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On surfaces in p6 with no trisecant lines 

Sandra Di Rocco and Kristian Ranestad 

Dedicated to the memory of F. Serrano 

Abstract. Examples of surfaces in p6 with no trisecant lines are constructed. A partial 
classification recovering them is given and conjectured to be the complete one. 

O. I n t r o d u c t i o n  

Surfaces in p6 are expected to have a 1-parameter family of trisecant lines. 

More precisely, for a smooth surface, there is a 1-dimensional cycle class in the 

Grassmannian of lines in p6, defined in terms of the invariants of the surface, 

representing the set of lines with a subscheme of length at least 3 in common 

with the surface (cf. [12]). Of course, a particular surface may actually have a 

2-dimensional family of trisecants or contain infinitely many lines, in which case 

the 1-dimensional class has no obvious meaning. On the other hand, if a surface 

contains no lines and has no trisecants at all, then the class of the trisecants must 

be the 0-class. The 1-dimensional cycle of trisecants has two numerical invariants. 

These are its degree with respect to the Plficker embedding and the number of 

tangential trisecants. These invariants are effective also for surfaces which contain 

a finite number of lines. In this case there is a contribution of each line to the 

number of tangential trisecants computed by Le Barz. 

It is not hard to think of examples of smooth surfaces in p6 with no trisecant 
lines. Any surface cut out by quadrics cannot, by Bezout, have any trisecant lines. 

It is harder to find examples which are not cut out by quadrics. On the other hand, 

the invariants computed by Le Barz give, when set equal to zero, relations among 

the invariants of surfaces cut out by quadrics. Thus they provide a tool to classify 

these surfaces. The aim of the paper is twofold. First we use standard techniques to 

construct surfaces cut out by quadrics. Although the variety of constructions may 

seem ad hoc, they are all very classical. Surfaces without trisecants which are not 
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cut out by quadrics, are subsequently constructed. Their  invariants are computed 
using the formulas of Le Barz, but we have chosen to present the construction of 
these surfaces first. This emphasizes our preference for constructing examples. 

Secondly we use the numerical relations to prove tha t  our list of examples cover 
all possible sets of invariants for surfaces cut out by quadrics, and surfaces with no 

lines and no proper trisecants. We do not, however, claim tha t  our examples are 
the generic members  of the irreducible components of the corresponding Hilbert 
scheme of surfaces, al though we believe they are. Our main result is the following 
theorem. 

T h e o r e m  0.1. Let S be a smooth surface embedded in p6  with no trisecant 

lines. I f  S is cut out by quadrics or contains no lines, it belongs to the list given in 
Table 1. 

In the last section we analyze more closely the case when the surface contains 
lines and prove the following result. 

Proposition 0.2. Let S be a smooth surface embedded in p6 with no trisecant 

lines. Unless S has a line L with L 2 < - 4 ,  or a finite number of disjoint ( -1)- l ines ,  
each one meeting some other line L p on the surface with (L ')2~_-2,  and S is not 

an inner projection from pT, the surface belongs to the list in Table 1. 

The study of varieties embedded in p N  with no trisecant lines is a very classical 
problem in algebraic geometry. The simplest case, i.e. the case of space curves goes 
back to Castelnuovo. 

For surfaces the problem has been studied in codimension 2 and 3. In [2] Aure 
classifies smooth  surfaces in 1 )4 with no trisecant lines through the general point 
in the space. In [3] Bauer classifies smooth surfaces in p5  with no trisecant lines 
through the general point on the surface. 

In this vein, the next step would be a classification of surfaces in p7  without 
trisecants. The expected cycle of trisecants is in this case 0-dimensional and has 
only one numerical invariant; its degree. Therefore this classification seems much 
harder than  the others. 

The  authors would like to thank the Mittag-Leffler Inst i tute for its support  and 
its warm environment, which made this collaboration possible and most  enjoyable. 

0.1. Notation 

The ground field is the field of complex numbers C. We use s tandard notat ion in 
algebraic geometry, as in [10]. The  surface S is always assumed to be  a nonsingular 
projective surface. 
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Table 1. 
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Surface Degree Linear system Example 

p2 1, 4 Op2(1), Op2(2) 1.1 

Rational scroll 2, 3, 4, 5 Eo+af,  2_<E~+2a_<4 1.7 

Elliptic scroll 7 E0 +3f ,  E~ = 1 1.15 
l t Blt(p2), t=5, 4, 3 4, 5, 6 3 -~'~i=l Ei 1.8 

BI6(P 1 x P  I) 6 (2, 3)-~-'~ =I E~ 1.9 

' E- 1.10 B15(P 1 x P  1) 7 (2, 3) - Y~ =1 , 

B17(P 2) 8 61-~-~7_1 2Ei 1.2 

Bls(P 1 x e  1) 8 (2, 4 ) -  ~-~'9=1Ei 1.11 

Bls(P 2) 8 4 / -  ~-~is_l Ei 1.12 

K3 8 1.3 
3 9 nl9(P 1 •  9 ( 3 , ) - Z i = l  Ei 1.13 

B l n ( e  2) 10 6 l -Z5_1  9E7"--~'~11 S.  ~ ,  l-~j=6 ~ 1.14 

K3 10 1.4 

Bll(K3) 11 p*(H)-E  1.16 

Bll l (P 2 ) 12 9 / - - ~ 5  1 11 3E, - ~j=6 2Ej 2.2 

_BII(K3) 12 p * ( ~ ) - 2 E  2.1 

Regular elliptic, p9=2 12 1.5 

Abelian 14 (1, 7)-polarization 2.3 

General type 16 1.6 

By abuse of notation 7-/s will denote the hyperplane section and the line bundle 
giving the embedding, with no distinction. 

When S is the blow up of So in n points, S will be denoted by Bln(S0). 

1. C o n s t r u c t i o n  o f  s u r f a c e s  d e f i n e d  by  q u a d r i c s  

In this and the following section we present a list of examples, to show that 
surfaces without trisecant lines do exist. The reader may skip to Section 3 to find the 
argument that these examples cover precisely the possibilities of Theorem 0.1 and 
then come back to have a proof of the existence. We choose to present the examples 
first since we find the construction of these surfaces, especially the Examples 2.1 
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and 2.2, particularly interesting on their own. 

We start  off with the more familiar examples. If S is a surface whose ho- 
mogeneous ideal I s  is generated by quadrics then clearly it cannot have trisecant 
lines. 

1.1.  Surfaces  de f ined  by  quadr i c s  w i t h  no  l ines  

Consider surfaces with no lines. These surfaces all move in a family in the 
Hilbert scheme, and in some cases they may degenerate to smooth surfaces contain- 
ing lines but  still without proper trisecants. This is in particular the case for the 
Examples 1.3-1.6. 

The first examples in our list are the following ones. 

Example 1.1. (The Veronese surface in ps . )  This is p2  embedded in p5  by 
the line bundle Op2 (2). 

Example 1.2. (Del Pezzo surfaces of degree 8.) Let S be the blow up of p2 
in seven points embedded in p6 by the linear system I-2KsI. The line bundle 
7-ls=-2Ks is 2-very ample and thus embeds S without trisecant lines. See [7] for 
the definition and the proof of the 2-very ampleness. One can construct this surface 
in p6 as the intersection of the cone over a Veronese surface in p5 with a quadric 
hypersurface. Thus the surface is defined by quadrics, and it has no lines as soon 
as the quadric does not contain the vertex of the cone. These surfaces are defined 
by seven quadrics in p6. 

Example 1.3. (Minimal nontrigonal K3-surface of degree 8.) Consider a K3- 
surface of degree 8 in p5 such that  the general hyperplane section is not trigonal. It 
is the complete intersection of three quadrics, and the general one has Picard group 
generated by the hyperplane section so it has no lines. 

Example 1.4. (Minimal nontrigonal K3-surfaces of degree 10.) A nontrigonal 
K3-surface of degree 10 in p6  is a linear section of the Plficker embedding of the 
Grassmannian Gr(2, 5) intersected with a quadric hypersurface. The surface is 
defined by quadrics, in fact six quadrics, and the general one has Picard group 
generated by the hyperplane section, so it has no lines. These surfaces may also 
be constructed by linkage. Consider a rational surface Bl r (P  2) embedded in p5 by 
the line bundle 41-2E-~6_1 Ei. This surface is defined by four quadrics in p5 
(see Example 1.9), and in a complete intersection (2, 2, 2, 2) in p6  it is linked to 
K3-surfaces of the above type. 
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Example 1.5. (Two families of elliptic surfaces of degree 12.) Let V be a 
rational normal 4-fold scroll of degree 3 in p6  and consider S=VNQ1NQ2, where 
Q1 and Q2 are two general quadrics, which do not have any common point in the 
singular locus of V. Note tha t  this is possible only if the cubic 4-fold has vertex a 
point or a line. This gives us two separate cases, of which the lat ter  is a degeneration 
of the former. In both cases the intersection of V with the two quadrics is a smooth 
surface. Now K y = - 4 7 - / + Y ,  where V is the Pa-bundle  over p1 which is mapped  

to V by 7-/, and Y is a member  of the ruling. Then Ks=Y:Is gives a fibration of 
elliptic quartic curves without multiple fibers onto p1.  

The surface S does not have proper trisecant lines since it is defined by quadrics. 
Moreover, S cannot contain lines, for a general choice of quadrics Qi- In fact, if 
there were a line LCS, then LCV and LCQi. The biggest component  of the Fano 
variety of lines in V is the 5-dimensional component  of lines in the pencil of p3 ' s .  
Since a line imposes three conditions on quadrics, we need at least a 6-dimensional 

family of lines on V in order for two general quadrics to contain a line on V. Thus 
we have constructed two families of elliptic surfaces of degree 12, one on the cubic 
4-fold cone with vertex a point, and one on the cubic 4-fold cone with vertex a 
line. Note tha t  the lat ter  is a specialization of the former. In the first case any two 
canonical curves span p6,  while in the other case any two canonical curves span 
a pS. These surfaces are defined by five quadrics in p6.  

One may also construct these surfaces by linkage. Consider a Del Pezzo surface 
of degree 4 embedded in p4.  This surface is a complete intersection of two quadrics 
in pa ,  and in a complete intersection (2, 2, 2, 2) in p6  it is linked to an elliptic 
surface of the above type. 

Example 1.6. (Complete intersections o f f  our quadric hypersurfaces in p6.)  
This is a degree 16 surface of general type. Since the Fano variety of lines in a quadric 
has codimension 3 in the Grassmannian of lines in p6  and this Grassmannian has 
dimension 10, there are no lines in a general complete intersection of four quadrics. 
A similar argument is made more precise in Section 2.1 below. 

1.2. C o n s t r u c t i o n  o f  s u r f a c e s  w i t h  l ines  

We proceed to construct examples of surfaces containing lines but with no 
proper trisecant lines. In all the cases below the surfaces are defined by quadrics, so 
naturally there are no proper trisecant lines. In fact, we do not know of any surface 
with lines on it, but with no proper trisecant, which is not defined by quadrics. 
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1.2.1.  R a t i o n a l  surfaces  

Example 1.7. (Rational scrolls.) Natural examples of surfaces with at least a 
one dimensional family of lines are given by surfaces of minimal degree, i.e. the 
rational normal scrolls of degree N - 1  in pN,  3 < N < 6 .  

Example 1.8. (Del Pezzo surfaces.) The Del Pezzo surfaces of degree 4, 5 and 6 
form natural families of surfaces defined by quadrics. They contain a finite number 
of lines, which are all (-1)-lines. 

In the following we construct the other rational surfaces occurring on our list. 

Example 1.9. (Conic bundles of degree 6.) Consider a cubic 3-fold scroll V c P  5 
and let S =  Vn  Q be the surface of degree 6 given by the intersection with a general 
quadric hypersurface. S is smooth as soon as Q avoids the vertex of V. Therefore 
we have two cases, when V is smooth and when V is the cone over a smooth cubic 
surface scroll in p4. 

Let V~ be the p2-scroll which is mapped to V by 7-/, and let ~" be a member 
of the ruling. By abuse of notation we denote the pullback of S to V by S, it is 
isomorphic anyway. Then by adjunction 

Ks = ( - 3 " / / + Y + 2 7 - / )  Is  = -~ls+~:ls 

and thus (Ks)2=2 and Ks.7-/s = - 4 .  Furthermore pg(S)=q(S)=0, so S is rational. 
The ruling of the scroll defines a conic bundle structure on S, and there are six 
singular fibers, i.e. twelve (-1)-l ines in the fibers since K~=2. Let S=BI6(Fs)  and 
7-ls=2Eo+af-~-:9_l Ei, where Fs is a Hirzebruch surface and E0 a section with 
E2=-s. Numerical computations yield a : 3  and s--0. Note that  these surfaces 
do not contain lines L with L 2 < - 4 ,  since in that  case, by adjunction, 2<_L.K: 
L.(-7-ls+J:s):- l+L.Ys<l,  a contradiction. These surfaces are defined by four 
quadrics in ps .  

Example 1.10. (Conic bundles of degree 7.) Consider a rational normal 3-fold 
scroll V c P  6 of degree 4, and let Q be a general quadric hypersurface containing a 
member of the ruling Y. Then the complete intersection VMQ:YuS,  where S is 
a surface of degree 7 in p6. As soon as V is smooth and Q general, S is smooth. If 
V is singular, then S is singular at the singular point of V. By adjunction 

Ks = ( - 3 7 / + Y + 2 ~ ) [ s  = -HIs + YIs, 

where 7-/is a hyperplane section. Thus K~--3  and Ks "7-/8---5- Like in the previous 
example the ruling of V define a conic bundle structure on S with five singular fibers, 
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i.e. ten (-1)-l ines altogether in the fibers. If S had a trisecant line, L, then L would 
be a line in Y intersecting the curve C=SN~ in three points. In this case C is a 
conic section so there is no trisecant. In fact one can also show that  S is defined by 
eight quadrics. As in Example 1.9 we see that  S=B15(Fo) and 7-/3=(2, 5 3 ) - ~ i =  1 Ei 
and that  S contains no lines with selfintersection _<-4. 

Example 1.11. (Conic bundles of degree 8.) Let V be a rational normal 3-fold 
scroll of degree 4 in p 6  and let Q be a general quadric hypersurface not containing 
any singular point on V. Then V is smooth or is a cone with vertex a point, 
and S=VnQ is a smooth surface of degree 8 in p6. We get two cases like in 
Example 1.9. Proceeding with notation like in that  case we get Ks=2jrs-74s and 
K~=O. Thus we get conic bundles with sectional genus 3 with eight singular fibers, 
i.e. sixteen (-1)-l ines in fibers. These surfaces are defined by seven quadrics. Again 
S--Bls(F0)  and 7-/s=(2, 4 ) -  ~-]~s_l E~. Moreover, as above, S contains no lines with 
selfintersection < - 4 .  

Example 1.12. (A family of surfaces of degree 8.) Let V be a cone over the 
Segre embedding of p1 x p2 as in Example 1.5 and let Q1 and Q2 be two quadrics 
containing a member .%" of the ruling, in particular they pass through the vertex of 
the cone. Then VNQI~3Q2=Su.~, where S is a smooth surface of degree 8 in p6. 
Let ~2 be the p3-bundle over p1 associated to V, and let 74 on V~ be the line bundle 
defining the map V/-~V which contracts a p1 to the vertex. Let S be the strict 
transform of S. If, by abuse of notation, Y also denotes the pullback of Y to V, 
then ,~=(274-Y)N(27- / -Y)  on V. The canonical divisor on V is -474+~-.  Thus, 
by adjunction, K g = - Y  ~. Since both quadrics Qi pass through the vertex, the p1 
lying over the vertex is contained in S. Clearly, it meets every p3  of V in a point. 
Therefore this curve, call it E,  on S has intersection E.Kg=-I .  Hence E is an 
exceptional curve of the first kind on ,~, which is blown down on S. Thus I - K s l  is 
a pencil of elliptic curves with one base point at the vertex of V. It follows that  S is 
rational of degree 8, sectional genus 3 and Ks  2 = 1. The adjunction 174s + K s l  maps 
the surface birationally to p2, so the surface is Bls (P  2) with 74s=41-)-~S_l Ei. It 
is straightforward to check with this linear system that  the surface cannot contain 
lines with selfintersection < - 4 .  These surfaces are defined by six quadrics in p6. 

Example 1.13. ( Two families of surfaces of degree 9.) Let V be a p3-bundle of 
degree 3 over p i  with ruling ~- and let V be its image rational normal 4-fold of degree 
3 in p6 under the map defined by 74 as in Example 1.5. Let Q1 and Q2 be general 
quadrics with no common point in the vertex of V and which contain a smooth cubic 
surface $3 = V N p4, for some general p4 c p6. Then V N Q1 N Q2 = $3 u S, where S is 
a smooth surface of degree 9. The curve of intersection C=S3nS is then a curve of 
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degree 6 represented in $3 by the divisor 27/ss. Thus C has genus 2. Moreover, S 
cannot have trisecants since C has no trisecant lines. 

Now, $3 meets each ruling of V in a line, so the surface S, which is linked to $3 
on V in two quadrics, meets each ruling of V in a twisted cubic curve. Therefore S is 

rational. Furthermore,  K ~ = - 4 7 - / + Y ,  so Ks=(-47-l+Y+47-l)Is-S31s=-C+Ys, 
by adjunction. Thus Ks.7-ls=(.Ts-C).7-ls=-3 and S has sectional genus 4. Let 
D=7-ls-C, then D has degree 3 and moves in a pencil, so it must  be a twisted 

cubic curve, with D2=0.  By adjunetion 

6 = 7-ls(Tts +Ks) = C(C+Ks) +D(D+Ks) + 2 C - D  = 2 -  2 + 2 C - D ,  

since C has genus 2, hence C.D=3. Therefore, C2=3,  while C.Ys=2 and K2= 
(7s-C)2=-1. 

The cubic scroll V is a cone with vertex a point or a line. Thus we get two 
types of surfaces S, of which the lat ter  is a degeneration of the former. Both are 
rational surfaces of degree 9, sectional genus 4 and K ~ = - I .  The  adjoint linear 
system 17-l+KsI maps the surface birationally to a smooth quadric surface in p3,  
so the surface is B19(P 1 x P  1) with ns=(3,3)-E _l E,. In both  eases S has, in 
fact, two pencils of twisted cubic curves. The above eonstruetion applies to either 

peneil. If  the vertex of the cubic 4-fold scroll V is a point, then any two of the 
curves in a pencil span p 6  while any two of them span a p5  if the vertex of V 

is a line. Intrinsically the two eases correspond to whether the 9 points on the 
quadric lies on a rational quartic curve of type (3, 1) (or (1, 3)) or not. From the 
linear system it is straightforward to eheek that  the surface cannot contain lines 
with selfinterseetion _<-4. These surfaces are defined by six quadries in p6.  

One may also construct these surfaces by linkage. Consider a conic bundle of 
degree 7 as in Example  1.10. This surface is cut out by eight quadrics in p6, and 
in a complete intersection (2, 2, 2, 2) it is linked to a rational surface of the above 

type. 

Example 1.14. (A family of surfaces of degree 10.) Consider the Del Pezzo 

surface $6 of degree 6 in P6, and 4 general quadrics containing it, QI, Q2, ~3 
and Qa- Then ~I[-I~2N~3CI~4=SUS6, where S is a smooth surface of degree 10 
in p6.  Let V be the complete intersection of a general set of three quadrics in 

(Q1,---, Q4). By adjunction we see that  C=SAS6=7-lv[s6-Kso=27-ls6. There- 
fore S has no proper trisecant lines. Furthermore,  Ks=(7-ly-S6)s and Ks.Ks = 
((7-lv-S6)s).7"ls=lO-12=-2, so the sectional genus is 5. The exact sequence 

(1) o. ~Ov(t-tv-S6) ~Ov(t-tv)--~Os~(t-ts.) ~o, 
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and the fact tha t  h~ give hl(Oy(7-lv-S6))=h2(Ov(7"ly-S6))=O 
and h~ Plugging those values into the long exact cohomology 
sequence of 

(2) 0 >Ov(-t-Zv)-~Ov('t-lv-&)--~Os(Ks) >0, 

we get pg(S)=O and q=O and thus x (S) - -1 .  Since Ks.7-ls=-2, no pluricanonical 
divisor is effective, so S is rational. If  L is a line on S with L 2 < - 4 ,  then, by ad- 
junction -2-L2=L.Ks--L.(7-ls-C)=I-L.C. Therefore L.C=3+L2<_-I, and 

L is a component  of C=SAS6. Thus L must be a ( -1)- l ine  on $6. This is certainly 
possible. One may show tha t  in this case the line L is a bisecant to a conic section 
on S, so tha t  S has a 2-dimensional family of trisecants in this case. 

The general surfaces S, however, are defined by five quadrics in p6.  The 

adjoints of the surfaces in Section 2.2 below are of this type. 

1.2.2. N o n r a t i o n a l  surfaces 

There are also nonrational surfaces without proper trisecant lines. 

Example 1.15. (Elliptic scrolls.) The elliptic normal scrolls of degree 7 for 
which the minimal selfintersection of a section is 1, are defined by seven quadrics 
(cf. [11]). 

Example 1.16. (A family of nonminimal K3-surfaces.) Consider an inner pro- 
jection of a general nontrigonal and nontetragonal K3-surface S of degree 12 in p7  
(cf. [14]). Let S be the projection from a point peS, rp:S-~S. Then S is a 
K3-surface of degree 11 in p6 with one line, i.e. the exceptional line over p. Any 
trisecant of S will come from a trisecant of S or from a 4-secant p2  to S through p. 

But a normally embedded K3-surface with a trisecant is trigonal, and with a 4- 
secant plane is tetragonal which is avoided by assumption. So S has no trisecant. 
These surfaces are defined by five quadrics in p6,  and it is easy to check, like in 

Example 1.14, that  they are linked to Del Pezzo surfaces of degree 5 in the complete 
intersection of four quadrics. Since S is K3,  any line on S has selfintersection > - 3 .  

2. Surfaces not  def ined by quadrics  

In this section we conclude the construction of examples by considering three 

particular families of surfaces which do not form the intersection of qum:lric hyper- 
surfaces. They have no trisecant lines and contain no lines. 
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2.1. N o n m i n i m a l  K3-surfaces  of  d e g r e e  12 

Consider four general quadrics QI , . - . ,  Q4 C p6  containing the Veronese surface 
S 4 c P  5 and let S be the residual surface of degree 12 in p6. Let V be the complete 

intersection of a general set of three quadrics in (Q1,-.-,  Q4)- By adjunction we 
see tha t  C=SNS4=7-IvIs4-Ks4=hl, where l is the generator of Pic(S4). Then 

K s = ( t i v - S 4 ) s  and 

Ks .7-ls = (7-lv + S4)s.q,-ls = 1 2 - 1 0 - - 2 .  

The exact sequence 

(3) 0 > Ov(Ttv-S4) > Ov(t-lv) > Os4(t-ls,) >0 

and the fact that  h~ gives h~ and 

hl(Ov(qfLv-S4)) =h2(Ov(7-lv-S4)) = 0 .  

Plugging those values into the long exact cohomology sequence of 

(4) 0 > Ov( - ' t - l v )  > O v ( 7 - l v - $ 4 )  > O s ( K s )  ---~ O, 

we get pg(S)--1 and q=O and thus x(S)=2. Thus the canonical curve is a ( - 1 ) -  
conic section or two disjoint (-1)-l ines.  I t  is the residual to the intersection C of S 
with $4 in a hyperplane section of S, so each component  intersects the curve C in at 
least two points. If  the canonical curve is two disjoint lines these would be secants 

to $4. But a secant line to $4 is a secant line to a unique conic section on $4. Any 
quadric which contains a secant line must therefore contain the plane of this conic 
section. Therefore S contains no secant line to $4 as soon as S is irreducible. We 
conclude that  the canonical curve is a ( -1)-conic  section. The surface S is a blown 
up K3-surface and K~=-I. We now show tha t  S contains no lines. Assume the 
contrary and let L be a line on S. First assume tha t  the line does not intersect $4. 
Let G be the Grassmannian of 4-dimensional subspaces of quadrics in p6  which 

contain $4. Consider the incidence variety 

I~={(L,U) 6Gr(2,7)xG LC ~uQ, LNSa=@} 

and let p: I~-+Gr(2,  7) and q: I~-+G be the two projections. Since the lines in p6  
form a 10-dimensional family and a line imposes three conditions on quadrics, it is 
clear tha t  codim q(p-l(L)) = 12 and tha t  codim q(p- l (Gr (2 ,  7))) > 1 2 - 1 0 = 2 .  This 
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means tha t  we can choose U general enough so tha t  there is no line LcN(~e U Q 
which is disjoint from $4. 

Similarly consider 

Q6U 

with projections p and q, where 

p: In~ > G = {L 6 Gr(2, 7) [ LNS4 # 0}. 
The set of lines which intersect a given surface in p6  has codimension 3 in Gr(2, 7) 

so d i m G = 7 .  A line L through a point on $4 imposes two conditions on quadrics 
through $4, so codim q(p-1 (L))=8 in this case. But then codim q(p-1 ( ~ ) ) > 8 - 7 =  
1, so for a general U there are no lines on S intersecting $4 in one point. We are 
left to examine the case when L meets $4 in at least two points, i.e. when L is a 
secant line to the Veronese surface $4. But as above this is impossible as long as S 

is irreducible. 
Thus S has no lines on it and is the blow up of a K 3  surface in one point. 

Moreover 7-ls=p*(~)-2E, where p: S - + S  is the blow up map and ~ is a line 
bundle on S of degree 16. Again S has no trisecant line because such a line would 
necessarily be a line in the Veronese surface. Notice that  the conic sections on the 
Veronese surface each meet S in five points. In fact, the Veronese surface is the 
union of the 5-secant conic sections to S and is therefore contained in any quadric 
which contains S. I t  is straightforward to check tha t  the surfaces S are defined by 

four quadrics and three cubics in p6.  

2.2. A family of  rational surfaces o f  degree 12 

H "" ,--,5 3E ,-,11 2Ej.  Let S = B l l l ( P  2) be polarized by the line bundle --st-2_.,~=l i -2_, j=6 
Assume tha t  the eleven points blown up are in general position. More precisely we 
require tha t  the following linear systems are empty  for all possible sets of distinct 
indices: 

6 10 

7 2 11 3 10 

k = l  k = l  k = 3  k = l  k = 4  ' 

5 I I  6 10 9 ~z l~ ik - -~ ' i o  

' k = l  k = 6  ' = k = 7  k = l  
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L e m m a  2.1. The line bundle H is very ample on S. 

Proof. The line bundle H is shown to be very ample in [13]. We report  here a 
different short proof which relies on the following lemma. 

L e m m a  2.2. (Alexander, [15, Lemma 0.15]) If  H has a decomposition 

H = C + D ,  

where C and D are curves on S such that dim ICI>_I, and if the restriction maps 
H~ Os( H) )-+ H~ OD( H) ) and H~ Os( U) )-+ H~ Oc( U) ) are surjective, and IUl 
restricts to a very ample linear system on D and on every C in IC[, then IHI is 
very ample on S. 

Consider the reducible hyperplane section 

8 5 8 11 

1 \ i=1 j = 6  k=9 

Then D1 is embedded as a degree 6 elliptic curve and D~ as a sextic curve of genus 2. 
Moreover, a general element of IDol is irreducible by the choice of points in general 
position, and all the elements in the pencil IDll are irreducible. It follows that  HD1 
and HD2 are very ample. The fact that  both the maps H~176 
and H~ H)-+H~ HD2) are surjective concludes the argument. [] 

L e m m a  2.3. There are no lines on S. 

5 V'11 b . E .  Proof. Assume L = a l - ~ i = l  aiEi--A.~j=6 3 3 is a line on S. Then looking at 
the intersection of L with the twisted cubics Ei, i--1, ... ,5, and the intersection 
of L with the conics Ei, j=6, ..., 11, we derive the bounds 0 < a i < 2  and O<bi<2. 

5 11 This implies that  l=H.L=9a-~-~i=13ai-~-]~i=62bi>_9a-30-24, i.e. a<6 .  The 
only numerical possibilities are 

(1) L = E i - E j ;  
5 E 2E 11 (2) [5l--2}-~k= 1 k-- i6--}-~k=TEi~[, { i6 , - . - , i11}={6, ' " ,11};  

(3) [41-2E =iE,,- 11 E I . . . . .  A-~k=4 ~kl'  { i l ,  , i 1 1 } = { 1 , . . .  11} ,  i1<i2<5<i3; 
(4) i=31-2E~l - ~ = 2  E~, {il, ..., is}--{1, ..., 5}, 6 < i 6 < . . . < i a _  < 11; 

(5) L=21-}-~9_IEi-Ej ,  6_< j~ l l ;  
(6) L = I - E ~ - E j - E k ,  l<_i<j<_5<k<_ll. 

But those are empty linear systems by the general position hypothesis. [] 
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Proposition 2.4. The surface S in p6 has no trisecant lines. 

Proof. Consider the reducible hyperplane section H = F i d + F  i'j, where 
(1) F i , j = - K s + E i + E j  i , j = 6 ,  ..., 11, i.e. an elliptic quartic curve; 
(2) Fi,j=g_Fij=61_2)-~bk 1~  x-~,l ~ E E , = ~k--Z.,k=O ~k-- ~-- j, i.e. a curve of degree 8 

of genus 3. 

Fix a curve F~,j. Any trisecant line L would together with Fi,j span a hyperplane, so 
there is some reducible hyperplane section H=Fi,j + F  i'j for which L is a trisecant. 
Since neither F ~'j nor Fi,j have trisecants, L must in fact intersect both these 
curves, so Fi,j and L span at most a p4. This means that  we can always find a 
curve CEIFi'Jl passing through the points in LNFi,j, and such that  L is a trisecant 
to CUFi,j. If C is irreducible this is impossible since C has no trisecant lines. 
Assume it is reducible and write C = A + B ,  where A and B are irreducible with 
d e g A ~ d e g B .  Then the following cases could occur: 

(a) A is a plane conic; 

(b) A is a plane cubic or a twisted cubic; 

(c) A is a quartic curve. 
Let A=t~l-~-~5=l akEk 11 - E k = 6  ~kEk.  

Assume a = 0 .  If A=Ek for kE{1, . . . ,5 ,  i, j}  then B = F i ' J - E k ,  which is 
impossible by the general position hypothesis. If A=Ek for kE{6, . . . ,  l l } \ { i , j }  
then B = F  i,j --Ek, this possibility will be analyzed more closely below. 

Assume now a > 0 ,  i.e. A•Ek, then by intersection properties and the assump- 
tion that  A and B are effective divisors, 0<o~k(_2, 0~_~k<l and l < a < 6 .  

(a) Going over the possibilities for a,  ak and ~k gives no result by the general 
position hypothesis. 

(b) Examining the possible choices for a, ak and flk we get: 
5 11 

- ~ k = 0  Ek (1) A = l -  E m -  En residual to B = b l -  2 )-~.k= 1Ek + Em + En - E~-  
Ej,  l ~ m < n < 5 ;  

(2) 5 B=41-- )-~-lk 1 1 E k -  E~- Ej; A=21-  ~k= 1 Ek residual to = 
(3) 11 5 A = 3 1 - ~ k =  1Ek +Em and B=3l-)-~.k= 1 E k - E m - E i - E j ,  l < m < 5 ;  
(4) A = 4 1 - ~ l  E k - E m - E n ,  l<m<n_<5 ;  
(5) A=51-2 5 11 E k = l  Ek - E k = 6  Ek" 

In the first two cases the residual curve B does not exist by the general position 
hypothesis. Likewise the curve A does not exist in the last cases. 

(c) Similar computations lead to 
(1) A = I - E m - E , ~ ,  l < m < 5  and 6 < n < l l ,  whose residual curve does not exist; 
(2) A=21--~bk=lEk+Em--En, l < m < 5 < n _ < l l ,  whose residual curve does 

not exist; 

(3) A=Fk,l, B~-F,,,,~ with { i , j , k , l ,m ,n}= { 6 , . . . , l l } .  
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We are left with the cases C = E k + ( 6 1 - 2 ~ - ~  5 1 11 = E m - ) - ~ n = 6 E n - E i - E j - E k )  or 

C = Fk J + Fm,n. 
Notice that  in both cases the projective spaces spanned by the two components, 

(A), (B), intersect in a line L =  (A) n (B). Moreover, neither A nor B admit trisecant 
lines and ANB =2 .  It follows that  A N ( B ) = A N B = B A ( A ) .  Any trisecant line L 
to C, must meet A (or B) in two points and thus it is contained in (A), which 
implies L N B C A N B .  But this means that  L is a trisecant line for A, which is 
impossible. [] 

These surfaces are defined by three quadrics and four cubics in p6. 

2.3. A b e l i a n  su r f aces  

Recently Bauer-Szemberg [4] have proved that  the general (1, 7)-polarized 
abelian surface in p6  does not have any trisecant lines. The argument uses a 
generalization of Reider's criterion to higher order embeddings. These surfaces are 

not contained in any quadrics. 

3. C o m p l e t e  l ist  o f  s u r f a c e s  w i t h  n o  l ines  

In the remaining sections we prove Theorem 0.1 and Proposition 0.2. 
Throughout  this section we will assume that  S is a surface embedded in p6 by 

the line bundle 7-/s, with no lines on it and no trisecant lines. By C we will denote 
the general smooth hyperplane section of S. 

3.1. N u m e r i c a l  r e l a t i o n s  

By naive dimension count arguments one expects that  a surface in p6  has a 1- 
dimensional family of trisecant lines. Le Barz makes this count rigorous, by defining 
a cycle in the Hilbert scheme of aligned length 3 subschemes of p6 (cf. [12]). There 
is a natural map from this Hilbert scheme to the Grassmannian of lines, and the 
corresponding cycle map defines a 1-dimensional cycle of trisecant lines. This 1- 
dimensional cycle is determined by the numerical invariants of the surface. These 
are 

n = d e g S  k = K  2, c=c2 (S ) ,  X = X ( O s )  and e=Ks .7 - l .  

Noether's formula (cf. [10, Appendix A]), 

c 2 ( S ) + K  2 = 12X(Os), i.e. c + k =  12X, 
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gives a relation between these surface invariants. Moreover, the adjunction for- 
mula 2 p ( C ) -  2=C 2 +Ks  .C=n+e gives a relation between these invariants and the 
arithmetic genus p(C) of a hyperplane section C [10, Chapter V, Proposition 1.5]. 
The formula of Le Barz for the number of trisecant lines meeting a fixed p4  C p6 is 
(cf. [121) 

(5) 03  = ~(2n3-42n2+196n-k(3n-28)+c(3n-20)-e(18n - 132)), 

and the formula for the number of lines in p6  which are tangential trisecants, i.e. 
tangent lines that  meet the surface in a scheme of length at least 3, is 

(6) T3 = 6n 2 - 8 4 n + k ( n - 2 8 ) - c ( n - 2 0 ) + e ( 4 n - 8 4 ) .  

Finally he computes a formula for the number of trisecant lines to a smooth surface 
in pT, 

(7) S 3 = ~ (n3 -30n2+224n+c(3n -40 ) - k (3n -56 ) - e ( t5n -  192)), 

which we shall need towards the end of the next section. 
The first formula is enumerative unless the family of trisecants is at least 2- 

dimensional or the surface contains infinitely many lines, i.e. is a scroll. The same 
holds for the second and third formula with the additional assumption that  lines 
L on the surface contribute with multiplicity 4(3+L2) to the formula (6) and with 

multiplicity -(4+L~) to the formula (7) (el. [12]). In particular (-1)-l ines con- 
tr ibute with multiplicity 4 and - 1 ,  respectively, while lines with selfintersection 
- 3 < L 2 < - 2  do not contribute at all. 

With our hypothesis in this section, this means that  the formulas (5) and (6) 
above are zero. 

We shall combine these formulas with several bounds for the sectional genus 
p(C) in order to find the possible invariants of S. 

The first one is Castelnuovo's bound for the arithmetic genus p(C) of a reduced 
and irreducible curve C of degree n in pN.  Let [x] denote the greatest integer _<x, 
then (cf. [1]) 

Setting N=5 and using the adjunction formula we get the following bound for e. 

0, if n---0,2 (mod 4), 

n 2 - 1 0 n + c  where e :  - 3 ,  if n - 1  (mod 4), ( s )  e < 4 ' 

1, if n =_ 3 (mod 4). 

The next ones are refined versions of it given by a theorem of Harris on the 
genus of a curve that  does not lie on a surface of minimal degree. We state the 
theorem for curves in pb. 
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T h e o r e m  3 . 1 .  

p5 of degree n and arithmetic genus p. 

(a) I f  

10, i f n - - O  ( rood5) ,  

n 2 - 5 n + r  where ~= 4, if  n - l , 4  (mod 5), 
P > P l =  10 ' 

6, if  n - - 2 , 3  (mod 5), 

and n>_ll, then C lies on a surface of degree 4 in p5.  
(b) I f  furthermore, n>13  and p=pl ,  then C lies on a surface of degree <5. 

In addition to these bounds on the genus of C, we shall apply the Hodge index 
theorem (cf. [10, Chapter  V, Theorem 1.9]) to 7/s and Ks: 

(9) gg.7-I 2 < (gs.7-/s)  2, i.e. kn <- e 2. 

([91, [6, Theorem 3.41) Let C be a reduced, irreducible curve in 

3.2. S u r f a c e s  o f  d e g r e e  n ~ 1 0  

We first apply the above formulas to surfaces of small degree. Notice that  
surfaces in p3 and in p4 have trisecant lines or contain lines. Furthermore, the 
only surfaces in p5 which do not contain lines or have trisecants are the Veronese 
surfaces and the general complete intersections (2, 2, 2), i.e. the general nontrigonal 
K3-surfaces of degree 8 (cf. [3]). Therefore we may assume that  S spans p6. 

Eliminating and solving from (5) and (6) with respect to X= ~ ( c + k )  we get 

- 3 6 n  3 - 1344n-  576e + 108en+404n 2 - 3en 2 + n 4 
(10) X = 

48n 
If p (C)=0 ,  i.e. e = - n - 2 ,  then S is a scroll or a Veronese surface. Otherwise 

e>_-n. Fhrthermore S spans at least p 6  so there is the upper bound (8). Since, 
by adjunction, n and e have the same parity, we get the list given in Table 2 for 
n<10.  

n 

5 

6 

7 

8 

9 

10 

Table 2. 

1 ( 1 4 7 + 1 1 e )  

X Bounds for e Numerical possibilities 

~0 ( -165-37e )  e = - 7  none 
1 ge e = - 6  none 

- 7 < e < - 5  none 

�88 
1 (315+40e) 

- 8 < e < - 4  

- 9 < e < - 3  

e = - 8 ,  - 4  

none 

~o(80+17e) - 1 0 < e < 0  e = 0  
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In addition we get the numerical possibilities (n, e ) = ( 4 , - 6 ) ,  (8, 0) correspond- 
ing to the two families of surfaces in p5  mentioned above. When n=8 and e=-8, 
then X : 0  and the sectional genus p(C)--1, so S is an elliptic scroll, contrary to our 
assumption that  S contains no lines. Thus we are left with the invariants given in 
Table 3. 

Table 3. 

n e k X 

(1) 4 - 6  9 1 

(2) 8 - 4  2 1 

(3) 8 0 0 2 

(4) 10 0 0 2 

Examples 1.1-1.4 in Section 1 have these invariants, and it is easy to see tha t  
these are the only ones. In the first two cases any smooth surface in the family 
would have no lines, but for K3-surfaces it is easy to construct degenerations to 

smooth surfaces with one or several lines. These lines would be (-2)- l ines  on the 
K3-surface. Therefore we have the following four cases: 

(1) (S, 7-/)=(P 2, Op2(2)) is a Veronese surface in p5; 
(2) (S, 7 - / ) = ( B / 7 ( P 2 ) , - 2 K s )  is a Del Pezzo surface in p6; 
(3) S is a general nontrigonal K 3  surface of degree 8 in p s ;  
(4) S is a general nontrigonal K 3  surface of degree 10 in p6.  

3.3. Surfaces of  degree n ~ 1 1  

When n_>11, Theorem 3.1 applies, so we may use the refined genus bound 
p(C) <_Pl, unless C lies on a surface of degree 4 in pS. The surfaces of degree 4 in 
p5  are the rational normal scrolls and the Veronese surfaces. With the assumption 

that  C has no trisecant we may easily t reat  these cases first. 

If  C is contained in a rational normal scroll $4 of degree 4 in p5 and has no 
trisecant, then C is rational or hyperelliptic. If  C is rational, then S is a scroll, 
so this is impossible. If  C is hyperelliptic, then C=27-/s4-t-(n-8)~-s4 on $4, where 
7-/s4 denotes a hyperplane section and ~-s4 a ruling of $4. The canonical divisor 
on $4 is Ks4=-27-ls4+23cs4 , so adjunction on $4 gives 2p(C)-2=2n-12. By 
adjunction on S this means tha t  Ks.~s=e=n-12. Surfaces with hyperelliptic 
hyperplane sections are conic bundles when n > 9  (cf. [18]), therefore the a~ijoint 
linear system is composed with a pencil and (Ks +7-/) 2--0 which gives K 2 = 2 4 - 3 n .  
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This implies the existence of 3 n - 1 6  singular fibers, i.e. ( -1)- l ines  in S, contrary to 

our assumption tha t  there should be no lines on S. 
Assume next that  the general hyperplane section C is contained in a Veronese 

surface $4. Then the surface S itself is contained in a cone V over $4: In fact, C is 
linearly normal and so is therefore also S. It  follows that  every quadric hypersurface 
which contains C is the restriction o f a  quadric which contains S. For degree reasons, 
the quadrics which contain C are precisely the quadrics which define the Veronese 

surface $4. The quadrics through S therefore define a threefold, which clearly 
must be a cone over $4. Let V be the blow up of V in the vertex, then V is a 
P l -bund le  over p2.  In this case SCI27-l+b.T] on V, where ~" is the pullback of a 
line from p2.  Consider (?-l-2.T)2.S=-2b,  where 7-/-2.~ is the contracted divisor. 
Since S is smooth, b=O and S is a Del Pezzo surface of degree n = 8 < l l  in p6  (el. 

Example 1.2). 
We may therefore assume tha t  C is not contained in a surface of minimal degree 

in p5.  First we set the formulas (5) and (6) equal to 0, eliminate c and get 

nk = ~ [n 4 - 32n 3 + 332n 2 - 112On- e(an 2 - 80n +480)1. 

The Hodge index theorem (9) reduces to the inequality 

(11) 8(e2-nk)  =8e2+e(an2:80n+480) - (n4-a2n3+aa2n2-1120n)  >0. 

Now S is not a scroll, so p(C)> 1, i.e. e > - n .  Thus e+3n 2-80n+480>0 when 
n>27.  On the other hand, the upper  bound p(C)<_pl of Theorem 3.1 implies 

1 2-2n ,  so e<gn  

8(~ n 2 -  2n)2+ (~n 2 -  2 n ) ( 3 n 2 - 8 0 n  + 4 8 0 ) -  (n4 _ 32n 3 + 332n 2 _ 1120n) 

= _ 2 n 4 + ~ n  3 _ 44n 2 + 160n > 0. 

But this is never true when n>28 ,  so we are left to t reat  n<27 .  Now, X can be 
easily computed from (10). 

In the second column of Table 4 we give the values for n<27 .  In the third 
column we put the bounds for e, coming from the bounds 1 <p(C)<_Pl, and, where 
necessary, the inequality (11) from the Hodge index theorem. In the last column 
the possible numerical solutions from the first two columns are indicated. 

If  X>2, then S contains some effective canonical curve, therefore e>0 .  This 
excludes the cases (n, e)=(26,  0), (25 , -25) ,  (22, 0). For n=12 ,  the assumption tha t  

S is not a conic bundle i.e. n+2e+k>O reduces to e > - 4 .  Similarly for n = 1 6  we get 
e > - 1 2 .  For e = - 1 2 ,  the sectional genus p=3, while X = - 6 ,  i.e. S is birationally 
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n 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

X Bounds  for e Numer ica l  poss ib i l i t ies  

- l l < e < l  none  2 5 -  83 

1 l + T e  

7 - -  107 
T6 t 2--~e 

29 e 
56 

_ 3 . a _  41 e 
16 - -  8 0  

1 ~e 

11 - -  131 
]~ ~ 2-~e 

11 2 + ~ e  

6 5 -  131 
-~-~ 3-~e 

2 7 + ~ e  

16+  ~ e  

3 5 7 -  107 
-i-if-t- 3-~ ~ 

3 0 + 1 e  

5 0 +  1-i~4e 

1001_[_ 17 e 
16 - -  144 

- 1 2 < e < 4 ,  

e 2 - 6 e + 2 4 > 0  

- 1 3 < e < 7  

- 1 4 < e < l O  

- 1 5 < e < 1 5  

- - 1 6 < e < 1 8 ,  

e2 - -4e - -  1 9 2 > 0  

- - 1 7 < e < 2 3  

- - 1 8 < e < 2 8 ,  

2 e 2 + 3 e  - 1440>0  

- - 1 9 < e < 3 3  

- - 2 0 < e < 4 0 ,  

e 2 -{- 10e-- 1800>0  

- - 2 1 < e < 4 5  

- - 2 2 < e < 5 2  

- - 2 3 < e < 5 9  

- 2 4 < e < 6 6 ,  

e 2 @ 36e--  6720 > 0 

- 2 5 < e < 7 5  

- 2 6 < e < 8 2  

- 2 7 < e < 9 1 ,  

8e 2 -]- 507e - 113373_> 0 

e = - 1 2 , - 1 0 , . . . , 4  

none  

e=O 

none  

e = - 1 6 ,  - 1 4 ,  - 1 2 ,  16, 18 

none  

none  

none 

e=40 

none 

e=O 

none 

none  

e=-25 

e=O 

none  

ru led  over a curve of  genus  7. But  th is  is absurd .  In  case (n,e)=(16,18), t he  

sec t ional  genus  p(C)=18. Thus  T h e o r e m  3.1(b) appl ies .  I f  C does  not  lie on a 

surface of  degree  4, i t  mus t  therefore  lie on a Del Pezzo surface  of degree  5 or a 

cone over an e l l ip t ic  curve of  degree  5. In  e i ther  case it is easy  to  check t h a t  C 

has  t r i secan t  lines, c o n t r a r y  to  our  a s sumpt ion .  There fore  we are  left wi th  the  

poss ibi l i t ies  given in Table  5. Let  us examine  the  var ious  cases. 

Case (a) .  Since x=O, the  surface is an  e l l ip t ic  ru led  surface,  a.n abe l i an  surface 

or  a f inite quo t ien t  of  an  abe l i an  surface.  In  t he  l a t t e r  two cases the re  a re  effective 
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Table  5. 

Case n e k X 

(a) 12 -2  - 3  0 

(b) 12 0 - 2  1 

(c) 12 2 - 1  2 

(d) 12 4 0 3 

(e) 14 0 0 0 

(f) 16 16 16 8 

(g) 20 40 70 23 

pluricanonical curves, but  e=?'ls.Ks=-2 so this is impossible. Fhrthermore,  k= 
K ~ - - - 3 ,  so the surface S is the blow up of an elliptic ruled surface in three points. 

Since S has no lines the exceptional curves have degree at least 2. Now we 
have (Ks+Tis)2=h~ so by Reider 's criterion [16], S is embedded in 
p4  via [Ks+Tisl. But there are no nonminimal elliptic ruled surfaces of degree 5 
in pC, so this case does not occur. 

Case (b). Any nonrational surface with X=I and K~=k<O has effective pluri- 
canonical curves. Since e=Ks.7-ls--O, the surface S must  therefore be rational. 
Since the surface has no (-1)- l ines  by assumption, it follows from Reider 's crite- 

rion [16] tha t  the adjoint linear system [Ks+7-ls[ embeds S as a surface of degree 
10 and genus 5 in p6.  Furthermore,  the linear system [2Ks+7-ls[ blows down 
(-1)-conics  and embeds the blown down surface as a Del Pezzo surface of degree 

K 5 11 7-1s=91-Y~ 5 1 3Ei-  4 in pC. Therefore 8+7-/s=6/-Y]~i=,  2Ei-Y]~i=6 Ei and = 
11 ~i=6 2Ei, where l is the pullback to S of a line in p2,  while the Ei are excep- 

tional curves. This is Example  2.2. 

Case (c). In this case X=2 and any canonical curve has degree e=Ks.7"ls=2. 
Since we assume tha t  S has no lines, this must  be a conic section, in fact a ( - 1 ) -  
conic section on S. ~ r t h e r m o r e ,  k = K ~ = - l ,  so S must  be a K3-surface blown up 
in one point. Let 7r: S--~S denote the blow up map,  then 7 { s = I r * ( ~ ) - 2 E  where 

7-/~---16. This is Example  2.1. 

Case (d). Since X=3 and k=K 2 =0, this is an elliptic surface of degree 12 and 

every canonical curve has degree e=gs.Tis=4. Now gs=rnF+y~_l (mi -1)F ,  
where F is the general fiber of the elliptic fibration S--~B and miF, i=l, ..., k, the 
multiple fibers. Furthermore,  m=x(Os)+2g(B)-2>_ 1 so for degree reasons alone 
re=l, k=O, g(B)=O and Ks=F. Thus IKs[ defines an elliptic fibration over p1 

with no multiple fibers. The canonical curves are elliptic quartic curves, they each 
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span a p3.  These p 3 ' s  generate a rational scroll. This is a cubic scroll, otherwise 

the surface is not linearly normal. But  I H s -  K[ is a linear system of curves of genus 
5 and degree 8 which spans at most a p4  while the residual curves [K[ move in a 
pencil, so this is not possible. The  surface has degree 12 and the canonical pencil 
has no basepoints so S must  he complete intersection of the scroll and two quadric 
hypersurfaces. This is Example  1.5. 

Case (e). Since x--O the surface S must be minimal abelian or bielliptic. Fol- 
lowing Serrano' s analysis, cf. [17], of ample divisors on bielliptic surfaces, one sees 
that  any minimal bielliptic surface of degree 14 in p6  has an elliptic pencil of plane 
cubic curves, i.e. it has a 3-dimensional family of trisecants. The  general abelian 
surface, however, has no trisecant (cf. [4]). This is Example  2.3. 

Case (f). The  surface must  be the complete intersection of 4 quadric hyper- 
surfaces in p6,  Example  1.6. 

Case (g). In this case p(C)=pl  =31 and thus by Theorem 3.1(b), the general 
hyperplane section C is contained in a surface of degree 4 or 5. In the former case 
C must lie on a rational scroll, and it has no trisecants only if it is a bisection. 
Thus S must  be a conic bundle, contradicting the fact tha t  (?-ls+Ks)2=170r 
In the lat ter  case C lies on a surface $5 of degree 5 in pS, i.e. an anticanonically 
embedded Del Pezzo surface or the cone over an elliptic quintic curve in p4.  In 
either case the sectional genus of C implies tha t  C is the intersection of $5 with a 
quartic hypersurface, and each line on $5 will be a 4-secant line to C. This excludes 
Case (g). 

The results of Sections 3.2 and 3.3 can be summarized as follows. 

T h e o r e m  3.2. Let S be a smooth surface embedded in p6 with no lines. Then 
S has no trisecants if  and only if  it belongs to one of the cases listed in Table 6. 

4.  L i s t  o f  s u r f a c e s  w i t h  l i n e s  

For surfaces with lines the trisecant formulas do not a priori have any enu- 
merative significance, as explained in Section 3.1. The  extreme case is the scrolls; 
surfaces with infinitely many  lines on them. But also for surfaces with finitely many  
lines on them the use of the formulas requires a careful argument.  The computat ion 
of Le Barz shows tha t  only (-1)- l ines  and lines with selfintersection _<-4 contribute 
to the trisecant formulas ([12]). 
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Surface Degree 
p 2  4 

B17(P 2) 8 

K3  8 

K3 10 

B111(P 2) 12 

Bl t (K3)  12 

Regular elliptic, pg=2 12 

Abelian 14 

General type 16 

Table 6. 

Linear system Example 

O p 2 ( 2 )  1.1 

6 l -  E7=1 2Ei 1.2 

1.3 

1.4 
5 11 

9 l - E i = l  3Ej -)-~j=6 2Ej 2.2 

p*(7~) -2E  2.1 

1.5 

(1, 7)-polarization 2.3 

1.6 

We divide our analysis according to the occurrence of lines. We deal with the 
following cases: 

(1) S is a scroll; 
(2) S contains an isolated (-1)-line,  a line that  does not intersect other lines 

on S of negative selfintersection; 
(3) S contains a (-1)- l ine which intersects some other (-1)-line; 
(4) S contains a (-1)- l ine that  can be contracted so that  it is the exceptional 

line of an inner projection from pT. 
Notice that  the first three cases are mutually exclusive when S spans p6, while 

the last one may overlap the two previous cases. Furthermore there may be examples 
which do not fall into any of these four cases. These would be surfaces with lines 
of selfintersection < - 4  or a finite number of (-1)-lines on them, each intersected 
by some other line of selfintersection at most - 2 ,  such that  the surface is no inner 
projection of a surface in p7  (cf. Theorem 0.1). The above cases suggest different 
strategies of dealing with surfaces with lines. Together they will recover all our 
examples. Each approach aims at finding some new relation replacing the relation 
from (6) which we lose when the surface S is a scroll or contains a (-1)-line.  

The first approach is projection to p4 from a line on S. 

L e m m a  4.1. Let S be a smooth surface in p6 with no proper trisecant lines. 
Assume that L c S  is a line on the sur]ace, and let 7rL: S-+P 4 be the projection o] S 
from L, i.e. the morphism defined by ]7-ls-L I. Then lrL is the composition of the 
contraction of any line on S which meets L and an embedding. In particular, i#f S 
has finitely many lines, rL(S) is smooth unless there is some line L1 on S meeting 
L with L2<-2.  
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Proof. Let P be a plane in p 6  which contains L. Let Zp be residual to L in 
SNP.  If  Zp is finite, its degree is at  most 1, otherwise S would have a trisecant 
in P.  If  Zp contains a curve, this curve would have to be a line L1 which would 
coincide with Zp, since again S has no trisecants. Since S has finitely many  lines, 
L 2 < - 1 .  This line is clearly contracted by 71" L to a singular point if and only if 
L~ < - 2 .  [] 

Let us use this lemma to examine the case of surfaces with at least a one 
dimensional family of lines. 

P r o p o s i t i o n  4.2. Let S be a scroll in p6. Then S has no proper trisecant 
lines if  and only i f  S is 

(1) a rational normal scroll, or 

(2) an elliptic normal scroll, with minimal selfintersection of a section E 2 = 1. 

Proof. If S is a rational normal scroll or elliptic normal scroll with e=l ,  then 
it is defined by quadrics and therefore has no trisecant lines (cf. Example  1.15). 

Assume now tha t  S is a scroll with no trisecant lines and let L be a line on it. 
Consider the projection of S from L: 

71. L : • ~ p4. 

If  there is no line on S meeting L then ~L is an embedding by Lemma 4.1. Since 
the only smooth scrolls in p4  are the rational cubic scrolls and the elliptic quintic 
scrolls, S must  be as in the statement.  

If ~-L is not a finite map,  i.e. there is a line section Lo, then S must be rational 
and normal. Assume, in fact, tha t  S is not normal, i.e. S=P(O(1)@O(b))  with 
b>5,  and consider the projection 

~rLo: S - - 4  p4.  

The image curve 71Lo ( S )  is a rational nonnormai curve in p4  and therefore it has 
a trisecant line, Lt. Then the linear span P3=(Lt ,  Lo) contains three rulings of S, 
and therefore also a pencil of trisecant lines to S. [] 

If  S is not a scroll, it has only a finite number  of lines. We first look at  the 
case of an isolated line. 

4.1. S u r f a c e s  w i t h  a t  l ea s t  o n e  i s o l a t e d  ( - - 1 ) - l i n e  

Assume tha t  S contains a finite number of (-1)-l ines,  and tha t  at least one of 
them, say L, is isolated, i.e. it does not intersect any other line on S. Then the 
projection 

7rL: S ) p4  
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is an embedding  by L e m m a  4.1. Let  L(afg)-l-L--afls, and notice tha t  K~L(s)=Ks.  
Using the  same invariants n,  e, k, e for S we have tha t  

deg~rL(S)=n-3 ,  K ,~(s ) .7 - l=e+l  , K 2 = k  and c2(~rL(S))=c. 7r 

Now the  double point  formula for surfaces in p4  ([10, Appendix  A]) applies to 

1rL(S), giving a new numerical  relat ion 

(12) ( n - 3 )  ( n -  1 3 ) - 5 e - k + c - 5  = O. 

Eliminat ing c f rom (5) and (12) and solving with respect  to  k and similarly for 

X = c + k  we get 
k = ~ (n 3 - 26n 2 + 2 2 6 n -  680 + 3 h e -  32e) 

and 

X = ~s ( n3 - 3 0 n 2  +290n-816+36ne -  12e). 

The  Hodge index theorem reduces to  

n k -  e 2 -- ~ (n 4 - 26n 3 + 226n 2 - 680n + e(3n 2 - 3 2 n -  8e)) < 0. 

Now e(3n 2 - 3 2 n - 8 e )  clearly a t ta ins  its minimal  value at an endpoint  of  the  range 

of permissible values of e, i.e. a t  e = - n  or at  the  Castelnuovo bound  e =  �88 2 - 5 n ) .  

In the former case we get the  inequali ty 

n 4 - 29n 3 + 250n 2 - 680n _< 0. 

In  the  lat ter  case we get 

5n 4 - 131n 3 + 1014n 2 - 2720n < 0. 

But  the  lat ter  is never t rue  while the  former is t rue  only for n < l l .  

The  only possibilities are easily collected in Table 7. 

7 

8 

9 

10 

11 

Table 7. 

X Bounds  for e Numerical  possibilities 

- - 7 < e < - - 3  none 1 ( 2 9 + 3 e )  

�88 
1 ( 3 1 + 5 e )  

1 (14+3e)  

- 8 < e < - 2  

- 9 < e < - i  

- 1 0 < e < 0  

e = - 4 ,  - 8  

e---- - 3  

e =  - 2  

~ ( 2 5 + 7 e )  - l l < e < 3  e = l  
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Table 8. 

Case n e k X 

(a) 8 - 8  5 o 

(b) 8 - 4  1 1 

(c) 9 - 3 - 1  1 

(d) 1 0 - 2  - 2  1 

(e) 11 1 - 1  2 
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Table 7 leaves us with the possible invariants given in Table 8. 

Case (a). We have X=0, so 0_>K2=k=5,  which is absurd. 

Cases (b)-(d).  Since 7-Is 'Ks=e<_-2 the surface S cannot have effective pluri- 
canonical divisors. Since X= 1, the surface S is in each case rational. The adjunction 
morphism defined by 17-ls+KsI is birational and maps S onto p2,  a quadric in p3 
and a Del Pezzo surface of degree 4 in p4,  respectively, in the three cases, (cf. [18]). 
Thus we recover the surfaces constructed in Examples 1.12-1.14. 

Case (e). Since 7 i s . K s = e = 1  any canonical curve must be a line. Since X=2 
the surface S must be a K3-surface blown up in one point. Thus we recover the inner 
projection of the general K3-surface of degree 12 in p7  described in Example 1.16. 
The line L is the only exceptional line on the surface. 

We have then proved the following result. 

P r o p o s i t i o n  4.3. Let S be a surface in p6 with no trisecant lines and with 

at least one isolated (-1)- l ine.  Then S belongs to the following list: 
(1) a rational surface of degree 8 and genus 3, as in Example 1.12; 
(2) a rational surface of degree 9 and genus 4, as in Example 1.13; 
(3) a rational surface of degree 10 and genus 5, as in Example 1.14; 
(4) a nonminimal K3-surface of degree 11 and genus 7, as in Example 1.16. 

4 . 2 .  C o n i c  b u n d l e s  

Next we assume that  S has at least two (-1)-l ines L1 and L2 which meet. 
Then (L1 +L2)2=0  and L1 +L2 or some multiple of it moves in an algebraic pencil 
of conic sections. Thus S is a conic bundle. 

If there is a line L of selfintersection L2_<-2 intersecting L1, then this line 
intersects all the members of the pencil and therefore is mapped onto the base 
curve. This would imply that  S is a rational conic bundle in p6. Now, let F be 
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a general fiber of the conic bundle and let D=L+L1 +F. Then D has ari thmetic 
genus 0 and selfintersection D2=l. By Riemann-Roch  IDI maps  S birationally 
to p2.  Since D has degree 4, the rational map  from p2  to S is defined by curves 

of degree 4. Therefore the sectional genus p(C)-~p is at most  3. Since S is not a 
scroll, the sectional genus is at least 1, so we get e = - n + 2 p - 2  with l < p < 3 .  For 
a conic bundle (Ks§ so we get correspondingly: k = n - 4 p + 4  
and c=8-n+4p.  Substi tuting those values in the trisecant formula of Le Barz, (5), 
we get 

n 3 - 15n 2 + 8 0 n -  1 5 6 -  6pn+  36p = 0. 

For p=l  this is (n -6 ) (n -5 ) (n -4 )=O,  for p=2 it becomes (n -6 ) (n -7 ) (n -1 )=O,  
while p = 3  implies ( n - 6 ) ( n - 8 ) ( n -  1)--0. 

The solutions except (n, p)----(1, 2), (1, 3), (6, 3) correspond precisely to the Del 
Pezzo surfaces of Example  1.8 and the conic bundles constructed in Examples 1.9- 
1.11. The first two of the remaining three cases, when n= 1, are clearly impossible, 
while a surface with (n,p)=(6,3) can span only a p4  and would therefore have 
trisecants. 

Let us assume tha t  there is a line L, in addition to L2, of selfintersection 
L2~- -1 ,  which intersects L1. Then L meets all members  of the pencil of conic 
sections, so as above S is rational. Furthermore D = L + L I §  has ari thmetic 
genus 0 or 1 and degree 3, so like above S must  be a Del Pezzo surface. 

Finally, we assume that  L2 is the only line of selfintersection L 2 < - 1 intersect- 
ing L1. Then the projection 

?l'L 1 : S ~ p 4  

will be a composition of the contraction of L2 and an embedding by Lemma 4.1. 
The conic bundle structure is of course preserved. Therefore the image surface in 

p a  is rational of degree 4 or 5, or it is an elliptic conic bundle of degree 8 cf. [5], 
[8]. It  is clear tha t  the two first cases come from the surfaces of type Examples  1.10 
and 1.11. The elliptic conic bundle has a plane quartic curve on it in p4  which is 
a bisection on the surface, cf. [5]. I ts  preimage on S would have degree 4, 5 or 6 
depending on the intersection with L1. But  this is a curve of genus 3 so the degree 

upstairs must  be 4 or 6 if S is smooth.  A curve of degree 4 or 6 and genus 3 has 
trisecants, so this excludes this case. We have therefore shown the following result. 

P r o p o s i t i o n  4.4. Let S be a conic bundle in p6  with no trisecant lines, then 
S is rational and belongs to the following list: 

(1) a Del Pezzo surface of degree 4, 5 or 6 and genus 1, as in Example 1.8; 
(2) a surface of degree 6 and sectional genus 2, as in Example 1.9; 
(3) a surface of degree 7 and sectional genus 2, as in Example 1.10; 
(4) a surface of degree 8 and sectional genus 3, as in Example 1.11. 
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4 . 3 .  I n n e r  p r o j e c t i o n s  f r o m  p 7  

Our last approach to surfaces with lines on them is the case of inner projections 
from p 7  i.e. surfaces S obtained by projecting a smooth surface S in p7 from a 

point x on the surface. To simplify slightly the argument we may assume that  S 

is not a conic bundle, since these are all treated above. Thus we assume that  t h e  

surface has r pairwise disjoint (-1)-lines. Furthermore, we assume that  it has no 

lines of selfintersection -<-4.  In other words, S has r exceptional curves of the 

first kind, which can therefore be contracted. We assume that  we can contract at 

least one of them, E, down to x c S  such that  x is not a base point for 7~, where 

7-l=p*('H)-E and p is the projection map p: S--~S. Thus 7~ embeds ;~ in p7 with 
no trisecant lines and with ( r - 1 )  disjoint (-1)-lines. 

Notice that  the existence of r disjoint (-1)-lines and no lines of selfintersection 

< - 4  on S gives a contribution of 4r in the number of tangential trisecants (cf. [12]), 
which in terms of the formula as stated in (6) means that  

T3 --4r.  

Moreover, the existence of ( r - 1 )  disjoint (-1)-lines and no lines of selfintersection 

< - 5  on S gives a contribution of - ( r - l )  in the formula for trisecant lines of 

surfaces in p7 (cf. [12]). Using the same invariants n, e, k, c for S, as in Section 3, 
we have 

d e g S : n + l ,  K , 3 . ~ = e - 1  , K 2 = k + l  and c 2 ( $ ) = c - 1 .  

Plugging those invariants in the formula of Le Barz for the number of trisecants to 
a smooth surface in p7,  we get (cf. (7)) 

6S3 =n3-27n2 +176n+ lOS+c(3n-37)-k(3n-53)-e(15n-177) : - 6 r + 6 .  

In addition we have from (5) and (6) that  

6D3 -- 2n 3 - 42n 2 + 196n - k (an- 28) + c(3n- 20) - e( lSn - 132) -- 0, 

T3 = 6n 2 - 84n + k ( n -  28) - c(n-  20) + e ( 4 n -  84) = 4r. 

Thus 

- 2 ( 6 r - 6 )  : 2 S 3  

= 6 D 3  - 12n 2 + 156n + 108-  k ( 3 n -  78) + c(3n- 54) - e ( 1 2 n -  222) 

= 6 Da - 3T3 + 6n 2 - 96n + 216 - 6k + 6 c -  30e 

-- - 12r + 6 n  2 -96n+216-6k+6c-30e  
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and hence 

(13) n 2 - 1 6 n + 3 4 - k + c - 5 e  = O. 

Now, we assume that  the number r of (-1)-l ines on S is positive, thus 

T3 = 6n 2 - 8 4 n + k ( n - 2 8 )  - c ( n - 2 0 ) + e ( 4 n - 8 4 )  = 4r > O. 

The two relations (5) and (13) yield the following expressions for k and c in terms 

of e and n: 

k = 1 (n 3 _ 26n2 + 2 2 6 n -  680 + 3he - 32e), 

1 3 c = g (n - 34n 2 + 3 5 4 n -  238+ 3ne+8e) .  

Substituted into the inequality T3 > 0 they yield 

- 4 n  2 + 4 1 1 n -  4ne+412e  > O, 

which simplifies to 

n ( 1 1 - n )  > e ( n -  12). 

When n_> 13 this means that  e < - n ,  and therefore that  S has sectional genus 0. 

But this means that  S is a scroll, which is absurd. By assumption, S spans p6 and 

is not a scroll, so n_>6. For n = 6  the surface is either a scroll or a Del Pezzo surface, 

so we may assume that  n > 7 ,  and e>_-n.  

For 7 < n < 1 2  we get the list given in Table 9. 

n 

7 ~ ( 2 5 + 3 e )  

Table 9. 

Bounds ~ r e  Numerical possibiliti~ 

- 7 < e < - 3  e = - 3  

8 

9 (31+5e) 

10  (14+3e) 

11 (25+7e) 

12 �89 

- - 8 < e < - 2  

- 9 < e < - 1  

- 8 < e < 0  

- 9 < e < l  

e = - 4 ,  - 8  

e =  - 3  

e =  - 2  

e = l  

- 1 2 < e < 4  none 
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Table 10. 

n e k c r 

8 - 4  1 11 8 

9 - 3  - 1  13 9 

10 - 2  - 2  14 6 

11 1 - 1  25 1 
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The case (n, e ) = ( 7 , - 3 )  corresponds to a surface which spans only pS, it has 
trisecants since this is the case for every general hyperplane section. In the case 
(n, e ) = ( 8 , - 8 ) ,  the invariant x=O, so the surface is an elliptic scroll, which is im- 
possible by Proposition 4.2. Thus we are left with the numerical possibilities given 
in Table 10. 

One can immediately see that  we have recovered Examples 1.12-1.14 and 1.16, 
respectively. 

The results of this section can be summarized as follows. 

P r o p o s i t i o n  4.5. Let S be a surface embedded in Pe with no trisecant lines 

and having r ( -1) - l ines  and no lines of selfintersection < - 4  on it. Assume that S 

is the inner projection of a smooth surface S c P  7, then S is as in Proposition 4.3. 

5. Conc lus io n  

5.1. P r o o f  o f  T h e o r e m  0.1 and P r o p o s i t i o n  0.2 

Clearly, Theorem 3.2 together with Propositions 4.3-4.5 prove Proposition 0.2. 

Furthermore, Theorem 0.1 follows as soon as we establish that  a surface defined 
by qua~lrics belongs to the list of the theorem. For this, consider the complete 
intersection T of four general quadrics in the ideal of S. Then T has degree 16 and 
T = S U S  I, for some smooth surface S ~, unless S = T  and is a complete intersection 
itself (Example 1.6). By construction, the quadrics containing S I cut out a surface. 
Furthermore, if S p is a plane or a scroll, then its lines or rulings will be trisecants 
to S. It follows easily that  the only possibilities for S ~ with deg S~< 7 are Veronese 
surfaces, the Del Pezzo surfaces of degree 4, 5 and 6, and the conic bundles of 
degree 6 and 7 (Examples 1.9 and 1.10). The corresponding linked surfaces S are 
the Examples 2.1, 1.5, 1.16, 1.14, 1.4 and 1.13, respectively. The remaining cases 
deg S < 8  follow from a straightforward analysis combining the numerical relations 
(5), (8) and (9). [] 
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We have made computat ions as in Section 3 fixing the number  r of ( -1)- l ines  
on the surface. Checking up to r----100 gives no new possibilities compared to the 
list we have produced. 

This numerical observation and the fact tha t  the examples constructed in Sec- 
tion 1 cover all the cases listed in Section 4 lead us to make the following conjecture. 

C o n j e c t u r e  5.2. Let S be a surface in p6 with no trisecant line, then the 

surface belongs to the list of examples in Sections 1 and 2. 
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