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On weighted positivity and the 
Wiener regularity of a boundary 
point for the fractional Laplacian 

Stefan Eilertsen 

A b s t r a c t .  A sufficient condit ion for the  Wiener  regulari ty of a boundary  point with  respect  
to the  opera tor  ( A)t* in a n, n > l ,  is obtained,  for #C(0,  i n ) \ ( 1 ,  � 8 9  This extends  some 
results for the  polyharmonic  opera tor  obta ined by Maz 'ya  and Maz 'ya-Donehev .  

As in the  polyharmonic  case, the  proof  is based on a weighted posi t ivi ty  p roper ty  of ( - -A)  t*, 
where the  weight is a fundamenta l  solution of this  operator .  It is shown tha t  this proper ty  holds 
for # as above while there  is an interval [An, in-An], where A n ~ l ,  as n--+oo, wi th / t -va lues  for 
which the proper ty  does not  hold. This  interval is non-empty  for n > 8 .  

1. I n t r o d u c t i o n  

Wiener's criterion, from 1924, for the regularity of a boundary point states that  
the condition 

O o  

E 2(n-2)k c a p ( S ( 2 - k ) \ a )  = oo 
k=O 

is necessary and sufficient for the regularity of the point OcOt2 with respect to the 
Laplace operator in a domain f t c R  n, n>2 ,  [10], [11]. Here B(r)={xeRn:lxl<r} 
and cap denotes the harmonic capacity. 

For higher order operators, only a few facts of this type are known, namely 
some sufficient conditions concerning the polyharmonic operators ( - A )  "~, for cer- 
tain dimensions. These results are due to Maz'ya [2], [3], for m =2 ,  and to M a z ' y ~  
Donchev [6], for m > 2 .  The purpose of this paper is to obtain similar results for 
fractional powers of the Laplacian. This involves extending an interesting integral 
inequality invented by Maz'ya, the weighted positivity of ( - A )  m, to the fractional 
case by using methods different from those in the cited papers. 

Now, to be more specific about what is known and what is to be proved, 
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consider the equation 

(1) (-A)t*u=fEC~(~t), uEH~(ft), 

along with the Wiener-type condition 

O O  

(2) Z 2(n-2u)k capu (B(2-k) \ f'/) = 0% 
k 0 

and the boundary point regularity condition 

(3) u(x) -+ O, as x --+ 0 c 0t2. 

(The notation is explained in the next section.) If (3) holds for the solution u 
of (1), for any f ,  then the point 0E0f~ is said to be regular with respect to the 
operator ( A) , .  We notice that  (3) is automatically fulfilled if #>�89 by the 
Sobolev embedding theorem. 

We are interested in the implication (2) ~ (3), when #E [0, �89 The knowledge 
until now is that  this implication holds for those values of # that  are integers and 
belong to the set 

(4) [0,1]U[�89 1,�89 

and for the additional case # 2, n=7.  
The case # = 0  is trivial and the case #=1  is the sufficiency part of Wiener's 

criterion. For #>2,  the proofs in [3] and [6] are based on inequalities of the type 

(5) dx > 0, real in C (RD, 

where F ,  is the fundamental solution of ( A),,. This inequality fails i f # c  (1, � 8 9  
is an integer (except if #=2  and n=7) ,  as is also shown in the same papers. 

In the present paper we fill the gaps between 0 and 1, and between 5n-1 1 and 
�89 both with respect to the validity of (5) (with an appropriate positive right-hand 
side instead of 0), and to the validity of the implication (2) ~ (3). We also extend 
the non-validity results for the inequality (5). For instance, the necessary condition 
2#2> ( # - 1 ) n  fills the gaps between the integral points where this inequality does 
not hold. 

Whether the condition (2) is sufficient for the regularity when (5) fails is not 
known (e.g. in the case #=2,  n=8) .  However, it is interesting that  the left and the 



On weighted positivity and the Wiener regularity 55 

1 right intervals in (4) are close to the cases # = 0  respective p >  ~n, where (3) always 
holds, and that  the same proof, based on (5), works for both these intervals. 

The outline of the paper is as follows. The appropriate variant of (5), inequality 
(8), is established in Section 3 except that  a large part of the proof (concerning 
the right interval) is postponed until Section 4. The method used there involves 
decomposing the Fourier transform of u in terms of spherical harmonic functions 
and using properties of the Gegenbauer polynomials. In Section 5 we use a certain 
integral representation of the bi-gamma function (see formula (29); the author does 
not know whether this representation is new), and some preliminary results from 
the previous section, to obtain necessary conditions for the inequality (5). 

In Section 6, we combine some technical estimates with the result from Section 3 
to obtain certain local estimates which contain the information that  leads to the 
implication (2) ~ (3). This result is finally obtained in Section 7, where we also 
provide a more exact pointwise estimate of u near the boundary, see Theorem 17. 

2. N o t a t i o n  and prel iminaries  

For # ~ R  and u a tempered distribution, the operator ( - A )  ~ is defined by 

((a)"~)A(~) i~1~.~(~), 
where A denotes the Fourier transform with 

r  ~ i x%(x )  dx, i f r  

For negative powers of - A ,  Riesz potentials, we have the representation 

( - A )  ~/2u(x)=c. / u(y)lx-yl ~-n dy, 

if u is a sufficiently smooth function and e.g. 0 < ~ < n .  Except for this, we will only 
need the representation (6). We denote the fundamental solution of ( A ) ,  by F , .  
Thus ( - A ) ~ F , = ~  and for 0 < # <  �89 

~.(~) Ix[ ~', r,(x)=e, lxl ~'-n, 
where c~ is a positive number. We define F0 5. 

Let ~ denote a bounded open set in R ~. The space H0~(~2), A>0, is the 
completion of C6 ~(Q) in the norm 

"uII~ = (/n, I(--A)x/2ul2 dz+/R IuI2 dx) ~/2. 
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We w r i t e  VlU={(l!/oz!)l/2Oc~U}Fcd-l, E71u=ETu (here c~ is a mul t i index and c d =  

c~1!c~2! ... c~!) .  In  the  space C~( t~ ) ,  the equivalence 

/ ~ ,1/2 

~/RnlV),u,2dx) , if {A} = O, 

Ilullx~ { f [  iV?,ln(x)_ V[:,]u(y)]2 ,r 
\JJR~,, ~ dxdy) , i f{A}7~0,  

holds, where [A] and {A} denotes  the  integral  and fract ional  par t  of A respectively. 
A funct ion in H0~(f~) will be considered as a funct ion in H0~(Rn), which is zero on 

the  complemen t  of the  closure of fk 
For e an a rb i t r a ry  compac t  set and 0 < p < i n  we define the  p -ha rmon ic  capac i ty  

as the  n u m b e r  

c a p , ( e )  = inf{llull~ : u E C ~ ( R n ) ,  u = 1 in a ne ighborhood  of e}. 

Posit ive,  u n i m p o r t a n t  constants ,  which m a y  vary  f rom place to  place, will 
be  denoted  by e. We allow such a cons tant  to depend on the  d imension and on 
p a r a m e t e r s  like p and A above (since when considering ( - A )  ~, we regard p as 
being constant ) .  The  no ta t ion  a~b means  t ha t  a and b are comparable .  

Funct ions are assumed to be real-valued unless it is clear f rom the context  t ha t  

it should be  otherwise.  

3. Weighted positivity of (--A)~ 

The  following l e m m a  will be used bo th  to prove weighted posi t iv i ty  and in the  
proof  of L e m m a  11. 

L e m m a  1. If u, vEC~(R ~) and 0 < s < l  then 

(6) u(-A)Sv+v(-A)~u-(-A)S(uv) As s ( ~ ( x ) - n ( y ) ) ( v ( x ) - ~ ( y ) )  dy, Ix-yjn+ 

where A ~ > 0  and A~/s(1 s) has finite, positive limits as s--+0, 1. 

Proof. In tegra t ing  the  right integral  wi th  a funct ion e E C ~ ( R  n) and using 

ParsevaFs  formula,  we get 

IRon (u(x)--u(x+y))(v(x)--v(x§ dx r dy 

1 f f s  = (27c) 2n ~n lyln+2 ~ fi(~)~?(r])r rl) dy d~d~. 
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The fact that  Lt1-2~ fw~ (1-cos(t.y))lyl - ~ - 2 s  dy- -Ay  1 implies that  the last integral 
equals 

As(27r)2 n ~n (l~/12~ + 1~]2~ - 1~-~/12~)~(~)~(7/)r d~&l 

1 f 
-- A~ / . ~  (u( ( - A ) % ) r  ( - A ) % ) r 1 6 2  dx. 

We complete the proof by integrating the last term by parts, so that  ( A )  s acts 
Oil UV. [] 

If we take v = u  in (6), multiply by F~ and integrate we obtain the identity 

(7) 2 s ~ ( ( -A)~)ur~ dx = ~(0)2 +A~ S/~,~ lu(x)- ~(Y) 12 r~(x) d~ d y , l x _ y l  ~+2~ 

valid for 0 < s < 1. This is an instance of the weighted positivity property. Corollary 9 
shows that  if s is replaced by any number # greater than 1, then, for sufficiently 
high dimension, the integral on the left can assume negative values. On the other 
hand, (7) in conjunction with Proposition 10 implies positivity of the integral for # 
as in the next lemma. However, the proof in the next section is needed to obtain 
the appropriate right-hand side. 

L e m m a  2. Let u C C ~ ( R ~ ) ,  ~nl l<#<~n,1  0<or, r , / ,  where 1 is an integer 
and O < o - + r + l < t t .  Then, 

2 n 2 ' 

where e = l ,  if 1 a t = O ,  and e--O, otherwise. 

If we take a = s ,  r=O and l=O, 1, ..., m in Lemma 2 and then apply Lemma 1, 
as we did to derive (7), we obtain the following corollary. 

1 Corollary a. Let ~cCg(W~), . c  [0, ~n)\(1, ~ - 1 ) ,  ~=.~+s, where .~ is 
an integer and O < s < l .  I f  s>O then 

f i R (  ( A)~u)uP~ d x >  lu(O)2§ [U(X)--u(Y)]2" " z.~[x) dx dy 

?3% 

+ //o n i~_yl,~+~. ~ r~+s(x) . 

I f  s=O then the same inequality but without the double integrals holds. 

Remark. In the easy case # 1, (8) becomes an identity for a certain value of 
c (cf. (7)). 
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4. P r o o f  o f  L e m m a  2 

We need some facts and notation for this section. (Concerning the Gegenbauer 
polynomials and the spherical harmonic functions, we refer to [1] and [9].) 

Let the constant 7 =  �89 ( n -  2) be associated with R n. Then the area of the unit 
sphere S ~ 1 in R ~ is w=27r~+lF(7+1)- l .  We write x C R  ~ in polar coordinates 
r>_0 and~x'~S ~-1 as x=rxq The letters j ,  k, l, m will always denote non-negative 
integers. Pochhammer's symbol (A),~ is defined by ( t )0=1,  and 

:- a(a+l)... 1) : 

if m is a positive integer, F denotes the gamma-function. 
If t > 0 ,  we let C~ denote the Gegenbauer polynomial defined by 

1 _ ~ C)(x)tff. 
(9) (1-2xt+tz)A j=0 

We will need to know that  C~ is a polynomial of degree j which is odd (even) if j is 
odd (even), and that  these polynomials are orthogonal on the interval [-1, 1] with 
respect to the weight function m a ( t ) = ( 1 - t 2 )  A 1/2 

For the following theorem, the Funk-Hecke theorem, see [1]. 

T h e o r e m  4. Let n>> 3, Sj be any surface harmonic of degree j, y' ES ~ 1, and 
let F be continuous on [-1, 1]. Then 

(10) f s , ,1F(x ' .y ' )S j (x ' )  dx'= AjSj(y')  /11F(~)CJ (t)m~(t) dt, 

where dj=(4~r)~r(~/)j!/(j+2~- l)!. 

The following decomposition of a function f c C ~ ( R  n) will be useful. Namely, 
f can be written as a sum 

O O  

(11) f (x)  = E fi(r)Sj(r'  x') 
j o 

(if n 1, then oc is to be replaced by 1) converging in the sense of L2(R~), such 
that  fj  E C ~ ( R  1) with supp f jSj  Csupp f and for any fixed r_>0, 

fs { 1, i f j = k ,  (12) Sj(r ,  x') dx' = 
n l O, i f j T ~ k .  
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Indeed, for n =  1 we take 

So(r, 1) - S 0 ( r , - 1 )  = S 1 (7", 1) = S1(7' , --1) = 1/V/2. 

Then (11) is just a decomposition into even and odd parts. In the case n = 2  we can 
use a Fourier series expansion to get, if 0 is the argument  of z ' ,  

OO (2<3 

f (x) = E f J (r)(aj (r) cos(j0) +bj (r) sin(j0)) = E f J (r)Sj (r, x'), 
j --O j 0 

where the functions f j  are chosen so that  (12) holds. Similarly, if n > 3  and r > 0  is 
fixed, the function Sj (r, x') is a unit surface harmonic of degree j .  

Henceforth, in this section, we let A = c r + r + /  be fixed with 0 < A < l n = 7 + l .  
We introduce the quadratic form 

/ R  2~ 2T l Ixl ly] (x.y) . . . . . .  
(13) I .... l( f)  2. ~ j ( x ) j l y  ) dxdy. 

The relevance of this form in connection with Lemma 2 is seen from the identity 

(14) f R  ( /X)~V*u'( ( -A)~Vzu)r~dx 
I l(?~) 

n ( 2 ~ )  2 n  ' 

for a real function u E C ~ ( R ' ~ ) .  This identity is an immediate consequence of Par- 
seval's formula and the definition of ( - - A ) ,  and V1. In order to linearize this form 
(Lemma 5) we need the following quantities. 

For n_>3, 2m+j>_l and A>0, let /1 
(15) ,x,z z )~ (u)C'f(u)m7 aj,,~ Aj u C~,~+O z (u) du, 

1 

where Aj is as in (10). It  is a simplified special case of formula 2.21.18.15 in Vol. 2 
of [8] that  

(16) a,o co ( A ) ~ + j ( A - 7 ) ~  
aj,,~ = ( 'y+l ) ,~+jm!  " 

We let this extend the definition to cover n = l ,  2 and A 0. Now define the functions 

a,%l k A,l (17) Oj = aj,m(~2,~+j+2~+F2,~+j+2~_), 
m-- too  

where m0 is the smallest non-negative integer with 2m0 + j  > l  and 

t 
~ ( ~ ) =  - -  f o r t > 0  and ~0=Tr& 

It can be shown that  the series converges uniformly for A as above. 
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L e m m a  5. If f E C ~ ( R  n) is decomposed as in (11), gi(t)=e~tfj(et), then 

(18) R e /  .... l ( f )  = ~ /0j(~)12(I)j'~'l(~) d~. 
j=0 

If n--1, the upper limit of the sum should be replaced by 1. 

Proof. We give the proof only for n>3 .  With the new variables introduced by 

x=eSS ,  y etyr, p=t- -s ,  P=x~'y~ 

the kernel of the form (13) becomes 

(19) 
e (/d-2cr)lp/, i f p > O ,  

e -(~+2~)Ipl, i f p < O .  

We define the functions 

(20) Kj (p) = Aj K(p, r,)C] (r,)m,~ (u) d~,. 
1 

Now, introducing the operator H,  we have 

(21) 
H(fjSj)(y)  s  H(x,y) f j ( Ixl)Sj(x ' )dx 

= gj(8) K(p, p)Sj(x') dx' ds = (Kj*gj)(t)Sj(yt), 
o o  "r~-I 

(22) 

where ( . ,  �9 ) is the L2-scalar product. To complete the proof we must verify that  

aO-'l ~ R e / ~ j .  (23) Oj 

I .... l ( f ) = ( H f ,  f ) =  ( H ( f i S j ) , f k S k ) = E ( H ( f j S j ) , f j S j )  
j,k o j=o 

where we in the last step used the Pnnk-Hecke theorem (10). Since the operator H 
is bounded on L2(G), for any bounded domain G, this allows us to write 
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Expanding the factor (1-2e- lPl  u+e 21pl)-x in K in terms of the Gegenbauer poly- 
nomials (as in (9)), we get for p>0,  

f_i 
k=0 i 

Since, by the properties of these polynomials, each integral in this formula vanishes 
unless k = 2 m + j - l  and m > 0 ,  the formula 

/o ~ e-tp cos(~p) dp=cpt(~), t>O,  

Under the hypothesis of Lemma 2 

> 
(24) 

Ir ~. o" z" l 
3 >c,ej' ' ,  j _> l ,  

where c = l  if l=cr7=O, and c=0  otherwise. 

Proof. We recall that  ) ~ = ~ + 7 + l  is fixed and notice that  0 < A < # C [ % ' / + I ) ,  
by the hypothesis. Since the function (I)? '~'~ is continuous except if j = / = a ~ - = 0  in 3 
which case its singular part is 7coo(i, we see that  all expressions in (24) are continuous. 

m~176176 Thus it is enough to consider (We used that  #, A>0; notice that  ~o 
points ~r and forget about (f-functions. 

We first claim that  

min(m,/)  

(25) ~,l = V '  ~,0 
a j , m  ~ c k a j , m  k ~ 

k = o  

where Ickl is bounded by a constant only depending on I (and A). To prove this, first 
assume that  2 / < 2 m + j .  Then the reeursion formula for the Gegenbauer polynomials 
(see [9]), 

k + 2 A - 2  ~,CL,(u) k C2(~,) ~ C;_~(~,), k > 2, 
2 ( k + A - 1 )  2 ( k + A - 1 )  - 

where we notice that  the coefficients are bounded by 1, leads to 

l 

k=O 

leads to (23). [] 

L e m m a  6. 
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which in turn gives (25). If 21>2re+j, then the sum in (25) contains the positive 
),,0 t e rm aj ,  0 . Since this case occurs only for a limited number of combinations of j 

and m, we can take ck =0  for k~=rn and c,~ so that  (25) holds, where c,~ is bounded 

as claimed. 

By (25) and the relation ~s/~t<_max(s/t, t/s), we obtain 

o o  

a,r,1 A 0 (26) % <_~ ~ , [ a j  ~ I gP2m+j+2 t , .  
r n = O  

We can now complete the proof by considering two cases. 
~ 0  (i) If  y<A<#_ _ then formula (16) shows that  laj,~l<ae ' ~  a,,~. Thus (24) follows 

immediately from (26), with c inverted. 
(ii) Now let 0<A<~/ (and thus 7_> �89 This case will follow from the preceding 

o-,'r,/z ~,-~%0,0 one, once we show that ~j  < ~ , j  . Notice that (16) gives 

A 0 A,O (/~-~-'?')j  )%0 I ~-{-I l t  
laj'~l = la0,ml (~+l+~0j  -< lao,m "r+m+j 

and, together with the definition of (57 '~176 

'7,0,0 __ ~"Y 

% _> aJ'0~ 777~§ -> 
w7 

( j+2~/)2+~ 2" 

A o  Writing b~=(A+m)aoi.~ , we now have 

A 0  
laj, 'm1992m+j+2.,/  ~_ 

21v.~l < 2lvml~J '~176 
( 2 m + j + 2 7 ) 2 + ~  2 w7 

Summing this formula and using (26), with 2"y in place of 2/z, we obtain 

.... l_  ~ ib.~l@J,0,0. Oj < c 
m 0 

The proof is completed by the fact that  ~ = 0  I b~l is convergent for the current 

values of A and 7. In fact, if A<7  (and 7/L 1, 2, ... ) then 

o o  o o  

E bm=wAE (A+I ) .~ (A-7) .~  w A F ( A + I , A - 7 ; 7 + I ; 1 ) .  
m=0 .~=0 @+l).~m! 

That  is the finite value of a hypergeometric function at the point 1. Furthermore,  
all but finitely many b.~ have the same sign. [] 
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Proof of Lemma 2. By Lemma 6, 

1 ~ [ ~ ~ . , o , 0  ~ . ; .  ~(1-c~)1~o(0)1 ~ 
(27) ~ j , j - c ~ j ' ' ~ d ~ _ >  2 ' 

j - -0  

where e is as in Lemma 2 and c is the same on both sides. Now, let u be the real 
function from Lemma 2, put f=~7 and let gj correspond to f as in Lemma 5. We 
notice that  

u(o) ~ - ~1~o(O)1 ~ 
( 2 ~ ) ~  " 

This can be verified directly or seen fi'om the relation 

2 s , , ~ d ~  = s ~ 1 7 6 1 7 6  ~ 

In view of this, Lemma 2 follows from (27), Lemma 5 and (14). [] 

5. Non-positivity 

In this section we will find a necessary condition for the inequality 

(28) f ((-A)~u)uF~dx>O, u real in C~ ( Rn ) .  
J R  n 

By the previous section, (28) is equivalent to Relm~176 which in turn, by (22), 
is equivalent to all corresponding Re Kj  being non-negative. The condition will be 
furnished by a more suitable expansion of lim~_+0 Re Ko(~) than the one we arrive 
at via (23), from lim~.o ~,o,o(()  and the definition of this function. 

L e m m a  7. For every # > 0  the identity 

(29) io~176 l+e~x - 1 )  dx=gT( l ) -~( t s )  
( l + e ~ ) .  

holds, where r  is the bi-gamma function. 

Proof. For the following properties of the bi-gamma function, see [1] or [9], 

g)(#+l)  = 1 + r  ~ ( t )= log ( t )+O(1 / t ) ,  as t ~ o c .  
# 
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Let p(p) denote the integral in (29). Since ~ ( p ) - ~ ( p + l )  equals 

/0 
e -~+e  ~x l f ~ /  1 -e -~X "~ ' 1 

( l+e_x)~+l  d x = -  # ( l+e_x)~ dx = -,# /0[ ) 
we have for each integer m>0 ,  if we put t = m + # ,  that  

(30) 

Define f by 

r +~(t)  = r  

f ( t )  =log ( t )+  ( ( l + e  x ) - t - 1 )  dx. 

Then ~ ( t ) + ~ ( t ) - f ( t ) - + O ,  as t ~ o o ,  so if f ( t )  has a limit as t-+oc, then (30) shows 
that  ~ + ~  is constant, and we obtain (29). 

For f we have 

= l - t ~  ~ ( l + e  ~ ) - t l og ( l + e - ~ )  t f ' ( t )  dx 

// = 1 - t  ( l + e  x) - te  ~ dx+R( t )  = O(1/ t )+R( t ) ,  

where R can be estimated according to 

// IR(t)l _< ~t (l+e_~) t e _ 2 ~ d x = O ( 1 / t  ) 

It follows that  f ' ( t ) = O ( 1 / t  2) which implies that  f ( t )  has a limit as t--+oc. This 
completes the proof. [J 

The following condition looks complicated, but can be used to derive easier 
ones, see Corollary 9. 

P r o p o s i t i o n  8. The condition 

( (,)m , - 1  
(31) E \rn(�89 m ( m + # - l ) /  >0  

is necessary for (28) to hold. 

Proof. We shall consider the K0 corresponding to q)~,0,0. From (19), where we 
have A=(r=#,  I=T=0,  and where we write x Ipl, t=lJ, we get 

K ( x , t ) + K (  x , t )  ( l+e2"X)(1-2teX+e2x) -~ 

(l+e2x), ~ o \1+e2~/" 
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(Compare this with the method used in the proof of Lemma 5, where the correspond- 
ing factor (1-2re x +e 2~) " was expanded in terms of the Gegenbauer polynomials.) 
Now (20) gives 

= &  

where Ao=2w~+l/2F(7+�89 1 and 

(l+e2~).  E B m \ l + e 2 x  j ' 
m=0 

Using the formula 

~ l+e2"x ( 2e x ?'~dx=22.~_lF(rnn+tz)F(m ) 
(l+e2Z)t ~ \ l §  F(2m+#) ' m > 0 ,  

we obtain after simplification 

(32) l imReK0(~)=~  ( l+e2~X - 1  dx+~ ~_, 2m('y+l)r~ 

By (29) and well-known expansions of ~b(1)-g)(#) we have 

~ (  l+e~Z _l)  d X = ( l + e X )  ~ .1-m.~1 rn(m+#)~= # - .,=l~m(m+#-l)'#-I (33) 

This gives the condition (31). [] 

Remark. The first equality in (33) is the special case 7 = #  of the identity 

jr0 ~ l+e#X - 1  dx+ (#)m 1 (tt).~(p--V)m 1 
- -  + + ~ - - f i  , 

(34) ( l+e~)" ,~=~ -~=~ rn(7+l).~ . (7§ 1).~ m! 

which we obtain by comparing (32) and (23). 

Corol lary 9. The condition 

(35) 2# 2 > ( . - 1 ) n  

is necessary for (28) to hold. 
This shows that there is an interval JAn, �89 which is non-empty for n>8 

and where A.--+I, as n-+c% with #-values for which (28) does not hold. 
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Proof. Assume that  (35) does not hold. This is equivalent to a l i b i ,  where 
we denote the series in (31) by ~ l(a~,-b,~). It follows that  # < 7  and it2~ 
( i t - 1 ) ( 7 + 1 ) < i t T - 1  , so the numerator minus the denominator of the right side of 

a ,~ b m + 1 

a m +  l b m  

is (7 i t ) ( m - 1 ) + i t T - - l - i t  2>0. 
does not hold either. [] 

_ (it+m 1)(z+l+m) 

This shows that  a,~<b,~ for m > l  so that  (31) 

The following proposition shows that  the weighted positivity property of ( - A ) "  
1 is symmetric in # about the point ~n. 

P r o p o s i t i o n  10. Let 0 < # < � 8 9  The inequality (28) holds if and only if it 
holds with � 89  in place of it. 

Proof. Define v by 
= r , ( - A ) " u .  

/ 1 ^ / Then, with it = ~ n - #  and 9 ( z ) = v ( x ) ,  we have u = F u , ( - A ) "  ~ and the integral 
in (28) becomes 

dx d x  = ( ( - A ) "  dx 
n n 

(~3 real implies ~=~).  Since this integral is real, we see that  if (28) holds for #', 
it must also hold for tL. (We omit the details about approximating v by functions 
in C ~ ( R n ) . )  [] 

Remark. Both (31) and (35) have the above symmetry. In fact, the series in 
(31) remains unaffected if it is replaced by itt 1 ~n- i t ,  that  is lim~_+0 4)~'~176 

l i m ~ 0  qs~ ''~176 (~). This identity applied to (32), with i t=  1, provides a third way to 
obtain (33). 

Another manifestation of the proposition (and the fact that  the transformation 
~5~,o,0 and u~+v in the proof "commutes" with the decomposition (11)) is that  _y 

~J,O,O (I)j seem to have the same zeros. 

6. Loca l  e s t i m a t e s  

In this section we let # r e+s ,  where m is integer and 0 < s < l .  The case s = 0  
is much easier, but sometimes needs a slightly different formulation. Being already 
known (and in fact implicitly contained in the present treatment),  we omit this 
c a s e .  
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We need some more notation. Let Bj={xcR~:lxl<2-J},  Cj=Bj_I\I~j. For  

Ej =By, Cj, we introduce the "dimensionless" seminorm 

/ ]V.xu] 2dx)  , if {A}=0, 
2(n_2X) j . \1 /2  

J Ej / 

jjE~• ~ dxdy) , if(a}#0, 

and similarly, for a measurable set E, 

\1 /2  

rx(x)  d x d y )  , i f {A}r  

Thus lula,Ej ~(u}a,E~ if Ej=C~ and A>0, but not if Ej=Bj. We denote the L 2- 
norm (rE u2 dx) 1/2 by II~ll~" Finally, we introduce the bilinear form 

~) = s  ( ( - A ) " v ) ~ r .  U~. Q,(v, 

With this notation, the conclusion of Corollary 3 becomes 

( fi ) (36) Q,(~ ,  ~) > ~(o) ~ ~ 2 2 - 2 +~ ( ~ L , a ~ +  (~h ,R-+(~>~+~, l~  �9 
1=1 

L e m m a  11. Let ~CC~(R~) ,  ~/(0)=1 and a neighborhood of supp VT] be con- 
tained in Co. Let 5<4s and u E C ~ ( R n ) .  Then, 

(5 ) Q.(~u,  ~ ) - Q . ( ~ ,  ~2u) <_ ~ 2-~1~1 ~ 2 ~ I Iz,c~+l Im+~,C0 �9 

Proof. Writing A = ( - A )  s and r  the Ieft-hand side of the inequMity can 
be written as a sum of terms of the form 

I=  fa,,((AO~(~u))O~(~u) (A0%)0%~r dx, 

where ]~[=m. This, in turn, can be written as I i+I2+Ia-h ,  where 

I1 =/R~ ([A, V]0~u)0~ (r dx, 

/4 ----/R~ (AOC~u) [[0~' ~]' r  dx 
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([A, B] denotes the commutator AB-BA).  In fact, calculating the difference of the 
integrands, we obtain that  I -  (/1 +I2 + / 3 - / 4 )  equals 

~ (~(0~u)A[0 ~, ~]u-A(r  ~, ~]u) dx = O. 
n 

Let us consider the above splitting of I in some special cases: If s=0  then A 
is the identity so /1 and /2 vanish while /3 and /4 consist of terms of the type 
fI~ ~(O~u) O'yudz, where ~EC~(Co). Such a term can immediately be estimated 
by ~(lul~r,Co+lUl~l,co). If m < l  then I4 vanishes and if m = 0  then only I1 remains. 

We begin by estimating h which we write a s / 5 + / 6 ,  where 

/5 = . i ~  (a(r]0~u)-~A0~u (O~u)Arl)O~(~u) dx, 

z~ -- f (a~)(o%)o~(~) a~. 
J R n 

From Lemma 1 we have I5 =-A~ f f I ~  U dx dy, where 

U(x; y) = (~(~)-~(Y))(~176176 

For kl<O, the distance between xECk and yEC1 is comparable with 2 min(k,/). 
Hence the properties of r] imply 

[5 <-c(f/coxCo ,Uldxdy+k ~ fJ((c'kxcz), ,U, dxdy) =c(lA+IB), 

where (Ck x Cz)' is the set { (x, y) ~ Ck x Cl, I x -  y] >_ co2- min(k,t) }. 
The term from IA containing O~u (coming from O~(~u)) is majorized by 

ff~ Io~(~)-o~(Y)I c ~ ix_yln+2~_ 1 IO~u(x)ldxdy 

(fs fs IcgC~u(x) O~u(y)[ 2 dxdy) 1/2 <c 2~ Ix-yl n+2~-2 dxdy ~ ix yl~+2 s 

where the integrals are taken over Co • Co. Since s < 1, the last expression is less or 
equal than 

This completes the estimate of IA. 
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Let us use the  no ta t ion  [f]k = s u p c  k If} and [fJk,~ = s u p c  k •  J f ( x ) - f ( y ) l .  T h e n  
the  t e r m  f rom IB containing u (z) =OZu can be es t imated  by 
(37) 

C s 2min(k'l)(n+2s)[~]]k,l[~(a--/3)]k 
k,l----oo 

Now, wri t ing a~=2k('~/2-1~l)llU(~)llCk, we have a k_~ and we only need to 

verify tha t  the  coefficients for a k~a k z and a~a~ are less than  c2 -d(Ikl+lz/), for some 
d>_2s, since then  the  inequal i ty  

2-d(Ikl+ll[)a~ar k - -  E 2 51~1((a~)2+~ k~ J, 
k,l o~ k=--o~ 

where m can be ei ther  k or 1, gives us the  desired result.  We notice t ha t  

where c = 0  unless kl<O<k. Now we can calculate  the  coefficients in two cases: 
(i) l < 0 < k .  The  coefficient for ~ ~ is major ized  by ak ak 

C2k(n--I~l-I/31--2s--n/2+lc~l n/2+lC~l)2t(n+2s n) = C2--2s(k--t) 

so in this case we can take d=2s. Similarly, for a~a ~ l k, we can take  d=2s+ lc~  I, 
(ii) k=O<l. Here we get d=n  and d = n - I ~ l ,  respectively. Since for any  other  

k, l the  coefficients in (37) vanish, we have comple ted  the  es t imate  o f / 5 .  

For /2, we proceed in the  same  manne r  as for I1 and wri te  I 2 = I 7 + 1 s .  The  
corresponding IA is handled identically. As for IB we switch r / and ~b in (37), 
not icing t h a t  

[~b]k,z < c2 max(k'z)(n-21~l-2s) 

and t ha t  r] mus t  be  differentiated so t h a t  we only need to consider k - 0 .  The  result  

is: (i) I<_O=k. For aka k ~ ~ and a~a~ we can take  d=2s and d = 2 s + l a l ,  respectively. 
(ii) k=O<l. Here we can take d=2s+21c~ I and d = 2 s + l a l ,  respectively.  

The  es t ima te  o f / 6  follows easily, wi th  d = 2 s ,  f rom the fact t ha t  At / is  bounded.  
For the  integral  

Is  = ./a,~ (A~p)(O~u)[O n, rl]u dx 

the  result  is immedia te ,  since A~p is bounded  on the  suppor t  of the  derivat ives of 7. 
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In the estimate of /3  and /4  we write A = h ( t _ ~ ) ( - A ) ,  w h e r e / 2 ( l _ s )  = ( - A )  s -1  

denotes the Riesz potential of order 2 ( 1 - s ) .  Integrating by parts, like 

{ - f Z (l_ )Vv.Vwdz for /3 ,  

~ vI2(z-s) ( - A ) w  dx for 14, 

we see that it suffices to consider the integrals 

s  I2(1 ,)(~O5u)(O~-v+~r and /R~ I20-*)({O5u)O~udx' 

where i l=l, 0 < f l ~ ,  0 ~ ,  Using the easily proved operator norm 
estimate 

11/2(1-~)IIL~(Co)-*L~(C~) < c2min(k'0)(" 2(t s)) 2 kn12, 

we obtain for the first integral that,  for Z ~ and k>0,  we can take d = 2 s + l ~ l - 1 .  a 0 a k 
(When this integral occurs, I~1_> 1.) The second integral is clearly bet ter  for k >0. 
For ~ " and k<0  one gets d=2s+lc~l -2 .  (Here we note that  Ia=0,  if Ic~1_<1). [] a o a k 

For u C H~ (f~) A C ~ (f~), d E (2s, 4s), we introduce the quantities 

2 2 A j ( u ) =  sup u(p)2+ lulZ,B~+lul,~+~,Bk , 
pCf'ZCIBd k j \ / = 1  

Nj(u) 2-~(j-k) 2 

k= oo 1=0 

We will write A j - A j ( u )  and Nj=Nj(u).  Notice that  Nj is finite, since it can be 

estimated by means of Ilull~. 
The following lemma gives a pointwise estimate without any requirements on 

the boundary of the domain ft. 

L e m m a  12. Let # = m + s  be as in Corollary 3 and let uEHg(ft) satisfy 
( -A)~ 'u  0 on f~NBj. Then, 

(38) A j + I  ~ c N j .  

Proof. For simplicity we prove this only for # sC(0, 1). The general case is 
almost identical. Let v C C ~ ( R " )  and let ~l be as in Lemma 11. Combining that  
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lemma with (36) applied to r]v, we obtain, 

O43 

k = l  

2 V 2 ~ClQs(v, ll2v)+r 2 dlkllvlO,Ckq- I Is,Co " 

k=-oo 

(The first step is only a simple estimate.) Since 6>2s we can take kl so large that 

the sum on the left majorizes the sum of all terms where k > k l  on the right. If  we 
then replace v(x) by v(2 Y-2x+p), pEBj+~, and make a change of variables in the 

integrals that  define Qs and the seminorms, we get 

- , 
\ k - - - c x ~  

where vp(x)=v(x+p) and r~j+u(x) rj(2J+2x). Now let vEC~(f~) tend to u in the 

norm of H~(R'~). Then the sum and the last term on the right tend to the same 
expression with u in place of v. The fact that  ( - & ) s u p = 0 ,  which in particular 

makes up smooth on supp(r]~+uVp) , implies that  Qs on the right tends to zero. If 

we, in addition, let v=u in a neighborhood of p, then we can replace v by u also on 

the left. 

Now, by replacing Ck+2 and Cy+2 by Bk and Bj, respectively, and enlarging 

the constant e, we can replace Up by u and jq-kl by j on the right to obtain 

(a9 )  q-lUls,Bj+~ <_ c 2 -5(j-k) u 2 u 2 

\ ] r  

(We have also added the term 2 luls,Bj+1 to the left, which is possible thanks to the 
last term on the right.) Finally, the easily proved inequality, 

o~ 

E 2 I lx,.k -< a > 0, 
k=j 

shows that, for m = 0 ,  Aj+I is majorized by a constant times the supremum over all 
pCBj+s of the left-hand side of (39). Since, for m = 0 ,  the right-hand side of (39) 
equals cNj, the proof is complete. [] 

The following inequality is proved in a similar way as Theorem 10.1.2 in [4]. 

See also Lemma 2.3 in [7]. 
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Lemma 13. 

(40) 

where 

Let u<H~(~)nC~176 Then 

7j = 2(~ 2~)j c a p . ( B j \ ~ ) .  

Lemma 14. Let p=m+s be as in Corollary 3 and let uCHg(~) satisfy 
( - A ) ~ u = 0  on ~ABjo. Let j1>_1. Then, for j>_jo, 

j 1 ) cl 
(41) Aj+j~-c2-5(J§ 2aJ~ E 2&Ak +~77 ( A j - A j + I ) '  

k = j o - - 1  

where cl, but not c, depends on jl .  

Proof. Since the kth term from Nj can be estimated by 2-a(J-k)Ak and since 
u 2 <2 ~ 2~u2  X,Bj+I- ~,Bj, we see that  Nj+j,-I is majorized by 

j 1 

2 a(j+jl 1)(2ajONjo+ 
k = j o + l  

77~ 

2 --1 oo Using Lemma 13 on lU]o,B~ and then the boundedness from below of ( ' y j ) j  oo 
it follows that  Na+Ol_l is less than the righ-hand side of (41). The assertion now 
follows from Lemma 12. [~ 

7. Regular i ty  of  a b o u n d a r y  point  

The remark about the case s = 0  in the beginning of the previous section does 
also apply here. 

Definition 15. The point O E 0 ~  is said to be regular with respect to ( - A )  ~ if 
the solution of the equation 

(42) (A) t*n=fEC~(Ft ) ,  uGH~(Ft), 

satisfies u(x)--+O, as x--+O. 

It is shown in [5] that  for #=1 ,  regularity in the above sense is equivalent to 
the Wiener regularity. 

Since sup~nB j u(p)2<Aj, the following lemma shows that  divergence of the 

series ~k~~ _oo % is sufficient for regularity of the point OCO~. 
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on ~tABjo. Then, 

(43) 
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Let # be as in Corollary 3 and let uCHo~(gt) satisfy ( -A)Uu=0  

_ c  ~ ~ Aj<cNjo2 E~=~o "~k, j _ > j 0 + l .  

Proof. To simplify notation in the proof, we redefine Ajo as 

A -o := Njo. 

j--1 

(44) (I+cT~)AJ+Jl-< TiC~ E 2  5(J+Jl-k)Ak+AY' j>-jo. 
k = j o  

Before continuing the proof we choose the numbers c, c ~ and j l .  Take j~ and 
d l > 0  so that 

j 1 
(45) 2Co E 2(c'~-~)(J+Jl-k) -< 1, c'_< dl, 

k=jo 

where "~ majorizes all 3'j- Again due to the boundedness of ('~j)j% ~ ,  there is a 
d2>0, and then since 7j+l_<2n-2"Tj, a number d3>0 such that  

(46) (1+  7j ~-1 2 d2~j _ ~k=j ~k, c '<d3.  

Now choose c '=min(dl ,  d3). By Lemma 12, the fact that  (Aj)j~_ ~ decreases and 

7 ( j)j _~  is bounded, and by the redefinition of Aj0 , we can take c so that  (43) is 
satisfied for j0 _<j _<jo + j l  - 1. 

We now complete the proof by an induction step from j to j+ j l .  First assume 
that  the following inequality holds, 

j 1 
(47) Aj+jl ~_ 2Co E 2 5(J+J~-k)A k. 

k=jo 

Then by the induction hypothesis, 

j - 1  

Aj+Jl ~2c~ E 2- ~9+~1- )2- z"Z=Jo ~l 
k = j o  

j - - 1  

< 2cocNjo2 2 
k ~ j o  

Since Aj+jl ~_Aj+I, it then follows from (41) that  
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Combining this with (45), we obtain (43) with j+j l  in place of j .  If on the other 
hand (47) does not hold, then (44) gives 

_h+ Aj+Jl < \ ~cl ] 

which together with (46) and the induction hypothesis again leads to (43) for j +  

j l .  [] 

To formulate our theorem, we need the following continuous versions of some 
earlier introduced quantities. Let B(r)={xcR'~:lxl <r}.  Put  

~(~) = r ~ ,  n c a p , ( B ( r ) \ ~ ) .  

Let #=m+s and 6E (2s, 4s) be as before and define 

77r 

N(,~, r) = ~r ~ s  IV,~l~(r+ I<) ~-"-~ a~ 
/=0 

+r ~('~+~)-~ / / .  Iv~(~)-v'~(Y)l~ dx dy. 
(,-)• Iz-Yl n+2~ 

Thus 7(2 - i )  =Tj  and we easily obtain N(u, 2 - J ) ~ N y  (u). As for Nj (u), g(u, r) is 
finite. 

T h e o r e m  17. Let pC(O, l n ) \ ( 1 ,  � 8 9  and let ueH~(f~) satisfy ( A)t*u= 
1 0 on ftNB~ o. Then, forr<hro , 

(48) sup u(p) 2_< cN(u, ro) exp - c '  . 
pEftnB(r) O 

Proof. By the inequality ( / / ,0 )  
~k=5o ~k _< exp - c "  do 2 - ~  ' , ~  ~ ( o )  

- j  @ 

and the equivalence of the continuous and discrete versions of N, (48) follows fl'om 
Lemma 16, for r0 and r of the form r0 2 Jo and r 2 J. From this, the assertion 

1 
follows for arbitrary r_< 5r0. Finally, a transformation x~-->tx with tC[1, 2), shows 
that  also r0 can be arbitrary. [] 

Remark. It is shown in [5] that,  for p an admissible integer, a similar estimate 
holds, where N(u, ro) is replaced by the mean value of u 2 over the anmflus B(ro)\ 
"(it0). 
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