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Ergodic properties of fibered rational 

Mattias Jonsson(1) 

maps 

A b s t r a c t .  We study the ergodic properties of fibered rational maps of the Riemann sphere. 
In particular we compute the topological entropy of such mappings and construct a measure of 
maximal relative entropy. The measure is shown to be the unique one with this property. We 
apply the results to selfmaps of ruled surfaces and to certain holomorphic mappings of the complex 
projective plane p2.  

O. I n t r o d u c t i o n  

Let X be a compact metric space, let g: X � 9  be a continuous mapping, and 
let C denote the Riemann sphere. A rational map of degree d fibered over g is a 
continuous mapping f :  X • C �9  of the form 

f (x ,  z) -= (g(x), Qx(z)), 

where Qx is a rational function of degree d, depending continuously on x E X .  In 
this paper we will investigate the ergodic properties of fibered rational maps. For 
background on ergodic theory see e.g. [W]. 

In the special case when X is a point we recover the class of (non-fibered) 
rational maps of C. The study of the ergodic properties of the latter mappings 
was initiated by Brolin [Br] (in the case of polynomials), and further developed by 
Lyubich, Freire, Lopez and Mafi~. In particular they proved the following result. 

T h e o r e m  A. ([L], [FLM], [M]) Let f: C �9  be a rational map of degree d>2. 
Then the following holds: 

(i) the topological entropy of f satisfies h( f )=log d; 
(ii) f has a unique measure p of maximal entropy; 
(iii) # is mixing for f;  
(iv) the support of It is exactly the Julia set of f . 

(1) Supported by the Swedish Foundation for International Cooperation in Research and 

Higher Education (STINT). 
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In this paper we generalize Theorem A to the fibered setting (cf. Theorems 3.1, 
4.2, 5.2 and 6.1). Let 7r:XxC--~X be the natural projection. 

T h e o r e m  B.  Let f : X x C � 9  be a rational map o/degree d>_2, fibered over 
g: X �9 Then the following holds: 

(i) h( f )=h(g)+logd;  
(ii) i f  v is an invariant probability measure for f ,  then the metric entropies of 

f and g are related by h~( f )<h~. , (g)+logd;  
(iii) given an invariant probability measure it~ for g, there exists an invariant 

probability measure it for f such that ~r.it=it' and h~,(f)=-ht,,(g)+log d; i f  ht,,(g)< 
c~, then it is unique with these properties; 

(iv) the measure it characterized in (iii) is ergodic (mixing) for f i f  it ~ is ergodic 
(m ng) for g; 

(v) if  x C X  and itx is the conditional measure o /#  on {x} • C, then the support 
of #~ is exactly the Julia set for the restriction of {fn} to { x } •  

In fact, we prove Theorem B in a more general setting. Namely, we replace 
the trivial C-bundle ~r: X x C - ~ X  by a C-bundle ~r: Y - + X .  Roughly speaking, this 
means that  Y is a compact metric space, that  Ir is a continuous surjection, and that  
the fibers Y~ :=~r -1 (x) are Riemann spheres which are fairly nicely packed together. 
A rational map fibered over g: X � 9  is then a continuous mapping f :  Y�9  such that  
~r semiconjugates f to g, and such that  the induced mappings Y~-+Ya(~) between 
fibers are rational. See Section 1 for precise definitions. 

The proof of Theorem B mainly follows Lyubich's proof of Theorem A. How- 
ever, we use pluripotential theory to construct the measure of maximal entropy, 
as introduced by Hubbard and eapadopol  [He] and by Fornaess and Sibony [FS4]. 
Also, the proof of the uniqueness part in (iii) is substantially harder than in the 
non-fibered case. A different proof of the existence and uniqueness of the measure 
of maximal entropy has been given, independently, by Sumi [Su] for skew products 
generated by rational semigroups. 

One motivation for studying fibered rational maps is that  they can be used 
to understand the dynamics of certain holomorphic mappings in two complex di- 
mensions. The f r s t  situation that  we address is when Y is a ruled surface, i.e. a 
smooth projective variety with the structure of a P l -bundle  7r: Y-->X over a com- 
pact Riemann surface X. By a result of Dabija [D], selfmaps of ruled surfaces can 
be viewed as fibered rational maps. Our techniques will therefore allow us to prove 
the following result (see Theorem 7.3). 

T h e o r e m  (2. Let Y be a ruled surface over a Riemann surface X ,  and let f 
be a holomorphic mapping of Y that fibers over a holomorphic map g: X � 9  Assume 
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that the topological degrees 5I, ~9 of f and g satisfy 1<~9 <~ I. Then h(f)=log Sl, 
and f has a unique measure of maximal entropy. 

For holomorphic mappings of complex projective space pk,  k_>2, Forn~ess and 
Sibony proved that  there exists a natural measure of maximal entropy. The ques- 
tion of uniqueness is open in general, but we will prove the following result (see 
Theorem 7.4). 

T h e o r e m  D. Let f be a holomorphic selfmap of p2 of degree d>_2 that pre- 
serves the family of lines passing through a given point 0 in p2. Then f has a 
unique measure of maximal entropy. 

The last theorem applies in particular to polynomial skew products on C 2. 
These are mappings of the form f (z ,  w)=(p(z), q(z, w)), where p and q axe polyno- 
mials of degree d>2, and q has nonzero wd-term. Polynomial skew products on C 2 
were previously studied by Heinemann In1], [U2], [U3], by the author [J], and by 
Sester [S1], [$2] (in a slightly different situation). 

Fibered rational maps can be viewed as non-autonomous (or random) dynami- 
cal systems on C. Indeed, if f :  X • C�9  is a fibered rational map, then the restriction 
of fn  to {x} • C defines a non-autonomous system on C, where the time u-map is 
given by 

z, > Q9n_l(:r) . . . . .  Qg(x)oQx(z). 

Conversely, let (Qi)i>o be an equicontinuous sequence of rational maps of C of 
degree d>2 and let )~ be a compact subset of the space of rational maps of C of 
degree d such that  QiE.X for all i. Let X = X  N and define g:X---~X by the shift 
g((R/))--(R/q_l). Then the map f :  X x C�9  defined by f((Ri) ,  z)--((R~+l), Ro(z)) 
is a fibered rational map over g, and the restriction of f to {(Qi)} x C can be iden- 
tified with the sequence (Qi). For more on random and non-antonomous dynamical 
systems see e.g. [K], [KS] and [Bo]. The papers [FS1] and [FW] are concerned with 
random iterations on C and p2, respectively. 

Some of the results in this paper generalize to the setting of fibered holomorphic 
mappings of pk,  k>_l, that  is, replacing ~ p 1  by pk.  We will not, however, 
pursue this generalization here. At any rate, the proof of the uniqueness result 
in Theorem B(iii) does not generalize. Indeed, as mentioned above it is an open 
problem whether uniqueness holds even in the non-fibered case for k_> 2. 

The organization of this paper is as follows. The definition of C-bundles and 
fibered rational maps axe given in the first section. In Section 2 we show how to 
define natural measures #~ on the fibers Y~--lr-l(x), using pluripotential theory. 
The support of #~ is equal to the Julia set for the restriction of {fn} to Y~. In 
the case when the base space X is a single point we recover the unique measure of 
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maximal  entropy in Theorem A. We compute topological entropy of fibered rational 
maps in Section 3. Given an invariant measure #~ for g: X � 9  we can construct a 

measure # on Y having #x as conditional measures on the fibers Y, and such tha t  
7r ,#--# ~. The properties of # are studied in Sections 4-6, where we show tha t  # 
is ergodic (mixing) if #~ is. Further, # is the unique measure of maximal  entropy 
among the invariant measures v for f such tha t  r , v - - #  ~. Finally, in Section 7 
we apply the previous results to selfmaps of ruled surfaces and prove Theorems C 
and D. 

1. F i b e r e d  ra t iona l  m a p s  

The phase space for the dynamical systems in this paper  will be a space Y, 
fibered over another space X with Riemann spheres as fibers. The dynamical sys- 
tems themselves will be continuous selfmaps of Y mapping fbe r s  to fibers as rational 
mappings. The purpose of this section is to define all of this in a precise way. 

Throughout  the paper, C will denote the Riemann sphere, equipped with the 
spherical metric. The metric is normalized so tha t  the diameter  of C is one. 

Definition 1.1. Let X be a compact  metric space, and let ~r: Y-+X be a C- 
bundle. This means tha t  Yx:=~r-l(x) is homeomorphic to a sphere for every x, 

and tha t  Yx comes with a complex structure and a smooth (1, 1)-form wx>0 in- 
ducing the metric on Y~. We also assume tha t  X can be covered by open sets 
{Ui} for which there exists a homeomorphism (I)i: U~ x C--+Tr-l(Ui) and such tha t  

(I)~-1 o(I)i: (UiMUj)x C � 9  maps {x} x C as a Mhbius t ransformation onto itself for all 

xcu~nuj. 

Remark 1.2. The definition implies tha t  given x0 E X we may find a continuous 
family i~: C-+Yx of conformal mappings for x close to x0. Such a family ix will 
be called a local parameterization. The local parameterizat ions are not uniquely 
defined, but by compactness of X we may assume that  there exists a compact  subset 
M0 of the set of M6bius transformations of C such ixoj~lCMo for any two local 

parameterizat ions i~ and j~. As we will see, the choice of local parameterizat ion 
will not be important  for most of what follows. If  i~ is a local parameterization,  
then the pullback i*w~ is a positive smooth form on C, depending continuously 
on x. 

Example 1.3. Let Y = X  • C and let ~r be the projection on the first coordinate. 

Example 1.4. Let Y be a ruled surface over a Riemann surface X.  This means 
tha t  Y is a smooth projective variety of complex dimension 2, which is also a 
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holomorphic P l -bund le  over X.  Every Yx has then a unique conformal structure 
and a positive form wx=wiy~, where w is the K~hler form on Y. 

The following result will be needed in Section 4. It  says tha t  continuous func- 
tions on C-bundles can be approximated by functions which are smooth on the 
fibers. The proof, using a parti t ion of unity on X,  is left to the reader. 

L e m m a  1.5. Let Y be a C-bundle over X and let ~ E C ~  Then, given 
e > 0  there exists C > 0  and ~ E C ~  such that I I~-~]]o~<e,  ~x:=~iyzEC2(yx) 
and I [~ I i c~( r~)<C for xEX.  

We next define fibered rational maps.  

Definition 1.6. Let Y be a C-bundle over X and let g: X � 9  be continuous. We 
say tha t  a continuous mapping f :  Y�9  is a rational map of degree d, fibered over g 
if it has the following properties: 

(i) 7r semiconjugates f to g, i.e. goTr=rof, in other words, f maps the fiber Y~ 
into the the fiber Yg(~) for xEX; 

(ii) the restriction fiYx: Y~-+Yg(~) is a rational map  of degree d. 

Condition (ii) can also be phrased as follows: for any local parameterizat ions i~ 

at x and ig(~) at g(x), the composition i~(1)ofoi~ is a rational map  of C of degree d. 

If  f :  Y�9  is a rational map, fibered over g: X r  and xEX,  yEY, n>O, then we 
will write xn for gn(x) and Yn for fn(y). We will denote the restriction of f to Y~ 
by fx. Similarly, f~  is the restriction of f n  to Y~. 

Example 1.7. Let Y = X  x C as in Example  1.3. A rational map  f :  Y�9  of degree 
d, fibered over g: X � 9  is then of the form 

f(x,  z) = (g(x), Q~(z)), 

where Q~ is a rational function of degree d, depending continuously on x. A special 
case is when the mappings Q~ are polynomial mappings of C. Such mappings have 

been studied by Sester IS1], [$2]; see also In2] and [J]. 

Example 1.8. Let Y be a ruled surface over X as in Example  1.4. It  is a result 
of Dabija [D] that  (almost) every holomorphic selfmap of Y is a rational map  fibered 
over a holomorphic map  g: X 0.  See Proposit ion 7.1 for more details. 

2. I n v a r i a n t  m e a s u r e s  a n d  J u l i a  s e t s  o n  f i b e r s  

In this section we construct probabili ty measures on the fbe rs  of a fibered 
rational map. The support  of these measures serve as Julia sets for the restriction 
of the dynamics to the fibers. 



286 Matt ias  Jonsson 

Let f :  Y�9 be a rational map of degree d>2,  fibered over g: X�9  The form w. 
on Y. induces a measure, also called w. on Y., or even on Y. As measures on Y we 

have that  x~-+w, is weakly continuous. 
If X is a continuous function on Y., then we define the continuous function 

(f~)*X on Y~n by 

(f~)*X(Z)= Z X(w)' 
f~n(w)=z 

where the preimages w of z are counted with multiplicity. We define pullbacks of 
measures by duality, i.e. ((f~)*u, X)=(u, (f~) .X).  Now define probability measures 

~ , n  on Yx by 
1 

#x,n := -~( f : )*  wx.. 

T h e o r e m  2.1. The measures #.,n converge weakly to a probability measure 
tzz on Yz. Further: 

(i) # .  puts no mass on polar subsets of Yz; 
(ii) ( f* )*#*=#*l  and (f.)*lz**=d'#.; 
(iii) x~-~#~ is continuous in the weak topology of measures on Y.  

We will prove Theorem 2.1 by finding potentials for the measures/z,  and prov- 
ing convergence results for these potentials. This method was first used by Hubbard 
and Papadopol [HP] and further developed by Forn~ess and Sibony (see [FS3]). The 
main idea is to lift f . :  Y~--~Y.~ to a selfmap of (22; the fact that  there is, in general, 
no canonical way of doing this makes the proof below slightly technical. 

Proof. Throughout  the proof, C > 0  will denote constants not depending on x, 
n, or any choice of local parameterization. Let (22 = (22 \ {0 } and let ~r': (22* -~ C ~- P 1 
be the natural projection. Any Borel probability measure v on C can be identified 
with a plurisubharmonic function G~ on (22. such that  G~(z, w)<log I(z, w)[+O(1),  
as I(z,w)l-+co, and G~(Az, Aw)=G~(z, w)+log IAI for Ae(2*. The function G~ is 
unique up to an additive constant and the correspondence is given by v=dd c (G. o s), 
where s is any loaal section of ~' and de= (v f~ /2~r )  ( 0 - 0 ) .  

In our setting, given a local parameterization is: C--~Y. there exists a smooth 
potential G~,0 for w. in the sense that  w.=ddC(G.,oosoi;l). By the smoothness of 
Wx we may assume that  

(2.1) logl(z,w)l<a~,o(z,w)-<logl(z,w)l+C for (z,w) e C .  ~. 

Thus, if G.,0 and Gx,0 are two different potentials, then we may assume that  

(2.2) 15~,0 (z, w) - e~,0 (z, w)l < C. 
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Given a local paxameterization at x we may assume that  x~-+G=,o is uniformly 
continuous. 

Given x E X  we will lift f~:Y*---~Y~I to selfmaps of C and C .  ~. Let i~ and i= 1 
be local parameterizations near x and xl ,  Define Q=: C �9  to be a rational map and 
R=: C2.�9 to be a homogeneous polynomial map, both of degree d, such that  

s u p { l R = ( z ,  w ) l :  I(z, w)l  = 1} : 1 

c~. 'r' ~GZ ~" ~ Yx 

commutes. Given the local parameterizations i= and i=~ these properties determine 
Q= uniquely, and R= uniquely up to multiplication by a complex number of unit 
modulus. ~ r t h e r ,  if we change i=, and R~ is the resulting map of C 2, then we have 

(2.4)  e-C < I R ~ ( ~ , ~ ) I  < ~ .  
-fR~(z,w)l- 

Now consider an orbit (xj)j>0 in X, select parameterizations at each point 
xj, and let R, j  be the corresponding homogeneous selfmaps of C2.. Let R~ be the 
composition R , . _  1 . . . . .  R=. Then R~ is a homogeneous polynomial mapping of C .  2 
of degree d n. Notice that  R~ is determined, up to multiplication by a complex 
number of unit modulus, by the local parameterizations at x and xn. Given these 
choices we have that  x~-+R~ is continuous. If we change i=., then, corresponding 
to (2.4) we have 

(2.5) e-C< IR~(z,w)l < e  c.  
- In~"(z, ~)1 - 

Define the plurisubharmonic function G=,n on C2. by 

1 
G=, = -5-gG=, oo R'~. 

Then G~,n is uniquely defined, given the local parameterizations at x0 and xn. 
Further, x~-+G=,n is uniformly continuous near x0. From (2.1), (2.2) and (2.5) it 
follows that  if we change the local parameterizations at x , ,  and G=,~ is the modified 
G=,n, then 

(2.6) IG=,,,-G=,,,I <- C. 

and such that  the diagram 
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L e m m a  2.2. Given x E X and a local parameterization at x, the functions Gx,n 
converge uniformly on compact subsets of C2. to a plurisubharmonic function Gx, 
as n-~c~. This function does not depend on the choice of local parameterizations 
at xj for j > l ,  and it satisfies Gz(z,w)<log[(z,w)[+O(1), as [(z,w)[--~c~, and 
G~(Az, Aw)=G~(z, w)+log IA[ for AeC*. Further, we have: 

(i) Gx is uniformly continuous on C2.; 
(ii) Gel oR~=d.G~, given ix and i~1; 
(iii) x~-+G~ is uniformly continuous. 

Proof. The fact that  the choice of local parameterizations at x j,  j > 1, is irrele- 
vant follows from (2.6). Let us therefore fix local paxa.meterizations at these points. 
Notice that  

e-Cl(z, w)ld <_ IR~, (z, w)l <_ I(z, w)l d 

for j > 0  and ( z ,w)EC.  2. This implies that  

e-ClR~(z, w)ld <_ IR~+l(z, w)l <_ IR'~(z, w)[ d, 

so, using (2.1), 
C 

IGx,n+l-Gx, ,[  _< ~-~, 

which shows that  G~ :=limn-~oo G~,n exists and that  

C 
(2.7) Ia~,n-a~l  <_ ~ .  

That  G~ is continuous and plurisubharmonic, that  G~(Az, Aw)=G~(z,w)+log [A[ 
and that  G~(z, w)<_ [(z, w)[ +O(1) all follow from the corresponding properties of 
G~,,~ and from (2.7). 

We see from the definition of G~,n that  G~l,noRx=d.G~,n+l. This and (2.7) 
imply (ii). Finally (iii) follows from the estimate (2.7) and the fact that  x~--~G~,n is 
continuous for every n. [] 

We now continue the proof of Theorem 2.1. First we note that  G~,n is a 
potential for #~,n in the sense that  #~,n=ddC(G~,nosoi~ 1) for a local section s of lr'. 
Indeed, for any local section t of ~r ~ we have that  the function d-'~G- - o t o i - l o f  n "Ln ~ X n  J ~ 

is a potential for #~,n- Fhrther, toi;~of~ differs from R~osoi; 1 by a holomorphic 
factor r162  Thus 

ddC(d-nG~,o oR~ osoi; 1) = ddC(d -n log [r +ddC(d-nGx,,o ~176 ~ f~) = O+#~,n. 

Since G~,n--+G~ uniformly on compact subsets of C .  2, as n--+c~, it follows that  #~,n 
converges weakly to a probability measure #~ on Y~. Here #~=ddr 1) for a 
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local section s of 7d. The properties (i)-(iii) of #~ now follow from the corresponding 
properties of G~. [] 

We next show that  the support of the measure/ ,~ can be interpreted as the 
Julia set of f in Yx. More precisely, fix x E X  and consider the family {f~}n>0 of 
rational maps on Yx. We define F~, the Fatou set of f in Y~, to be the set where 
this family is normal. Equivalently, zEF~ if and only if the family "~xc~n--z~.'-l~ j~r176 
of rational maps on C is normal near i~-l(z); this does not depend on the choices 
local parameterizations at x and x,~. Still equivalently, F~ is the open subset of 
Yx where the family {f~} of mappings from Yx into Y is locally equicontinuous. 
Clearly F~ is an open subset of Y~. Its complement J~:=Y~\Fx is called the Julia 
set of f in Yx. 

P r o p o s i t i o n  2.3. The support of #~ is equal to Jx for every xEX.  

Proof. Again we let C > 0  denote a constant not depending on x, n, or any 
choice of local parameterization. We will follow the proof of Theorem 6.4 in [FS3]. 
Fix x E X  and local parameterizations i~ at x and i~, at xn for n_>l. Define 
Q~=Q~,-1 ..... Q~ and R~=R~,_x .....  Rx using (2.3). Let us first show that  the 
support of #~ is contained in J~. Suppose that  U~i~I(F~) and let Q~J be a subse- 
quence converging uniformly to a meromorphic function on U. After shrinking U, if 

nj necessary, we may assume without loss of generality that  Q~ (U)c{[z:w]: ]z] < [wl} 
for all j .  Then R~J(z,w)=yj(z,w)(Aj(z,w), 1), where ej and Aj are holomorphic 
on (zr')-l(V) and ej#O, [A/[_<I. Thus 

1 loglR,~j(z,w)[= 1 1 dn ~ ~ log [~j(z, w ) [ + ~  log [(Aj(z, w), 1)[. 

Here the left-hand side converges uniformly to Gx by Lemma 2.2, (2.1) and (2.2). 
Further, the first term in the right-hand side is pluriharmonic, and the last term con- 
verges uniformly to 0. Thus G~ is pluriharmonic on (Tr') -1 (U), so i~(U)Asupp #z---- 
0. It follows that  supp/z~ C Jz- 

For the converse, suppose that  #~ vanishes on an open set ix(U) so that  Gx 
is pluriharmonic on (Td)-l(U). By shrinking U we may assume that  there exists a 
holomorphic function h # 0  on ( r ' ) - I ( u )  such that  G~=log [hi. But then it follows 
from (2.7) and (2.1) that  

on (~-')-I(U). Thus 

l log IRnl- log Ihl _< C 

e - c <  _ hd -- <eC 
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on (Tr')-l(U), which implies that  R'~/h d" is normal o n  (?l")- l (v) .  Since ~r' semi- 
conjugates R~/h d" to Q~, it follows that  {Q~} is normal on U. [] 

The following proposition sums up some of the properties of the Julia sets J~. 
They follow from the corresponding properties of #x- 

P r o p o s i t i o n  2.4. Let f: Y � 9  be a rational map of degree d>2 fibered over 
g: X �9  Then the Julia set Jx of f in Yx has the following properties: 

(i) Jx is compact, nonempty and has no isolated points for xEX;  
(ii) f~J~=Jxl and f ~ l j ~  =j~ for xEX; 
(iii) the assignment x~-+ Jx is lower semicontinuous in the Hausdorff metric on 

compact subsets of Y.  

Proof. (i) This follows because p~ is a probability measure and p~ has contin- 
uous local potentials, given by G~osoi~ 1 , where s is a local section of r ' :C.2-+C.  

(ii) This follows from (f~).#~=#x~ and f * # ~  =d-#z .  

(iii) This is a consequence of the continuity of x~-~#~. [] 

Remark 2.5. The assignment x~-~J~ is not continuous, in general. See e.g. [J] 
for examples. This is analogous to the fact that  the Julia set of a rational function 
depending on a parameter generally does not vary continuously with the parameter. 

The measure #~ was defined by pulling back the measure wx, on Y~. by f~,  
normalizing, and letting n--~oo. One may ask what happens if we pull back other 
measures. The following result asserts that  for most points wEY~., the preimages 
of w under f~  are distributed like p~. The proof is almost identical to the proof of 
Lemma 8.3 in [FS3]; the changes needed are left to the industrious reader. We will 
use Proposition 2.6 in Section 4. 

P r o p o s i t i o n  2.6. There exists a constant C > 0  such that if x E X  and ~ is a 
continuous function on Yx such that qOx:=~oly x EC2(yx), then 

- td" 

for t > 0  and n> l. 

3. T o p o l o g i c a l  e n t r o p y  

In the next four sections we will study the ergodic properties of fibered rational 
maps. For background on ergodic theory see [W]. First we will consider topological 
entropy. The exposition follows Lyubich [L]. 
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We recall the definition of topological entropy due to Bowen [Bo]. Let (Y, d) 
be a compact metric space and f :  Y�9 a continuous mapping. A set Z c Y  is (n, 6)- 
separated if for every two distinct points z, w E Z  there exists i such that  O<i<n 
and d(f iz ,  f iw)>6.  A (1, 6)-separated set will also be called a 6-net (this notion 
does not require a map f ) .  A set F c Y  (n, 6)-spans another set Z c Y  if for every 
z E Z  there exists w E F  such that  d(f iz ,  f i w ) < 6  for O<i<n. 

For a compact set Z c Y  let rn(6, Z) be the smallest cardinality of any set 
F which (n, 6)-spans Z, and let sn(6, Z) be the largest cardinality of any (n, 6)- 
separated subset of Z. It is then easy to see that  

r.(6, Z) < s.(6, Z) < r.(�89 Z) < 

Also, r~(6, Z) and sn(6, Z)  are decreasing in 6. Thus it makes sense to define 

1 
h(f ,  Z) = lim lim sup 1 log r .  (6, Z) = lim lim sup - log s .  (6, Z). 

6-~0 n---}~ n 6--}0 n---}oo n 

The number h(f ,  Z)  is called the topological entropy of f on Z. If we want to 
emphasize the dependence on f ,  then we will write e.g. sn(6, Z; f ) .  On the other 
hand, if Z = Y ,  then we will suppress Y and write sn(6; f )  and h(f) .  

The following theorem is the main result in this section. 

T h e o r e m  3.1. I f  f: Y ~  is a rational map of degree d, fibered over g: X �9  
then the following holds: 

(i) h(f ,  Yx)=logd for every xEX;  
(ii) h( f )=h(g)+log d. 

Note that  if X is a single point, then we recover the result by Gromov [G] and 
Lyubich [L] that  the topological entropy of a rational map of C of degree d is log d. 

Theorem 3.1 follows from the following two results. 

L e m m a  3.2. I f  f: Y � 9  is a rational map of degree d, fibered over g: X �9  then 
for every (~C(0, 1) there exists 60=60(a)>0 with the property that for 6<_5o, n> l 
and x E X  there exists an (n,6)-separating set in Y~ with at least d an elements. 

L e m m a  3.3. If  f: YC~ is a rational map of degree d, fibered over g: X �9  then 
for every 6>0 there exists a constant C(6)>0 with the property that for every x E X  
and every n > l  there exists an (n, 6)-spanning set in Yx with at most C(6)n5d n 
elements. 

We postpone the proofs of the above lemmas for a moment, and show how they 
imply Theorem 3.1. 
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Proof of Theorem 3.1. (i) Fix xEX. From Lemma 3.2 it follows that  

lim lim sup 1 log sn(6, Y~) _> a log d 

for every c~<l, so h(f, Y~)>logd. On the other hand, Lemma 3.3 implies that  

lira lim sup 1 log rn(6, Y~) _< lim lim sup 1 log C(6)n%l "~ = log d. 
6--+0 n--+oo n 6--+0 n--+o~ n 

Thus h(f, Y~)_<logd, so h(f, Y~)=log d. 
(ii) By a result of Bowen [Bo, Theorem 17] we have 

h(f) <_ h(9)+ sup h(f , Y~), 
x E X  

so by (i) we get h(f)<_h(g)+logd. On the other hand, fix (~E(0,1), 6<60, with 
6o from Lemma 3.2, and n > l .  Find 6 '>0  such that  dy(Yx,Yx,)>6 whenever 
dx(x, x')>6 I. Let E c X  be a maximal (n, 6')-separating set with respect to g and, 
for xEE, let Fx be a maximal (n, 6)-separating subset of Yx with respect to f .  By 
Lemma 3.2, F~ has at least d ~ elements for every xCE. Let F = U ~ e E  F~. Then 
F is (n, 6)-separating for f so 

s~(6; f)  > IFI > s . (r  g)d ~". 

It follows easily from this that  h(f)>h(g)+logd. Thus h(f)=h(g)+logd and we 
are done. [] 

We now give the proofs of Lemmas 3.2 and 3.3. The proof of Lemma 3.2 is an 
adaptation of an elegant argument by Misiurewicz and Przytycki IMP]. 

Proof of Lemma 3.2. Let L=max(2,sup~e x [Df~[) and let e=L -~/(1-~). Fix 
xEX and write Yi=Y~,, f i=f~ and f~=fk~i for 0 < i < k .  

Define Bi:={zEYi:lDfi(z)]>e}. Then /3/ is compact and since the second 
derivative of fi is uniformly bounded, there exists 60>0, not depending on x or i, 
such that  fi is univalent on every disk of radius 60 centered at points in Bi. This 
implies that  if zx, z2 E/3/ and d(Zl, z2) < 60, then fi (zl) r  (z2) unless zl r z2. 

Fix n > 1, 6 < 60 and let 

A={zEYo:l{i:O<_i<n, fg(z) EBi}i<_an}. 

Then Yn\f~(A) has positive Lebesgue measure. Indeed, if zEA, then 

IDf~(z)l < L~nc(1-~)n = 1. 
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Thus we may find a point zEYn which is not in f~(A) and is also not a critical value 
of f~.  We will define our (n, 6)-separating set as a suitable subset of ( f ~ ) - l ( z ) .  

First, if wEYi+l and w is not a critical value of fi, then define I~(w)cYi 
as follows: if f( l(w)CB~, then P~(w)=f~-l(w); otherwise R~(w) is any point in 
f~-l(w)\Bi. 

Now define the sets SiCYi, 0 < i < n  inductively by 

sn={z), (_J P (w) for0<i<n.  
wESi+l 

It is easy to check, inductively, that  S~ is (n- i ,  ~)-separated. In particular So is 
(n, 6)-separated. 

We claim that  So has at least d ~n elements. To see this, let m=[an]+l and 
consider the set T of pairs (w,i) such that  0 < i < n ,  w e &  and f]+~(w)eSj+i for 
exactly m numbers j, O<j<n-i .  A combinatorial argument shows that  T has 
exactly d m elements. But there are at least as many points in So as there are 
elements in T. Thus [S0[_>dm>d an. 

Hence we have found an (n, 6)-separating subset So of Yx with at least d ~'* 
elements. This completes the proof. [] 

Finally we turn to the proof of Lemma 3.3. In the case when X is a single 
point, the result is due to Lyubich [L]. The proof below is very similar to Lyubich's. 

We will make use of two results which have nothing to do with dynamics. 
They are consequences of the Koebe distortion theorem and the geometry of C, 
respectively. The first result is the following 

L e m m a  3.4. (Proposition 8 in [L]) Given 0<r/<�89 and 5>0 there exists ;v= 
:~(~, 5)E(O, 1) with the property that if 

h:B(u,e)--+C, 0 < 0 < 1 ,  

is a univalent meromorphic function which avoids some 71-net on C, then 

hB(u, x~) C B( hu, 5). 

Proof of Lemma 3.3. Now fix r/E(0, �89 and 5 >0  and find ~=~(r / , t f )E(0 ,  1) 
as in Lemma 3.4. Fix xEX, keeping in mind that  all the estimates below will be 
uniform in x. For 0 < k < i ,  write Y/=Yx~, fi=fx~ and f~=f~k .  Let Z~ be a finite r/- 
net in Y/containing all the critical points of fi. We assume that  m0 :=sup/IZ~[ <oo. 
For i > 0 let Zi be the subset of II/defined by 

Z i ~  U i ! f (zk). 
0 < k < i  
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Then IZi] < ( i+ l )m0 for all i. Notice that  if wEY~\Zi and O<k<i, then all branches 
of ( f~)- i  are single-valued near w and do not take any value in Z~. 

Fix n > 1 and let e ~-5/2L n, where L=supi,z ]Dfi (z) l. We now invoke the second 
result referred to above. Namely, by a geometrical argument [L, Proposition 7], 
there exist finite subsets A~cYi\Zi for 0 < i < n  such that  

(i) I Ai[_<C(5)n 2(1Og(5/e)+C(6)) <_C(5)n3; 
(ii) for every zEYi with d(z, Zi)>s there exists uEa, such that  d(u, z)<O(u), 

where #( u ) = min ( xd( u, Zi ) , xT 5 ) ," 
(iii) A~ contains no critical values of f~ for O<_k<i, further, if f~i is a given 

open dense subset of Y/, then AiN~i=O. 
Let Bi=( f~)  -x (a~). Then B~ cYx and IB~t =-dila~l. Fix zEYx and consider the 

orbit (zi)0<i<n of length n, where zi-=f~z. We consider three cases. 
The first case is when there exists m, O<_m<n, such that  d(z~, Z~)>_e for 0 < i <  

m but d(z,~+l, Zm+l)<e.  Then pick a point uEAm such that  d(zm, u)<p(u) and 
a point wEZ,~+I such that  d(zm+l,w)<e. Since O(u)<xd(u, Z,~), all branches of 
( f ~ ) - i  axe single-valued on the disk B(u, ~(u)/x) for O<i<rn. Let g~,m be the 
branch mapping zm to zi and let v=-go,m(u)EB,~. The map gi,,~ avoids the ~?-net 
Z~, so we may apply Lemma 3.4 to g~,m and conclude that  

(3.1) d(zi, f~v) =d(g,,m(zm),g,,m(U) ) < �89 for O < i < m. 

Moreover, since 0(u)< �89 we have 

(3.2) d(zm, f?v)  : d(zm, u) < �89 

On the other hand, by the choice of e and L we have 

(3.3) d(zi, f/m+l w) _< Li-m-le < �89 for m < i _< n. 

The second case is when d(zi, Zi)>_e for O<i<n (re=n).  Then there exists a 
point vCBn such that  

d(z,,f~v)<�89 for 0 < i < n .  

The third case is when d(z, Z0)<e ( m - - - l ) .  Then there exists wEZo such that  

d(z,,fixw)<�89 for 0 < i < n .  

For each triple (m,v,w) with - 1 < r e < n ,  VEBm and WEZm+I pick a point 
z(m,v,w) such that  (3.1)-(3.3) hold, if such a point exists. Let Fx be the set of 
all the chosen points z(rn, v, w). It then follows that  Fx (n, (i)-spans Yx. Now there 
are at most n + l  choices for m, dnC(~)n 3 choices for v and (n+l)lZ'l<_Cn choices 
for w. Thus Fx has at most C(6)nSd n elements. This completes the proof. [] 
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4. Mixing properties of/~ 

Let f :  Y�9 be a rational map of degree d>2,  fibered over g: X�9  In Section 2 
we constructed measures #x on the fibers Yx with certain invariance properties. 
Given a probability measure #'  for g we can define a probability measure # on Y 
by 

(4.1) 

for continuous functions qo on Y. Thus 7r.#=#' and the conditional measures of # 
on the fibers Yx are given by #~. Conversely, these two properties define # uniquely. 

In the following three sections we will s tudy the dynamical properties of #. 
Here we investigate when # is ergodic or mixing. We start  by the following simple 
result. 

P r o p o s i t i o n  4.1. I f # '  is invariant for g, then # is invariant for f . 

Proof. We have 

(f.., = j( (.x, fx("x1' (., :). 

The third equality follows from ( f x ) . # x = # x l  and the fourth equality from the 
invariance of #'. [] 

We now turn to the ergodic properties of# .  In the case when X is a single point, 
then Y ~ - X  and f is essentially a rational map of C. It is a result of Lyubich ILl 
and of Freire, Lopez and Marl6 [FLM] that  the system (f,  #) is exact in this case. In 
particular, # is ergodic and (strongly) mixing for f .  The following result generalizes 
this to general fibered rational maps. 

T h e o r e m  4.2. Let f: Y O  be a rational map of degree d>_ 2, fibered over g: X �9 
and let f f  be an invariant probability measure for g. Define the invariant measure 
# for f by (4.1). Then the following holds: 

(i) if  #' is ergodic, then so is #; 
(ii) if  #' is (strongly) mixing, then so is lz. 

Proof. We will prove (ii) and then indicate how to handle (i). The proof below 
follows the proof of Theorem 8.2 in [FS3]. Thus suppose that  #~ is mixing for g: X�9  
To show that  # is mixing for f ,  it is sufficient to show that  

(4.2) (# , (p(~ofn))__~(#,~)(# , r  as n - ~ o o ,  
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for ~o,r176 Let ~o~ be the restriction of ~o to Y~ and define ~EC~ by 
~ ( x ) = ( / ~ ,  ~ ) .  Similarly define r and r In proving (4.2) we may assume that  
~o~cC2(yz) for xEX, and that  sup~ I~O~lc2(y~)<cx). Indeed, such functions are 

dense in C~ by Lemma 1.5. Write 

f / ; ) ) , , ,  (:,:) (/.t, S o ( r  = ! o n , 
.Ix 

(4.3) 

/ 1 n �9 x o f ~ ) > # ' ( x )  

1 n 

= r x  1 

= 

where ~:=(1/d~)(fg).~o~-~(x). The second equality is a consequence of Theo- 
rem 2.1 and the last line follows from the invariance of #'. Since #'  is mixing, we 
know that  the first term in the right-hand side of (4.3) converges to 

To complete the proof, we will show that  the integrand in the second term in the 
right-hand side of (4.3) converges to zero, as n--+oc, uniformly in x. For this, fix 

xCX and pick p,q>l with p-l+q-l=l. Write Ml :=su p lCh  M2:=2supl~ol and 
M3:=supx I~Oxlc2(yx). By Hhlder's inequality we get 

[(l~x=, ~bx=~x)] <_ Ml {px~ , l~x[P) l/p = Ml (~oM2 ptp-l pz.  {l~xl > t} dt)  lip 

<_ Ml ( foM2 CptV-2d-nkOz,c2 dt)l/" <_ Cvd -n/p, 

where 

[ P "~1/P~i aAr(P--1)/PaArl/P Cp-~CI/P~_I) "tv-ll'tv-12 "~"3 �9 

The second inequality follows from Proposition 2.6. Since Cp does not depend on 
x, we see that  the second term in (4.3) converges to zero, as n--+c~. Thus 
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so # is mixing for f .  
To prove (ii) we suppose that  # '  is ergodic for g, but not necessarily mixing. 

In order to show that  ~u is ergodic for f ,  we have to show that  

1 N--1 
~-~(/z,q~(r162 as N-->cxg, 

0 

for sufficiently regular functions ~o and r The proof is essentially the same as the 
above one; the details are left to the reader. [] 

5. E n t r o p y  o f /~  

In this section we will compute the metric entropy of the measure #, defined 
by (4.1). When X is a single point the computation proves the existence of a 
measure of maximal entropy for (non-fibered) rational maps of (2. We start  by 
recalling the definition of metric entropy. For details see [W], [R] or [Y]. 

Let Y be a compact metric space and v a (completed) Borel probability measure 
on Y. Given a measurable partit ion /3 (not necessarily finite or countable) of Y, 
there exists a canonical system of conditional measures associated with/3. This is 
a family {vy ~} of probability measures on Y with the following properties: 

(1) for each ycY, v~ is a probability measure on Y, supported on/3(y) ,  the 
element of/3 containing y; 

(2) for every measurable EcY,  y~+v~(E) is measurable; 

(3) for every measurable ECY, u(E)=fy v~(E) u(y). 
For two measurable partitions a and/3 we define the conditional entropy of a 

with respect to/3 as 

Hu(a I/3):= fy  - log uOu (a(y) ) u(y) 

(this number may be infinite). I f / 3={Y}  is the trivial partition, then we write 

H~(a)  :=H~(al/3) and we have H~(a) = f v  - log u(a(y)) u(y). 
If f :  Y�9 is continuous and leaves u invariant, and i f a  is a measurable partition, 

then we define the entropy of f with respect to a as 

V oI :: ,. (o ,:,:-/o). 

Finally, the metric entropy of f is defined as 

hv(f) := sup h~(f;  a) ,  
C~ 
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where the supremum is taken over all measurable parti t ions (~. In fact, it is sufficient 

to take the supremum over finite partitions. 
The connection between topological and metric entropy is given by the varia- 

tional principle, due to Goodman,  Goodwyn and Dinaburg. This states that  

(5.1) h( f )  = sup h~(f) ,  

where the supremum is taken over all probabili ty measures v invariant for f .  A 

measure ~ with h~( f ) - -h ( f )  is said to be of maximal entropy. In general, there 
need not be any measure of maximal  entropy, and even if there is one, it need not 

be unique. 
We will also need to consider relative metric entropy. Let X be a compact  

metric space, v I a Borel probabili ty measure on X,  and g: X O  a continuous mapping 
preserving v ~. Assume that  g is a factor of f ,  i.e. tha t  there exists a continuous 
mapping 7r: Y - + X  semiconjugating f and g: goTr=rof, and such tha t  r . u = v  t. We 

then define the metric entropy of f relative to g as 

h~( f  [ g) := sup h~( f I g; c O, 
Cl 

where c~ ranges over all measurable (or finite) partit ions of Y. Here 

V,:, 
where ~x is the parti t ion of X into points. See also [B] for a slightly different 

interpretation of relative entropy. 
The connection between metric entropy and relative metric entropy is given by 

the Abramov-Rokhl in  formula JAR] 

(5.2) h~(f)  = h~, (g) + h ~ ( f  I g); 

see [LW, Lemma 3.1] for a proof. 
Ledrappier and Walters proved the following relativized variational principle. 

In fact, they considered the more general notion of topological pressure; see Theo- 
rem 2.1 in [LW]. 

T h e o r e m  5.1. Let g: X � 9  be a factor of the map f: Y O under the projection 
7r: Y - + X .  Let v t be an invariant probability measure for g. Then 

(5.3) sup h~( f Ig)  = [ h( f ,  7r -1 (x)) ~'(x), 
v J x  

where the supremum is taken over all invariant probability measures v for f such 
that 7r.v-=v ~. 

Our goal in this section is to show that  the measure # defined in (4.1) is maximal 
for the variational principles (5.1) and (5.3). 
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T h e o r e m  5.2. Let f: Y � 9  be a rational map of degree d> 2, fibered over g: X �9 
and let/zt be an invariant Borel probability measure for g. Define the measure/z 
by (4.1). Then the following holds: 

(i) ht,(flg )=log d; 
(ii) hu ( f ) =  ht,, (g)+log d. 

Proof. (i) Let ey  be the partition of Y into points. We will compute the relative 
entropy h~,(f lg ; r ). Write 

1~ :____ ~/  f--i(ey)V,.K--l(ex) = f -1  (ey)VTi.-1 (gX). 
i=1 

By the construction of/Z in (4.1) it follows that  the conditional measures of /z  
with respect to the partition 7r-l(ex) are given by the measures #x. On the other 
hand, it follows from the equation f*#*l = d . # , ,  and the fact that  # ,  has no atoms 
(Theorem 2.1), that  almost every element of the partition { f ; l f , ( z ) : z E Y x }  of Yx 
has d elements and the conditional measures of/zx with respect to this partition 
puts mass 1/d to each of the d points in f ; l ( f~(z)) .  Since the process of taking 
conditional measures is transitive, we get that  for/z-almost every z c Y ,  the element 
fl(z) of the partition 13 containing z has exactly d elements, and the conditional 
measure #z ~ puts mass 1/d to each of these elements. We therefore have 

hu( f lg  ) > hu(flg; ey) = Hu(ey I f~) = f y  - log #~({z})/z(z) = log d. 

On the other hand, Theorem 5.1 implies that  

hu(f  I g) < I x  h( f  , Yx) #'(x) = log d, 

where the last equality follows from Theorem 3.1. Thus h~(f  Ig)=log d. 

(ii) This follows immediately from (i) and (5.2). [] 

C o r o l l a r y  5.3. If #r is a measure of maximal entropy for g, then # is of 
maximal entropy for f .  

Proof. By Theorem 3.1 we have h(f)=h(g)+logd, so by Theorem 5.2(ii) it 
follows that  # is of maximal entropy if and only if hu,(g)=h(g), that  is, if and only 
if #t is of maximal entropy for g. [] 
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6. U n i q u e n e s s  o f  t h e  m e a s u r e  o f  m a x i m a l  e n t r o p y  

In this section we will prove the converse to Theorem 5.2. This amounts to 
saying that  the measure it defined in (4.1) is the unique measure for which the 
suprema in the variational principles (5.1) and (5.3) are attained. In the case when 
X is a single point we recover the result by Lyubich [L] and Mafi6 [M] that  a 
rational map of C has a unique measure of maximal entropy (see Theorem A in 
the introduction). The proof follows Lyubich's, although the additional difficulties 
arising in the fibered situation are substantial. 

T h e o r e m  6.1. Let f: Y � 9  be a rational map of degree d> 2, fibered over g: X �9 
Let it~ be an invariant Borel probability measure for g. Define the measure it by (4.1). 
Further, let u be another invariant Borel probability measure for f such that Ir.u=it ~. 
Then the following holds: 

(i) i f  h~(f]g)=logd, then u--it; 
(ii) if  h v ( f )=h~( f )<c~ ,  then u=it. 

C o r o l l a r y  6.2. Let f: Y � 9  and g: X � 9  be as in Theorem 6.1. Assume that 
h(g)<c~ and that g has a unique measure it' of maximal entropy. Then it, defined 
by (4.1), is the unique measure of maximal entropy for f .  

Proof. It follows from Corollary 5.3 that  it is a measure of maximal entropy 
for f .  Suppose v is another such measure. Write v~=r .v .  By (5.2) 

h, ,  (g) + h~ ( f  I g) = h~ ( f )  = h~ ( f )  = hi,, (g) +log d. 

But h~, (g)_<h~, (g) by assumption, and h~(f]g)_<log d by Theorems 5.1 and 3.10). 
This shows that  the two inequalities above are in fact equalities. From the unique- 
ness of it~ it follows that  v '= i t  ~. Thus Theorem 6.1 implies that  v=i t .  [] 

The rest of this section is devoted to the proof of Theorem 6.1. We need several 
preliminary results, the proofs of which are, in general, deferred until the end of the 
section. 

L e m m a  6.3. In Theorem 6.1 we have that (i) is equivalent to (ii). 

Proof. This is an immediate consequence of (5.2) and Theorem 5.2. [] 

The next three results have nothing to do with rational maps, and hold in 
the following more general setting: f :  Y�9 and g: X � 9  are continuous mappings of 
compact metric spaces; ~: Y - + X  is a continuous surjection that  semiconjugates f 
to g; #~ is a g-invariant probability measure; # and v are f-invariant probability 
measures with r . i t=~ r . v - -#  ~, and with conditional measures itx and vx on the fibers 
Yx o f t .  
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L e m m a  6.4. Let f ,  g, Y ,  X ,  7r, # and v be as above. Consider # (and hence 
#') as being fixed. I f  the inequality h , ( f l g ) < h , ( f ] g  ) holds for all ergodic measures 
v r  then it holds for all measures l , r  

L e m m a  6.5. Let f ,  g, Y ,  X ,  r and v be as above and assume that ~, is ergodic. 
I f  hv(flg)>O, then t/x has no atoms for #'-a.e. x. 

L e r n m a  6.6. Let f ,  g, Y ,  X ,  7r and v be as above and assume that v is ergodic. 
Let H be a compact subset of Y with v ( H ) > 0 .  Write Hx:=HNYx for x E X .  Then 

h ~ ( f l g  ) <_ sup h(f ,  Hx). 
xEX 

The next two results are specific to fibered rational maps. The first one, which 
is simple but crucial, says that  even though a (fibered) rational map has critical 
points, there is an abundance of single-valued branches of inverses of high iterates. 

L e m m a  6.7. Let f and g be as in Theorem 6.1, and let n > l > l  and x E X .  
Suppose that U is a conformal disk in Yx~ which does not contain any critical value 
of f~._~. Then there are at least dn (1 -4d - t (  d - 1 )  ) different single-valued branches 
of ( f n ) - - I  on  V. 

Lemma 6.8 below is the main technical result needed in the proof of Theo- 
rem 6.1. It  says, roughly speaking, tha t  we can find a parti t ion of C that  sufficiently 
distinguishes the measures # and v. 

L e m m a  6.8. Let f ,  g, #', # and v be as in Theorem 6.1. Assume that v 
is ergodic and that hv( f [ g ) > O. Then, given any suj~iciently small e > 0  there exist 
n> l and a compact subset X a C X  with # ~ ( X 3 ) > 1 - 5 ~  such that for each xEX3 
there is a compact subset Fx of Y~. such that the following holds: 

(1) 
(2) 
(3) 
(4) 
(5) 

Y~, and 
(6) 
(7) 

Further, 

Fx is a finite union of smooth ares in Yx,; 
Fx contains all the critical values of fn  i 

V~:=Yx. \Fx  is a conformal disk in Yx,; 
( f~  ) -  l ( vx ) is the union of cl ~ disjoint conformal disks Us,i, i= l, ... , d '~ in 
fn  maps each Ux,i conformaUy onto V~; 
#x(Ux,i):-d -n  for all i; 

-n. 

[-J~exa Ux,i is relatively open in 7 r - I ( X 3 ) c Y  for each i. 

The proof of  Theorem 6.1 also has a combinatorial  par t  and we will need the 
following estimate.  
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L e m m a  6.9. Given numbers d>2, no>l ,  ~E(0, 1) and n> l, write 

no--1 L 
A(d, no,%n):= ~ ( d + l ) m +  max 

2d-am~i<_j 

Then there exists O<d and C>O such that if ~ is sufficiently close to 1, then 

A(d, no, % n) < CO n 

for all n> l. 

After all these preliminary results, we are now in position to prove Theorem 6.1. 

Proof of Theorem 6.1. Assume that  v # # ,  and that  v (and hence #) is ergodic. 
We will show that  h~(flg)<logd. Assume that  h~(fig)>O; otherwise there is 
nothing to prove. Choose e so small that  1 - 7 E > %  with 7 from Lemma 6.9. Given 
this ~, let n, X3, U~,i and F~ be as in Lemma 6.8. Recall that  h~(fnign)=nh~(fig)  
and hu(f~lg~)=nhu(f]g).  When proving Theorem 6.1 we may, and will, therefore 
assume that  n = l .  

Find 50>0, a compact subset X2 of X3, and compact subsets V~ of U~,I for 
x E X2 such that  

(1) #'(X2) > 1 -6e ;  
(2) v,(V~)>3d -1 for xEX2; 
(3) d(V~,OV~,l)>5o for xEX2; 
(4) v : = U ~ e x  2 V~ is compact. 

Write Uk=U~ex2 U~,k for l < k < d .  
Since #~ is ergodic we may find no_> 1 such that  the set 

~ / 
X I : = ( x E X  : 1 - Xx=(xi) >_ 1 - 7 e  for n>_no 

n i=o 

has # ' ( X 1 ) > I - E .  Further, since u is ergodic and v ( V ) > 2 d  -1 we may increase no 
so that  the compact set 

~ Z } H : =  ~yeY :r(y)eXl and -1 >2 d _  1 for n > n o  
( n i=o 

has positive u-measure. 
Write H~:=HMY~ for xEX1. Let 0 be as in Lemma 6.9 and pick 0E(0, d). We 

will show that  h(f,  H~)< log0  for xEX1. By Lemma 6.6 this implies h~(fig)<logO 
and therefore completes the proof. 
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m -1  Thus fix xEX1 with Hx#0 .  Let s m = ~ i = 0  Xx2(xi) for m_>l. Note that  if 
m>_no, then Sm>_Tm, by the construction of X1. 

Fix 5<50 and let n>_no. Let Fz be the (n, 6)-spanning subset of Yz con- 
structed in Lemma 3.3. Each element of Fz is uniquely determined by a triple 
(m,v,w), where - l < m < n ,  vEBm and wEZm+l. Here B,~=(fm)-l(Am), where 
Am is a subset of Y~. with at most Cm 3 elements. Thus IBm [=d~[A,~[ <_Cm3d m. 
Further, Zm+l is a subset of Yx~+l with at most Cm elements. The triple (m, v, w) 
determines z(m, v, w) in the following way: 

d(fi~z,f~v)<16 for 0 < i < m ,  

d(fizz, fi- 'n-lw) < �89 for m < i < n. 

Let fl~ be the dense subset of Y~ defined by 

f~x = {Y E Y, :Yi+l ~ Fx, whenever i > 0 and xi E X2}. 

We may assume that  B m C ~  for each m. Thus vEfl~ for each triple (m,v,w). 
Pick a minimal subset E~ of F~ which (n,5)-spans H~. Let z(m,v,w)EEx. By 

the minimality of E~ there exists yEH:~ such that  d(ffy, fiv)<5 for O<i<m. By 
the choice of 50 we therefore have 

f iy E V ~ f f  v E U1 

for O<i<m. Thus, if m>no, then 

(6.1) 
m--1 rn- -1  

L ~ XU,(fiV)~ L ~ )~v(fiy)~__ 2d -1. 
m m 

i=0 i=0 

To each vEBm we assign a sequence 

O~(V) = (O~ 0(v),  ( :~l(V), '" ,  O~m_ 1 (V)) E {0, . . . ,  d} m, 

where 
]" 0, i f x i r  

Cq(V) 
i k, if x iEX2  and ffvEUk. 

This makes sense, because vEflz.  
For O<_j<m let Din5 be the set of sequences 

(ao, ..., o~m-1) E {0, ... ,d} m 
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such that  ~ k r  for exactly j indices k, and ~ k = l  for at least 2m/d indices k. Then 

(6.2) IDm,jl = ( d - l )  j - ' .  
i ' d  = / 

Note that  if z(m,v,w)eEx, then a(v)ED,.,,,~.,, by (6.1). b-hrther, we claim that  if 
m>no, then given aEDm,~,,, and uEAm there exist exactly d ~-s '~ points vEBm 
such that  fmv=u and oL(v)=a. To prove this claim, recall that  if i > 0  and xiEX2, 
then we defined above a conformal disk V~, in Yx~+l containing all the d m-i -1  

values of ( f ~ - i - 1 ) - l ( u ) ,  but  containing no critical values of f~,. If O<i<m and 
x~X2 ,  then let V~, be any conformal disk in Y~,+I having the same two prop- 
erties. Any point vE(f~)- l (u)  can then be written as v=go ..... gm-l(U), where 
gi is a single-valued branch of f ~ l  defined on V~,. Now suppose o~(v)=a, where 
a=(ao,...,am_l)ED,~,~ m. If xiEX2, then the branch gi is uniquely determined 
by the number hi. If xir then there are exactly d choices for gi. Thus there 
are exactly d m-~'- points vEBm such that  f~v=u  and a(v)=a, which proves the 
claim. 

It  follows that  

no--1  

IE=I <_ ~ d"lAml IZm+xl-{ - d~-" iDm, , , . I  IA,,,I IZm+lI 
I'n~O ~T~Bo 

/no--1  n \ 

] 

< Cn4A(d, no, 7, n) < Cn40" < C0 n, 

by (6.2) and Lemma 6.9. We have constructed an (n, ~)-spanning subset of H~ with 
at most C/~ n elements. Thus h(f, Hx)<_log/~, and we are done. [] 

In the rest of the section we give the proofs of the various results needed to prove 
Theorem 6.1. We start  with the general results on fibered mappings (Lemmas 6.4, 
6.5 and 6.6). 

Proof of Lemma 6.4. We will use the decomposition of invariant measures into 
ergodic components. Let M(Y, f)  be the set of f-invariant probability measures on 
Y and let E(Y, f) be the subset of ergodic measures. Then M(Y, f)  and E(Y, f) are 
compact in the weak topology. In fact, they are metrizable. Analogously we define 
M ( X, g) and E( X, g ). The map 7r.: M ( Y, f )--> M ( X, g) induced from 7r: Y--+X maps 
E(Y, f) into E(X,g). Given #'EM(X,g) define a measure T(#')=/Z on Y by (4.1). 
It follows from Proposition 4.1 and Theorem 4.2 that  ~- maps M(X,g) to M(Y, f )  
and E(X,g) to E(Y, f). Further, 7r.o~-=id. 
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The ergodic (Rokhlin) decomposition tells us tha t  given #'EM(X,g) there 
exists a unique probabili ty measure Q~,, on E(X, g) such that  

P' = fE(X,g) a' e~; (a'). 

The map  T commutes with this decomposition in the sense tha t  

f 
= r ~ '  = ] r a '  ~ ,  (a ' ) .  # 

dE (x,9) 

Now let vEM(Y, f) be a measure with 7r, v = #  ~ and write 

(6.3) v---- /E a Q,,(a), 
(Y,f) 

where Q~ is a probabili ty measure on E(Y, f). We have ( T r . ) . p , = ~ , .  

The existence of T above shows tha t  7r.:E(Y,f)--+E(X,g) is a continuous 
surjection, the fibers of which consti tute a measurable parti t ion of E(Y, f). Let 

{0~',,,'},,'cE(X,9) be the conditional measures of Q, with respect to this partition. 
Thus 

V= /E(X,9) e"(a') f~:li,,,i a O~',"'(a)" 
We now use the fact tha t  the relative metric entropy h~,(flg ) commutes with the 
ergodic decomposition (see [LW, Lemma 3.2(iii)]), 

h"(f lg)= /E(Y,f) h"(f lg) Q~,(a)= fE(X,a) Q~,,(a') f~:l{~,} h,,(f lg) Q,,,,,,(a). 

Suppose that  h,,(flg)=h~,(flg)=logd. By Theorem 3.1(i) we have h,,(ftg)<logd 
for all aEM(Y,f). Thus h,,(flg)=logd for ~ , - a . e .  a' and Q~,~,-a.e.a. But  then 
the assumptions of the lemma imply tha t  a-=Ta ~ for t)~,,-a.e, a I and Q~,~,-a.e.a. 
Thus 

= / (,r = #, 
d E  (x,g) 

which completes the proof. [] 

In order to prove Lemma 6.5 we use the following result. I t  is a relativized 
version of the Shannon-McMil lan-Breiman theorem. For the proof (in a slightly 
different situation), see Theorem 4.2 in [B]. 
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L e m m a  6.10. Let f ,  g, Y ,  X ,  7r and u be as in Lemma 6.5. Let a be a finite 
measurable partition of Y .  Then 

1 
- -  log v~(u)(an(y) ) -+ h~(f  l g; a) 

n 

for u-almost every y. Here an(y) denotes the element of the partition a n contain- 
ing y. 

Proof of Lemma 6.5. Assume tha t  h~(f  19)>0 and find a finite part i t ion a such 
tha t  h~(flg;a)>O. Let Y0 be the set of y E Y  such that  y is an a tom for u~(u). I f  
yEYo and an(y)  is the element of a '~ containing y, then 

1 
0 _< - -  log u~(y)(an(y)) <_ - 1_ log un(v)({y}) -4 0, as n -+ oo. 

n n 

By Lemma 6.10 and the assumption tha t  h(fig; a)>0 it follows that  u(Y0)---0. Thus 

Ux has no a toms for /~ ' -a .e .x .  [] 

Proof of Lemma 6.6. Let a - -{A1,  ..., As} be a finite parti t ion of Y. Pick com- 
pact subsets B i c A i  and let B0:----Y\(J~=I Bi. We may choose Bi close enough to 

Ai so tha t  H~(alfl ) <_ 1~ where f~={Bo, B1, ..., B~}. Therefore 

h~(f  ig; a) < h~(f  lg; ~ ) + H ~ ( a  I ~VTr -x (ex)) < h~(f  lg;/3)+1. 

By Lemma  6.10 and Egorov's  theorem there exists a compact  subset H' of H 

with u(H')>0 such that  

1 
- l o g  u.(u)(]?n(y)) _~ - h .  ( f ig ;  ~) 
n 

uniformly on H I. Here/3n(y) denotes the element of f/n containing y. Write H ' =  

H'MY~ for x C X  and fix x such tha t  ux(H~)>0.  
Pick 6 > 0  small. For large n and yEH" we have 

_> 

Let Ex be a minimal (n,6)-spanning subset of H~. For each CE~ n with C M H ' ~ $  
we associate a point z(C)EE~ with Bn(z, 5)nC~O, where 

B~(z, 6) = {w E Y~ :d(fiw, f iz)  < ~ for 0 <_ i < n}. 

Suppose tha t  z(C)=z(C')  for some elements C, C'E~ n such that  CMH'xr and 

C'MH~r Then there exist wECMH' ,  w 'EC'AH" such that  d(fiw, f iw')<26 for 
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O~i<n. I f J  is small enough, then this implies that for each i, f iw and f iw'  belong 
to the same element of the covering {BoUB1, ..., BoUB,} of Y. Hence, for each i 
there exists j=j( i )  such that  fiw, fiw'EBoUBj. It follows that  there are at most 
2 n different elements C E ~  n associated with a given point in E~. Thus 

0<v~(H'~)_< ~ v~(C)_<2nlE~l e-'(hv(slg;m-~)=2"r,~(&H'~)e -'~(h~(sla;~)-~). 
CElt  '~ 

CnH'~#@ 

This implies that  

1 log rn(5, H~) > 1 log r,(5, H') > h~(f I g; fl) - 5 - l o g  2+ 1 log u~(H'~). 
n n n 

By letting n-+co and 6-+0 we obtain 

h(f, H~) ~ h , ( f  I g; ~ ) - l o g  2 > h~(f 19; a)  - 1 - l o g  2. 

After replacing f by f'~ we obtain 

nh(f, Hz) ~ nh~(f I g; a ) -  1 - l o g  2. 

By dividing this inequality by n and letting n-+c~ we see that  

h , ( f  i g; ~) ~ h(f  , H~). 

Since (~ was an arbitrary finite partit ion we have shown that  

h~(f ]g) ~ sup h(f, H~). [] 
x E X  

We next prove Lemmas 6.7 and 6.8 that  are specific to fibered rational maps. 

Proof of Lemma 6.7. For l < m < n  let am be the number of single-valued 
branches of m -1 (f~_.~)  on U. We will show by induction on m that  

m - l  

(6.4) am _> d m - 2 ( d - 1 )  ~ d i, 
i=l  

which clearly implies the assertion of the lemma when m=n. 
If l < m < / ,  then U contains no critical values of f ~ - m ,  so am=d m and (6.4) 

is trivial. For the inductive step, consider the am-1 single-valued branches of 
Sin-1 ) - i  defined on U. At most 2 ( d - l )  of the images of these branches can 

X n - - m +  1 # 
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contain a critical value of f~,_m. If we compose the other branches with all possible 

branches of f~-i m, then we see that  

m - l  

am ~_ d(am-1-2(d- 1)) _> d ~ - 2 ( d -  1) ~ d i, 
i~-I 

where the last inequality follows from (6.4) for m - 1 .  [] 

1 Pick l so large that  4 ( d - 1 ) d - l < e .  Proof of Lemma 6.8. Assume that  e<  ~ .  
The assumptions imply that  # and u are mutually singular. We may therefore 

find disjoint compact sets Lu and L~ in Y such that  #Lu > 1 -  le2 and uL~ > 1- �89 2. 
Write Lu,~=L~NYx and L~,~=L~MYx for xEX. We may find a compact subset X7 
of X with ~ ' ( X T ) _ > I - - E  such that  # ~ ( L z , x ) > l - e  and u ~ ( L ~ , ~ ) > l - e  for xEXT. 
Pick x > 0  such that  x<d(Lz,~, L~,x) for all xEX7. 

We will find a compact subset X6 of X7 with # ' ( X 6 ) > l - 3 e ,  such that  the 
following holds: for each xEX6 there exists a compact subset F" of Y~, such that  

(1) F" is a finite union of smooth arcs in Y~, ; 
(2) F" contains all the critical values of f~; 
(3) 
(4) '" V~ .:Y~, \ F "  is a conformal disk in Y~,. 

Fhrther, the arcs in F" depend continuously on x. 
To do this, first write XT:X~'U...UX"~, where X "  are disjoint Borel sets such 

that  Y is trivial over gl(X"), and such that  the critical values of f~ depend contin- 
uously on x for xEX" in the sense that  there exist continuous functions sj :X"--+Y 
such that  sj(x)EY~,, sj,(x)~sj~(x) for jlCj2 and such that  {sj(x)} is the set of 

critical values of f~. 
Pick ' " m , , , X~cX i compact for i----1, ... ,m  such that  ~ i=1  # (Xi \ X i ) < e "  It suffices 

to construct F~ for xEX~ for each i individually. To simplify notation we fix i and 
write X r instead of  X~. 

Fix x~ ' and write x~176 Let r be a 
trivialization of ~r: Y-4X. Using r  it makes sense to talk about spherical arcs in 
Y~ for xEgl(X'). Let {sj(x)} be the critical values of f~ as above. Let F" be a 
finite union of spherical arcs in Yzo of length ( 1 ,  the endpoints of which contain all 

the critical values of f~o. Assume that  the arcs in F" only intersect at endpoints, 
and that  Yxo \ F "  is connected and simply connected, i.e. a conformal disk. We may 
find a neighborhood ~ of x ~ in X r and a finite number of continuous functions 

ak,/3k: i2--+Y such that  
(1) ak(x),~k(x)EY~, for all k and all xEl2; 
(2) Uk{ak(x), ~k(X)} contains all the critical values of g for all xEf~; 
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(3) for all j and k, each of the sets {xE~:aj(x)=ak(X)}, {XCl2:aj(x)=flk(x)} 
and {xe~:flj(X)=flk(X)} is either empty or all of 12; 

(4) the set of arcs [ak(x~ ~k(X0)] coincides with the set of axes in F". 

Let Ck: D - + C  be a univalent meromorphic function such that  (I)(x ~ Ck(0)) is the 
midpoint on the arc [ak(X~ ilk(X0)]. For A e D  and x e ~  let "yk(x, .X)=r Ck(A)). 
Let F'=(A) be the union of all arcs [ak(x), 7k(x, A)] and ["/k(x, A), f~k(X)]. Note that  
r ' o ( O ) = r " .  After shrinking ~ if necessary, we have that  if x E ~ ,  then Y=~ \F'=(A) 
is a conformal disk in Y=z for all sufficiently small A. Write F ' (A)=U~en F'(A). 
Since y=~ and p=~ have no atoms (Lemma 6.5 and Theorem 2.1) and the sets F'(A1) 
and F'(A2) are essentially disjoint if A1 ~A2, we may find a small AED such that  
(#+t , ) (F ' (A))=0.  Fix such a A. Then there exists a subset ~ 'Cl2  of full # '-measure 
such that  (/~=~ +t,=~)(F'=(A))=0 for xeFt ' .  Write r ' = r ' ( ~ ) .  

Returning to our previous notation, we have constructed F'= for x in a subset 
of full measure of a neighborhood of any point x~ for any i. It is now easy 

X I X I i v,k(i) i i to find disjoint compact subsets i,1,-.-, i,k(/) of X i such that  z-~j=l # (X/ , j )_  

( 1 - e ) # ' ( X ' )  and such that  F" can be constructed as above on each X '  d. Let )(6 
be the union of all the sets X '  d. Then # ' ( X 6 ) > l - 3 E  and F" exists for xEX6. 

For xEX6 and E'>0, let F~ be the e'-fattening of F ' ,  i.e. 

F=={zeY=, : d(z, r ' )  <e '} .  

Since xF-~F'~ is continuous, we may choose e' so small that  Y=, \~= is a conformal 
disk and that  F=\F'= is a conformal annulus for all xEX6. Further, we may find a 
compact subset X5 C)(6 with # '  (Xh) > 1 - 4~ such that  for x e Xh, 

(1) (#~ +u=,) (~=) <E; 

(2) the modulus of F=\F~ is bounded below by a positive constant. 
By the Koebe distortion theorem, the latter property implies that  if r Y=, \ F ~ - + C  
is a univalent meromorphic function, then 

(6.5) d iam(r  (V=, \~=))  _< Cv/axea(r \~=)) 

for some constant C>0 .  
Let n be a large number (how large will be seen later). Write X4=g-(n-OX5. 

Then )(4 is compact and p ' ( X 4 ) > l - 4 e .  
Using essentially the same procedure as when we constructed F~ we may find a 

compact subset )(3 C X4 with #'(X3)_> 1 - 5 e  such that  the following holds: for each 
x c X3 there exists a compact subset F= C Y=., depending continuously on x, such 
that  

(1) F= is a finite union of smooth arcs in Y=,; 
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(2) Y=. \P~ is a conformal disk; 
(3) rx~r'~ 
(4) ( ~ ,  +~, ,)(r~)=0.  
For x E X3 define 

F' V~=Y..\ .._,, 

Then V~, V~ and V~ are all conformal disks in Y=. 
Further, 

and 

Write 

Clearly 17= C V~ and V~ C V~. 

~ .  ( v . )  = ~ .  (y~)  = , x .  ( y ' )  : . ~ .  ( y ' )  = 1 

, ~ . ( ~ )  > 1-~, ~ . ( ~ )  > 1-~. 

" -1I/. U 
iEI 

n - -1  I ! 
(f~ ) v~ = U u;,j, 

jCJ  

(s;) v~= U Ox,~, 
kEK 

where Ux#, U~',j and U~,k are conformal disks in Yx, and the three unions are 
disjoint. Fix xEX3. We will show that  there exists iEI  such that  

vx(Ux,i) >__ 4p(U~,~) ---- 4d -n. 

For each k E K  there exists a unique j = j ( k ) E J  such that  []x,kCU~,j. Let K1 
be the set of k c K  such that  f~  is univalent on Ux,j(k). Recall that  V~ contains no 
critical values of f~,_,. Thus IKll>d"(1-ad-*(d-1))>_d~(1-~) by Lemma 6.7. 

If kEK1, then we may apply (6.5) to the branch of ( f ~ ) - i  mapping V~ to U~, k. 
Assume that  n is so large that  

C 2 area(~) _< e ~ d  ~, 

where x<d(Lt,,x , Lv,~) was chosen above. Let K2 be the set of kEK1 such that  
diam(Ux,k)<x. Then IK21>d"(1-2r by the above estimate. Let Kz be the set of 
kEK2 such t h a t  Ux,kCILu,x~O. Since 

lzx(Ux,k) =-d-n#~=,(Vx) < d -n 
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for every kEK1, and since/z~(L~,,~)>l-e, we have IK3]>dn(1-3e). Note that if 
kEK3, then U~,kfqL~,~=$. 

Given iEI  there exists a unique j = j ( i ) E J  such that U~,icU~,j. If f~ is uni- 
valent on U~,j(~), then there also exists a unique k=k(i)EK~ such that Uz,kcU~,j. 
Let/1 be the set o f iEI  such that f~ is univalent on U~,j(i) and such that k(i)EK3. 
We have 

(i~1 U' >_ 
JEll "kEK3 

and 

vx (~eU/~ u ~ , i ) <  v~ ( ( f~ ) - l ( v~ \~ ) )+v~  (keUg3 ~ , k ) < e + e ,  

where we have used the fact that U~,kfqL.,~=O for xEg3. 
Let 12=I\11. Then 

v (Uel2i 1 - 2 s .  

Thus there exists iEI~ such that 

1 -2e  U (6.6) v~(Ux,i) >_ ~--E #~( ~,i) > 4d-n. 

By relabeling the disks U~,i we may assume that I={1, . . . ,d~},  that (6.6) 
holds for i=  1, and that U~cx3 u~,i is relatively open in r -1  (X3) for 1 <i  < d '~. This 
completes the proof of Lemma 6.8. [] 

Finally we will prove the estimate in Lemma 6.9. For this we need the following 
elementary result. 

L e m m a  6.11. Let ~ be the continuous function on {(x, y ) : O < y < x <_ 1} defined 
by 

qo(x, y) : ( l - x ) l o g  d+(x -y ) log (d -  1 ) - ( l - x ) l o g ( i - x ) - ( x - y ) l o g ( x - y ) - y  logy 

for some d>_2. Then there exist O' <d and ~/<1 such that qo<log0' on the set 

{(x,y):"/<x<_l, 2/d<_y<_x}. 
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Proof. We first consider the restriction of ~ to the line x=l, i.e. 

~(1, y) = (1 - y )  l og (d -  1) - (1 - y )  log(1 - y )  - y  log y. 

It is easy to verify that  y~-+~(1,y) is decreasing on the interval 1/d<y<_l and 
that  ~(1, l /d )  =log d. If we let 8" =exp  ~(1, 2/d), then 0" <d  and ~o(1, y) <_log ~" for 
2/d<y<l. By continuity it follows that  if 0 " < ~ < d  and "~ is sufficiently close to 1, 

then ~(x,y)<_logO' when 7 < x < l  and 2/d<_y<_x. [] 
Proof of Lemma 6.9. Throughout  the proof, C will denote different positive 

constants, depending on d, no and ~ but  not on n. Let ~o, ~ and "~ be as in 
Lemma 6.11 and let 0E(0~,d). 

The first sum in A(d, no, % n) does not depend on n. To prove the lemma it is 
therefore sufficient to show that  

whenever no<m<n, 7m<_j<_m and 2d-Ira<i< j, because Lemma 6.9 then follows 
with a slightly larger 0. 

By Stirling's formula there exists r > 0  such that  

(6.8) <CjJ(m_j),n_j and <- C ii(j_i)j_i 

for r<j<-m-r and r<i<-j-r. 
To prove (6.7) we consider four cases. The first case is when m - r < j < m  and 

j-r<-i<_j. Then 

dm-J(d-l)J-i(m. ) (~) <_Cm 2~ <CO n. 

The second case is when 7m<-j<-m-r and j-r<_i<_j. Then 7<_j/m<_l, so 
by (6.8) and Lemma 6.11 we have 

m m 

The third case is when m-r<_j<m and 2d-lj<<_i<_j-r. Then 2/d<-i/j<-l, so 
by (6.8) and Lemma 6.11 we have 

d ~ - j  ( d -  1) j-~ <- Cm~(d - 1) r ii(j_i)J_i 

=Cm~ exp(m~(1, ~) ) <_ Cm~(O')rn <- COn. 
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The last case, finally, is when ~ / m < j < m - r  and 2 d - l j < i < j - r .  Then we have 

7 < j / m < l  and 2 / d < i / m < l ,  so by (6.8) and Lemma 6.11 we obtain 

d m-j  (d -  1) j - i  < Cd ~ - j  ( d -  1) j - i  jr (m_ j )m_ j  i ' ( j  - i )  j - i  

= C e x p ( m ~ (  i , J  ) ) <_C(O')m <_COn. 

This completes the proof of Lemma 6.9. [] 

7. Appl icat ions  to  complex  surfaces 

In this section we apply our techniques to dynamics on ruled surfaces. Our 
main result is that ,  with some restrictions, a holomorphic selfmap of a ruled surface 

has a unique measure of maximal  entropy. The same conclusion will also be drawn 
for certain holomorphic mappings of p2.  

For us, a ruled surface is a smooth projective complex surface Y which is a 
holomorphic p l -bund le  over a compact  Riemann surface X.  This means tha t  there 
is a holomorphic projection 7r: Y-4  X such that  7r-1 ( x ) ~  P 1_~ (3 for every x E X and 

such tha t  every x CX has an open neighborhood U with 7r -1 (U)~-U x C. 
The following result by Dabija tells us tha t  selfmaps of ruled surfaces can be 

viewed as fibered rational maps in the sense of Section 2. 

P r o p o s i t i o n  7.1. (Proposition 7.1 in [D]) Let Y be a ruled surface over X 
and let f: Y � 9  be a holomorphic mapping. 

(i) If  y ~ p 1  •  then there exists a holomorphic mapping g : X ~  such that 
7r semiconjugates f to g: go~r:Trof. 

(ii) If  y=_p1 x p 1 ,  then the same conclusion holds for f 2 = f o f  instead o f f .  

Remark 7.2. If  y = p 1  •  then f may be of the form f (z ,w)=(p(w),q(z)) ,  
where p and q are rational functions. 

By Proposition 7.1 we may apply the results of the preceding sections to s tudy 
the dynamics of selfmaps of ruled surfaces. 

T h e o r e m  7.3. Let Y be a ruled surface over X and let f be a holomorphic 
mapping of Y which fibers over a holomorphic map g: X �9  Assume that the topo- 
logical degrees ~ f and t~g o f f  and g satisfy l< ( fg<~f .  Then h( f )= log ~ f and f has 
a unique measure of maximal entropy. 

Proof. We first consider the dynamics of g. For this we use the classification of 
compact  Riemann surfaces. First note that  X cannot be hyperbolic, because then g 
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would have to be an automorphism or a constant mapping, contradicting 5 o > 1. If 
X is a torus, then since (fg > 1, g: X � 9  is an expanding linear map. Thus h(g)=log 59 
and g has a unique measure #'  of maximal entropy (this is just the pushforward of 
Lebesgue measure on C under the universal covering map). If X is the Riemann 
sphere C, then g is a rational map of degree 5g > 1. By results for (non-fibered) 
rational maps (see Theorem A in the introduction), h(g)=log 5g and g has a unique 
measure #'  of maximal entropy. 

Now f is a rational map fibered over g of degree d:=6i/6g>l. Define the 
measure # by (4.1). It then follows from Corollary 6.2 that  # is the unique measure 
of maximal entropy for f .  Finally 

h(f) =- h(g) +log d = log 6g +log(~l/~9) = log 5i, 

by Theorem 3.1. This completes the proof. [] 

We now turn to holomorphie mappings of p2. It is known that  such mappings 
have a measure of maximal entropy [FS3]; this measure can be quite explicitly 
described. However, it is an open problem whether the measure is the unique one 
with maximal entropy. 

Unfortunately, p2 is not a ruled surface, so we cannot apply Theorem 7.3 to 
solve this problem. What  we will do here is to restrict our attention to a certain 
class of selfmaps of p2. 

T h e o r e m  7.4. Let f be a holomorphic selfmap of p2 of degree d> 2 which 
preserves a family of lines passing through a given point 0 in p2. Then f has a 
unique measure of maximal entropy. 

Remark 7.5. Holomorphic mappings of the form of Theorem 7.4 have been 

studied earlier, in other contexts [FS2], IV, Section 3.3], [JW]. 

Proof. Let d be the algebraic degree of f .  Then the topological degree of f is 
d 2 and by a result of Gromov [G] we have h(f) =log d 2. 

Let X ~ - P  1 be the set of lines in p2 passing through O and let lr be the natural  
projection P~\O--+X. Then ~r semiconjugates f to a holomorphic mapping g: X � 9  

of (topological) degree d. 
Let Y be p2 blown up at O and let p: y__+p2 be the blow-up map. Note that  

the exceptional divisor E=p-X(O) can be identified with X. In fact, 7r extends to 
a holomorphic mapping, still denoted zr, of Y onto X and the restriction of ~r to E 
is a biholomorphism of E onto X.  Fhrther, f can be lifted in a unique way to a 
holomorphic mapping ] :  Y�9 such that  7r semiconjugates ] to g: X�9  

Now Y is a ruled surface and ] is a holomorphic selfmap of Y, which fibers 
over g: X�9  The topological degrees of f and g are d 2 and d, respectively. By 
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Theorem 7.3, ] has a unique measure/2 of maximal entropy log d 2. Since/2 is ergodic 
and E is completely invariant for ] we must have/2(E)  =0, because otherwise 

hf~(]) < h(L  E) = h(g, X) = log d < log d 2 = h(]). 

Let/1 be the invariant measure for f defined by/~=p./2.  Recall that  p is a biholo- 
morphism outside S .  S ince /2(E)=0 it therefore follows that  hu(f)=h~(])=log d 2. 
Thus # is a measure of maximal entropy for f .  Suppose that  u p #  is another meas- 
ure of maximal entropy for f .  Then there exists an invariant probability measure 

for ] such that  p,5=u. We have h~(f)>h~(f)=logd 2 so 5=/2 by the uniqueness 
of 12. Thus u=p.5=p./2=t~ and we are done. [] 

In particular, Theorem 7.4 covers the case of polynomial skew products on {22 . 
Such mappings were studied by Heinemann [nl],  [H2], In3], and by the author [J]. 

C o r o l l a r y  7.6. Let f be a polynomial skew product on C 2 of degree d> 2, 
i.e. f (z ,w)=(p(z) ,q(z ,w)) ,  where p and q are polynomials of degree d, and q has 
nonzero wd-term. Then f has a unique measure of maximal entropy. 

Proof. The extension of f to p2 is given by 

f[z :w:  t] = [tdp(z/t) : tdq(z/t, w/t):  tU]. 

Thus f satisfies the assumptions in Theorem 7.4 with O=[0:1:0].  [3 

Acknowledgement. The author thanks Marius Dabija for help on ruled surfaces, 
and Dror Varolin for interesting discussions on the definition of fibered rational 
maps. 
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