
Ark. Mat., 38 (2000), 45-52 
@ 2000 by Institut Mittag-Leffler. All rights reserved 

On the relative homology of q-Runge pairs 

Mihnea Col~oiu 

O. I n t r o d u c t i o n  

Let X be a Stein space of dimension n and Y c X  a Runge open subset, i.e. 
Y is a Stein open subset and the restriction map F(X, O)-+F(Y, (9) has a dense 
image. It  was shown in [4] that  in this case the pair (X, Y) satisfies the following 
topological conditions: the relative homology group Hi(X ,Y;  Z) vanishes if i>n  
and Hn(X,  Y; Z) is torsion free (when X has isolated singularities this result was 
already proved in [2]). Moreover, if Y=~ ,  then H,.(X; Z) is free. 

These results have been generalized in [7], [15] to q-complete spaces. Namely 
one has tha t  if X is a q-complete space and Y c X  is a q-Runge open subset then the 

relative homology group Hi(X, Y; Z) vanishes if i > n + q - 1  and Hn+q-l(X, Y; Z) 
is torsion free. If Y = ~  then H~+v ~ (X; Z) is free (note that ,  with our definitions, 
i -complete corresponds to Stein spaces). 

In fact, for Y = 0  Harem [11] proved a stronger result: if X is a q-complete 
space then X has the homotopy type of a C W  complex of dimension <_n+q-1. 

In [3] I raised the following question. 

Problem 1. Let X be a Stein space of dimension n and Y c X  a Runge open 
subset. Does it follow that  the relative homology group Hn(X, Y; Z) is free? 

A counterexample to this problem seems to be unknown. A more general 
question was raised in [15]. 

Problem 2. Let X be a q-complete space of dimension n and Y c X  a q-Runge 
open subset. Does it follow tha t  the relative homology group I-~u+q_l(X , Y; Z) is 
free? 

The aim of this paper  is to provide a counterexample to Problem 2. More 
precisely we prove the following theorem. 

T h e o r e m  1. For all integers q and n with 2<q<n, and for every countable 
abelian torsion free group G, there exist a q-complete manifold X of dimension n 
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and a q-Runge open subset Y c X  such that H~+q_I(X,Y; Z ) = G .  

As an application of this result we study, in Section 3, n-Runge pairs (X, Y) 
with Y c X  of dimension n. It is known [5] that  in this case for a given complex 
space of pure dimension n with no compact irreducible components, the condition 
on Y c X  to be n-Runge has a purely topological characterization, namely it is 
equivalent to each of the following assumptions: 

(a) X \ Y  has no compact irreducible compone~ts; 
(b) the map H2~ I(Y;Z)--+Hm~ I (X ;Z)  is injective; 
(c) the map H2n-l(Y;  C)-+H2~_I(X;  C) is injective; 
(d) the map H 2n I(X; C ) -+H2n- I (Y ;  C) is surjective. 

So it is natural to ask if it is also equivalent to 
(e) the map H 2n I(X; Z ) - + H  2n l ( y ;  Z) is surjective. 

It is easy to see that  (e) implies each of the conditions (a), (b), (c) and (d). On 
the other hand it is proved in Corollary 1 that  (e) is not equivalent to the above 
conditions. More precisely one has the following result. 

C o r o l l a r y  1. For every integer n>2 there exists an n-Runge pair ( X , Y )  of 
n-dimensional manifolds such that the restriction map H 2n- ~ (X; Z ) - + H  2~-~ (Y; Z) 
is not surjective. 

1. P r e l i m i n a r i e s  

Let D c C  n be an open subset and ~ c C ~ ( D , R ) .  The function ~ is called 
q-convex if its Levi form L(p)  has at least n q + l  positive (>0) eigenvalues at 
any point of D. Using local embeddings this definition can be easily extended to 
complex spaces [1]. 

A complex space X is called q-convex if there exists a C ~ function F: X - + R  
which is q-convex outside a compact subset K c X  and such that  p is an exhaustion 
on X,  i.e. { ~ < c } ~ X  for every cER.  If K may be taken as the empty set then 
X is called q-complete. When q 1 this means, by Grauert 's  solution to the Levi 
problem ([8], [12]), that X is a Stein space. 

Every q-complete space satisfies the following cohomological condition [1]: for 
every FcCoh(X) one has Hi(X,F)=0 if i>_q; q-complete spaces satisfy also the 
topological condition Hi(X; Z ) = 0  if i > n + q - 1  and Hn+q-l(X; Z) is free ([7], [15]). 
In fact one has the stronger result [11] that  every q-complete space X of dimension 
n has the homotopy type of a C W  complex of dimension < n + q - 1 .  

T. Ohsawa [13] has proved the following theorem: a complex space X of di- 
mension n is n-complete if and only if X has no compact irreducible components of 
dimension n (when X is smooth this was already shown in [10]). 
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If X is a complex space, an open subset Y c X  is said to be q-Runge if for every 
compact subset K c Y  there exists a q-convex exhaustion function p: X - + R  (which 
may depend on K) such that  KC{~o<0}gY.  

It follows from this definition that  X is assumed to be q-complete. When q = l  
we get the classical definition of Runge domains, i.e. Y is Runge in X if and only if 
Y is Stein and the restriction map F(X, O)-+P(Y, (.9) has a dense image. 

If Y c X  is q-Runge then the restriction map Hv-I(X,F)--+HV-I(Y,F) has a 
dense image for every F c C o h ( X )  ([1]). Pairs that  are q-Runge pairs also satisfy the 
topological condition Hi(X, Y; Z ) = 0  if i > n + q - 1  and H=+q_,(X, Y; Z) is torsion 

free (IT], [15]). 
For n-Runge pairs of complex spaces of dimension n one has the following 

characterization [5]. 
Let X be a complex space of pure dimension n with no compact irreducible 

components and Y c X  an open subset. Then the following conditions are equiva- 
lent: 

(1) Y is n-Runge in X; 
(2) the restriction map H ~ I (X ,  F ) - + H  '~-1 (Y, F)  has a dense image for every 

F ~ Cob(X); 
(3) the restriction map H~-I(X,  ~n)-+H~ l (y ,  ~,~) has a dense image, where 

~t ~ denotes the canonical sheaf of X. 
They are also equivalent to each of the topological conditions (a), (b), (c) and 

(d) stated in the introduction. 
If X is a topological space we denote by Bi(X) its Betti  groups, i.e. Bi(X) is 

the quotient of H~(X; Z) (the Z-homology of X) by its torsion subgroup. 
Let us recall the following result due to Pontrjagin [14]. 

T h e o r e m  2. Let G be a countable abelian torsion free group. Then there exists 
a compact connected subset K c R  3 such that BI (Ra \K)=G.  

Remark 1. In fact it is shown in [14] that  K may be taken to be a curve, but 
we shM1 not need this fact. 

2. Proof of the main results 

In order to prove Theorem 1 we need some lemmas. 

L e m m a  1. Let X be a real orientable manifold of dimension m and A c X  
a closed connected subset. Then the relative homology group H,~_I(X,X\A;  Z) is 
torsion free. 

For a proof of this lemma see [6, p. 260, Corollary 3.5]. 
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Prom this we deduce the following corollary. 

Corol lary  2. Let F c R  3 be a closed connected subset. Then HI(Ra \F ;  Z) is 

torsion free, and therefore HI(Ra' \F;  Z)=B1 (Ra\F) .  

Proof. From the exact sequence for homology corresponding to the inclusion 
R 3 \ F c R  3 we get 

0 = H2(R3; Z) > H2(R 3, R3 \F ;  Z) > H1 (R3\F;  Z) ~ H1 (R3; Z) = 0. 

Therefore//1 (Ra\F;  Z) is isomorphic to H2(R 3, R3\F ;  Z) which is torsion free by 
Lemma 1. 

L e m m a  2. Let K c R  3 be a non-empty compact connected subset and P E K  
any point. Then there is a natural isomorphism 

H2(R3\{P}, R3\K;  Z) ~> H2(R 3, R3\K;  Z). 

Pro@ We consider the triad R 3 \ K c R 3 \ { P } c R 3  and the associated exact 
sequence for homology (see [9, p. 59]) 

> H3(R3, R3\K;  Z) Z > H3(R3, Ra\{P};  Z) > H 2 ( R 3 \ { p } , R 3 \ K ; Z )  

a > H2(R3,R3\K;  Z) > H2(Ra,Ra\{P};  Z) = 0. 

By Alexander's duality in R 3 

H3(R 3, R3\K; Z) = H~ Z) = Z, 

Ha(R 3, Ra\{P};  Z) = _~0 ({p}; Z) = Z, 

where _~i denotes Cech cohomology. It follows that fl is an isomorphism, therefore 
a is also an isomorphism, as desired. 

L e m m a  3. For every integer n>_2 and for every countable abelian torsion free 
group G there exists an n-Runge pair (X, Y)  with Y C X  being complex manifolds 
of dimension n such that H2n-l(X, Y; Z)=G.  

Proof. By Theorem 2 and Corollary 2 there exists a compact connected subset 
K c R  3 such that H I ( R 3 \ K ; Z ) = G .  We may assume that the origin 0CK. We 
identify C ~ = R  2n and we consider R 3 c R  2'~ given by R3={(xl ,  x2, ..., x2~)CR2n I 
x4=x5 . . . . .  x2,~=0}. We define X=C~\{0}  and Y = C n \ K  and we shall prove 
that (X,Y) has the required properties. Clearly X and Y are n-complete since 
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they are non-compact. On the other hand X \ Y = K \ { O }  has no compact con- 
nected components, therefore (X, Y) is an n-Runge pair. It remains to show that  
H2n l(X, Y; Z )=G.  By Alexander's duality in R2n\{0}, which contains K\{0} as 

v i  
a closed subset, we get H2n-I(X, Y; Z)=Hlc(K\{0},  Z) where Hc denotes the Cech 
cohomology groups with compact supports (see [6]). On the other hand K\{0} is 
a closed subset of R3\{0} and using Alexander's duality in R3\{0} we get sire- 

v l  
ilarly that  He(K\{0},  Z) H2(R3\{0} ,Ra \K;  Z) (we used here the fact that  the 
Cech cohomology groups with compact supports of a closed subset ACE,  with E 
a euclidean neighbourhood retract, depends only on A (see [6])). 

By Lemma 2 we have that  H2(Ra\{0}, R3 \K;  Z ) = H 2 ( R  3, R 3 \ K ;  Z) and ex- 
actly as in Corollary 2, we get H2(R3 ,R3 \K;  Z ) = H I ( R 3 \ K ;  Z). It follows that  
H2~-I(X, Y; Z ) = G  which proves our lemma. 

L e i n m a  4. Let (X, Y) with Y c X  be a q-Runge pair and W be a p-complete 
space. Then ( X • W, Y • W) is a ( p + q -  1)-Runge pair. 

Proof. Let K c Y x W  be a compact subset. We have to find f : X x W - + R  
a (p+q- 1)-convex exhaustion function such that  K c { f < O } G Y  • W. We choose 
compact subsets K 1 c Y  and K 2 c W  such that  K c K 1  xK2. Since (X,Y)  is a q- 
Runge pair there exists a q-convex exhaustion function p: X--+R with K1 C {p<0} G 
Y. Let also ~: W--+R be a p-convex exhaustion function. We choose e>0  suffi- 
ciently small such that  g)(x)+c exp(~b(w))<0 for every xE/~l,  w EK2  and we define 
f (x, w) = p (x) + c exp (r (w)). Clearly f is a (iv + q -  1)-convex exhaustion function 
on X x W and I4 c K1 x/(2 C {f  < 0} G Y x W. Thus Lemma 4 is completely proved. 

Let us recall now the K/inneth formula in the relative case (see [9, p. 231]). Let 
Xo, W be topological spaces and Y0 cX0 a subset. Then we have the exact sequence 

)+Hp(Xo, Yo;Z)| p(W;Z) H, (XoxW, YoxW;Z) 
p=O 

m--1 

) ~ Tor(Hp(Xo, 1/o; Z), H~+p-1 (W; Z)) ~ O. 
p 0 

In particular, if the homology of W is free, we have 

H~,~(XoxW, YoxW;Z)~- -+Hp(Xo,  Yo;Z)| p(W; Z). 
p=0 

We can now prove Theorem 1. 
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(1) 

Since 

The proof of Theorem 1. If q n_>2 then the statement of Theorem 1 fol- 
lows from Lemma 3. Therefore we may assume that 2<_q<n. We define W =  
(C ~ 1\{0}) • (C*) n-~-l .  Then W is a (q-1)-eomplete manifold of dime.sion n 2. 
Let (X0, V0) be a 2-Runge pair, with YoCXo being 2-dimensional manifolds such 
that H3(X0, Y0; Z ) = G  (which exists by Lemnm 3). 

By Lemma 4 (X0 x W, Y0 x W) is a q-Runge pair of n-dimensional manifolds. 
We have only to verify Hn+q 1 (Xo x W, Yo • W; Z) =G. First we study the homology 
of W. We have 

Hj(s2(q_I)_I.Z)=fZ, i f j  0 o r j  2q-3,  
Hj(C~-I\{0};  Z) 

' *[ 0, otherwise. 

it follows that 

(2) 

H j ( C , ; Z ) = j "  Z, if j = 0 ,  1, 

t 0, otherwise, 

H j ( ( C ) ; Z ) =  0, i f j > i ,  
Z, if j = i .  

From (1) and (2) and the Kiinneth formula we get 

H n+q-4(W; Z) = [U0(Cq 1\{0}; Z)GH~+q_4((C*) ~ ~ 1; Z)] 

@[[Ig2q 3(C q l \ { o } ; Z ) @ H n - q  1((C*) n q 1;Z)] 

= ( z o o ) ~ ( z o z )  = z ,  

H n + q - 3 ( W ; Z ) : [ H o ( C q - I \ { o } g Z ) @ H n + q - 3 ( ( C * )  n q 1;Z)] 

@[H2q 3(cq-1\{0}; Z)@Hn-q((C*)n-q-1; Z)] 

= ( z o o )  ~ (z |  = o, 

H,,~+~ 2(w; z)  = [Ho(C~ 1\{0}; Z)OHn+q_2((C*) n ~ 1; Z)] 

@[/J2q 3 ( c q - l \ { o } ; z ) @ I ~ n - q + l ( ( C * )  n q 1;Z)] 

( z o 0 ) e ( z o o )  o. 

Since clearly the homology of W is free and Hj(Xo,Yo; Z)=0 if j~{1,  2,3} it 
follows by Kiinneth's formula in the relative case that 

3 
Hn+q-I(XoxW, Y o •  i(Xo,Yo;Z)| i I (W;Z) 

i=1 
-- [H1 (Xo, Yo; Z) | | [H2 (Xo, Yo; Z) | 

e[H3(Xo, ro; Z)| 
= G |  

The proof of Theorem 1 is complete. 
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3. Some remarks concerning n-Runge  pairs of  n-dimensional  manifolds 

If (X, Y) is a q-Runge pair of n-dimensional manifolds (or more general of 
n-dimensional complex spaces) then it is known ([7], [15]) that  the natural map 
Hn+q I(Y; Z)-+H,~+q_I(X; Z) is injective. So it is natural to ask if the restriction 
map H ~+q I(X;Z)-->H~+q l ( y ;  Z) is surjective. We shall prove that  the answer 
is no, at least when q_>2. More precisely one has the following result. 

Theorem 3. For all integers q and n with 2<_q<_n there exists a q-Runge pair 
(X, Y)  of n-dimensional manifolds such that the restriction map H n+q I(X; Z)-+ 
H n+q-1 (If; Z) is not surjective. 

Proof. We consider the exact sequence for cohomology corresponding to the 
inclusion Y C X, 

... >Hn+q X(X; Z) >H~+q-I(Y;Z)- - -+H~+q(x ,Y;Z)  

>Hr~+q(X;Z) > . . . .  

Since X is assumed to be q-complete it follows that  H'~+q(x; Z)=0,  therefore 
the smjectivity of the map H n+q 1 (X; Z ) ~ H  ~+q 1 (Y; Z) is equivalent to the van- 
ishing of the relative cohomology group Hn+q(x, Y; Z). From the exact sequence 
([6, p. 153]), 

O---+Ext(H,~+q_I(X,Y;Z);Z) > Hn+q(x ,Y ;Z )  

> Hom(H,~+q (X, Y; Z); Z) ---+ 0 
II 
0 

we have only to obtain our (X, Y) with Ext(Hn+q , (X,  Y; Z); Z)~0 .  
To do this we choose any countable abelian torsion free group G such that  

E x t ( G ; Z ) ~ 0  (e.g. we may take G = Q  the additive group of rational numbers). 
By Theorem 1 there exists a q-Runge pair (X, Y) with Y c X  being n-dimensional 
complex manifolds such that  Hn+q_~(X, Y; Z ) - G .  As remarked above (X, Y)  is 
the required pair satisfying the conditions of Theorem 3. 

Corollary 1 is now a direct consequence of Theorem 3. 

Acknowledgement. The author would like to thank the referee for his helpful 
suggestions and remarks. 
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