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On the Cauchy problem for finitely degenerate 
hyperbolic equations of second order 

Ferruccio Colombini, Haruhisa Ishida and Nicola Orrfi 

A b s t r a c t .  This paper is devoted to the study of the Cauchy problem in C ~ and in the 
Gevrey classes for some second order degenerate hyperbolic equations with time dependent coef- 
ficients and lower order terms satisfying a suitable Levi condition. 

(1) 

1. I n t r o d u c t i o n  

In this paper we shall consider the Cauchy problem 

f i ( t ,  cot,co~)u(t,x)=O, 
,[ u(o, x) = ~o(x), 
| 

( o ,~(o,  x) = ~ (z),  

on [0, T] x R~, where 

L(t, COt, COx) : coy-L2(t, COx)- L1 ( t, COx), 

L2(t, cO~) ~ 2 = a~j(t)O;,x~, 
i , j= l  

n 

Ll (t, cO=) = E bj(t)cO=~, 
j = l  

under the weak hyperbolicity condition 

(2) ~ a~j(t)~j >0 for all (t ,~) c R •  "-1 
i , j= l  
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Let us define 

(3) a(t, () = a~5 t~) T~F' 
i,5=1 

(4) b(t,() = ~ ' b s ( t  . 
j = l  

We shall assume from now on that  a~seC~(R) and •eC~ It is well known 
that  the Canchy problem (1) can fail to be C~-well posed, even if bj-O, due to too 
fast oscillating coefficients (see [CS]); or, on the other hand, when the Levi condition 
is not satisfied by L1, even if the coefficients ai5 are constants (see, e.g., [M]). 

On the contrary, if L2 is effectively hyperbolic, then (1) is C~-well posed for 
any choice of L1 (see [N2] and its bibliography). We observe that  in this simple 
case the effective hyperbolicity of L2 means that  if for some (t-, ~)E [0, T] x S '~- 1 we 
have a(f, ~)=0, then 

(51 o~ar ~) > 0. 

The aim of this paper is to study the Cauchy problem (1) when the condition 
(5) is weakened to an assumption of finite degeneracy, and under a very precise Levi 
condition on the lower order term L1. More precisely, we shall prove the following 
theorem. 

T h e o r e m  1. Assume that 

(6) ~l~a( t ,~) ly~O for all (t,~)e[O,T]xS n-1. 
5=0 

Let k be the minimal integer satisfying 

k 

(7) ~ I~a(t,~)l r  for all (t,~) �9 [0,T] x S  n - ' .  
5=0 

Suppose that there exist C > 0  and 7 �9  [0, �89 such that 

Ib(t,~)l < Ca(t,~)~ for all (t,~) �9 [0, T] xS  "-1. (8) 

Then, if 

(9) ' 7 + l / k <  �89 

the Cauchy problem (1) is well posed in .y(8) for 

(10) s ~_~ 1 1-'T 
~ -  ('1,+ l /k )"  
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On the contrary, if 

(11) ~/+ l / k  > �89 

the Cauchy problem (1) is C~176 posed. 

We can easily show that  under the assumption (6), some k exists for which (7) 
is satisfied, thanks to the regularity of a(t, ~) and the compactness of [0, T] • S n-1. 
We denote by 7(s) the (projective) Gevrey class with exponent s (_>1), that  is, the 
set of all functions f c C ~ ( R  ~) such that  for any r > 0  there is a constant C r > 0  
fulfilling 

sup ]O~f(x)l < Crrl~l(~!) ~ 
x E R  n 

for every multi-index c~E Z+. 
We remark that  some hyperbolic second order equations finitely degenerating 

at a point are studied in [K] and in [IO], who consider the coefficients depending 
also on x, but under more restricted conditions. More precisely, in [IO] it is proved 
that  if 

(12) a(t, ~) _> 6t 21, 

(13) [b(t, <_ c(t  + ) 

for some positive constants 6 and C, and for l and v with 0 < u < l - 1 ,  then the 
Cauchy problem (1) is "y(~) well posed for s < s o = ( 2 l - v ) / ( l - u - 1 ) .  It is easy to see 
that  if (12) and (13) are satisfied, then we can apply Theorem 1 with k=21 and 
"y=v/21, obtaining the same Gevrey exponent; but, conversely, the assumptions of 
Theorem 1 are more general. In fact, under the hypothesis (7) an inequality like 
(12) is not true in general, even for t near 0; moreover the condition (13) is more 
restricted than (8), as shown by the following examples. 

Example 1. Let us consider, in the case n=2 ,  the following coefficients: 

al l ( t )=t  6, a12(t)=a21(t)=O, a22(t)=t 2, 

bl (t) = t, b2(t) = t 1/3. 

Owing to Theorem 1 with k=6,  ~ = ~ ,  we know that  the Cauchy problem (1) is well 
posed in -/(') for s_<5, meanwhile by Theorem 1.2 of [IO] we get s <  ~ .  

Example 2. Let us now consider: 

a11(t)=t 4, a12(t)=a21(t)=O, a22(t)=t 2, 

bl(t) = t ,  b2(t) = t  1/2. 

In this case (11) is fulfilled and so (1) is C~-well posed. 
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Finally we remark that in the case of one space variable, if (12) is satisfied, 
then the Gevrey exponent given by Theorem 1 coincides with the one of [IO], see 
the example below, studied in [If. 

Example 3. For the operator 

it is proved in [If that  the Cauchy problem (1) is well posed in 7 (8) if and only if 
S<So=(2l-v) / ( l -v-1) .  

The techniques used in the present paper are in part similar to those of [CDS] 
and [CJS], but we also require the following precise estimates; their proofs are 
inspired by [N1]. 

L e m m a  1. Let us consider a(t,~) defined by (3), satisfying (7). Then there 
exist M and ~o positive such that for any eC(0,e0] we have 

(14) fo T IOta( t, ~)1 1 a(t, ~)+e dt <_ M log -'e 

L e m m a  2. Let us consider a(t, ~) defined by (3) and let k be given by (7). 
Then for any ~?>_0 there exist M~ and Eo positive such that for any eE(0,e0] we 
have 

fo T (a(t,~)+z)'71 { Mu, 1 if~?<l/k, 
dt < Unlog  , if n= l/k, 

Mne 1~k-n, if 77 > 1/k. 

2. P r o o f s  o f  L e m m a s  1 and  2 

Proof of Lemma 1. Let us fix (t,~)C[0, T ] x S  n-1 and let k ~ k  be an even 
integer such that 

(15) ~a( t - ,~)=O,  j = 0 , . . . , k - 1 ,  and Otka(t,~)#O. 

Then, by virtue of the Malgrange preparation theorem (see, for instance, [HI, The- 
orem 7.5.5), we can write 

(16) a(t,~) =e(t,~)[(t-~)k+bl(~)(t-~)k-l+...+b~(~)] =e(t,~)p(t,~) 
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for (t,~)EU={(t,~)ERI+":It-~[<5 , where e(t,~) and bj(~) axe C ~ 
functions with e({, ~)#0 and bj(~)=0, j = l ,  ..., k, respectively. Further, due to (2), 
we may suppose that  e(t, ~) is positive in U and so that  p(t, ~) is nonnegative in U. 
For (t, ~)EU we can factorize 

(17) p(t, ~) = ( t - t l  (~) )(t-t2(~) ) ... (t-tk(~) ). 

Let Co, C1, C2, C3 and Ca be positive constants satisfying 

Co<e(t,~)<C1, IOte(t,~)l<_C2, max_ltj(~)l_<C4 
j=l , . . . ,k  ~=~ i#j 

in V. Then we have, for 1~-~1<5_ (< ~T) 1 

(18) 

Here, noting that  

[t+z IOta(t,~)l I t + '  ]Otelp d t + / t :  6 e[Otp[ dt 
Jr--5 a(t,~)+edt<--J~-~ ep+e - ep+e 

C2 C1 [~+~ IOtpl 
<- -Coo T + -Coo j {_,~ p + E / Co 

k 
O t p ( t ,  = II(t- 

j=l iCj 

and taking 5<Ca and eo<CoCa(T+2Ca)<l/2eo, we find 

dt 
J { - z  p+z/-------~o dt < - It-tj(~)l+r j = l  t-- 

- -  dt .  

T+5 

3=1J-~ It-Ret~l+e/CoC3 dt 

(19) fT+2C4 1 
< k --/-2c4 [tl +e/CoC3 dt 

]fT+2C" 1 dt = 2k log ( 1 +  COC3(T+2C4)) 
-<2ks0 t+~/CoC3 c 

1 
< 4k log - 

for cE (0, E0]. Therefore, by repeating the calculations in (18) and (19), thanks to 
the compactness of S n-l,  we obtain 

[~+~ IOta(t, ~)1 1 
t_j~_~ a ( t , ~ ) + r  dt  < M l o g  -r 

for some 5>0, M > 0 ,  all ~ES '~-1 and r162 (r is retaken small enough, if 
necessary). Finally we conclude (14) due to the compactness of [0, T]. [] 
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Proof of Lemma 2. Let ~/>0 be fixed. We also fix (t, ~) e [0, T] x S  n-1 and, with 
the same notation as in the proof of Lemma 1, we can deduce 

[ ~+~ 1 

.~_~ (a(t,,~)+~)', 

(20) 

1 ~+~ 1 
dt<-~o ~_ - ~ (p(t,~)+e/Co)" dt 

1 ~ / ~ + 6  1 dt 
< ~ J~-~ (It-~tjl~+~lCo), j=l 

1 fT+C4 1 
< ~ookJ_c, (itl~+e/Co)n dt 

< _2 k( /a  1 ) 
- c~' \ Jo  (tk+e/Co)" dt+T+C4 

2 / /  --C \l/k--rt f l  1 dt+T+C4) 

Hence, by using a compactness argument as at the end of the proof of Lemma 1, 
Lemma 2 immediately follows from (20). [] 

3. P r o o f  o f  T h e o r e m  1 

First of all, if k=0,  then L is strictly hyperbolic; moreover obviously k is even 
and so we may assume that  k>2.  Since the case s=l  is well known (see [CDS]), 
we suppose that  s>  1 and u0 and ul are compactly supported. Then the Cauchy 
problem (1) has a unique solution uEC2([O,T];'D (s)') for l < s < 2  (see [CJS]). Here 
:D (s)' is defined as the dual space of :D (s). Thus we need only check the regularity 
of the solution with respect to x variables. For this purpose, denoting the partial 
Fourier transform of u in x by 

v(t, ~) = / R -  u(t, x) exp(--vrL--f x.~) dx, 

it will be sufficient to estimate the growth order of v(t, ~) with respect to ~. The 
function v(t,~) solves the ordinary differential equations in t, depending on the 
parameter ~, 

(21) 02v+a(t, ~)1~12v + v/E-f b(t, ~)I~l v = O. 

With the same method in [CJS], we define 

a,(t ,~)  = a ( t , ~ ) + E  
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and introduce the e-approximate energy 

(22) E,(t,  ~) = a,(t,  01~121vl2 + 10~vl 2. 

Differentiating E~(t, ~) in t and taking (21) into account, we enjoy 

d E,(t,~) < ( IOta(t'~)l EI~I Ib(t,~)l ~E,(t,~) 
Ja(t ,  ~)+e ] 

and, Gronwall's inequality and (8) yield 

(23) 
( f o  fo T 1 T lata(t,5)l dt+elSI Ee(t,~)<Ee(O,~)exp a(t,~)+e ~/a(t,~)+e 

T C dt) +~o ( ~ ( t , ~ ) + e ) u ~ - ~  " 

dt 

Here, putting ]~l=e-~, we distinguish two cases. 
(i) If ~/+l/k> 1, choosing a=(k+2)/2k, we obtain by Lemmas 1 and 2 

(24) E~ (t, ~) < E~ (0, ~) exp(C log I~1) 

for some C > 0  and for I~l large enough. 
(ii) If ~ /+ l /k<  1, then we select a = l - 7  and hence we get by Lemmas 1 and 2 

(25) E~(t, ~) < E~(0, ~) exp(C log I~I +CISI [1/2-('r+l/k)J/(1-'r)) 

for some C>0  and for I~1 large enough. 
Thus we arrive at the conclusion from (24) and (25) by using arguments similar 

to the ones in [CDS] and [CJS]. [] 
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