Normality and shared values

Xuecheng $Pang(^1)$ and Lawrence Zalcman

Abstract. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ and let a and b be distinct values. If for every $f \in \mathcal{F}$, f and f' share a and b on Δ , then \mathcal{F} is normal on Δ .

I. Introduction

Let D be a domain in C. Define for f meromorphic on D and $a \in \mathbf{C}$

$$\overline{E}_f(a) = f^{-1}(\{a\}) \cap D = \{z \in D : f(z) = a\}.$$

Two functions f and g on D are said to share the value a if $\overline{E}_f(a) = \overline{E}_g(a)$.

A meromorphic function f on **C** is called a normal function if there exists a positive number M such that

 $f^{\#}(z) \le M.$

Here, as usual, $f^{\#}(z) = |f'(z)|/(1+|f(z)|^2)$ denotes the spherical derivative.

W. Schwick seems to have been the first to draw a connection between normality criteria and shared values. He proved the following theorem [12].

Theorem A. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ and let a_1 , a_2 , and a_3 be distinct complex numbers. If f and f' share a_1 , a_2 and a_3 for every $f \in \mathcal{F}$, then \mathcal{F} is normal on Δ .

In the present paper, we prove the following result.

Theorem 1. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ , and let a and b be distinct complex numbers and c a nonzero complex number. If for every $f \in \mathcal{F}$,

$$\overline{E}_f(0) = \overline{E}_{f'}(a), \quad \overline{E}_f(c) = \overline{E}_{f'}(b),$$

^{(&}lt;sup>1</sup>) The first author was supported by NNSF of China approved no. 19771038 and by the Research Institute for Mathematical Sciences, Bar-Ilan University.

then \mathcal{F} is normal on Δ .

The special case a=0, b=c=1 was proved in [10].

As an immediate consequence, we have the following result.

Theorem 2. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ , and let a and b be distinct complex numbers. If f and f' share a and b for every $f \in \mathcal{F}$, then \mathcal{F} is normal on Δ .

Earlier, Mues and Steinmetz had proved the following theorem [8].

Theorem B. Let f be a meromorphic function on \mathbb{C} and a_1 , a_2 , and a_3 be distinct complex numbers. If f and f' share a_1 , a_2 , and a_3 , then $f(z)=ce^z$.

We prove the following result.

Theorem 3. Let f be a meromorphic function on \mathbb{C} and a and b be distinct complex numbers. If f and f' share a and b, then f is a normal function.

Example. Let $f(z) = \tan z$. Then $f'(z) = 1 + \tan^2 z$, so f and f' share the values $\frac{1}{2}(1\pm i\sqrt{3})$. More generally, if f is a solution of the differential equation

$$w' = aw^2 + (b+1)w + c, \quad a, b, c \in \mathbf{C},$$

and the quadratic $y=ax^2+bx+c$ has two distinct roots, then f and f' share the values $\left(-b\pm\sqrt{b^2-4ac}\right)/2a$.

II. Lemmas

Lemma 1. ([11]) Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ all of whose zeros have multiplicity at least k, and suppose there exists $A \ge 1$ such that $|f^{(k)}(z)| \le A$ whenever f(z)=0, $f \in \mathcal{F}$. Then if \mathcal{F} is not normal, there exist, for each $0 \le \alpha \le k$,

(a) a number r, 0 < r < 1;

- (b) points z_n , $|z_n| < r$;
- (c) functions $f_n \in \mathcal{F}$; and
- (d) positive numbers $\rho_n \rightarrow 0$;

such that

$$\frac{f_n(z_n + \varrho_n \zeta)}{\varrho_n^{\alpha}} = g_n(\zeta) \to g(\zeta)$$

locally uniformly with respect to the spherical metric, where g is a meromorphic function on C such that $g^{\#}(\zeta) \leq g^{\#}(0) = kA+1$.

Remark. In fact, Lemma 1 holds also for $-1 < \alpha < 0$, [9]. For $-1 < \alpha < k$, the hypothesis on $f^{(k)}(z)$ can be dropped, and kA+1 can be replaced by an arbitrary positive constant [2].

In the sequel, we shall make use of the standard notation of value distribution theory, see [6] and [13].

Lemma 2. (Milloux, [6, Theorem 3.2, cf. Theorem 2.2]) Let f be a meromorphic function of finite order. Then

$$T(r,f) < \overline{N}(r,f) + N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f^{(k)}-b}\right) - N\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f),$$

where $b \neq 0$, ∞ and $S(r, f) = O(\log r)$. If f is a rational function, then S(r, f) = O(1).

Lemma 3. ([3]; cf. [7]) A normal meromorphic function has order at most 2. A normal entire function (Yosida function) is of exponential type.

Lemma 4. (Frank and Weissenborn [4], [13, Lemma 4.6]) Let f be a transcendental meromorphic function of finite order. Then for every positive number ε , we have

$$k\overline{N}(r,f) < (1+\varepsilon)N\left(r,\frac{1}{f^{(k+1)}}\right) + (1+\varepsilon)N_1(r,f) + S(r,f),$$

where $N_1(r, f) = N(r, f) - \overline{N}(r, f)$ and $S(r, f) = O(\log r)$.

Lemma 5. Let f be a meromorphic function of finite order and a and b be distinct nonzero numbers. Suppose that all poles of f are multiple, $\overline{E}_f(0) = \overline{E}_{f'}(a)$, and $f'(z) \neq b$. If there exists a nonzero number d such that

(2.1)
$$F(z) = \frac{f(z)f''(z)}{(f'(z) - a)(f'(z) - b)} \equiv d,$$

then

(i)
$$f(z)=b(z-c)+A/n(z-c)^n$$
, $d=1+1/n$;
(ii) $(n+1)b=a$;

here $A(\neq 0)$ and c are complex numbers and $n(\geq 2)$ is a positive integer.

Proof. Clearly, $f''(z) \neq 0$. We claim that f must satisfy the following conditions:

- (1) all poles of f have the same multiplicity $n \ (2 \le n \le +\infty)$;
- (2) the principal part of each pole has only one term;
- (3) f has at most finitely many poles;
- (4) all zeros of f'-a have the same multiplicity τ ; and
- (5) $\overline{E}_{f''}(0) \subset \overline{E}_{f'}(a) = \overline{E}_f(0).$

(1) Let z_0 be a pole of f of multiplicity n, so that

(2.2)
$$f(z) = \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-n+1}}{(z-z_0)^{n-1}} + \dots, \quad a_{-n} \neq 0.$$

A simple calculation gives

$$d = F(z_0) = 1 + \frac{1}{n}.$$

Since d is constant, n is independent of z_0 .

(2) From (2.2), we have

$$f'(z) = \frac{-na_{-n}}{(z-z_0)^{n+1}} + \frac{(-n+1)a_{-n+1}}{(z-z_0)^n} + \dots ,$$

$$f''(z) = \frac{n(n+1)a_{-n}}{(z-z_0)^{n+2}} + \frac{n(n-1)a_{-n+1}}{(z-z_0)^{n+1}} + \dots .$$

If $\{i:1 \le i \le n-1, a_{-i} \ne 0\} \ne \emptyset$, put $j = \max\{i:1 \le i \le n-1, a_{-i} \ne 0\}$. Now

$$f(z)f''(z) = d(f'(z) - a)(f'(z) - b) = \left(1 + \frac{1}{n}\right)(f'(z) - a)(f'(z) - b).$$

Comparing coefficients of $1/(z\!-\!z_0)^{n+j+2}$ on both sides, we have

$$n(n+1)+j(j+1) = 2dnj = 2(n+1)j,$$

whence $(n-j)^2 + (n-j) = 0$. This contradicts $1 \le j \le n-1$.

(3) Suppose f is a transcendental meromorphic function. From (1) and (2), there exists a transcendental meromorphic function g such that

(2.3)
$$f(z) = g^{(n-1)}(z),$$

where all poles of g(z) are simple. Utilizing Lemma 4, for $\varepsilon = \frac{1}{2}$, we have

$$n\overline{N}(r,g) < \frac{3}{2}N\left(r,\frac{1}{g^{(n+1)}}\right) + O(\log r).$$

It follows from (2.3) that

(2.4)
$$n\overline{N}(r,f) < \frac{3}{2}N\left(r,\frac{1}{f''}\right) + O(\log r).$$

From Lemma 2 and $f'(z) \neq b$, we have

(2.5)
$$T(r,f) < \overline{N}(r,f) + N\left(r,\frac{1}{f}\right) - N\left(r,\frac{1}{f''}\right) + O(\log r).$$

174

It follows from (2.4) and (2.5) that

$$T(r,f) < \left(1 - \frac{2n}{3}\right)\overline{N}(r,f) + N\left(r,\frac{1}{f}\right) + O(\log r).$$

Now f and g have finite order and $N(r, 1/f) \le T(r, f) + O(1)$, so

$$\left(rac{2n}{3}\!-\!1
ight)\!\overline{N}(r,f)\!=\!O(\log r).$$

Since $n \ge 2$, it follows that $\overline{N}(r, f) = O(\log r)$, so f(z) has at most finitely many poles.

(4) Let z_0 be a zero of f'-a. Then $f(z_0)=0$. Write

(2.6)
$$f(z) = a(z-z_0) + a_{\tau+1}(z-z_0)^{\tau+1} + \dots$$

As $f''(z) \not\equiv 0, 1 \leq \tau < +\infty$. It follows from (2.1) and (2.6) that

$$d=F(z_0)=\frac{a\tau}{a-b},$$

so τ is independent of z_0 .

(5) Suppose z_0 is a zero of f''. If $f'(z_0) - a \neq 0$, then $F(z_0) = 0 \neq d$, a contradiction.

Having established the properties claimed for f, we turn now to the proof of (i) and (ii).

Suppose then that f is a transcendental meromorphic function. Since T(r, f) = T(r, 1/f) + O(1), $\overline{N}(r, f) = O(\log r)$, it follows from (2.5) that

(2.7)
$$T(r,f) \leq T\left(r,\frac{1}{f}\right) - m\left(r,\frac{1}{f}\right) - N\left(r,\frac{1}{f''}\right) + \overline{N}(r,f) + O(\log r)$$
$$\leq T(r,f) - m\left(r,\frac{1}{f}\right) - N\left(r,\frac{1}{f''}\right) + O(\log r),$$

so that

(2.8)
$$m\left(r,\frac{1}{f}\right) = O(\log r).$$

Put Q(z) = (f'(z) - a)/f(z). Since $\overline{E}_f(0) = \overline{E}_{f'}(a)$, we have

(2.9)
$$T(r,Q) = N(r,Q) + m(r,Q) \le \overline{N}(r,f) + m\left(r,\frac{f'}{f}\right) + m\left(r,\frac{a}{f}\right).$$

From (2.8) and (2.9), we have $T(r,Q)=O(\log r)$. Thus Q is a rational function, whose poles are those of f. As $f'(z) \neq b$, we may assume that

(2.10)
$$f'(z) = b + \frac{e^{P_1(z)}}{P_2(z)},$$

where P_1 and P_2 are polynomials, deg $P_1 \ge 1$. Since

$$f(z) = \frac{f'(z) - a}{Q(z)} = \frac{f'(z) - b}{Q(z)} + \frac{b - a}{Q(z)} = \frac{e^{P_1(z)}}{Q(z)P_2(z)} + \frac{b - a}{Q(z)},$$

we have from (2.10)

$$\left(\frac{b-a}{Q(z)}\right)' + \left(\frac{e^{P_1(z)}}{Q(z)P_2(z)}\right)' = b + \frac{e^{P_1(z)}}{P_2(z)}$$

Since deg $P_1 \ge 1$, we must have

$$\left(\frac{b-a}{Q(z)}\right)' = b.$$

Thus there exists a constant c, such that

$$Q(z) = \frac{b-a}{b(z-c)}.$$

Clearly, $-n = \operatorname{Res}_{z=c}(f'(z)/f(z)) = \operatorname{Res}_{z=c}Q(z) = (b-a)/b$; so f satisfies the differential equation

But all solutions of (2.11) are rational functions, which contradicts the assumption on f.

Hence f must be rational. If $\tau = 1$, it follows from (2.1) and (5) that $f''(z) \neq 0$. Since all poles of f have the same (finite) multiplicity n and $f'(z) \neq b$, we have

(2.12)
$$f'(z) = b - \frac{A}{P(z)^{n+1}},$$

where $A(\neq 0)$ is a constant and P is a polynomial all of whose zeros are simple. Then

$$f''(z) = (n+1)A \frac{P'(z)}{P(z)^{n+2}}.$$

Since P and P' have no common zeros and $f''(z) \neq 0$, we must have $P'(z) \neq 0$, i.e., P is a linear polynomial. We may assume that

(2.13)
$$P(z) = (z-c)$$

Then

(2.14)
$$f(z) = b(z-c) + \frac{A}{n(z-c)^n} + D.$$

Since

$$f(z)f''(z) = \left(1 + \frac{1}{n}\right)(f'(z) - a)(f'(z) - b),$$

it follows from (2.12), (2.13) and (2.14) that

$$nb(z-c)^{n+1}+nD(z-c)^n+A=(a-b)(z-c)^{n+1}+A.$$

Thus a=(n+1)b and D=0, i.e.,

$$f(z) = b(z-c) + \frac{A}{n(z-c)^n}, \quad a = (n+1)b.$$

If $\tau \geq 2$, it follows from (5) that

(2.15)
$$\overline{E}_{f''}(0) = \overline{E}_{f'}(a) = \overline{E}_f(0).$$

Again utilizing Lemma 2, we obtain

$$T(r,f) < \overline{N}(r,f) + N\left(r,\frac{1}{f}\right) - N\left(r,\frac{1}{f''}\right) + S(r,f),$$

where S(r, f) = O(1). As

$$N\left(r,\frac{1}{f}\right) = \overline{N}\left(r,\frac{1}{f}\right) \le N\left(r,\frac{1}{f''}\right), \quad \overline{N}(r,f) = \frac{1}{n}N(r,f), \quad n \ge 2,$$

we have

$$\left(1-\frac{1}{n}\right)T(r,f)=O(1),$$

which contradicts $n \ge 2$.

This completes the proof of Lemma 5.

Lemma 6. Let f be a nonconstant meromorphic function of finite order, all of whose poles are multiple, and let a and b be distinct nonzero numbers. If $\overline{E}_f(0) = \overline{E}_{f'}(a), f'(z) \neq b$, and $f''(z) \neq 0$, then

$$f(z) = b(z - c) + \frac{A}{n(z - c)^n}, \quad n \ge 2,$$

and

$$a = (n+1)b.$$

Proof. Following the notation of [13, p. 105], let $N_{1}(r, 1/(f'-a))$ be the counting function for simple zeros of f'-a and let

$$N_{(2}\left(r,\frac{1}{f'-a}\right) = N\left(r,\frac{1}{f'-a}\right) - N_{(1)}\left(r,\frac{1}{f'-a}\right).$$

Clearly,

(2.16)
$$\overline{N}\left(r,\frac{1}{f'-a}\right) = N_{11}\left(r,\frac{1}{f'-a}\right) + \overline{N}_{(2}\left(r,\frac{1}{f'-a}\right),$$
$$\overline{N}_{(2}\left(r,\frac{1}{f'-a}\right) - N\left(r,\frac{1}{f''}\right) \le 0.$$

Since $\overline{E}_f(0) = \overline{E}_{f'}(a)$, $a \neq 0$, and $f'(z) \neq b$, we have by Lemma 2,

(2.17)
$$T(r,f) \leq \overline{N}(r,f) + N\left(r,\frac{1}{f}\right) - N\left(r,\frac{1}{f''}\right) + S(r,f)$$
$$= \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f'-a}\right) - N\left(r,\frac{1}{f''}\right) + S(r,f).$$

It follows from (2.16) and (2.17) that

(2.18)
$$T(r,f) \le \overline{N}(r,f) + N_{1}\left(r,\frac{1}{f'-a}\right) + S(r,f).$$

 Set

$$F(z) = \frac{f(z)f''(z)}{(f'(z) - a)(f'(z) - b)}.$$

Then F is an entire function. If F is identically constant, Lemma 5 gives the desired result. Suppose, therefore, that F is not constant. Then

$$m(r,F) = m\left(r, \frac{ff''}{(f'-a)(f'-b)}\right) \le m(r,f) + m\left(r, \frac{f''}{(f'-a)(f-b)}\right).$$

Using

$$rac{f''}{(f'-a)(f'-b)} = rac{1}{2(b-a)} igg(rac{f''}{f'-a} - rac{f''}{f'-b} igg)$$

and the lemma on the logarithmic derivative ([6, Lemma 2.3] or [13, Lemma 1.3]), we have

(2.19)
$$m(r,F) \le m(r,f) + S(r,f),$$

where again $S(r, f) = O(\log r)$ and S(r, f) = O(1) in case f is a rational function.

Assume now that z_0 is a simple zero of f'-a. As $\overline{E}_f(0) = \overline{E}_{f'}(a)$, $f(z_0) = 0$, so that writing $f(z) = a(z-z_0) + a_2(z-z_0)^2 + \dots$, we have $f'(z) = a + 2a_2(z-z_0) + \dots$ and $f''(z) = 2a_2 + \dots$, $a_2 \neq 0$. It follows that $F(z_0) = a/(a-b)$, so that

(2.20)
$$N_{1}\left(r,\frac{1}{f'-a}\right) \le N\left(r,\frac{1}{F-a/(a-b)}\right) \le T(r,F) + O(1).$$

Since F is an entire function and all poles of f are multiple, we have from (2.18), (2.19) and (2.20),

$$T(r, f) \le \frac{1}{2}N(r, f) + m(r, f) + S(r, f)$$

i.e.,

(2.21)
$$N(r, f) = S(r, f) = O(\log r).$$

Thus f has only finitely many poles. By (2.17),

$$T(r,f) \leq \overline{N}(r,f) + N\left(r,\frac{1}{f}\right) - N\left(r,\frac{1}{f''}\right) + S(r,f)$$
$$\leq T\left(r,\frac{1}{f}\right) - m\left(r,\frac{1}{f}\right) + S(r,f) \leq T(r,f) - m\left(r,\frac{1}{f}\right) + S(r,f).$$

Thus

(2.22)
$$m\left(r,\frac{1}{f}\right) = S(r,f) = O(\log r).$$

From (2.21), (2.22) and $\overline{E}_f(0) = \overline{E}_{f'}(a)$, we have, as in Lemma 5, that f(z) is a rational function.

Thus

(2.23)
$$\overline{N}(r,f) = S(r,f) = O(1),$$

i.e., f is a polynomial. Since $f'(z) \neq b$, f' is a constant. This contradicts $f''(z) \neq 0$.

III. Proofs of the theorems

Proof of Theorem 1. Assume $|a| \leq |b|$. (Otherwise, we consider the family $\mathcal{F}_1 = \{f-c: f \in \mathcal{F}\}$.) Suppose that \mathcal{F} is not normal on Δ . Then, by Lemma 1, we have $f_n \in \mathcal{F}, z_n \in \Delta$, and $\varrho_n \to 0+$ such that

$$g_n(\zeta) = rac{f_n(z_n + \varrho_n \zeta)}{\varrho_n} o g(\zeta)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function satisfying $g^{\#}(\zeta) \leq g^{\#}(0) = (|a|+1)+1 = |a|+2$.

We claim that $\overline{E}_g(0) = \overline{E}_{g'}(a), g'(\zeta) \neq b.$

Indeed, suppose $g(\zeta_0)=0$. Since g is not constant, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that

$$g_n(\zeta_n) = \frac{f_n(z_n + \varrho_n \zeta_n)}{\varrho_n} = 0$$
 (*n* large enough).

Since $\overline{E}_{f_n}(0) = \overline{E}_{f'_n}(a)$, we have $g'_n(\zeta_n) = f'_n(z_n + \varrho_n \zeta_n) = a$. It follows that $g'(\zeta_0) = \lim_{n \to \infty} g'_n(\zeta_n) = a$. Thus $\overline{E}_g(0) \subset \overline{E}_{g'}(a)$.

Suppose now that ζ_0 is a point such that $g'(\zeta_0) = a$. If $g'(\zeta) \equiv a$, then $g^{\#}(\zeta) \leq |a|$, which contradicts $g^{\#}(0) = |a| + 2$. Thus, $g'(\zeta) \neq a$, so there exist $\zeta_n, \zeta_n \to \zeta_0$, such that

$$g'_n(\zeta_n) = f'_n(z_n + \varrho_n \zeta_n) = a;$$

and hence

$$g_n(\zeta_n) = rac{f_n(z_n + arrho_n \zeta_n)}{arrho_n} = 0$$

Thus $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = 0$. It follows that $\overline{E}_{g'}(a) \subset \overline{E}_g(0)$, so that $\overline{E}_g(0) = \overline{E}_{g'}(a)$.

Finally, suppose that there exists ζ_0 satisfying $g'(\zeta_0)=b$. One sees easily that $g'(\zeta) \not\equiv b$, so the previous reasoning shows that there exist $\zeta_n \to \zeta_0$, such that

$$g'_n(\zeta_n) = f'_n(z_n + \varrho_n \zeta_n) = b$$

and

$$g_n(\zeta_n) = rac{f_n(z_n + arrho_n \zeta_n)}{arrho_n} = rac{c}{arrho_n}.$$

It follows that

$$g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = \infty,$$

which contradicts $g'(\zeta_0) = b$. Thus $g'(\zeta) \neq b$.

If ab=0, then a=0 since $|a| \leq |b|$. Thus $\overline{E}_g(0) = \overline{E}_{g'}(0)$, so all zeros of g are multiple. By Lemma 3, the order of g is at most 2. It follows from [1, Theorem 3] that g has only a finite number of zeros. Hence, by Hayman's inequality ([5], [13, Theorem 4.5]), g must be a rational function. Since $g'(\zeta) \neq b$, it follows that

$$g'(\zeta) = b + o(1), \quad g(\zeta) = b\zeta + O(1), \quad \zeta \to \infty.$$

But $g(\zeta)/g'(\zeta)$ is a polynomial, which must be linear; and this contradicts $\overline{E}_g(0) = \overline{E}_{g'}(0)$.

Suppose, therefore, that $ab \neq 0$. Let ζ_0 be a pole of $g(\zeta)$. Since $g(\zeta) \not\equiv \infty$, there exists a closed disc $K = \{\zeta : |\zeta - \zeta_0| \leq \delta\}$ on which 1/g and $1/g_n$ are holomorphic (for *n* sufficiently large) and $1/g_n \to 1/g$ uniformly. Since $1/g_n(\zeta) - \varrho_n/c \to 1/g(\zeta)$ uniformly on *K* and 1/g is nonconstant, there exist ζ_n , $\zeta_n \to \zeta_0$, such that (for *n* large enough)

$$\frac{1}{g_n(\zeta_n)} - \frac{\varrho_n}{c} = 0,$$

i.e.,

(3.1)
$$g_n(\zeta_n) - \frac{c}{\varrho_n} = \frac{f_n(z_n + \varrho_n \zeta_n) - c}{\varrho_n} = 0.$$

Thus $f_n(z_n + \varrho_n \zeta_n) = c$, so that

(3.2)
$$g'_n(\zeta_n) = f'_n(z_n + \varrho_n \zeta_n) = b.$$

It follows from (3.1) and (3.2) that

$$\left(\frac{1}{g(\zeta)}\right)'\Big|_{\zeta=\zeta_0} = -\frac{g'(\zeta_0)}{g^2(\zeta_0)} = \lim_{n \to \infty} -\frac{g'_n(\zeta_n)}{g^2_n(\zeta_n)} = 0,$$

so that ζ_0 is a multiple pole of $g(\zeta)$. Thus all poles of g are multiple.

By Lemma 6, either a=(n+1)b, where n is a positive integer, or $g''(\zeta)\equiv 0$. If a=(n+1)b, then |a|>|b|, which contradicts $|a|\leq |b|$. If $g''(\zeta)\equiv 0$, then $g(\zeta)=a(\zeta-\zeta_0)$, which contradicts $\overline{E}_g(0)=\overline{E}_{g'}(a)$. This completes the proof.

Proof of Theorem 2. By Theorem 1, $\mathcal{F}_1 = \{f - a : f \in \mathcal{F}\}$ is normal; hence, so is \mathcal{F} .

Proof of Theorem 3. Suppose f is not a normal function. Then there exist $z_n \to \infty$ such that $\lim_{n\to\infty} f^{\#}(z_n) = \infty$. Write $f_n(z) = f(z+z_n)$ and set $\mathcal{F} = \{f_n\}$. Then by Marty's criterion, \mathcal{F} is not normal on the unit disc. On the other hand, since $\overline{E}_{f_n}(a) = \overline{E}_{f'_n}(a)$ and $\overline{E}_{f_n}(b) = \overline{E}_{f'_n}(b)$, Theorem 2 implies that \mathcal{F} is normal. The contradiction proves the theorem.

References

- BERGWEILER, W. and EREMENKO, A., On the singularities of the inverse to a meromorphic function of finite order, *Rev. Mat. Iberoamericana* 11 (1995), 355– 373.
- CHEN, H. and GU, Y., An improvement of Marty's criterion and its applications, Sci. China Ser. A 36 (1993), 674–681.
- 3. CLUNIE, J. and HAYMAN, W. K., The spherical derivative of integral and meromorphic functions, *Comment. Math. Helv.* **40** (1966), 117–148.
- FRANK, G. and WEISSENBORN, G., Rational deficient functions of meromorphic functions, Bull. London Math. Soc. 18 (1986), 29–33.
- 5. HAYMAN, W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math. **70** (1959), 9–42.
- 6. HAYMAN, W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
- MINDA, D., Yosida functions, in *Lectures on Complex Analysis* (Chuang, C.-T., ed.), pp. 197–213, World Scientific Publ., Singapore, 1988.
- MUES, E. and STEINMETZ, N., Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), 195–206.
- PANG, X., On normal criterion of meromorphic functions, Sci. China Ser. A 33 (1990), 521–527.
- 10. PANG, X., Shared values and normal families, Preprint, 1998.
- 11. PANG, X. and ZALCMAN, L., Normal families and shared values, to appear in Bull. London Math. Soc.
- 12. SCHWICK, W., Sharing values and normality, Arch. Math. (Basel) 59 (1992), 50-54.
- 13. YANG, L., Value Distribution Theory, Springer-Verlag, Berlin-Heidelberg, 1993.

Received August 10, 1998

Xuecheng Pang Department of Mathematics East China Normal University Shanghai 200062 P. R. China

Lawrence Zalcman Department of Mathematics and Computer Science Bar-Ilan University 52900 Ramat-Gan Israel