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The p l u r i p o l a r  h u l l  o f  {w=e -1/~} 
Jan  Wiegerinck 

A b s t r a c t .  In this  pape r  we show t h a t  t he  p lur ipolar  hull  of  E = { ( z ,  w) ~ C 2 :w e 1/z, z•0}  

is equal  to E.  Th i s  implies t h a t  E is p lu r i th in  at  0, which  answers  a ques t ion  of Sadullaev.  T h e  

resul t  r emains  valid if e 1/~ is replaced by cer ta in  o ther  ho lomorphic  func t ions  wi th  an  essent ia l  

s ingular i ty  at  0. 

1. I n t r o d u c t i o n  

In [5] Sadullaev poses the following question. Consider the sets 

E~ = {(x, y) �9 c~:  y = ~ ,  x �9 (o, 1)} 

with a irrational, and 

E 2 : {(X,  y )  E C 2 :  y = e - I / x ,  x e (0,  1 )} .  

Are the sets Ej plurithin at the origin? Tha t  is, does there exist a plurisubharmonic 
function h on a neighborhood V of E j  such that  

h(0) > l imsup h(x). 
x-+0 X~Ej 

See also Bedford's survey [1]. In [3] Levenberg and Poletsky show that  E1 is plu- 
rithin at 0. In fact, they show something stronger: there exists a negative plurisub- 
harmonic function on the polydisk such tha t  hiE1 = - o c ,  while h ( 0 ) > - 1 .  

In this note we will prove the same result for E2 and a related class of pluripolar 

sets. Our proof follows the line of argument of [3]. For convenience of the reader 
we summarize in the next section the relevant parts  of [3], where all proofs may be 
found. 
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2. P r e l i m i n a r i e s  

2 .1 .  P l u r i p o l a r  h u l l s  

A set E C C  N is cal led pluripolar if t he re  exis ts  a p lu r i subha rmon ic  funct ion  

u ~ - e c ,  defined on a ne ighborhood  of E such t h a t  E c { z : u ( z ) - - o c } .  
There  are two k inds  of pluripolar hulls of a p lu r ipo la r  set E re la t ive  to  a neigh- 

b o r h o o d  D of E .  One defines 

E5 : N {z e D: u(z) : -o~}, 
u6~ 

where  Y is the  set of all p lu r i subha rmon ic  funct ions  on D which are - o c  on E;  next  

one defines 

E. N {~ ~D:u(~):-~}, 
u E 5  

where  ~ -  s t ands  for the  set of all nega t ive  p lu r i subha rmon ic  funct ions  on D which 

are -oo on E. 

* E Of course, E m C D" Moreover, these hulls m'e related as fo]]ows, see [3]. 

Theorem 1. Let D be pseudoconvez in C N and EcD pluripolar. Suppose D: 
~0 Uj 1 Dj, where Dj form an increasing sequence of relatively compact subdomains 

of D. Then 
O 0  

* U (ZnDj)5 E D  = i" 
j - 1  

Moreover, if D is hypereonvex, that is, D admits a bounded plurisubharmonic ex- 
haustion function, then 

E~ 0 (EADj)Dj" 
j--1 

2 .2 .  H a r m o n i c  m e a s u r e  

Let  E be a subse t  of a d o m a i n  D c C  '~. T h e  harmonic measure at  zED of E 

re la t ive  to  D is the  number  

w(z,  E ,  D)  = - sup{u(z )  :u  p lu r i subha rmon ic  on D and  u < - X E } .  

Here  X~E is the  charac te r i s t i c  funct ion  of E on D. 
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Notice that  this boils down to the usual concept of harmonic measure if N 1. 
The harmonic measure has the properties 

c o ( z , E , D ) =  inf co(z,V,D) 
Vopen 

E c V c D  

and 

(2.1) CO(Z, S 1 UE2, D) < co(z,/~1, D)@C0(Z, E2, D). 

Moreover, for open V there is the following important  duality result due to Polet- 
sky [4], 

1 
sup{m({t �9 (0, 2re): f ( e  it) �9 V})}, co(z, v, D)  = s 

where f runs over all analytic disks f :  {I~I_<I}-+D with f ( 0 ) = z ,  while m denotes 
Lebesgue measure. 

The harmonic measure is connected to pluripolar hulls. 

P r o p o s i t i o n  2. Let D be a hyperconvex domain in C N and let E c D  be 
pluripolar. Then 

E D = { z � 9  >0}.  

To compute co(z, E,  D) we will use some more results from [3]. 

L e m m a  3. Let D c C  N be a domain, E c D  and let A c D \ E  be closed and 
pluripolar. Then for" z � 9  we have co(z, E,  D)-co(z ,  E,  D \ A ) .  

P r o p o s i t i o n  4. Let D c C  N and G c C  M be domains and let h: D-+G be holo- 

morphic. Then for z � 9  and E G G  

(2.2) co(z, h - l ( E ) ,  D) <_ co(h(z), E,  G). 

Moreover, equality holds in (2.2) if the following additional requirements are met: 
The map h is a covering map; E admits a simply connected open neighborhood V 
such that h I (V)  is a disjoint union of connected open Vj; z E D  has the property 

(2.3) lim o3 z, , D 0. 
3 ~ ~  k - - j  

L e m m a  5. Let D be a relatively compact subdomain of a domain G c C  N. 
Suppose that E c D  is compact, V c G \ E  is a domain and z c V N D .  Put K = O V A D .  
If  w ( z , E , D ) = a  then co(w,E ,G)>a for some w c K .  
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3. Hulls  of  graphs at essential  s ingularit ies  

In this section we prove the main result. We start with a lemma which supple- 

ments Proposition 4 and is a variation of Lemma 3.2 in [2]. 

L e m m a  6. Let D c C  N and G c C  M be domains and let h: D--}G be a finite 
branched holomorphic covering. Then for zCD and E c G ,  

(3.1) ~(z, h -~ (Z), D) : ~(h(z),  E, C). 

Proof. Let zCD. In view of Proposition 4, we only have to prove the inequality 

co(z,h I(E),D)>co(h(z),E,G). Let s > 0  and let u be plurisubharmonic on D, 
u G--Xh I(E) and u(z)>-co(z, h -1 (E), D ) - c .  Define the function ~2 on G by 

a(w)= max 
zch ~ (w) 

Obviously, ~2 is plurisubharmonic outside the branch locus B of h. The set B is 

pluripolar and ~2 is bounded from above, therefore the function u* defined by 

(w) - m n  s u p  
V ~ % U  
veB 

is a plurisubharmonic extension of 41a\B to G. Clearly ~=u* on all of G. Moreover 

~G--xE.  Hence 

~ ( h ( z ) , E , C ) <  ~ ( h ( z ) ) < - u ( z ) < _ ~ ( z , h  I ( E ) , D ) + s .  

It follows that ~(z ,h  I(E),D)>co(h(z),E,G) and we are done. [] 

In order to keep close to [3], where a covering map in the first coordinate is 

used, we formulate our theorem with w as independent variable. The symbol M 

will denote a positive number or oo. Let ~ denote a branched cover of the Riemann 
sphere of the form 

9 
Z 

where c~, f lEC are not both equal to 0. 

T h e o r e m  7. Suppose that f is holomorphic on {Iwl <M}cC, f(0)r and let 
n be a positive integer. Let E={(z,w)EC2:z=qo(ef(~)/~'~), 0 < l w l < M }  and let f~ 
be the domain { (z ,w)eC2: lwl<M}.  Then E~=E.  

Pro@ In view of Theorem 1, it suffices to show that (END)D =END for every 

bidisk D compactly contained in ~. We may assume that M > I  and that  D equals 
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kU• where U is the unit disk in C and k > l .  Observing that  END is never 
empty, let A {z:lz-al<_b}cU , with b<lal, be contained in the image of U under 
the map w~-+~(e f (w) /~ ) .  Write E = ( E A D ) D .  Let r /be  so small that  the set 

F = { ( z , ~ )  : z = ~(ez(~)/~'~), z e ~ ,  7 <  [wl _< 1-~j} 

is compact and contains a relatively open subset of the analytic variety E.  Then 
we have F~ = E - .  

In view of Proposition 2, the proof is complete once we have shown that  

w((z, w), F, D) > 0 ~=~ (z, w) e E n D .  

Now the proof divides into two cases, namely a - ~ = 0  and c~.flr In the first 
case we may assume c~ 1, f l=0 and proceed as follows. 

First let (z, w)~D\E, z r  Let A=Dn{z=O}. Then by Lemma 3 

(3.2) ~((~, ~) ,  F, D) = ~((z, ~),  F, D \ / ) .  

Let H = { C : R e ( < 0 } c C ,  G HxU and h:G-+D\A, ((, w)~(ker w). The map 
h is a holomorphic covering map. Let also T={z:lz--al<b+e}cU\{O}, so that  
] a rgz -a rga ]< �89  on T. The set V=TxU is a simply connected neighborhood 
of F.  We have 

oo  

h-~(v)= [_J (T;• 

where T~ C { (: Re ( < 0, (2j - 1) 7r < Im  ~ - arg a < (2j + �89 ) 7c }. Then for the (ordinary) 
harmonic measure we have 

) �9 l , H  = 0 ,  
2 ~ o o  

Ill>_j 

and hence by Proposition 4 applied to the map ((,w)~-~(, also 

lira cJ(((,w),(l~l>jT[)xU, G)=O. 

Again by Proposition 4 and (3.2) 

(3.3) cv((r w), h -1 (F),  G) = w((ke r w), F, D). 

Now h 1 S oc ( )=Uj=_ Ej with 

Ej = {(~, w) E G:  ~+log k+27cij = f(w)/wn}. 
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For each j c Z  the function uj((,w)=logl((+logk+27rij)wn-f(w)l-logl( 1 / is 
bounded on G and equals - o c  precisely on Ej.  It follows that  

(3.4) ~(((, ~), Q ,  c)  - 0, 

if ((, w)eG\Ej .  By considering u((, w)=Ej~__~ 2-1Jluj ((, w), we conclude that 
for ((, w) E a \ h  -I(E) 

~((r ~), h -~ (E), C) = 0, 

hence by (3.3), if (z, w)CD\(EUA), then 

(3.5) w((z,w),F,D) =0 .  

Next, let (z,w)~END, zr Let ((,w)CEo be such that  h((, w)=(z, w). From 
(3.4) we obtain 

~(((, w), h -~ (F),  a )  = ~(((, w), to,  C), 

where Fo={((,w)eG:(w n f ( w ) = 0 ,  (EA0} and 

A0 = { (C  h - l ( A ) : - � 8 9  < I m ( - a r g a <  �89 

Now w((, A0, H)  is positive, but tends to 0, as Re ( - -+-ec .  From Proposition 4 we 
see again that  w(((, w), F0, G)---~0, as Re (--+oc, and therefore keeping in mind (3.5) 

(3.6) w( (z, w),F,D) --+ O, as Iz l~O.  

Thus far we have proved that  for every polydisk D compactly contained in 
f~, w((z,w),F,D)~+O, as IQ-+o. Now we apply Lemma 5 to deal with z=0.  Let 
w((0, w), F, D ) = c > 0 .  Let D' be a polydisk with DCD'C~2 and let V={(z ,  w)CD': 
Izl<r}, where r is so small that  w((z,w),F,D')<_�89 if Iz[=r. From Lemma 5 we 
see that  there is a point P in OVND ~ with w(P, F, D')>_c. It follows that  c=0. The 
conclusion is that  w((z, w), F, D ) > 0  if and only if (z, w ) E E  and the proof of the 
first case is finished. 

Next we assume that  c~-/~r We consider the map hi: (s w)~-+(~9(~), w) which 
defines a 2-sheeted branched covering h71(D)-+D. Let (z, w ) c D  and z = ~ ( ( )  for 
some (. By Lemma 6 we have 

w((z, w), F, D) - w(((, w), h7 ~ (F), h~ 1 (D)). 

Now h l l ( F ) = Q  UF2, where 

F~ - {(r ~,): r = e ;~lj~'", ~o(0 e A} 
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and 

Let l<M. From the first pm't of the proof it follows that  w((r w), F1, k U x lU)=0 
if and only if r  f(~)/~'~, hence also w((r 0 if and only if r 
e f(~)/~,~. Similarly, co((r w), F2, h{-~(D)) 0 if and only if ( # e (  b/~)f(~)/~'~. Using 

(2.1) we obtain 

w((z, w), F, D) <_ w( (~, w), F~, h~z(D))+w( (~, w), F2, h11(D)) : 0 

if and only if zT~p(ef(w)/~), i.e. (z, w)~EAD.  This completes the proof. [] 

Theorem 7 implies immediately that  the graph 

is plurithin at the origin. Typical graphs that  can be handled by the theorem are 
those of y=e -1/z and y s in( i /x) .  

Note added in pro@ I recently became aware of the following result of Zeriahi, 
[6], Proposition 2.1: Let E be a pluripolar subset of a pseudoconvex domain ft 
in C n. If  E~ = E *  and E is a Ga as well as an F~ set, then E is complete pluripolar 
in ft. 

It  is easy to see that  the graphs E that  we consider in Theorem 7 are Ga 
and F#. Theorem 7 gives E E~, therefore E is complete pluripolar in ~, that  is, 
there exists a plurisubharmonie function u on f~ such that  

E :  {p �9 : 
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