# Normality and shared values 

Xuecheng Pang( ${ }^{1}$ ) and Lawrence Zalcman


#### Abstract

Let $\mathcal{F}$ be a family of meromorphic functions on the unit disc $\Delta$ and let $a$ and $b$ be distinct values. If for every $f \in \mathcal{F}, f$ and $f^{\prime}$ share $a$ and $b$ on $\Delta$, then $\mathcal{F}$ is normal on $\Delta$.


## I. Introduction

Let $D$ be a domain in $\mathbf{C}$. Define for $f$ meromorphic on $D$ and $a \in \mathbf{C}$

$$
\bar{E}_{f}(a)=f^{-1}(\{a\}) \cap D=\{z \in D: f(z)=a\} .
$$

Two functions $f$ and $g$ on $D$ are said to share the value $a$ if $\bar{E}_{f}(a)=\bar{E}_{g}(a)$.
A meromorphic function $f$ on $\mathbf{C}$ is called a normal function if there exists a positive number $M$ such that

$$
f^{\#}(z) \leq M .
$$

Here, as usual, $f^{\#}(z)=\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right)$ denotes the spherical derivative.
W. Schwick seems to have been the first to draw a connection between normality criteria and shared values. He proved the following theorem [12].

Theorem A. Let $\mathcal{F}$ be a family of meromorphic functions on the unit disc $\Delta$ and let $a_{1}, a_{2}$, and $a_{3}$ be distinct complex numbers. If $f$ and $f^{\prime}$ share $a_{1}, a_{2}$ and $a_{3}$ for every $f \in \mathcal{F}$, then $\mathcal{F}$ is normal on $\Delta$.

In the present paper, we prove the following result.
Theorem 1. Let $\mathcal{F}$ be a family of meromorphic functions on the unit disc $\Delta$, and let $a$ and $b$ be distinct complex numbers and $c$ a nonzero complex number. If for every $f \in \mathcal{F}$,

$$
\bar{E}_{f}(0)=\bar{E}_{f^{\prime}}(a), \quad \bar{E}_{f}(c)=\bar{E}_{f^{\prime}}(b),
$$

[^0]then $\mathcal{F}$ is normal on $\Delta$.
The special case $a=0, b=c=1$ was proved in [10].
As an immediate consequence, we have the following result.
Theorem 2. Let $\mathcal{F}$ be a family of meromorphic functions on the unit disc $\Delta$, and let $a$ and $b$ be distinct complex numbers. If $f$ and $f^{\prime}$ share $a$ and $b$ for every $f \in \mathcal{F}$, then $\mathcal{F}$ is normal on $\Delta$.

Earlier, Mues and Steinmetz had proved the following theorem [8].
Theorem B. Let $f$ be a meromorphic function on $\mathbf{C}$ and $a_{1}, a_{2}$, and $a_{3}$ be distinct complex numbers. If $f$ and $f^{\prime}$ share $a_{1}, a_{2}$, and $a_{3}$, then $f(z)=c e^{z}$.

We prove the following result.
Theorem 3. Let $f$ be a meromorphic function on $\mathbf{C}$ and $a$ and $b$ be distinct complex numbers. If $f$ and $f^{\prime}$ share $a$ and $b$, then $f$ is a normal function.

Example. Let $f(z)=\tan z$. Then $f^{\prime}(z)=1+\tan ^{2} z$, so $f$ and $f^{\prime}$ share the values $\frac{1}{2}(1 \pm i \sqrt{3})$. More generally, if $f$ is a solution of the differential equation

$$
w^{\prime}=a w^{2}+(b+1) w+c, \quad a, b, c \in \mathbf{C}
$$

and the quadratic $y=a x^{2}+b x+c$ has two distinct roots, then $f$ and $f^{\prime}$ share the values $\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$.

## II. Lemmas

Lemma 1. ([11]) Let $\mathcal{F}$ be a family of meromorphic functions on the unit disc $\Delta$ all of whose zeros have multiplicity at least $k$, and suppose there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0, f \in \mathcal{F}$. Then if $\mathcal{F}$ is not normal, there exist, for each $0 \leq \alpha \leq k$,
(a) a number $r, 0<r<1$;
(b) points $z_{n},\left|z_{n}\right|<r$;
(c) functions $f_{n} \in \mathcal{F}$; and
(d) positive numbers $\varrho_{n} \rightarrow 0$;
such that

$$
\frac{f_{n}\left(z_{n}+\varrho_{n} \zeta\right)}{\varrho_{n}^{\alpha}}=g_{n}(\zeta) \rightarrow g(\zeta)
$$

locally uniformly with respect to the spherical metric, where $g$ is a meromorphic function on $\mathbf{C}$ such that $g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$.

Remark. In fact, Lemma 1 holds also for $-1<\alpha<0$, [9]. For $-1<\alpha<k$, the hypothesis on $f^{(k)}(z)$ can be dropped, and $k A+1$ can be replaced by an arbitrary positive constant [2].

In the sequel, we shall make use of the standard notation of value distribution theory, see [6] and [13].

Lemma 2. (Milloux, [6, Theorem 3.2, cf. Theorem 2.2]) Let $f$ be a meromorphic function of finite order. Then

$$
T(r, f)<\bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-b}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
$$

where $b \neq 0, \infty$ and $S(r, f)=O(\log r)$. If $f$ is a rational function, then $S(r, f)=O(1)$.
Lemma 3. ([3]; cf. [7]) A normal meromorphic function has order at most 2. A normal entire function (Yosida function) is of exponential type.

Lemma 4. (Frank and Weissenborn [4], [13, Lemma 4.6]) Let $f$ be a transcendental meromorphic function of finite order. Then for every positive number $\varepsilon$, we have

$$
k \bar{N}(r, f)<(1+\varepsilon) N\left(r, \frac{1}{f^{(k+1)}}\right)+(1+\varepsilon) N_{1}(r, f)+S(r, f)
$$

where $N_{1}(r, f)=N(r, f)-\bar{N}(r, f)$ and $S(r, f)=O(\log r)$.
Lemma 5. Let $f$ be a meromorphic function of finite order and $a$ and $b$ be distinct nonzero numbers. Suppose that all poles of $f$ are multiple, $\bar{E}_{f}(0)=\bar{E}_{f^{\prime}}(a)$, and $f^{\prime}(z) \neq b$. If there exists a nonzero number $d$ such that

$$
\begin{equation*}
F(z)=\frac{f(z) f^{\prime \prime}(z)}{\left(f^{\prime}(z)-a\right)\left(f^{\prime}(z)-b\right)} \equiv d \tag{2.1}
\end{equation*}
$$

then
(i) $f(z)=b(z-c)+A / n(z-c)^{n}, d=1+1 / n$;
(ii) $(n+1) b=a$;
here $A(\neq 0)$ and c are complex numbers and $n(\geq 2)$ is a positive integer.
Proof. Clearly, $f^{\prime \prime}(z) \not \equiv 0$. We claim that $f$ must satisfy the following conditions:
(1) all poles of $f$ have the same multiplicity $n(2 \leq n \leq+\infty)$;
(2) the principal part of each pole has only one term;
(3) $f$ has at most finitely many poles;
(4) all zeros of $f^{\prime}-a$ have the same multiplicity $\tau$; and
(5) $\bar{E}_{f^{\prime \prime}}(0) \subset \bar{E}_{f^{\prime}}(a)=\bar{E}_{f}(0)$.
(1) Let $z_{0}$ be a pole of $f$ of multiplicity $n$, so that

$$
\begin{equation*}
f(z)=\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\frac{a_{-n+1}}{\left(z-z_{0}\right)^{n-1}}+\ldots, \quad a_{-n} \neq 0 \tag{2.2}
\end{equation*}
$$

A simple calculation gives

$$
d=F\left(z_{0}\right)=1+\frac{1}{n} .
$$

Since $d$ is constant, $n$ is independent of $z_{0}$.
(2) From (2.2), we have

$$
\begin{aligned}
f^{\prime}(z) & =\frac{-n a_{-n}}{\left(z-z_{0}\right)^{n+1}}+\frac{(-n+1) a_{-n+1}}{\left(z-z_{0}\right)^{n}}+\ldots \\
f^{\prime \prime}(z) & =\frac{n(n+1) a_{-n}}{\left(z-z_{0}\right)^{n+2}}+\frac{n(n-1) a_{-n+1}}{\left(z-z_{0}\right)^{n+1}}+\ldots
\end{aligned}
$$

If $\left\{i: 1 \leq i \leq n-1, a_{-i} \neq 0\right\} \neq \emptyset$, put $j=\max \left\{i: 1 \leq i \leq n-1, a_{-i} \neq 0\right\}$. Now

$$
f(z) f^{\prime \prime}(z)=d\left(f^{\prime}(z)-a\right)\left(f^{\prime}(z)-b\right)=\left(1+\frac{1}{n}\right)\left(f^{\prime}(z)-a\right)\left(f^{\prime}(z)-b\right)
$$

Comparing coefficients of $1 /\left(z-z_{0}\right)^{n+j+2}$ on both sides, we have

$$
n(n+1)+j(j+1)=2 d n j=2(n+1) j
$$

whence $(n-j)^{2}+(n-j)=0$. This contradicts $1 \leq j \leq n-1$.
(3) Suppose $f$ is a transcendental meromorphic function. From (1) and (2), there exists a transcendental meromorphic function $g$ such that

$$
\begin{equation*}
f(z)=g^{(n-1)}(z) \tag{2.3}
\end{equation*}
$$

where all poles of $g(z)$ are simple. Utilizing Lemma 4, for $\varepsilon=\frac{1}{2}$, we have

$$
n \bar{N}(r, g)<\frac{3}{2} N\left(r, \frac{1}{g^{(n+1)}}\right)+O(\log r)
$$

It follows from (2.3) that

$$
\begin{equation*}
n \bar{N}(r, f)<\frac{3}{2} N\left(r, \frac{1}{f^{\prime \prime}}\right)+O(\log r) \tag{2.4}
\end{equation*}
$$

From Lemma 2 and $f^{\prime}(z) \neq b$, we have

$$
\begin{equation*}
T(r, f)<\bar{N}(r, f)+N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+O(\log r) \tag{2.5}
\end{equation*}
$$

It follows from (2.4) and (2.5) that

$$
T(r, f)<\left(1-\frac{2 n}{3}\right) \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+O(\log r)
$$

Now $f$ and $g$ have finite order and $N(r, 1 / f) \leq T(r, f)+O(1)$, so

$$
\left(\frac{2 n}{3}-1\right) \bar{N}(r, f)=O(\log r)
$$

Since $n \geq 2$, it follows that $\bar{N}(r, f)=O(\log r)$, so $f(z)$ has at most finitely many poles.
(4) Let $z_{0}$ be a zero of $f^{\prime}-a$. Then $f\left(z_{0}\right)=0$. Write

$$
\begin{equation*}
f(z)=a\left(z-z_{0}\right)+a_{\tau+1}\left(z-z_{0}\right)^{\tau+1}+\ldots \tag{2.6}
\end{equation*}
$$

As $f^{\prime \prime}(z) \neq 0,1 \leq \tau<+\infty$. It follows from (2.1) and (2.6) that

$$
d=F\left(z_{0}\right)=\frac{a \tau}{a-b},
$$

so $\tau$ is independent of $z_{0}$.
(5) Suppose $z_{0}$ is a zero of $f^{\prime \prime}$. If $f^{\prime}\left(z_{0}\right)-a \neq 0$, then $F\left(z_{0}\right)=0 \neq d$, a contradiction.

Having established the properties claimed for $f$, we turn now to the proof of (i) and (ii).

Suppose then that $f$ is a transcendental meromorphic function. Since $T(r, f)=$ $T(r, 1 / f)+O(1), \bar{N}(r, f)=O(\log r)$, it follows from (2.5) that

$$
\begin{align*}
T(r, f) & \leq T\left(r, \frac{1}{f}\right)-m\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+\bar{N}(r, f)+O(\log r)  \tag{2.7}\\
& \leq T(r, f)-m\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+O(\log r)
\end{align*}
$$

so that

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right)=O(\log r) \tag{2.8}
\end{equation*}
$$

Put $Q(z)=\left(f^{\prime}(z)-a\right) / f(z)$. Since $\bar{E}_{f}(0)=\bar{E}_{f^{\prime}}(a)$, we have

$$
\begin{equation*}
T(r, Q)=N(r, Q)+m(r, Q) \leq \bar{N}(r, f)+m\left(r, \frac{f^{\prime}}{f}\right)+m\left(r, \frac{a}{f}\right) \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9), we have $T(r, Q)=O(\log r)$. Thus $Q$ is a rational function, whose poles are those of $f$. As $f^{\prime}(z) \neq b$, we may assume that

$$
\begin{equation*}
f^{\prime}(z)=b+\frac{e^{P_{1}(z)}}{P_{2}(z)} \tag{2.10}
\end{equation*}
$$

where $P_{1}$ and $P_{2}$ are polynomials, $\operatorname{deg} P_{1} \geq 1$. Since

$$
f(z)=\frac{f^{\prime}(z)-a}{Q(z)}=\frac{f^{\prime}(z)-b}{Q(z)}+\frac{b-a}{Q(z)}=\frac{e^{P_{1}(z)}}{Q(z) P_{2}(z)}+\frac{b-a}{Q(z)},
$$

we have from (2.10)

$$
\left(\frac{b-a}{Q(z)}\right)^{\prime}+\left(\frac{e^{P_{1}(z)}}{Q(z) P_{2}(z)}\right)^{\prime}=b+\frac{e^{P_{1}(z)}}{P_{2}(z)} .
$$

Since $\operatorname{deg} P_{1} \geq 1$, we must have

$$
\left(\frac{b-a}{Q(z)}\right)^{\prime}=b
$$

Thus there exists a constant $c$, such that

$$
Q(z)=\frac{b-a}{b(z-c)} .
$$

Clearly, $-n=\operatorname{Res}_{z=c}\left(f^{\prime}(z) / f(z)\right)=\operatorname{Res}_{z=c} Q(z)=(b-a) / b$; so $f$ satisfies the differential equation

$$
\begin{equation*}
w^{\prime}+\frac{n}{z-c} w=a . \tag{2.11}
\end{equation*}
$$

But all solutions of (2.11) are rational functions, which contradicts the assumption on $f$.

Hence $f$ must be rational. If $\tau=1$, it follows from (2.1) and (5) that $f^{\prime \prime}(z) \neq 0$. Since all poles of $f$ have the same (finite) multiplicity $n$ and $f^{\prime}(z) \neq b$, we have

$$
\begin{equation*}
f^{\prime}(z)=b-\frac{A}{P(z)^{n+1}} \tag{2.12}
\end{equation*}
$$

where $A(\neq 0)$ is a constant and $P$ is a polynomial all of whose zeros are simple. Then

$$
f^{\prime \prime}(z)=(n+1) A \frac{P^{\prime}(z)}{P(z)^{n+2}}
$$

Since $P$ and $P^{\prime}$ have no common zeros and $f^{\prime \prime}(z) \neq 0$, we must have $P^{\prime}(z) \neq 0$, i.e., $P$ is a linear polynomial. We may assume that

$$
\begin{equation*}
P(z)=(z-c) . \tag{2.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(z)=b(z-c)+\frac{A}{n(z-c)^{n}}+D \tag{2.14}
\end{equation*}
$$

Since

$$
f(z) f^{\prime \prime}(z)=\left(1+\frac{1}{n}\right)\left(f^{\prime}(z)-a\right)\left(f^{\prime}(z)-b\right)
$$

it follows from (2.12), (2.13) and (2.14) that

$$
n b(z-c)^{n+1}+n D(z-c)^{n}+A=(a-b)(z-c)^{n+1}+A .
$$

Thus $a=(n+1) b$ and $D=0$, i.e.,

$$
f(z)=b(z-c)+\frac{A}{n(z-c)^{n}}, \quad a=(n+1) b
$$

If $\tau \geq 2$, it follows from (5) that

$$
\begin{equation*}
\bar{E}_{f^{\prime \prime}}(0)=\bar{E}_{f^{\prime}}(a)=\bar{E}_{f}(0) \tag{2.15}
\end{equation*}
$$

Again utilizing Lemma 2, we obtain

$$
T(r, f)<\bar{N}(r, f)+N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f)
$$

where $S(r, f)=O(1)$. As

$$
N\left(r, \frac{1}{f}\right)=\bar{N}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{f^{\prime \prime}}\right), \quad \bar{N}(r, f)=\frac{1}{n} N(r, f), \quad n \geq 2,
$$

we have

$$
\left(1-\frac{1}{n}\right) T(r, f)=O(1)
$$

which contradicts $n \geq 2$.
This completes the proof of Lemma 5.

Lemma 6. Let $f$ be a nonconstant meromorphic function of finite order, all of whose poles are multiple, and let $a$ and $b$ be distinct nonzero numbers. If $\bar{E}_{f}(0)=$ $\bar{E}_{f^{\prime}}(a), f^{\prime}(z) \neq b$, and $f^{\prime \prime}(z) \neq 0$, then

$$
f(z)=b(z-c)+\frac{A}{n(z-c)^{n}}, \quad n \geq 2
$$

and

$$
a=(n+1) b
$$

Proof. Following the notation of [13, p. 105], let $N_{1)}\left(r, 1 /\left(f^{\prime}-a\right)\right)$ be the counting function for simple zeros of $f^{\prime}-a$ and let

$$
N_{(2}\left(r, \frac{1}{f^{\prime}-a}\right)=N\left(r, \frac{1}{f^{\prime}-a}\right)-N_{1)}\left(r, \frac{1}{f^{\prime}-a}\right)
$$

Clearly,

$$
\begin{gather*}
\bar{N}\left(r, \frac{1}{f^{\prime}-a}\right)=N_{1)}\left(r, \frac{1}{f^{\prime}-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-a}\right) \\
\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-a}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right) \leq 0 \tag{2.16}
\end{gather*}
$$

Since $\bar{E}_{f}(0)=\bar{E}_{f^{\prime}}(a), a \neq 0$, and $f^{\prime}(z) \neq b$, we have by Lemma 2,

$$
\begin{align*}
T(r, f) & \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f)  \tag{2.17}\\
& =\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{\prime}-a}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f)
\end{align*}
$$

It follows from (2.16) and (2.17) that

$$
\begin{equation*}
T(r, f) \leq \bar{N}(r, f)+N_{1)}\left(r, \frac{1}{f^{\prime}-a}\right)+S(r, f) \tag{2.18}
\end{equation*}
$$

Set

$$
F(z)=\frac{f(z) f^{\prime \prime}(z)}{\left(f^{\prime}(z)-a\right)\left(f^{\prime}(z)-b\right)}
$$

Then $F$ is an entire function. If $F$ is identically constant, Lemma 5 gives the desired result. Suppose, therefore, that $F$ is not constant. Then

$$
m(r, F)=m\left(r, \frac{f f^{\prime \prime}}{\left(f^{\prime}-a\right)\left(\overline{\left.f^{\prime}-b\right)}\right.}\right) \leq m(r, f)+m\left(r, \frac{f^{\prime \prime}}{\left(f^{\prime}-a\right)(f-b)}\right)
$$

Using

$$
\frac{f^{\prime \prime}}{\left(f^{\prime}-a\right)\left(f^{\prime}-b\right)}=\frac{1}{2(b-a)}\left(\frac{f^{\prime \prime}}{f^{\prime}-a}-\frac{f^{\prime \prime}}{f^{\prime}-b}\right)
$$

and the lemma on the logarithmic derivative ([6, Lemma 2.3] or [13, Lemma 1.3]), we have

$$
\begin{equation*}
m(r, F) \leq m(r, f)+S(r, f) \tag{2.19}
\end{equation*}
$$

where again $S(r, f)=O(\log r)$ and $S(r, f)=O(1)$ in case $f$ is a rational function.
Assume now that $z_{0}$ is a simple zero of $f^{\prime}-a$. As $\bar{E}_{f}(0)=\bar{E}_{f^{\prime}}(a), f\left(z_{0}\right)=0$, so that writing $f(z)=a\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots$, we have $f^{\prime}(z)=a+2 a_{2}\left(z-z_{0}\right)+\ldots$ and $f^{\prime \prime}(z)=2 a_{2}+\ldots, a_{2} \neq 0$. It follows that $F\left(z_{0}\right)=a /(a-b)$, so that

$$
\begin{equation*}
N_{1\rangle}\left(r, \frac{1}{f^{\prime}-a}\right) \leq N\left(r, \frac{1}{F-a /(a-b)}\right) \leq T(r, F)+O(1) \tag{2.20}
\end{equation*}
$$

Since $F$ is an entire function and all poles of $f$ are multiple, we have from (2.18), (2.19) and (2.20),

$$
T(r, f) \leq \frac{1}{2} N(r, f)+m(r, f)+S(r, f)
$$

i.e.,

$$
\begin{equation*}
N(r, f)=S(r, f)=O(\log r) \tag{2.21}
\end{equation*}
$$

Thus $f$ has only finitely many poles. By (2.17),

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \\
& \leq T\left(r, \frac{1}{f}\right)-m\left(r, \frac{1}{f}\right)+S(r, f) \leq T(r, f)-m\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

Thus

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right)=S(r, f)=O(\log r) \tag{2.22}
\end{equation*}
$$

From (2.21), (2.22) and $\bar{E}_{f}(0)=\bar{E}_{f^{\prime}}(a)$, we have, as in Lemma 5, that $f(z)$ is a rational function.

Thus

$$
\begin{equation*}
\bar{N}(r, f)=S(r, f)=O(1) \tag{2.23}
\end{equation*}
$$

i.e., $f$ is a polynomial. Since $f^{\prime}(z) \neq b, f^{\prime}$ is a constant. This contradicts $f^{\prime \prime}(z) \not \equiv 0$.

## III. Proofs of the theorems

Proof of Theorem 1. Assume $|a| \leq|b|$. (Otherwise, we consider the family $\mathcal{F}_{1}=$ $\{f-c: f \in \mathcal{F}\}$.) Suppose that $\mathcal{F}$ is not normal on $\Delta$. Then, by Lemma 1, we have $f_{n} \in \mathcal{F}, z_{n} \in \Delta$, and $\varrho_{n} \rightarrow 0+$ such that

$$
g_{n}(\zeta)=\frac{f_{n}\left(z_{n}+\varrho_{n} \zeta\right)}{\varrho_{n}} \rightarrow g(\zeta)
$$

locally uniformly with respect to the spherical metric, where $g$ is a nonconstant meromorphic function satisfying $g^{\#}(\zeta) \leq g^{\#}(0)=(|a|+1)+1=|a|+2$.

We claim that $\bar{E}_{g}(0)=\bar{E}_{g^{\prime}}(a), g^{\prime}(\zeta) \neq b$.
Indeed, suppose $g\left(\zeta_{0}\right)=0$. Since $g$ is not constant, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that

$$
g_{n}\left(\zeta_{n}\right)=\frac{f_{n}\left(z_{n}+\varrho_{n} \zeta_{n}\right)}{\varrho_{n}}=0 \quad(n \text { large enough }) .
$$

Since $\bar{E}_{f_{n}}(0)=\bar{E}_{f_{n}^{\prime}}(a)$, we have $g_{n}^{\prime}\left(\zeta_{n}\right)=f_{n}^{\prime}\left(z_{n}+\varrho_{n} \zeta_{n}\right)=a$. It follows that $g^{\prime}\left(\zeta_{0}\right)=$ $\lim _{n \rightarrow \infty} g_{n}^{\prime}\left(\zeta_{n}\right)=a$. Thus $\bar{E}_{g}(0) \subset \bar{E}_{g^{\prime}}(a)$.

Suppose now that $\zeta_{0}$ is a point such that $g^{\prime}\left(\zeta_{0}\right)=a$. If $g^{\prime}(\zeta) \equiv a$, then $g^{\#}(\zeta) \leq|a|$, which contradicts $g^{\#}(0)=|a|+2$. Thus, $g^{\prime}(\zeta) \neq a$, so there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that

$$
g_{n}^{\prime}\left(\zeta_{n}\right)=f_{n}^{\prime}\left(z_{n}+\varrho_{n} \zeta_{n}\right)=a
$$

and hence

$$
g_{n}\left(\zeta_{n}\right)=\frac{f_{n}\left(z_{n}+\varrho_{n} \zeta_{n}\right)}{\varrho_{n}}=0
$$

Thus $g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=0$. It follows that $\bar{E}_{g^{\prime}}(a) \subset \bar{E}_{g}(0)$, so that $\bar{E}_{g}(0)=$ $\bar{E}_{g^{\prime}}(a)$.

Finally, suppose that there exists $\zeta_{0}$ satisfying $g^{\prime}\left(\zeta_{0}\right)=b$. One sees easily that $g^{\prime}(\zeta) \not \equiv b$, so the previous reasoning shows that there exist $\zeta_{n} \rightarrow \zeta_{0}$, such that

$$
g_{n}^{\prime}\left(\zeta_{n}\right)=f_{n}^{\prime}\left(z_{n}+\varrho_{n} \zeta_{n}\right)=b
$$

and

$$
g_{n}\left(\zeta_{n}\right)=\frac{f_{n}\left(z_{n}+\varrho_{n} \zeta_{n}\right)}{\varrho_{n}}=\frac{c}{\varrho_{n}} .
$$

It follows that

$$
g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=\infty
$$

which contradicts $g^{\prime}\left(\zeta_{0}\right)=b$. Thus $g^{\prime}(\zeta) \neq b$.
If $a b=0$, then $a=0$ since $|a| \leq|b|$. Thus $\bar{E}_{g}(0)=\bar{E}_{g^{\prime}}(0)$, so all zeros of $g$ are multiple. By Lemma 3, the order of $g$ is at most 2. It follows from [1, Theorem 3] that $g$ has only a finite number of zeros. Hence, by Hayman's inequality ([5], [13, Theorem 4.5]), $g$ must be a rational function. Since $g^{\prime}(\zeta) \neq b$, it follows that

$$
g^{\prime}(\zeta)=b+o(1), \quad g(\zeta)=b \zeta+O(1), \quad \zeta \rightarrow \infty
$$

But $g(\zeta) / g^{\prime}(\zeta)$ is a polynomial, which must be linear; and this contradicts $\bar{E}_{g}(0)=$ $\bar{E}_{g^{\prime}}(0)$.

Suppose, therefore, that $a b \neq 0$. Let $\zeta_{0}$ be a pole of $g(\zeta)$. Since $g(\zeta) \neq \infty$, there exists a closed disc $K=\left\{\zeta:\left|\zeta-\zeta_{0}\right| \leq \delta\right\}$ on which $1 / g$ and $1 / g_{n}$ are holomorphic (for $n$ sufficiently large) and $1 / g_{n} \rightarrow 1 / g$ uniformly. Since $1 / g_{n}(\zeta)-\varrho_{n} / c \rightarrow 1 / g(\zeta)$ uniformly on $K$ and $1 / g$ is nonconstant, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that (for $n$ large enough)

$$
\frac{1}{g_{n}\left(\zeta_{n}\right)}-\frac{\varrho_{n}}{c}=0
$$

i.e.,

$$
\begin{equation*}
g_{n}\left(\zeta_{n}\right)-\frac{c}{\varrho_{n}}=\frac{f_{n}\left(z_{n}+\varrho_{n} \zeta_{n}\right)-c}{\varrho_{n}}=0 \tag{3.1}
\end{equation*}
$$

Thus $f_{n}\left(z_{n}+\varrho_{n} \zeta_{n}\right)=c$, so that

$$
\begin{equation*}
g_{n}^{\prime}\left(\zeta_{n}\right)=f_{n}^{\prime}\left(z_{n}+\varrho_{n} \zeta_{n}\right)=b \tag{3.2}
\end{equation*}
$$

It follows from (3.1) and (3.2) that

$$
\left.\left(\frac{1}{g(\zeta)}\right)^{\prime}\right|_{\zeta=\zeta_{0}}=-\frac{g^{\prime}\left(\zeta_{0}\right)}{g^{2}\left(\zeta_{0}\right)}=\lim _{n \rightarrow \infty}-\frac{g_{n}^{\prime}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}=0
$$

so that $\zeta_{0}$ is a multiple pole of $g(\zeta)$. Thus all poles of $g$ are multiple.
By Lemma 6, either $a=(n+1) b$, where $n$ is a positive integer, or $g^{\prime \prime}(\zeta) \equiv 0$. If $a=(n+1) b$, then $|a|>|b|$, which contradicts $|a| \leq|b|$. If $g^{\prime \prime}(\zeta) \equiv 0$, then $g(\zeta)=a\left(\zeta-\zeta_{0}\right)$, which contradicts $\bar{E}_{g}(0)=\bar{E}_{g^{\prime}}(a)$. This completes the proof.

Proof of Theorem 2. By Theorem 1, $\mathcal{F}_{1}=\{f-a: f \in \mathcal{F}\}$ is normal; hence, so is $\mathcal{F}$.

Proof of Theorem 3. Suppose $f$ is not a normal function. Then there exist $z_{n} \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} f^{\#}\left(z_{n}\right)=\infty$. Write $f_{n}(z)=f\left(z+z_{n}\right)$ and set $\mathcal{F}=\left\{f_{n}\right\}$. Then by Marty's criterion, $\mathcal{F}$ is not normal on the unit disc. On the other hand, since $\bar{E}_{f_{n}}(a)=\bar{E}_{f_{n}^{\prime}}(a)$ and $\bar{E}_{f_{n}}(b)=\bar{E}_{f_{n}^{\prime}}(b)$, Theorem 2 implies that $\mathcal{F}$ is normal. The contradiction proves the theorem.

## References

1. Bergweiler, W. and Eremenko, A., On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355373.
2. Chen, H. and Gu, Y., An improvement of Marty's criterion and its applications, Sci. China Ser. A 36 (1993), 674-681.
3. Clunie, J. and Hayman, W. K., The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117-148.
4. Frank, G. and Weissenborn, G., Rational deficient functions of meromorphic functions, Bull. London Math. Soc. 18 (1986), 29-33.
5. Hayman, W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
6. Hayman, W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
7. Minda, D., Yosida functions, in Lectures on Complex Analysis (Chuang, C.-T., ed.), pp. 197-213, World Scientific Publ., Singapore, 1988.
8. Mues, E. and Steinmetz, N., Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), 195-206.
9. Pang, X., On normal criterion of meromorphic functions, Sci. China Ser. A 33 (1990), 521-527.
10. Pang, X., Shared values and normal families, Preprint, 1998.
11. Pang, X. and Zalcman, L., Normal families and shared values, to appear in Bull. London Math. Soc.
12. Schwick, W., Sharing values and normality, Arch. Math. (Basel) 59 (1992), 50-54.
13. Yang, L., Value Distribution Theory, Springer-Verlag, Berlin-Heidelberg, 1993.

Received August 10, 1998
Xuecheng Pang
Department of Mathematics
East China Normal University
Shanghai 200062
P. R. China

Lawrence Zalcman
Department of Mathematics and Computer Science
Bar-Ilan University
52900 Ramat-Gan
Israel


[^0]:    (1) The first author was supported by NNSF of China approved no. 19771038 and by the Research Institute for Mathematical Sciences, Bar-Ilan University.

