
9. Leung, D. H., Some remarks on regular Banach spaces, Glasgow Math. J. 38 (1996), 243-248.
10. Nicodemi, O., Homomorphisms of algebras of germs of holomorphic functions, in Functional Analysis, Holomorphy and Approximation Theory (Machado, S., ed.), Lecture Notes in Math. 843, pp. 534-546, Springer-Verlag, BerlinHeidelberg, 1981.

Received June 30, 1998
in revised form February 3, 1999

Félix Cabello Sánchez
Departamento de Matemáticas
Universidad de Extremadura
Avenida de Elvas
ES-06071 Badajoz
Spain
email: fcabello@unex.es
Jesús M. F. Castillo
Departamento de Matemáticas
Universidad de Extremadura
Avenida de Elvas
ES-06071 Badajoz
Spain
email: castillo@unex.es
Ricardo García
Departamento de Matemáticas Universidad de Extremadura Avenida de Elvas
ES-06071 Badajoz
Spain
email: rgarcia@unex.es

