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On the density of states for the 
periodic SchrSdinger operator 

Yulia E. Karpeshina(1) 

A b s t r a c t .  An asymptotic formula for the density of states of the polyharmonic periodic 
operator ( - A ) t + v  in R n, n > 2 ,  l>  �89 is obtained. Special consideration is given to the case of 
the Schr6dinger equation n = 3 ,  /=1,  V being a periodic potential, where the second term of the 
asymptotic is found. 

1. I n t r o d u c t i o n  

We consider the operator 

(1) H = ( - A ) Z + V  

in L2(Rn), where V is the operator of multiplication by a real periodic potential, 
n>2 ,  l>�89 Particular attention is paid to the case of the Schrgdinger operator 
n=3 ,  l=1.  For the sake of simplicity, we assume that  the potential has orthogonal 
periods a l , . . . ,  a,~. However, all the results are also valid for nonorthogonal periods. 
Without loss of generality we assume that  

(2) fQ v(~) d~ = o, 

Q =  [0, all x ... x [0, an]. We use the representation of the potential 

(3) V(x) = ~ ~ expi(~.~(o), ~), 
ms n 
mr 

where ( . ,- ) is the inner product in R n and ~m(O) is a vector of the dual lattice, 

(4) ig,,~ (0) = 2~r (l~la~ 1/i , t2a~ 1 ,,,~ ~ n a ~  1). 

(1) Research partially supported by USNSF Grant  DMS-9803498. 
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The condition on the smoothness of the potential is 

(5) I I V H , =  
rnGZ r~ 
m e 0  

where 

1(n-1) ,  w h e n n > 3 ,  
(6) > - 

2 (/+1), when n = 2 .  

It is well known (see e.g. [RS]) that  the spectral analysis of H can be reduced to 
the study of a family of operators H(t), tCK, where K is the elementary cell of the 
dual lattice, 

K = [0, 27ral 1) x [0, 27ca~ -1) x ... x [0, 27ca~1). 

The vector t is called the quasimornenturn. The operator H(t), t cK,  acts in L2(Q). 
It is described by the formula (1) and the quasiperiodic conditions 

(7) U(Xl, ... , xj-1, aj, xj+l,..., xn) = exp(itjaj)u(xl, . . . ,  x j - 1 ,  O, x j d _ l , . . .  , Xn) 

for j = l ,  2, ..., n. The derivatives with respect to xj must also satisfy the analogous 
conditions. The operator H(t),  t cK,  has a discrete spectrum A(t) semibounded 
from below, 

oo 

n--1 

The spectrum A of the operator H is the union of the spectra of the operators H(t), 
a = U t e K  A(t)=U~eN,tet< An(t). The functions A,~(t) are continuous, so A has a 
band structure, 

A = 0 [ b ~ , B n  ], b~=minAn(t) ,  B~=maxA~( t ) .  
t E K  t E K  

~ 1 

Absolute continuity of the spectrum of H was proved by L. E. Thomas IT] (for 
more general classes of periodic operators see [BS1], [BS2], [BS3] and [K]). The 
eigenfunctions of H(t) and H are simply related. Extending all the eigenfunctions of 
the operators H(t) quasiperiodically (see (7)) to R ~, we obtain the complete system 
of eigenfunctions of H. In the case of V - 0 ,  the eigenvalues and eigenfunctions of 
the corresponding operators Ho(t), t cK,  are naturally indexed by points of Z n, 
A~ ~~ expi(~(t) ,x) ,  rnEZ ~, here and below ~m(t)=~m(O)+t, 
ig,~(0) being given by (4), and p~(t)=ly.~(t)l 2z. 
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Let Nv(A, t) be the counting function of eigenvalues, i.e., Nv(A, t) is the number 
of eigenvalues A,~(t) of the operator H(t), which are not greater than A, 

(8) Nv(A, t )  = < A }  - -  

h E N  

X( ' )  being the Heaviside function. In the case V=0,  N0(A,t) is the number of 
lattice points/7,~(t) in the sphere {x:lxl<__A~/2l}. Further we will use the notation 
A = k 2z. The asymptotic of the number of the lattice points in the sphere {x:lx[< k}, 
when k--+oo, depends significantly on t and properties of the lattice. Thus, even 
No(k 2z, t) depends on k and t in a nontrivial way, while the perturbation V makes 
this dependence even more sophisticated (see e.g. [B], [el, [Ch], [DT], [Skl], [Sk2] 
and [Y]). The proof of the estimate Nv(k2,t)=w~M~+Ot(k n-l) for the case /=1  
can be found in [HI, here 0&=w,~lK1-1, wn, IKI being the volumes of the unit 
sphere and of the cell K ,  respectively. The proof of the better  estimate Nw(k 2, t )=  
w~kn+O~(k n-l- ')  is given in IV]. 

The density of states Dv(k 2t) is the integral of Nv(k 2t, t) over all t, 

(9) Dv(k2Z) =/K Nv(k21' t) dr. 

The physical sense of the density of states in the case of the SchrSdinger operator 
(n=3, 1=1) is the following: Dv(A) is the limit number of the possible energy levels 
of a particle in a body in the interval ( - co ,  A) divided by the volume of the body as 
the volume expands to infinity (see e.g. [Z]). M. A. Shubin IS1], [$2], [RSS] gave the 
mathematical justification of the passage to the limit for the case of almost periodic 
(in particular, periodic) potentials. The perturbation methods applied by M. A. 
Shubin provide the asymptotic estimate for the density of states as k-+ec,(2) 

(10) D v ( k  2z, t) = Do(k t )+O(k n 2z), 

where, as is well known, D0(k 2z) wnk'L 13. Helffer and A. Mohamed [HM] improved 
this estimate for the case of periodic C~ and 1--1, 

(11) Dv(k2,t)=wnkn+O(1)+O(kn-3+~), c > 0 .  

They used advanced methods of microlocal analysis. 
This paper has two goals. The first goal is to present a short proof of stronger 

estimates for Dv(k 21, t) by using perturbation methods. We consider the general 

(2) Results for other nonperiodie cases can be found e.g. in [AS], [G], [Ki], [Sa 1. 
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case n>2 ,  l>  1 and V satisfying (5) and (6). The following estimate is proved in 
Section 2.1, 

(12) Dv(k 2l, t) aJ~k ~+O(k -~ log k), ( =  4 1 - n -  1. 

Clearly (12) is stronger than (10), as {>21-n. Comparing (11) and (12) for l = l ,  
we see that  (12) is stronger than (11), the biggest difference being in the case n =2 ,  
O(k -~ logk) instead of O(1). 

The method admits generalization to the case when V is a differential operator 
(see the end of Section 2). 

The second goal is to obtain the second term of the asymptotic expansion for 
the special case n=3 ,  l=1,  V satisfying (5) with u--900 (Section 3). We prove that  

( 1 3 )  Z)v(k2,t)=~3k3+do +O(k ~), < < 1 i-g6 , 

where d ~ is a constant which can be expressed as the sum of the integrals of the 

densities of states of some one-dimensional SchrSdinger operators (Section 4.1). The 

number 1 I~6 in the estimate (13) arises for technical reasons and could be improved 

by somewhat longer considerations. 

1 2. T h e  g e n e r a l  case  n > 2 ,  l>  ~. 

T h e o r e m  1. Let n>2, l>�89 and V satisfy the conditions (5) and (6). Then, 
the density of states of the operator H satisfies the following asymptotic as k-+oc, 

(14) /)v(k2~) = xnkn +O(~-~ log k), ~=41--n--1 

Let us describe the main steps in the proof of Theorem 1. First, we represent 
the operator H(t) in the form 

(15) H(t) = H o ( t ) + ( I - P ) V ( I - P ) + P V ( I - P ) + ( I - P ) V P + P V P ,  

where Ho(t) corresponds to V=0,  P=P(k, t) is a finite-dimensional projection, P 
being diagonal with respect to the same basis as H0. We prove that 

(16) NU P)vU p)(k2t,t)=No(k2I,t), 

i.e., the operators Ho(t) and f i I ( t )=Ho(t)+(I-P)V(I-P) have the same number 
of eigenvalues which are not greater than k 2z. The equality (16) holds due to 
the special choice of the diagonal projection P.  Indeed, H(t)  is a direct sum of 
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PHo and ( I - P ) H o ( t ) + ( I - P ) V ( I - P ) .  Thus, (I P ) V ( I - P ) ,  in fact, perturbs 
only ( I -P)Ho.  We construct P in such a way that  ( I -P)Ho  does not contain 
eigenvalues p2{ (t) of/4o (t), which are "in danger" to intersect the point A = k 2~ under 
the perturbation ( I - P ) V ( I - P ) .  The simplest way would be to choose P: P,~,~=I, 

when 2t 211< - Ip,~(t)-k IIvII, however it results, eventually, only in the estimate (10) 
(see [$1], [$2], [RSS]). So, we will choose P in a somewhat more subtle way. Since 
( I - P ) V ( I - P )  perturbs only ( I -P)Ho,  the relation (16) holds. 

In the second step, considering that  P V ( I - P ) + ( I - P ) V P + P V P  is a finite- 
dimensional operator, we get 

INv(k 2', t ) -X(~ ~)v(~-P)(k 2', t)l < 2#(0,  
where # ( t )  is the dimension of P( t ) .  Using (16), we obtain 

(17) INK (k =~ , t) "No (k 2z, t) l _< 2#(0.  
In the third part of the proof we use counting arguments to show that  

(18) ~ # ( t )  d t <  &-~  log k, c = e(lIVll., ~, amax, n, l), 

here and below amax=ma• ai, amin-min /a i .  Integrating both parts of (17), we 
obtain (14). 

Let us introduce some notation, 

(19) O~q-(20 (z, t) = V/lp2~(t) - z  I ]p2ml+q(t ) --Z[, m, q C Z ~', 

(20 (z, t), ~ ZL (20) s = ~in q ~,,~ .~ 
q<Z%{O} 

p being the parameter in the conditions (5) and (6). We define the diagonal pro- 
jection P as 

-~ (2*) 
(21) P , ~ =  1, ~ , ~  (k%t)<411vll., 

0, otherwise; 

IIVII. being given by (5). 

(22) 
L e m m a  1. If P is defined by (21), then 

N( f - s )v ( r -p )  (k 2l, t) = No(k 2~, t). 

2LIvll t 
0 k 21 

Figure 1. The contour Co. 
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Proof. We consider the contour Co on the complex plane given by Figure 1. 
It is clear that  NU_p)v(• ) (k 2l, t) is given by the integral 

J~(I--P)V(I--P)(~2/ t )  =Tr/co(~r(t)--z) -I a t ,  

if there is no eigenvalue at k 2t, The existence of the right-hand side follows from 
the fact that  (~I(t)-z) -1CSp,, p'>n/21, Sp, being the trace ideal for the number 
p', see [RS]. Let us formally expand the resolvent in the perturbation series with 
respect to Ho, 

oo 

(23) (~(~)-~)-~ (Ho(t) z)l+Z(Ho(t)-z)-~/2fi~(Ho(t)-z)-~/2,  
T =I  

= (I-P)(Ho(t)-z)-a/2V(Ho(t)-z)-l /2(I-p).  

To prove the convergence of the series, it is enough to check that  

(24) IIA(z)ll < �89 z c C 0 .  

This estimate is obvious on the left-hand side of the contour and on the horizontal 
parts. Let us consider the right-hand side. It is easy to see that  

I1-~11 < max 3 -~ Iv~l (2t), 
m E Z  ~ t )  " e~,~=0 q~z~\{0} C%~q [z, 

Using the definition (21) of P,  we get 

I1 11 _< Z 
qcZ~\{0} 

Thus, we obtain (24). Note that  

Iv~llql ~ 1 - - <  
411vii. 4 

1/2 

(25) II(I-P)(H0-~)  1/211 = ( rain Ep~(0-zl)  
\ m C  Zn  

Pmra =0  

(2/) [7~2/ If ~.~ ~ , t)>nHvll., then, obviously, fp~(t)-k~;l>0. Hence, ( ; - P ) ( H 0 - z )  -~/~ 
is bounded. Estimate (24) provides convergence of the series for the resolvent on the 
contour Co. Thus, N~u_p)v(;_p)(k2t,t) is a continuous function of aV,  0 < a < l .  
Considering that  N U p)vu_p)(k2z,t) and No(k2,t) are integers, we get (22). [] 

Note that  the difference between H(t) and At(t) is a finite dimensional operator 

~ ( t ) - H ( 0  = ( I - P ) V P + P V ( ; - P ) + P V P .  The dimension of this operator is not 
greater than 2#( t ) ,  where # ( t )  is the dimension of P.  According to the general 
perturbation theory (see e.g. [Ka]) 

(26) IMp (k ~, t) -N(,-~)v(,-~)(k ~z, t) l < 2#(t). 
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L e m m a  2. The function 4r satisfies the estimate 

(27) /~ #(t) dt < ck-r c=c(llVIl.,U, ama~,l,n ). 

Proof. Let ~ ( ~ ,  t) be the number of points tim(t) in a measurable set ~ c R  n. 
It is easy to see that  

/ #(a,t) dt = V(~), 

where V is the volume. Let us define ~ in R n, as follows, 

(2s) a :  U a~, 
qeZn\{0} 

aq = {x: rlxl2~-k~ I If~+g~(0)?'-k~ I < F(q)}, 

where F(q)=(41ql-'lIvll.) 2. By the definition of P,  P ,~ , ,= I  if and only if lYre(t) is 
in fL Hence, ~ ( t ) = # ( Q ,  t). Thus, it suffices to prove the estimate(3) 

(29) V(~)<ck-~logk, ~ = 4 / - n - 1 .  

Let us represent f~q in the form > < Qq=~q [-J~'~q , where 

(30) aq  > = { X C a q :  11X @pq (0) 12/-- ]~21 I ~ I I x I ~' - k2' I }, 

and, correspondingly, 

a~ ={~Caq: llx+gq(0)l~-~; I _< Ilxl~;-~;I}. 

It is easy to see that  under the parallel shift x~-+x+~q(O) the set Q> is transformed 
into f~<q. Thus, V(f~q<)=Y(f~>q). Considering (28), we see that  

v(a)<2 ~ v(a~>). 
qcZ%{O} 

To prove (29), it suffices to obtain the estimate 

(31) V(f t>)<c[q l  -~ 5k-r  6 > 0 ,  

(3) We will prove this estimate for l>  1, this will be important for generalizations. 
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for all qT~0. Let us prove (31). Using (28) and (30), it is easy to see that ft > lies in 
the spherical shell 

~__{x: l lx l  ~, k2;12<(41ql ~ l l V i i , ) 2 } = { x : l l x l _ k  1<81ql-~[[VII.k 2;+1}. 

Let us split S into the spherical shells, 

M 

S c  U S,~(k), M=[log(241ql'+XllVIl,l~ 2z ~)], 
~7~0 

where [-] is the greatest integer function, 

(32) S o - - { x : ] / x l - k  I<lql 2~, ~k-n+~-~}, 

S.~={x:lql-2.-~k n+~-%(.~ 1)_<llxl_kl<lql-2~ 1 k n+~ %.~}, 

m 1, . . . ,M.  Then, V(ft>)<ELoV(a>NS,~). Clearly, 

(33) V(f~>NSo)<_V(So)<clq1-2L" ~l~ ~<clql-~-% -~, 6 = 2 . + 1 - n > 0 .  

Let us consider the intersection of a spherical shell S,~, m>0 ,  with the plane layer 

Tq,m = {x: I IX+gq(0)[2 _ 1~121 < iql(5211Vii.)2ke-.<}. 

We prove that 

(34) s nSm C ft~ nS.~nTq,.. 

Suppose not. Then there is XE~q > NS.~, such that x~Tq,m. From the definitions of 
S.~ and Tq ..... we see that  

(35) I1~1 ~ k~l > Iq[ -~"  ~k ~§ ~e ~-~, 
(36) Ilxl~-k~l <21ql 2,, 1k-n+2-%,, h 

(37) [Ix+gq(o)12-Ix]21 _> Iql(5211VII.)%e-'h 

Using (36), (37) and the inequality re<M, it is easy to check that 

(3s) IIx+~(0)12-k21 >_ Iql(261lVH.)2ke "~. 

Multiplying (35) and (38), we get 
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This contradicts the fact that  xCFtq (see (28)). Thus, (34) holds. Therefore, 

(39) v(a > n <_ 

From the definitions of S and Tq,m it follows that  Srrcnrq,rr,=O if M>Clk, c1= 
50(1+11vii,), hence it is enough to consider Iql<_Clk. Let us check that  

(40) V(S.rnNrq,ra) < c[q[ '~ 5k -~, 5 > O. 

It is not difficult to estimate the volume of S,,NTq .... as the volume of the inter- 
section of a spherical shell with a plane layer.(4) If n>3 ,  then 

(41) V( S.,nTq,.,) < ca.,b.,qk ~- 2, 

am and b,,q being the widths of S~ and T~,~, correspondingly, 

a ~ =  Iql-2"-lk -~+1 ~e ~,  b~q < a  . . . .  (5211Vll,)~k~ - ~ .  

Thus, Y(Srnf-ITq,m))<clql-2u-lk 4. We see that  (40) holds for d = 2 , + l - n ,  n_>3. 
If n = 2  and 0<lq l<  �89 we can use the estimate (41). However, the estimate (41) 
is not valid when Iql~k. For 2k>lql>�89 we use the estimate: V(S~NTq,~)< 
ca~bx/b~q~qk <_ck-~lqI-2~-~e~/2. Taking into account that  m<_M, M ~ ( 2 / + u ) l o g  k, 
we get 

(42) V(S~nTq,~,)<ck-~-z~/2-~+~ <ck -~-2-~, 8=3~/2-/-1. 

Using (41) for Iq[<�89 and (42) for ]ql> 1 ~k, we get (40) in the case n=2 .  Considering 
(33), (39), (40) and summarizing the estimates (40) over m, we get 

M 

V(ft >) < V(So)+ E V(S,~nTq,m) <_ (M+l) lq]  -n  ~k -~ < clq] -n 6k ~ log k. 
ra--1 

Thus, we have obtained (31). [] 

Proof of Theorem 1. By definition, Dv(k 2t) fK Nv(k21,t) dt. Using Lemmas 
1 and 2, and estimate (26), we obtain 

(4) L e m m a  2.3 in [K], e.g., gives t he  e s t i ma t e s  for t he  measm 'es  of the  in tersect ions  of the  

sphere Ixl-k with  the  spherical  layers Tq .... depend ing  on q and  t he  wid th  of Tq,m. In tegra t ing  

the  e s t ima te s  over the  rad ius  of t he  sphere  we get  the  e s t ima te s  for V(SmNTq,m). 
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The method can be easily generalized to cover the case of V being the differ- 
ential expression 

( ~ ) J (  coJ cOJ-- "~ 1 
(43) V =  E aJ(x)~xJ+~xjaJ(x)) ,  j 0 < 2 l - ~ ,  

jcN; ~ 
j ~ j o  

where N0={0, 1, 2, ... }; J = ( j l ,  ... ,jn), j l ,  ... , j , ,eNo, j=jz+. . .+J~.  The conditions 
on smoothness of the coefficients aJ (x) are 

(44) IlaJll* = ~ IGI ImP ~§ < ~ ,  
mEZ n 
m~O 

where a j are Fourier coefficients of a j, ~ is a parameter satisfying (6). 
assume that 

(45) 

T h e o r e m  2. 

We also 

Q d ( x )  d~=O.  

1 1 and V satisfy the conditions (44) and Let n>_2, l>7, j 0 < 2 l - ~  
(45). Then, the density of states of the operator H satisfies the following asymptotic 
as  k ~ o c ~  

(46) Dv(k2~)=w~kn+O(k {+2Jlogk), ~ = 4 1 - n - 1 .  

Pro@ The proof is analogous to that  of Theorem 1. We define the diagonal 
projection P as 

p , ~ , ~ = f  1, i f a~ td ) (k  2~ J,t)<bjllaJll, a t leas t  f o r o n e j ,  j < j 0 ,  
(47) [ 0, otherwise, 

where 
(7 (21 ' j ) ( k  2 1 - j ,  t )  = min ~ L'TJ/2rr(2l j )  (]4"21 j t ) ,  

"t ~ m q  ~'~ , qCZn\{0} 

~(21 j) mq being given by (19), bj=4J+XbJ o and bo amax/amin+3. To prove (22) it is 
enough to prove (24), which provide convergence of the series (23), V being given 
by (43). Obviously, IIAH-<Ej 113(J)[[, where A(J) are the matrices 

A}~p+q,.~ -- a~ j) PJn(t)+PJ'~+q(t) if P ...... = Pm+q,m+q = O, 

v/tp~(t)- ~)(p~Lqtt) z)' 
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g~(t)  1 ,~ ---- (~0~ln111, . . . ,  ~D~I~n ) , 

and A!~2+q,,~=0 otherwise. It is easy to see that  

The last inequality yields 

II~<J) ll < m a x  ~ - ~  la~J)l IqlJ/2 o, _ _ 

1 This gives Using the definition of P, we get IIA(J) [I _<2 j - 2  and therefore, IIAII < ~. 
us convergence of the series for the resolvent and relation (22). 

Let #( t )  be the dimension of P. By the definition of P,  P ~ . ~ = I  if and only if 
iff~(t)Ef~0=~j f~(2l-j, k, Fj(q)), ~ being given by (28), Fj(q)=(bjJql " J/2llaJll.)2. 
We proved (29) for any l>  1 ~, hence it works for 21 j, j<jo<21-1. Substituting 
21-j in the estimate (29), we get V(f~o).<ck -4z+2j+~+1 logk. Therefore, fK ~ ( t ) <  
ck -~+2j log k. Theorem 2 is proved. 

The estimate (46) is easy to get, but it is not always optimal for such a class 
of operators. For a example the case l=j 1 (the magnetic Schr6dinger operator) 
was considered by A. Mohamed, [M], where he proved a stronger estimate Dv(k 2)-  
a&k~+O(kn-2+e), using microlocal analysis. 

3. T h e  SchrSd inge r  o p e r a t o r  in R 3 

3.1.  T h e  m a i n  r e s u l t s  

First, we consider the case of a trigonometric polynomial, 

(4s) v(x) ~ v.~expi(g~(0),x), R0<~  
m E Z  3 

0<lml<Ro  

Before formulating the main theorems let us represent V(x) as a sum of potentials 

Vq, each changing only in one direction. To do that, we start with the definition 

of a set P(R0): let us consider rncZ a, O<Iml<Ro. In this set some of the m are 

scalar multiples of others. Let us keep from every family of the scalar multiples 

only a minimal representative, i.e., a representative having minimal length. We 
denote by F(R0) the union of these minimal representatives. In other words, each 
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m E Z  3, 0<  Iml <[~0 can be uniquely represented in the form m=rq, where r c Z \ { 0 } ,  
qEF(R0). It is easy to see that  

(49) v =  Z v., 
qcr(Ro) 

where Vq depends only on (x,lYq(O)), 

Vq= E Vrqexpir(~q(O),x). 
rCZ 

0<]rql<R0 

We consider the operators Hq=H0+Vq.  Let 6Dv~(k2)=Dvq(k 2) Do(k2), and 

(50) d~(k ~) ~ 5D~o(k~). 
qCF(Ro) 

T h e o r e m  3. If V is a trigonometric polynomial (48), then the density of 
states of operator H satisfies the following asymptotic formula as k-+oc, 

(51) Dv (k 2) = w3k 3 + dv (k 2) + O(k-r 

where ~> 1 and dr(k2), given by (50), satisfies the estimate Y6g, 

(52) Idg(k2)l < e l l V l l . ( l + l l V [ [ . ) ,  c = C(amax, amin)- 

Estimate (52) is uniform in R0 when Ilvll. stays finite, while O(k -r is not 
uniform (for details, see the proof of the theorem in Section 3.5). The asymptotic 
formula uniform in Ro we will be given in Theorem 5. 

We are going to show that  dv is close to a constant d ~ and obtain a formula 
for d ~ First, we consider Uq= /k+Vq. Let us direct Xl along gq(0) (the density of 
states Dv, is invariant with respect to this operation [$1], [$2], [RSS]). Obviously, 
by separation of variables, the spectral study of Hq can be reduced to that  of the 
one-dimensional periodic Schr6dinger operator 

(53) 

Uq (1)(xl) = E V~.qexpirpq(O)xl, 
rcz  

O<lrq[<Ro 

p~(O) = I~(o) 1. 
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Let ~v~ (k 2) be the integral density of states of H~ 1), and 6gv~ =gvq go. It is easy 
to show (Section 3.3) that  

k 2 

J ~  

6g~ (y) satisfying the estimate 

15Q.~(y)I < co(Vqb -~/~ 

fo~ v~ >m/Iv~b;~(0),  here and below 

(55) co (v~) =cll v~ II. (amen + II V~ I1.), 

c being an absolute constant, i.e., it does not depend on y, Vq, a~, a2 or a3. There- 
fore, 

5Dv~ /~o dy (56) -~ ~(~) <~0(vck -~, k>1ollv~llp~(o). 

Using the definition (50) of dr, we will get 

Id~ < co(V)k -1, (57) 

w h e r e  

(58) F o o  qer(Ro) 

Note that  d ~ is a constant with respect to k 2. We will show that  

(59) Id~ <c l lv l J , ( l+ l lVl l , ) ,  c - - c ( a  . . . . .  amin). 

The next theorem follows from Theorem 3 and relations (57) and (59). 

T h e o r e m  4. The density of states of operator H satisfies the following as- 
ymptotic formula as k-+oo, 

(60) Dv(k2)=w3k3+d~ r 

wher~ d ~ i~ the constant giw.,  by (58), d ~ ~ati~g~ ~tim~t~ (59) and ( >  

If V satisfies (5) with u 900, then we can pass to the limit in the definitions 
of dv(l~ 2) and d ~ as Ro-+oo, 

dv(k2): ~ ~Dv~(k 2) and d~ 
qer(~) 

where r(oo): l imRo~ r(R0)=UR~o=I r(R0). 

F o o  qer(o~) 
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T h e o r e m  5. If V satisfies (5) with ~ 900, then relations (51), (52), (59) 

and (60) hold, w h e r e  IO(k-~)l<c1 ~ ~, ~)~00 ,  Cl=C (llVIl.,a . . . . .  amin). 

Theorems 3 5 are in correspondence with the result of G. Eskin, J. Ralston, E. 
Trubowitz [ERT1], [ERT2], [ERT3] that  isospectral potentials must have the same 
directional components Vq. 

We will start  our considerations with the case of a trigonometric polynomial. 
We want to be able to extend proofs to the case of a smooth potential. For this 
reason the only estimate for R0, which we will use below, is Ro<k 5/s, 5< 1 

3.2. T h e  s p e c t r a  o f  t h e  o p e r a t o r s  Hq 

The purpose of this section is to show that  eigenvalues s (t) of Hq (t) can be 
represented in the form ;~q~,~(t)=p~l~(t)+AAq(t) ..... where the shift AAq(t) . . . .  of 

21 p,~(t) under the  perturbation Vq admits the estimate (72). 
Let us consider the matrix of Hq (t) in 13, 13 being the space of square-smnmable 

sequences with indices in Z a. We associate with each i in Z 3 the diagonal projection 
in 

1, if~i(O)--~,~(O)=I~q(O), l c Z ,  
(61) (P/q) . . . .  = 0, otherwise. 

Obviously, Pq Pq if/~i(O)-/~(O)=l/Yq(O), 1EZ. It is clear that  there exists a mini- 
mal subset jq0 of Z 3 such that  

(62) F/q = f 
i c J  ~ 

Note that  (Vq),,,,~=O if ~,-(O)-~,~(O)~llYq(O), 1EZ, because Vq depends only on 
(x,/Yq(O)). This at once gives us that  PqvqPq=PqVq=VqP q, and, therefore, 

(63) P~ Hq(t)P/q = Pq Hq(t) = Hq(t)P q. 

Considering relations (62) and (63) we get Hq(t)=Eicjg PqHq(t)P ]. 
w e  establish an isometric isomorphism between P/ql  and II, being the space 

of square-summable sequences with indices in Z. Denote by 5,,~, rnEZ 3, the ele- 
ment of l 3 given by the formula {5,~}~=5 ..... and by 51, lEZ, the analogous ele- 
ment of l~ given by the formula {5~},.=5l~, 5 ,~ ,  5t~- being the Kronecker symbols. 
To construct an isometric isomorphism we represent/7i (t), i E 3 ~ in the form of a 
linear combination of/7q(0) and a vector in the orthogonal complement of gq(0), 
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/~(t)-Ti(2%)-~/~q(0)+d q, ~-~R, T~=~i(t,q), (~(t) , /~q(0))=0. Thus, if 5m~Pql 3, 
then/~m (t) is uniquely representable in the form 

(64) ~,~(t) = dq(t)§ 27fl)(27r)-1iffq(O), l ~ Z, 

where it can be assumed without loss of generality that 0_<~-i < 2u. From this, 

Pq { 1, iffi~(t)=~(t)+(Ti+27fl)(27r) lfiq(O), I c Z ,  
(65) 

( ~ ) ...... 0, otherwise. 

An isomorphism between Pql3~ 2 and 1{ is now established in the natural way with 
the help of the formula (64), 5m++~, 6mEPql 3, 5~ cl91, and it follows fl'om (64) that 

(66) l--[(ffm(t),ffq(O))pq(O) 2], 

(67) ~,~ = 2~ ( ~  (t), g~ (0))p~ (0)-  ~ - ~ ,  

[. ] being the greatest integer function. It is easy to verify that the operator P~qHqP q 
is equivalent to the operator H1 (7 i )+ ]~  (t) 12I; here the operator H1 (Ti) is given by 
the matrix 

(68) H1(Ti)lp=(Wi+27d)2aq251p+v(l_p)q, l , p eZ ,  aq=(27r)pq(O) -1. 

This is the matrix representation of the periodic Schr6dinger operator (53) on the 
real axis. Each operator H~ (T), 7-E [0, 27r), has a discrete spectrum. It is well known 
that its eigenvalues Al (~-) can be enumerated by integers in such a way that 

(69) I~z(~)-(2~/+~)2aq21 < co(V~)lpq(O) 2 

when Ipq(O)>lO[[V~llP71(O), ~o(Vq) being given by (55). The functions ~ ( ~ )  are 
piecewise continuous. Let AA](~-~) be the shift of the eigenvalue under the pertur- 
bation, zxA~(r a~(~,~)-(~ +2~I)~%~. The spectrum of the operator F~qH~Pg can 
be represented in the form 

{'~ (~) +1~ (t) l 2 },ez = {A~,Z (~) + (~, + 2~I)= (2~)-=pq (0) 2 +1~ (~)1 =}tez 
(70) q ~ , 

here ~-.~ can be computed from the formula 

(71) Wm 27r(~m(t),~q(O))pq(O) 2 27r[(~m(t),~q(O))pq(O)-2], 
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and, as it is easily seen, Tm coincides with T~ for all m such that  5mEPqla2, and l(m) 
is given by the formula (66). The spectrum Aq(t) of the operator Hq is the union 
of the spectra of the operators P~Hq(t)P q, 

Aq(t)= U {AAq(m) 2 ~ q 2 ( ~ )  +p.~ (t)} m:~.~ ~ ~ -- {ZX~(~) (~ )  + p ~  (t) } ~  

Introducing the diagonal matrix AAq(t) of shifts of the eigenvalues, AAq(Qmm= 
A)~q ~,~ (%~0, we get that  the diagonal matrix Aq(t) of eigenvalues of the operator ( ) 
Hq(t) is Ho(t)+AAq(t). Using (66) and (69), we obtain 

(72) IAAq(t).~.~l < co(V,~)l(V.c(t),Vq(O))1-2, 

when I(f.~(t),~(O))l>lOIIV~ll, where co(V~) is given by (55). 

3.3. 

and 

T h e  dens i t i e s  of  s t a t e s  of  t h e  o p e r a t o r s  Ha 

L e m m a  3. The functions 5Dvq(k 2) admit representation (54), estimate (56) 

(73) laDv~(k2)l < clIVqlI,(]-TIIVqlI.), C:C(amax, amin). 

Proof. Let us calculate Dyq(k 2) in terms of the density of states of the corre- 
sponding one-dimensional SchrSdinger operator (53). By rotating the coordinates, 
we direct xl along fq(0). It does not change the density of states, [$1], [$2], [RSS]. 
By separation of variables, we get 

Dvq (k2)= Z /K X(k2-(t2+27rn2)2-(t3+27rn3)2 Anl(&))d& 
n2~Tt3 ~Z  

n l c N  

~ o o  f 2zr 

=2 . NJo Jo ' 
where A~ (&) are Bloch eigenvalues of the operator (53). Changing the variable 
y=k2_02 ,  we get (54). The regular perturbation theory arguments give 

No(~) (y - Hv~H) _< N(.~) (v) < N0(1) (y+ Ilv~ll), 

where N(vZ ) is the counting function iS) of the operator (53), IIvql[ is the norm of Vq 
in the class of bounded operators in L2(0,pql(0)), HVqH< [[Vqll,. Considering (69) 
it is easy to get a more precise estimate for large y, 

N~) (y-c0(V0y -~) < N(.~)(y)< N0(1) 0+e0(V0y- % 
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when x/Y > 1011Vq Ilpq 1 (0). Taking into account that No (y) = V~ and integrating the 
last estimates, we get [@Vq(y)l<llVqll(y+llVqll) 1/2 and [@v~(y)l<eo(Vq)y 3/2.(5) 
Using the second estimate, we get (56). Using (54) and combining both estimates, 
we get (73). [] 

1 L e m m a  4. If V is a trigonometric polynomial with Ro<k 6, 0 < 6 < ~ ,  then 
the function dr(k2), defined by (50), satisfies the estimates (52) and 

(74) flu-d~ < co(V)k 1, 

d ~ being the constant given by (58). 

~r 

Coro l l a ry .  Estimate (59) holds. 

Proof. Summing (73) and (56) over all q and taking into account that  

(75) ~ IIv~ll~/_< IIvll~, J = ~, 2, 
q 

we obtain (52) and (74). [] 

Let us introduce the notation 

(76) 

(77) 

6Xq(gm(t), k) X(k 2 - p ~ ( t )  AAq(t)mm)-X(k 2 2 -p~(t)), 

k ~, M) = [ .  ~ 6x~(g~(t), k) dr. P ( V q ,  

mCZ 3 
I(~(0),~q (0))[<M 
Ip,~,~ (t) k2l<llrqll 

It turns out that  P(Vq, k 2, M) is a good approximation for dDvq(k 2) as M--~ec. 

L e m m a  5. If M>87Cam~npq(O ) +10llVq II, then the following estimate holds, 

(78) 15 Dvq ( k 2) - P(Vq, k 2, M)I < co(Vq)pql (O ) M -1 . 

Pro@ By definition, dDvq (k 2) fK (~Nvq (k 2, t) dt, where 

6Nv~ (k ~, t) = ~ 6xq(g.~(t), k). 
n, zEZ 3 

(5) The complete asymptotic expansion of Dv for V E C  ~ is given in [SS]. 
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Let us break the area of summation and, correspondingly, the sum into two parts, 

aNv~ (k 2, t)=Z~ +Z2, 

Thus, 

rnf fZ  a I(Y.,do),,3~(o))l<M 
r~2 (M, k, t) = ~ aXq (g.~ (t), k). 

,rr~E Z 3 
I(G,ffo),N (0))I_>M 

(79) 5Dv,(k2)= /K Ea dt+/K E2dt. 

We first consider P'a. Note that  IAAq(t),~,~ l< IIVq II and, therefore, taking (76) 
into account, we see that  

(8o) ~x(zr,~(t),  k) = o, w h e n  2 lk -p.~(t)l > llv~ll. 

Using notat ion (77), we easily obtain 

(81) ~ Ei (M, k, t) dt = P(Vq, k 2, M). 

Let us next consider E2. Taking (72) into account, we get 

when u 2 /k -p,~(t)] > c0(G)l(G~(t),Vq(0))1-2, (82) ~ x ( g ~ ( ~ ) ,  k) = o, 

and, therefore, 

E2 Y~ ~x~(~(~), k). 
m E Z  3 

I(~(o),gq(O))lkM 
Ik2_p~(t)l<_co(VOl(g,,fft),Vq(O))l 2 

Considering that  [SXql<l and I(t,G(O))l_< 1 _ 7 M, we obtain I E2 (M, k, t) l _< # (ftlq, t), 
where t~lq C R  a, 

%(M)- -  {x" l Ixl2-k2 I<co(Vq)l(x,ffq(0)) I 2, I(x,G(0))I_>�89 

It is easy to show that  V(Ftaq(M))<co(Vq)pql(O)M -1. Thus, 

(83) /K IE2(M'k't)ldt < ~ #(alq't)dt=V(alq(M))<e~ 

Using (79), (81) and (83), we obtain (78). [] 
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A 
3.4. The  auxil iary operator  H(t) 

Our considerations are based on the expansion of the resolvent in a perturbation 
series. In [K] it was proved that  in the case of the SchrSdinger operator in R 3 
the perturbation series converges not with respect to the free operator Ho(t), but 
with respect to some auxiliary operator H(t). Let us describe this operator for a 
trigonometric polynomial (48) with Ro<k a/s, 0 < 5 <  1 165' 

We consider the following sets in Z 3, 

I I ( k l / 5 )  U nq(kl/5), 
q~r(n0) 

IIq(k ~/5) = {m: I(/~m (0),p'q (0))I < ka/5}, 

T(k)= U Tq~,, 
q,q' CF(Ro) 

q~&q' 

(84) %r = n~ (k ~/~) nnq, (k ~/~) 
= {m: I(g,~(0), Vq(0))l < k ~/5, I(fi.~(0), yq, (0))1 < k a/5 }. 

We define the diagonal projection Pq and the auxiliary operator H as follows 

1, ifmCIIq(k~/5)\T(k), 
(85) (Pq)~m= 0, otherwise; 

(86) ~(t) Ho(t)+ ~ Pqvqpq. 
q~r(Ro) 

It is clear that  H(t)  has a block structure. Each block Ho(t)Pq+PqVqPq is the 
"piece" of Hq (t) corresponding to m C IIq (kl/5) \T(k) .  From the definition of T(k) 
it follows that the blocks do not intersect. Because each block is big enough, it is 
easy to show that  its eigenvalues Am(t) are close to the corresponding ones of Hq, 
namely, (see e.g. [K]) 

(87) ~.~(t) =p~,~(~)+AAq(t) .... +O(eo(Vq)k-2/5), if m e Yiq(k 1/5-Mq)\T(k), 
(88) ~,m(t) p~(t)+AA~(t).~.~+O(co(VOk-1/5), 

if m �9 1]q (k 1/5) \ (Fig (k 1/5 - Mq) tAT(k)), 

Mq~lORopq(O). Thus, the eigenvalues J,,~(t) of At(t) can be enumerated by indices 
m c Z  3, A,~(t) satisfies (87) or (88) if mCIIq(kl/5)\T(k) for some q, and A,~(t)= 
p2,~(t) otherwise. 

Let Dv(k 2) be the density of states for the operator H(f). 
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L e m m a  6. When k 1/5 >87~am~npq(O ) + 10HEll, the foUowing relations hold, 

(89) Dv(k2)= Do(k2)+dv(k2)+ f(k), 

If(k)l<CRo~llVPl.(l+dlVll.)k 1/5 e=e(a  ...... amin)- 

Proof. By definition, Dv(k 2) fK Nv( k2, t)dr, where 

~ . (k2 , t )  = ~ x(k~-~,.~(t)). 
mCZ 3 

Considering (76) it is easy to see that Nv(k2,t)=No(k2,t)+al+0-2+~3, where 

O-1 ~ E O-lq' 
qcF(Ro) 

0-1q -- ~ ~xq(gm(t), k), 
mcnq(k~/5)\T(k) 

qCr(Ro) .~cn~(k~/~--M.)\T(k) 

qCr(Ro) mCHq(kl/5)\(IIq(kl/5 Mq)uT(k)) 

x',(p~.~(t), k) = x(k ~ -  5,.~(t))-x(k ~-p~.~(t)- AAq(t) .~) .  

We represent O-lq(t) in the form O-lq=0-~q-0-~q, where 

.~cn~(kl/5) ~CI~(kl/5)NT(k) 

Considering (77) and (80), we see that fK ~( t )dt=P(Vq,  k ~, kl/5). To estimate 
a~q, let us note that IIq(kl/5)~T(k)CUq,~p(no),q,r Tqq,, Tqq, being given by (84). 
Again, taking into account (80) and the inequalities 15Xql< 1, ](t,:ffq (0))1< k ~/5, we 
get 10-~'ql-<#(~aq, t), where ~aq Uq'ep(no),q'r gtqq,, 

% ,  - { / :  I ~ - I < ~ l  _< IIr~ll, I(x,~r~(o))l _< ~ / ~ ,  I(*,J~,(o))l _< ~ / ~ } .  

Thus, ]fKer~'q(t)dtl<_V(aaq)<eR30llVvHPv(O) ~k 1/5 and, hence, 

~,q(t) ~, ~1/5) ~llV~ll~-l/a. dt-  P(Vq, 
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Summarizing this estimate over q and using (78), (50) and (75), we obtain 

(90) ~ a l d t - d v ( k  2) <eR~IIVII.(I+IIVII.)k -1/5, c=e(amax, amin). 

Considering estimate (87) and the definition of X~, we get 

1~21 _< #(ri4,  t), 

~4 = U ~4q, 
qcF(Ro) 

a4q(k ~, ~o(V~)k -~/~, 2k~/~) = {~ ~ R ~ :Jk ~ - p ~ p - z ~ ( x )  I < eo(V~)k-2/~, 

the function Aq(x) being defined by the two relations x=/7,,~(t) (a unique repre- 
sentation) and Aq(x)=AAq(t)..~. In the next lemma we will prove that V(ri4q)< 
co(Vq)pq(O)- l k -US. Therefore, V(ri4) <_co(V)R3k - U5. This gives us I fK a2(t) dt I <_ 
fK #(f~4,t)=V(ri4)<_co(V)R3k -Us. Similarly, considering (88), we prove that 
Ifl<~dtl<~o(V)Rgk-~/~ Using the formulae for the integrals of a,z, i=1,  2, 3, 
we get (89). [] 

L e m m a  7. [f L1,L2=o(k), then the volume of the set 

(91) f~4q(k2, L1,L2) = { x E R 3  : Ik~-Ixl2-Aq(X)l <L1, [(x,iffq(0))l _<L2} 

satisfies the estimate 

(92) V(f~4q) < Cpq(O) 1LIL2, 

c being independent of k, LI and L2. 

Proof. Let us introduce cylindrical coordinates (z, O, 0), with z being directed 
along g,(0). Using the fact that AAq(x) depends only on z, A A q ( x ) ~ ( z ) ,  we 
get the representation ri4q = {(z, t), 0): I Q ~ -  Q21<cL1, I zl< L2pq(O) 1 }, where ~02 = 
k2-z2-~(z) .  From this we easily obtain (92). 

3.5.  P r o o f  o f  t h e  m a i n  resu l t s  

First, we prove that there is a rich subset Bi(k)  of K, such that Nv(k 2, t )=  
/Vv(k 2, t) for all t in Bl(k) and k big enough (Lemma 9). The set K\BI(k)  has an 
asymptotically zero measure, as k--~oo, and 

INv(k2,t)-Nv(k2,t)l < # ( r i 0 , t ) ,  if t c K \ B l ( k ) ,  
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where the step-function #([20, t) satisfies the estimate f~c\B1 #([20, t)dt<cR~k 5, 
1 (Lemma 10). Combining Lemmas 6, 9 and 10, we get Theorem 3. Theorem 4 

follows from Theorem 3 and Lemma 4. Passing to the limit as Ro--+oc, we obtain 
Theorem 5. Lemma 8 describes the properties of the set Bl(k). 

Let us consider the set t2o=ftlUf2~UMUT1, where ~1 is the spherical shell 
~l__{llx/~_k~l< k 1 5}, at  is defined by (28) with 

F q = k  45, 

M =  U ~4q(k 2,k 1/5 5, kl/5), 

qCr(Ro) 

Zl = U ~qq" 
q,q'EF(Ro) 

~qr {x: Ilxl~-k~ I <ka/~-~~ I(x,g~(0))[ <k  ~/~, I(X,~q,(0))l < k~/5}, 

f~4q being given by formula (91). Obviously, V(ftl)<ck 5. Reasoning like in 
Lemma 2, we get V(a')<R~k-451ogk. Using Lemma 7, we get V(M)<R~k 5. 
It is easy to show (see e.g. [K]) that  V(f~qq,)<cRoPq(O)-lpq, (0)- lk -1~ and, there- 
fore, V(T~)<_ V(T1)< cR 5k lo5. Adding the above estimates and taking into account 
that  Ro<k 5/s, we get V(fto)<cR~k 5 and, therefore, 

(93) ~ #([20, t) < c/~2k -5, c = c(a . . . .  amin)- 

This estimate means that  #(f~0, t) differs from zero only on the set with a volume 
of order R~k 5. 

Let B~(k,~,V) {teK:#(f2o,t)=O}. 

L e m m a  8. I f tEBl(k,~,  V), then 

(94) Ip~ ( t ) - k21  > k 1 5 for all m c Z n, 

(95) min 2 2 2 2 k as Z n, Ip~(t)- k I > - ~  IP.~+q(t) - k  I for all E qEZ 3 
0<[q[<Ro 

(96) Ik 2 p2n(t)--AAq(t ) . . . .  ] > k  1/5 5 for all~7tC[iq([~l/5) andqCF(Ro), 

(97) 2 2 > kl/5 lo5 Ik -p,~(t)l  for all m C T(k). 

Proof. Let us prove (94). Suppose it does not hold. This means that/~m (t)C 
f~l cft0,  therefore #(ft0,  t)_>l, i.e., t~B1, which contradicts the hypothesis of the 
lemma. Conditions (95) (97) can be proved analogously. [] 
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L e m m a  9. If t EBl(k, 5, V), then for sufficiently large k, that is k ~/s > R 0 +  
1Tlaxm [Vfr~ [ Ai-c(a . . . . . .  amin) ,  

(98) Nv(k 2, t) = Nv(k 2, t). 

Pro@ To construct the convergent series for the resolvent we take the un- 
perturbed operator to be not Ho(t) but H(t)  defined by formulae (85) and (86). 
It is convenient to reduce H(t)  to diagonal form, FI(t)~UH(t)U*--Ho+AX(t), 
g=g(t) ,  and then to consider the operator H(t) in this representation, gH(t)g*= 
Ho+A/t(t)+B, where B=UWU*, W=V-~qcr(no)PqVqPq. We expand the re- 
solvent of UH(t)U* in the formal series 

(99) 

u ( / r J ( t ) - z ) - l u  * = (HoAvz2xA(t)-z) 1 
oo 

+ E ( H o + A A ( t ) - z )  X/2A~l(Ho+Ah(t)--z)-l/2, 

Ax(z,t) (Ho(t)+AA(t) z)-X/2B(t)(Ho(t)+AA(t)-z) 1/2. 

Lemma 4.14 in [K] proves that  under conditions (94) (97) and maxm Iv,~l<k 5/s, 
k 5/s > c(a . . . . .  amin), R0 < k 5/s, the following estimates hold, 

(lOO) [IAl(k2,t)ll < k  45, IIA3(k2,t)[[ <k-~/5§ 

The estimates (100) provides the convergence of the series (99) for z E Co. The series 
converges in the trace class since ( H o + A A ( t ) - z )  1 is a Sturm-Liouville operator. 
This means that  the number of eigenvalues inside the contour is a continuous func- 
tion of aB ,  0_<a_<l, i.e., the relation (98) holds. [] 

L e m m a  10. If tE K\B1,  then for sufficiently large k, kS/S> Ro+max~ Iv.~l+ 
C(amax, amin), the following estimate holds, 

(101) I x v  (k t) - (k 2', t) l < 2 #  (a0,  t). 

Pro@ Let tEK\B1. Then there is a positive number of different indices m 
such that  ig,,,(t)Ct~0. Let us introduce the diagonal projection P '  with elements 
equal to 1 for such m, 

1, iftT.~(t) E~o, 
(102) P'~m = 0, otherwise. 
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Let us consider the operator H '  (t) = H0 (t) + AA (t) + ( I -  P ' )  B ( I -  P') .  This means 
that  in the matrix of the operator UHU* =H0 ( t)+ A h ( t ) + B  we replace all columns 
and rows, corresponding to m such that  iff,~(t)Ct20, by zeros with the exception of 
the diagonal elements, i.e., we delete from B all columns and rows, which can 
break convergence of the perturbation series for the resolvent. Let N~/(k 2, t) be the 
number of eigenvalues for H'(t) .  Considering as in Lemma 4.14 [K], we show that  
the perturbation series converges and 

(103) Nv(k  2, ~) -- N~(k 2, t). 

Note that  the difference between UH(t)U* and H'(t) is a finite dimensional op- 
erator UH(t)U* H'(t)=(I-P')BP'+P'B(I-P')+P'BP. The dimension of this 
operator is not greater than 2#(~0,  t). According to the general perturbation the- 
ory (see e.g. [Ka]), I Nv (k 2, t ) -  N~/(k 2, t)] < 2#(~t0, t). Combining the last estimate 
with (103), we get (101). [] 

Proof of Theorem 3. Clearly, 

Using Lemmas 9 and 10, and estimate (93), we obtain 

]Dv(k2)--Dv(k2)I<_2 JK #(~o,t) dt=2V(~2o)<_cR~k -5. 
\BI 

Considering (89), we get 

(104) IDv(k2)-Do(k2)+dv(k2)l < vt~k-s+cRSolIVll.(l+lIVll.)k ~/~, 

~=~(~ . . . . .  ~m~n). Note that the only restriction on ~ is ~ - 2 1 5 > 0  (see (100)), there- 
fore (51) holds. The estimate (52) is proved in Lemma 4. [] 

Proof of Theorem 4. It follows immediately from Theorem 2 and Lemma 4. [] 

Proof of Theorem 5. Suppose V satisfies (5) with u=900. Let Vo be a trigono- 
metric polynomial with Ro=k 5/s, 5<1-~, which is the truncation of the Fourier 
series of V. Theorems 3 and 4 hold for Vo. Clearly, IIV-Vo[]<IIVII.Ro'. Taking 
into account (73), it is not difficult to show that  Idy dyol<cRo'[[V[I.(l+HYll. ). 
Using this estimate and (52) for dvo, we get (52) for dv. 

Obviously, Nyo(k 2 IIV-Voll,t)<<_Nv(k2,t)<Nyo(k2+llV Voll,t). Integrating 
these inequalities and taking into account the above estimate for IIV-Vo II, we get 

Iov-OVol < 12~2Hvll,Ro~k. 
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Using (104) for V0 we get 

I D r -  D o - d v o l  < 12~llvlI,Ro'k +~R~k-~ +cR~lIvll,(l +llvII,)k -1/5 

From this estimate and the above estimate for l d r  - dvo [, we obtain I D v  - Do - d v  I < 
clk -35/4, 5<1@5, hence I D v - D o - d u [ < C l k - ( ,  1 . . . .  

Similarly, we get I D v - D o - d ~  -r [] 
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