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Polynomials on dual-isomorphic spaces 

F61ix Cabello S~nchez, Jesds M. F. Castillo and Ricardo Garcfa(I) 

In this note we study isomorphisms between spaces of polynomials on Banach 
spaces. Precisely, we are interested in the following question raised in [5]: If X and 
Y are Banach spaces such that  their topological duals X '  and F are isomorphic, 
does this imply that  the corresponding spaces of homogeneous polynomials P ( n X )  
and p ( n y )  are isomorphic for every n >  17 

Dfaz and Dineen gave the following partial positive answer [5, Proposition 4]: 
Let X and Y be dual-isomorphic spaces; if X '  has the Schur property and the ap- 
proximation property, then P('~X) and 7~(~Y) are isomorphic for every n. Observe 
that  the Schur property of X '  makes all bounded operators from X to X '  (and 
also from Y to Y') compact. That  hypothesis can be considerably relaxed. Follow- 
ing [6], [7], let us say that  X is regular if every bounded operator X-+X '  is weakly 
compact. We prove the following result. 

T h e o r e m  1. Let X and Y be dual-isomorphic spaces. If X is regular then 
7~("X) and 79(~Y) are isomorphic for every n>_l. 

In fact, it is even true that  the corresponding spaces of holomorphic maps of 
bounded type 7~b(X) and Hb(Y) are isomorphic Fr6chet algebras. Observe that  
the approximation property plays no r61e in Theorem 1. This is relevant since, for 
instance, the space of all bounded operators on a Hilbert space is a regular space 
(as every C*-algebra [7]) but lacks the approximation property. 

Our techniques are quite different from those of [5] and depend on certain 
properties of the extension operators introduced by Nicodemi in [10]. For stable 
spaces (~hat is, for spaces isomorphic to its square) one has the following stronger 
result. 

T h e o r e m  2. If X and Y are dual-isomorphic stable spaces, then 7)(nX) and 
P('~Y) are. isomorphic for every n> l. 

(1) Supported in part by DGICYT project PB97-0377. 



38 F~lix Cabello Ss Jesfis M. F. Castillo and Ricardo Garcfa 

At the end of the paper  we present examples of Banach spaces X,  Y with 
79(nX) and 7)(nY) isomorphic for every n >  1 despite the following facts. 

Example 1. All polynomials on X are weakly sequentially continuous, while 
Y contains a complemented subspace isomorphic to 12 (thus there are plenty of 
polynomials which are not weakly sequentially continuous). 

Example 2. The space X is separable and Y is not. 

Example 3. Every infinite-dimensional subspace of X contains a copy of 12, X 
has the Radon-Nikodym property and Y is isomorphic to co. 

1. M u l t i l i n e a r  m a p s  a n d  N i c o d e m i  o p e r a t o r s  

Our notat ion is s tandard and follows [5]. Let Z1, ..., Zn be Banach spaces. 
Then, for each l < i < n ,  there is an isomorphism 

(-){: C(Zl, ..., zn)  > c ( z l ,  ..., z{_~, z{+~, ..., z~; z~) 

given by 

(Ai(z l , . . . ,  z~-l, z~+l,..., z,~), zi) = A(z l , . . . ,  z,~). 

The inverse isomorphism will be denoted ( . ) i .  Thus, for any vector-valued multi- 

linear map  BC~-.(Z1, ..., Zi-1,  Zi+l, ..., Z,~; Z~), we have 

~ i ( z 1 , . . . , Z i - - l , Z i , Z i + l , . . . , Z n )  = ( ~ ( Z 1 , . . .  , z i _ l , z i + l , . . . , z n ) , z i } .  

Our main tool are the extension operators introduced by Nicodemi in [10] 
whose construction we briefly sketch (see also [6]). Let X and Y be Banach spaces. 
Given an operator ~5: X r - + y  ~, one can construct a sequence of bounded operators 
~5(n): s 1 6 3  between the spaces of multilinear forms as follows. For 1 < i <  
n, define 

e~):z.(x,!~.!,x,y,( ,~.:&z) ~ z(x,(~:..~),x,y,(~:~..+l) z )  

as 

Finally, define ~(~) by 

�9 ~)  ( A ) =  (~oA,)  ~. 

(n) 
Clearly, if ~P:Xr--~F is an isomorphism, so is every ~i �9 
following lemma. 

Hence we have the 
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L e m m a  1. Let ~P: X ' - -~Y '  be an isomorphism. Then ~(~) is an isomorphism 
for every n> l.  

C o r o l l a r y  1. I f  X and Y are dual-isomorphic spaces, then s  and s  
are isomorphic for every n> l.  

We are ready to prove Theorem 2. 

Proof of Theorem 2. The hypothesis on X and Y together with [5, Theo- 
rem 2(ii)l and Corollary 1 above yields p ( n x ) ~ s  as de- 
sired. [] 

Identifying P ( n X )  with the space of symmetric forms s (nX) (and also P ( ~ Y )  
with s (my)) one might think that, given an isomorphism (I): X'--+ Y', the restriction 
of ~(~) to s  could give an isomorphism between the spaces of polynomials. 
Unfortunately we are unable to prove that  ~(~)(A) is symmetric when A is (we 
believe that  not all isomorphisms ~ achieve this). Fortunately, this is always true 
when X is regular. The following result will clarify the proof of Theorem 1. 

P r o p o s i t i o n  1. Let X and Y be dual-isomorphic Banach spaces. I f  X is 
regular then so is Y .  

Proof. Let B denote bounded operators and t4; weakly compact operators. It 
clearly suffices to see that  B ( Y , X ' ) = W ( Y , X ' ) ,  which follows from the regular- 
ity of X (B(X, Y ' ) = W ( X ,  Y')) together with the natural isomorphism B(Y, X')  = 
B(X, Y') and Gantmacher's theorem (W(Y,X ' )=W(X,  Y')). [] 

Our immediate objective is the following representation of Nicodemi operators. 

L e m m a  2. Let O: X'--+Y ~ be a bounded operator. For every A C s  and 
all y i ~ Y  one has 

(I)(n) (d)(yl ,  ..., y~) = l im ... lira A(x l , . . . ,  xn), 
xl-+~'(yl)  ~n~+~'(yn) 

where the iterated limits are taken for x i C X  converging to ~'(Yi) in the weak* 
topology of X ' .  

Proof. Let B e s  !!), X, Y, ('~.::.~), Y). Then 
(~) 

~ i  B ( X l , . . . , X i - - l , Y i , Y i + l , . . . , y n )  : ( ~ ~  1 , Y i , Y i + l , . . . , Y n )  

= ( ( ( ~ ~  

= ((I)(Bi (Xl~ ... , x i - 1 ,  Y i + l , . . . ,  Yn)),  Yi) 

= ( S i ( X l ,  . . . ,  x i - 1 ,  yi-L1, . . . ,  Yn),  (]~1 (Yi)} 

= 1Qn/1 ' ( g i  ( x l , . . . ,  x i - 1 ,  Y i + l , . . . ,  Yn),  Xi) x{-+~' (y~) 

= lim B(Xl ,  ..., x{_,,  xi, Y~+I,..., Y~), x~-~'(y~) 
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f rom which the result  follows. [] 

I t  is appa ren t ly  a well-known fact t ha t  if X is a regular  space, the  i te ra ted  l imit  
in the  preceding l e m m a  does not depend  on the  order of the  involved variables.  

L e m m a  3. Suppose that X is regular. Then, for every A E s  and every 
permutation 7c of {1, ..., n}, one has 

lim ... l im A ( x l , . . . , X n )  lim ... l im A ( x l , . . . , x n )  
x~-+x'{ x,~-~x~ x.(~)--+x~o) x~(,O-+x" n ~( ) 

for all " " x i E X  , where the iterated limits are taken for x i E X  converging to x i in 
the weak* topology of X " .  

We refer the  reader  to [2, Section 8] for a s imple proof.  I t  will be convenient  
to write the limit appea r ing  in L e m m a  3 in a more  compac t  form. Thus,  given 
A E E ( n X ) ,  consider the  mult i l inear  form ct/3(A) given on X "  by 

" 
( x l , . . . , x ~ ) =  lira ... l im A ( x s , . . . , x ~ ) .  

x~ ~x'~' x,~-+x'/~ 

This  is the  Aron Berner  extension of A (see [1, Propos i t ion  2.1], or [2, Section 8]. 
Actua l ly  the extension opera to r  a~ :  s163 '') is no th ing  but  the  Nicodemi  

opera to r  induced by  the  na tu ra l  inclusion X ' ~ X ' " .  In this sett ing, it is clear t ha t  
if ~: X'--->Y' is an opera tor ,  t hen  

5e (n) (A)(y~, ..., y~) = c~(A)((P'(yl) ,  ..., o2'(yn)). 

From this,  we obta in  the following lemma.  

L e m m a  4. Let X be a regular space and let ~: X'--+ Y '  be an operator. Then, 
for each n> l, the restriction of q~(n) to s  takes values in s  

Proof. I t  obviously suffices to see t ha t  c,~(A) belongs to Z;8(nX ' ')  for every 
symmet r i c  A C E ( n X ) .  If  rcES~, then  

~ / 3 ( A ) ( z ~ ' , . . . , z ~ ) =  lira ... l im A ( z l , . . . , x n )  
xl ~x'~' xn-+x'/~ 

lira ... lira A(x~(1) , . . . ,x~(n))  

= l im ... lira A(x~o) ,  ..., x~(n)) 
Xv(1)---,~X~(1) X ( ) ~ X  H . . . .  (~) 

o~/~(A) " " = (x~(1), ..., x~(n)), 

as desired. [] 
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End of the proof of Theorem 1. If d) :X ' -+Y '  is an isomorphism and X is a 
regular space, then, by the lemma just proved, for every n>_ 1 the Nicodemi operator 
(I)(n) yields an isomorphism from f_,,(nX) to 12,(nY). It remains to prove that  this 
map is surjective. This is an obvious consequence of Proposition 1, Lemma 4 and 
the following result which shows the (covariant) functorial character of Nicodemi's 
procedure on the class of regular spaces. [] 

P r o p o s i t i o n  2. Let X ,  Y and Z be regular spaces and let ~:X ' - -+Y'  a n d  
~P: Y'--+ Z'  be arbitrary operators. Then (qJoO)(n)=~(n)o~ (n) for every n>_l. 

Proof. We only need the regularity of X.  It is plain from the definition that  
for e v e r y  AEs the multilinear form aft(A) is separately weakly* continuous 
in the first variable. If X is regular, Lemma 3 implies that  c~(A) is separately 
weakly* continuous in each variable. Thus, 

(~(n) o(i)(n))(A)(Zl,---, zn ) = ~(n) ( ~)(n) ( A ) )( zl , ... , zn) 

= lim ... lim O(n)(A)(y l , . . . ,y~)  
v i -~ ' (z l )  v,~-+ee'(z~) 

= lim ... lira a/3(A)(f)'(y~), ..., ~>'(Yn)) 
u~-+v'(z~) y,~c,'(z~) 

= aZ(A)(~ ' (~ ' (y~)) , - . . ,  ~ '  (~ '(yn)))  

= (~o~)(~)(A)(z~, ..., z,~), 

and the proof is complete. [] 

Remark 1. In general, (~o~)(,0 may differ from ~(~)off)(n); see the instructive 
counterexample in [6, Section 9]. 

C o r o l l a r y  2. Let X and Y be dual-isomorphic complex spaces. I f  X is regular, 
then the Frdchet algebras of holomorphie maps of bounded type 7-&(X) and ~ b ( Y )  
are isomorphic. 

Proof. (See [6] for unexplained terms.) Let ~2:X'--+Y ~ be an isomorphism. 
It is easily seen that  the Nieodemi operators have the following property: for all 
AC/: (nX) and all B E s  one has r174174 Taking 

into account that  the norm of ~(~) is at most I1~11 ~, it is not hard to see that  the 
map 1~,~~ ~(n): 7-t.b(X)-+7"tb(Y) given by ( ~ - 1  <I)(n)(f)=~,~~176 ~(n)dnf(O)/n! is 
an isomorphism of Prdchet algebras. [] 

2. The  examples  

Example 2 can be obtained taking X=C[0 ,  1] and Y=co(J ,  C[0, 1]), where J 
is a set having the power of the continuum. Clearly, X and Y are regular spaces. 
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Moreover, by general representation theorems, one has isometrics 

X! =/1 (J,/1 (N) @1 L1 [0, 1]) =/1 (a x J,/1 (N) @1 L1 [0, 1]) = ll (J, X') = Y', 

so Theorem 1 applies. 
The space X of Example 3 is Bourgain's example [3] of an/2-heredi tary space 

having the Radon Nikodym property and such that  X ~ is isomorphic to /1  (which 
obviously implies that  X is regular). 

Finally, Example 1 is obtained from Theorem 2 taking X=ll(l~) and Y 
11 (I$)| Clearly, X has the Schur property (weakly convergent sequences converge 
in norm), and therefore all polynomials on X are weakly sequentially continuous. 
That  Y admits 2-polynomials that  are not weakly sequentially continuous is trivial. 
We want to see that  X is stable (this clearly implies tha t  Y is stable too) and that  

e oc X I and Y / a r e  isomorphic. Let ( n)n 1 be the obvious basis of X and consider the 
following subspaces of X 

X l  = [r r r e7, e8, e9, r r e15, r ..-], 

X2  = [e2, e5~ e6, r r e12, c17, r e19, e20, ...]. 

It is easily verified that  X XI@X2 and also that  X ~ X I ~ X 2 ,  so that  X and Y 
are stable. To finish, let us prove that  X ~ and Y~ are isomorphic. Since Y~=X~| 
the proof will be complete if we show that  12 is complemented in X ~. (This was first 
observed by Stegall who gave a rather involved proof; for the sake of completeness we 
include a simple proof which essentially follows I4].) Let Q: X 11(1~)--+12 be given 
by Q((Xn)nCC_l)=~nCC_ 1 an. Clearly, Q is a quotient map and therefore Q': (/2) ' =  
12--+X' is an isomorphic embedding. For each k_>l, consider the local selection 
Sk: 12---~ll(l~ ~) given by Sk=IkoPk, where Pk denotes the projection of 12 onto the 
subspace spanned by the first k elements of the standard basis and Ik: l~-+ll(I'2 ~) is 
the inclusion map. Now, take a free ultrafilter U on N and define T: X'--+(12)' by 

Tx ' (x)  = l i~ x'(S~x) 

for J c X  ~ and xr Then T is a left inverse for Q~. Indeed, let fr I and take 
xel2. One has T (Q ' ( f ) ) (x )  limuQ'(f)(Skx) l imuf(QSkx)--f(x) since QSkx 
converges in norm to x. This completes the proof. 

Remark 2. In view of [5, Lemma 3], the following result may be interesting: 
Let X be a regular space whose dual is stable. Then, for every ~>1,  the spaces 
s and s are isomorphic. (This can be proved by the methods of [5], 
taking into account that  since X 2 is a predual of X' ,  Theorem 1 yields isomorphisms 
s163 and s We refrain from giving the details.) 
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Remark 3. An operator T: X - + X '  is said to be symmetric if T x ( y ) = T y ( x )  

holds for all x, y E X .  A Banaeh space X is said to be symmetrically regular if 

every symmetric operator X - + X  I is weakly compact. Observe that Theorem 1 and 

Corollary 1 remain valid (with the same proof) replacing "X regular" by "X  and Y 

symmetrically regular". This observation is pertinent since Leung [9] showed that 

there are symmetrically regular spaces (the duals of certain James-type spaces) 

which are not regular. On the other hand, 11 seems to be (essentially) the only 
known non-symmetrically regular space (see [2, Section 8]). In this way, although 

the starting question of Dfaz and Dineen remains open, the results in this paper show 

that no available spaces seem to be reasonable candidates for a counterexample (one 
of the spaces should be non-stable and non-symmetrically regular simultaneously). 

We do not know if a symmetrically regular space and a non-symmetrically regular 

space can be dual isomorphic. Again, observe that no predual of l~ is symmetrically 

regular. 
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