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To what extent does the dual Banach space 
E t determine the polynomials over E? 

Silvia Lassalle and Ignacio Zalduendo 

Abstract .  We show that under conditions of regularity, if E I is isomorphic to F I, then the 
spaces of homogeneous polynomials over E and F are isomorphic. Some subspaces of polynomials 
more closely related to the structure of dual spaces (weakly continuous, integral, extendible) are 
shown to be isomorphic in full generality. 

1. I n t r o d u c t i o n  

In a recent paper  [DD] Dfaz and Dineen show tha t  if E ~ is isomorphic to  F ~, and 
E r has the Schur proper ty  and the approximat ion  property,  then for any n the  spaces 

of n-homogeneous  polynomials  over E and F are isomorphic.  Thus,  in a sense, the  

dual spaces determine the  polynomials  over the spaces. The  purpose  of  this note  

is to  investigate fur ther  condit ions assuring the  existence of isomorphisms between 

spaces of  polynomials.  We also look into the  preservat ion or non-preservat ion of  

some classes of  polynomials  by these isomorphisms, since it has seemed to  us t ha t  
the  mere fact t ha t  two spaces of polynomials  are isomorphic does not  do justice to  
the  rich s t ruc ture  of  such spaces (note for example tha t  p ( k R n )  is isomorphic to 
p(n-lRk+l)). 

In Section 2 we show tha t  we can assure the  existence of  an  isomorphism 

under  regulari ty condit ions on the  spaces. Recall t ha t  a Banach space E is called 

Arens-regular  if all linear opera tors  E - - + E  ~ a r e  weakly compact ,  and symmetr ical ly  

Arens-regular  if this is so for all symmetr ic  linear opera tors  (see [AGGM] and [GI]). 
In  Section 3 we investigate the preservation of  some subspaces of  polynomials  under  

the  maps  defined in Section 2. We f ind - -wi th  no condit ion on E or F - - t h a t  if E r 

is isomorphic to  F ~, then  the  spaces of n-homogeneous  integral polynomials  over E 

and F are isomorphic;  and  the same holds t rue  for the  spaces of  weakly cont inuous 

polynomials.  Finally, in Section 4 we give some examples. 
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The authors are grateful to S. Dineen for introducing them to the problem, 
and for helpful conversations. 

Added in proof. We have learnt that  F. Cabello S~nchez, J. M. F. Castillo and 
R. Garcfa have independently obtained Theorem 4, see Theorem 1 in [CCG]. 

2. ~ a nd  t h e  A r o n - B e r n e r  e x t e n s i o n  

Before going into the problem, we discuss some preliminaries and fix notation. 
Throughout,  E and F will be real or complex Banach spaces. By JR we will denote 
the canonical inclusion of F in its bidual F" .  By 7)(nE) we denote the space of all n- 
homogeneous continuous scalar-valued polynomials over E.  This is easily seen to be 
isomorphic to the space of all continuous symmetric n-linear forms, which we denote 
by s (E). Thus each polynomial P has an associated symmetric multilinear form A 
such that  P(x) - -A(x ,  ..., x). There are many interesting subclasses of polynomials. 
Among them: P~(nE) ,  the class of those polynomials which are weakly continuous 
on bounded sets; PI('~E), the class of integral polynomials; and 7~wsc(nE), the 
class of weakly sequentially continuous polynomials. For more on polynomials over 
Banach spaces, see [D], [M] and [GJL]. 

Our approach to the problem will be via the following construction. Any 
continuous linear morphism s: E ' - + F  t induces a continuous linear map 

in the following way. If y is an element of F,  define the linear morphism 

~): s  - - ~ / : k - l ( E )  

by y(B)(Xl, . . .  , X k _ l ) m S ( B z l  ..... zk-1)(Y) , where Bxl ..... x~_l is the element of E '  
obtained by fixing the k - 1  variables Xl, ... ,X~-l.  Now if P is an n-homogeneous 
polynomial over E,  and A is its associated symmetric n-linear form, A can be 
assigned an n-linear form g(A) over F by setting 

~(A)(yl , . . . ,  yn) -- (91 . . . . .  9n)(A). 

Note that  ~(A) need not be symmetric. We can, however, define an n-homogeneous 
polynomial over F by putt ing $(P)(y)=~(A)(y,  ..., y). 

In the case S=JE,: E'--~E'" (the natural inclusion), the morphism $ obtained 
is the well-known Aron-Berner extension of polynomials from a Banach space E 
to its bidual ([AB], [Z2]). In this particular case we will use the notation P and 
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for g(P) and g(A) respectively. The lack of symmetry of .4 is at the heart of the 
matter  that  concerns us here, so we take a moment to refer to some properties of A. 
First, although A need not be symmetric, the elements of E and those of E "  can 
always be permuted in the variables of A. Also, A is always weak* continuous in its 
first variable. It can be seen ([~r], [ACG]) that  symmetry of A is equivalent to its 
weak* continuity in all variables, and also to the weak compactness of the operator 
E-+7) (~- IE)  associated to P.  Symmetry of A is always obtained if the space E 
has the property of symmetric regularity mentioned above. 

Since the Aron-Berner extension is a well-studied object, we will find it very 
convenient to write g and g in terms of the Aron-Berner extension. This is what 
we do in the following lemma. 

L e m m a  1. For any Yl, ..., Yn in F,  and all symmetric n-linear forms A over 
E,  g(A)(yl  .... , yn)=-4(S'(JF(Yl)) ,  ..., S~(JF(yn))). In particular, g (P)=Pos 'oJF .  

Proof. We proceed by induction on n. If ACE' ,  we have ~(A ) ( y )=s (A ) ( y )=  
J F ( y ) ( s ( A ) ) = s ' ( J F ( y ) ) ( A ) = A ( s ' ( J F ( y ) ) ) .  Now suppose that  the result is true for 
(n-1)- l inear  forms. We first show that  the (n-1) - l inear  form over E"  obtained 
from A by fixing s ' (JF(yn))  in the last variable coincides with ~)~(Jl): 

Let Zl, ... ,Zn-I  E E  ~. We have 

A(z~, ..., zn-~, (s ' (JF(yn)))  = (z1 . . . . .  ~n-1) ( ( s ' (JF(yn) ) (A) ) - )  

and 

ftn(A)(zl,  . . . ,  Zn- -1)  = (Z'I . . . . .  5 n - ~ ) ( ~ ) ~ ( A ) )  

(where the tildes over elements of E "  refer to J~,).  Thus it will be enough to check 
that  the (n-1) - l inear  forms over E, ( s ' (JF(y ,O)(A)) -  and ~),(A), coincide. Let 
xl ,  ... , X n - I C E .  Then 

( s ' ( JF(Yn) ) (A) ) - (X l , . . . , xn -1 )  =S'(JF(yn))(A~: 1 ..... ~._~) = JF(yn)(s(A~a ..... ~._~)) 

: s ( A x l  . . . . . . . .  , ) ( y , )  = y n ( A ) ( x l , . . . ,  Xn--1 ). 

Now, using our inductive hypothesis 

g(A)(yl, ..., Yn) -- (Yl . . . . .  yn)(A) : (YI . . . . .  yn-1)(~ln(A)) 

---- 8 ( Y n ( A ) ) ( Y l ,  ...  , Y , - I  ) : 9 , (A) ( s ' ( JF(y l ) ) ,  . . . ,  S ' ( J F ( Y n - 1 ) ) )  

=A(s ' (JF(Yi ) ) , . . . , S ' ( JF(Yn) ) ) .  [] 

In what follows we will usually write y instead of JF(Y), for elements yEF ,  
even when we consider the elements of F ~ via the natural inclusion. 
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C o r o l l a r y  2. I rA  is symmetric, then ~(A)=Ao(s '  x . . . x s ' ) .  Thus ~(A) is also 
symmetric, and if P is the homogeneous polynomial associated to A, then $ ( P ) =  
Po81 . 

Proof. Clearly ~(A) is symmetric,  for 

~(A) (y l ,  . . . ,  y~) = ~ i (s ' (y l ) ,  . . . ,  s ' (y~) ) .  

Let Yl,. . . ,  Yn denote elements of F ,  and wl , . . . ,  wn elements of F" .  We will show, 
by induction on k, tha t  

~(A)(w,,  ... , wk, Yk+l ,  "" , Yn)  = -~(S '  ( W l ) ,  . . . ,  8' (Wk) ,  s '  (Yk+l ) ,  "" ,  8' ( yn )  ). 

Recall tha t  the Aron-Berner  extension of any symmetr ic  n-linear form is weak* con- 
tinuous in its first variable, and furthermore elements of F and F "  always commute.  

Also, s '  is weak*-weak* continuous. Consider a net (y~) of elements of F ,  weak* 
converging to wl. Then, for k =  1, 

~(A)(wl,  y~, ..., Yn) = lim ~(A)(y,~, Y2, .--, Yn) = lim ~(A)(y~, y2, ..., yn) 
o~ ot 

= lim ]i(s ' (y ,) ,  s'(y2), ..., s'(y,~)) = .4(s'(wl), s'(y2), ..., s'(yn)). 

Now suppose the equality holds for k - 1 .  We have 

~(A)(wl, ..., wk, Yk+l,.. . ,  yn) = lim ~(A)(y~, w2, ..., wk, Yk+l,.. . ,  Yn) 

= lim ~(A)(w2, ..., wk, y~, yk+l, . . . ,  Y~) 

=l im/~(s ' (w2) , . . .  ' w s '  s '  , s ( k ) ,  (y~),  ( y k + l ) , . . - , s ' ( y ~ ) )  

= l im A(s ' (y~ ) ,  s ' (w2) ,  . . ,  s ' (w~) ,  s ' (y~+~),  . . ,  s ' (y~) )  

= i i ( s ' ( ~ ) ,  s ' (~2 ) ,  . . . ,  s ' (~k) ,  s '(yk+~) . . . .  , s ' (~n)) .  

Therefore ~(A)(wl,  ... ,wn)=f i ( s ' (wl ) ,  ..., s '(wn)), and $(P)(w)=P(s ' (w)) .  [] 

C o r o l l a r y  3. Let PET)(nE),  and let A be its associated symmetric n-linear 
form, and suppose that s: E~-+ F ~ is an isomorphism. Then if ft  is symmetric, 
(s -1 o ~ ) ( p ) - - P .  

Proof. Note tha t  ~(A) is symmetric.  Thus for Xl, ... , x n E E ,  we have 

s - l ( s (A) ) (Xl ,  ..., xn) = 8(A)((s-1) '(Xl) ,  ..., (S--l)'(Xn)) 

= A ( $ ' ( ( s - 1 ) ' ( X l ) ) ,  . . . ,  8 ' ( (8 - -1 ) ' (Xn ) ) )  

= A(x~, . . . ,  xn) = A(x l , . . . ,  xn). 

Since ~(A) is the symmetr ic  n-linear form associated to ~(P), for any x E E  we 
have s - l ( ~ ( P ) ) ( x ) = P ( x ) .  [] 
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T h e o r e m  4. If  E and F are symmetrically Arens-regular, and E ~ and F ~ are 
isomorphic (resp. isometric), then for any n, 7m(nE) and P('*F) are isomorphic 
( resp. isometric). 

Proof. Let s:E~-+F ~ be the isomorphism. Since E is symmetrical ly Arens- 
regular, for any symmetr ic  n-linear form A over E we have tha t  A is symmetric.  
Thus for any n-homogeneous polynomial P over E,  ( s - l o$ ) (P)=P.  Analogously, 
for any n-homogeneous polynomial Q over F, (~os-1)(Q)=Q. Note also tha t  

II~(P)l[ = IIP~176 ~-- ]]P]I Hsll n, 

and the same for s -1 and Q. [] 

Remark 1. If one has morphisms s: E~--~F ~ and t: F~--~G ~, and A is the sym- 
metric form associated to a homogeneous polynomial P ,  then symmet ry  of A implies 
(~o$) (p )  =~-~(p) .  

Remark 2. I t  is easy to see that  if E ~ and F ~ axe isomorphic, and one is Arens- 
regular, then so is the other. Indeed, say s: E~--+F ~ is an isomorphism, and F is 

Arens-regular. If  T: E--~E ~ is a linear map,  consider the diagram 

T r 
E "  > E I 

F "  " F I T/" 
F 

where L=soT'oS%JF. Since L is weakly compact,  its bitranspose L ' ,  has range in 
F '  by Gantmacher ' s  theorem. Thus T~=s-loL"o(s~) -1 is weakly compact,  since 
L" is. Then so is T. Thus symmetric  regularity of both  spaces in the theorem can 

be replaced by regularity of one of them. 

Remark 3. Note tha t  for S=JE,, Corollary 2 recovers the following result 

of [AGGM]: If E is symmetrical ly regular, then P=Poo,  where 0: EiV-+E" is the 

restriction map; thus there are no new 'evaluations'  beyond E ' .  

3. ~ and s o m e  s u b s p a c e s  o f  p o l y n o m i a l s  

Since s: E'--+F' is a morphism between dual Banach spaces, it is natural  to 
expect tha t  those types of polynomials over E which are more closely related to E '  
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will be preserved by the morphism g: P(nE)-+P(nF).  The formula g(P)=Pos'oJF 
proved in the previous section shows immediately that  finite type, nuclear, and 
approximable polynomials are all preserved by ~. In this section we show that  the 
same is true for weakly continuous and integral polynomials, and that  if E' and F' 
are isomorphic, then 7)~(nE) is isomorphic to P~o(~F), and :Pt(nE) is isomorphic 
to PI(nF), with no further assumptions on E or F.  Perhaps surprisingly, the class 
of weakly sequentially continuous polynomials is not, in general, preserved by g. 
We provide examples of this situation in the last section. 

Recall that  weakly continuous polynomials over E can be characterized ([AG], 
IT]) as those for which there exists a compact set K contained in E '  for which 

IP(x)l  _< c sup I~(x)l" 
~cK 

holds for all x EE. We will denote the seminorm on the right-hand side of the 
inequality by IlxllK, and say that  P is K-bounded.  The smallest possible c is called 
the K-norm of P and denoted IIPIIK. 

L e mma 5. If  P is K-bounded, then $(P) is s(K)-bounded and 

II~(P)II,(K) ~ IIPIIK. 

Proof. It was proved in [AG], [CDDL] that  P is K-bounded if P is and that  

IIPIIK=IIPIIK. Thus for any yeF ,  

I~(P)(y)I = I(P~176 < IIPIIK sup I~((s'~ 
"~,EK 

= IIPIIK sup Is('y)(Y)I" = IIPIIKIlYlI,~K)" []  
"~EK 

Thus g preserves weakly continuous polynomials. 

P r o p o s i t i o n  6. If s: E'--~ F' is an isomorphism (resp. isometry), then 

~:Pw("E) ~ PwCF)  

is an isomorphism (resp. isometry). 
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Proof. Given PEPw(nE), its associated linear operator  E-+P(n-IE) is com- 

pact  ([AHV]). Thus the Aron-Berner  extension of its associated n-linear form is 
symmetr ic  and we have, by the results of the previous section, (s-Io$)(P)=P. 
Analogously, for Qe :P~(nF) ,  one has (gos-1)(Q)=Q. Note also tha t  

II~(P)II = IlPos'ogFII <_ Ilell IlsllL 

and the same for s -1 and Q. [] 

Recall tha t  a polynomial PCP('~E) is called integral if there is a regular Borel 

measure # on BE, (the unit ball of E '  in its weak* topology) such that  for all xCE, 

P(x) = [  7(x) nd#('y). 
J B  E l  

The measure # is said to represent P,  and the infimum of the total  variations of the 
measures representing P is the integral norm of P,  denoted IIPIIr. It  was proved 
in [CZ] tha t  the Aron-Berner  extension of an integral polynomial is integral. Indeed, 
if # is a measure representing P,  and one defines 

by 

U: L 1(#) > E '  

f 
u(f)(x)  = �9 / (7)~(x)  dr(7),  

d / 3  E l  

then U is a norm-one map  and the Aron-Berner  extension of P may be writ ten 

P(z) = IBm, U'(z)n d#. 

With this notation, we prove the following lemma. 

L e m m a  7. If P is integral, then ~(P) is integral, and II~(P)ll,<lHlnllPII1. 

Proof. For y E F,  

= P(s'(JF(y)))  = U ' ( s ' ( J F ( U ) ) )  n = fB , [(s~176 

Thus, g(P)  is integral, and 

II~(P)lb _< II(s~176 <_ Ilsll"l,I. 

Since tiffs holds for any measure representing P,  II~(P)lb-< Ilsll"llPIIz. [] 
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P r o p o s i t i o n  8. I f  s: E'--+ F'  is an isomorphism (resp. isometry), then 

~: 7~I("E) > PI(nF)  

is an isomorphism ( resp. isometry ) . 

Proof. By Lemma 7, $ and s -1 are both morphisms between the spaces of 
integral polynomials. We show now that  $(P)=Pog .  Clearly P o g  coincides with 
$(P) when restricted to F.  Thus it will be enough ([Z1}) to see that  the first-order 
differentials of Pos  t have the properties 

(a) for all yCF,  D(Pos')(y) is weak* continuous; 
(b) for all w E F "  and (y~)CF, weak* converging to w, 

D(Pos')(w)(y~) --+ D(Pos')(w)(w). 

But since ~Pos')(w)=fB~, U'(s'(w)) n d#, upon differentiating we have 

D(Pos')(w)(v) = n f U' (s ' (w))"- 'V ' (s ' (v) )  d~, 
J B  s t 

which is weak* continuous of the variable v. 
Now 

s-1(s(P)  ) = s (P)~176  = P ~ 1 7 6 1 7 6  = P~  = = P .  

Analogously, for QE~Pz(nF), one has (~os-1)(Q)=Q. The norms of ~ and s - I  are 
controlled by the inequality in Lemma 7. [] 

Remark 4. Note that  the same type of result as in the propositions can be 
obtained for any subspace of polynomials as long as their associated linear operators 
E - + T ' ( n - ] E )  are weakly compact, and the Aron-Berner extension preserves the 
class. 

In particular, we obtain the following results for extendible polynomials (see 
[ga] ,  [C] and [Z2] for the pertinent definitions). 

L e m m a  9. I f  P is extendible, then ~(P) is extendible, and li~(P)lle_< 

]]sii"llPll . [] 

P r o p o s i t i o n  10. I f  s: E~-~ F ~ is an isomorphism (resp. isometry), then 

is an isomorphism (resp. isometry). [] 
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4. E x a m p l e s  

In this section we give three examples. The first shows tha t  ~(P) may differ 
from Pos ' .  The second tha t  ~ may differ from ~-o~, and the third tha t  even when 
s: Xt--~Y I is an isomorphism, ~ may not preserve the class of weakly sequentially 
continuous polynomials. 

We mention a few facts and fix some notat ion before going into the examples. 
If  X is a Banach space, consider the 2-homogeneous polynomial P defined over 
X x X '  by P(x, xI)=xI(x). I t  is easily seen that  P is weakly sequentially continuous 

if and only if X has the Dunford-Pet t i s  property. Also, one may check that  the 
Aron-Berner  extension of P to X "  x X "l is 

~ z  I !  I t l \  1 tx , ~  ~ = ~ [ ~ " ' ( x " ) + x " ( e ( x ' " ) ) ] ,  

where Q:X"'-~X' is the restriction (i.e., the transpose of the natural  inclusion 
Jx: X--rX").  In the first two examples we will use the notat ion 

E = X x X I, F : X'I x X ', G = X"  x X'"  

and over these spaces we consider the polynomials 

P(x, xl)~-x'(x), Q(x",x ' ) -~x"(x I) 

and morphisms 

s: E '  ) F ' ,  t: F '  - ~  G '  

given by s=Jx,@idx,, ,  t= idx, , ,  @Jx,,. Also, we let r=J~(,. 

Example 1. $(P)y~ Pos '. 

We first calculate $(P). For (x", x')EF, we have 

$(P)(x", x') = (Pos')(Jx,, (x"), Jx,(x')) = P(rJx,,(x"),  Jx,(x')) 

= P(x", Jx '  (x')) = 1[Jx" (x ' )( l , )  +x,i(9(jx,  (x,)))] 

[x" (x '  + x  'I x'~l = 5  ) ( - = q ( ~ " , ~ ' ) -  

Thus ~(P)=Q. Now calculate $(P) and /5os ' ,  

~ ( p ) ( ~ , ~ ,  ~,i,) = 0 ( ~ , ~ ,  x'") = 1 [~ ,~(~ , , , )+~ , , , (~ (~ ,~) ) ] ,  
- -  " 1 I f ?  Z~J Z ~  I l l  (Pos')(xiV,x '') =P(r(x'V),x '') = ~[x ( r (x  ) )+r (x  )(Q(x ))]. 

Thus $(P)=Pos' if and only if x"(x'")=r(xi')(Q(x'")), but this only holds for 
reflexive X.  

Note tha t  we have seen tha t  $(P)=Q. If X has the Dunford-Pet t is  property 
but X '  does not, then P is weakly sequentially continuous, but  Q is not. We also 
have the following result. 
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Corol la ry  11. I f  X is an infinite-dimensional Banach space with the Dunford- 
Pettis property, then X • X '  contains 11 . 

Proof. If E = X  •  ~ did not contain 11 then every weakly sequentially contin- 
uous polynomial would be weakly continuous [FGL}. Thus the operator E--rE'  
associated to the polynomial P above would be compact, its corresponding A 
would be symmetric, and g(P)=Pos  ~ forcing X to be reflexive, and therefore finite- 
dimensional. [] 

Example 2. tos~tog.  

First, calculate t'oJG, 

(t% Jo)(x" ,  x m) = t' ( gx, , (x") ,  gx,, ,(xm) ) = ( Jx , , (x") ,  g~x,,( Jx, , , (xm) ) ) 

= (Jx"  (x"), xm). 

We have already calculated ~(P), so using this we have 

Then 

(tog) (P)(x", x ' )  = (g(P)ot'o Jc) (x  n, x " )  = g(P) (Jx"  (x"), x m) 

= �89 [gx', ( x " ) ( x" )+x ' " ( r ( Jx , ,  (x")))] = xm(x").  

(t-~-s)(P)(x", x'") = (Po(tos)'oJG)(x", x"') = (Pos')( (t'oJe)(x", x") ) 
= (Pos')(Jx.  (x") ,  x" ' )  = P(r(Jx-(x")) ,  x"') 
= p ( x " ,  x ' " )  = 

thus tos=to~ if and only if x"(~(xm))=xm(x") ,  but again, this only happens for 
reflexive X. 

Example 3. An isomorphism s: XP--~Y ~ such that g does not preserve the class 
of weakly sequentially continuous polynomials. 

We begin with the well-known example of [S] of Banach spaces X and Y with 
isomorphic duals, such that X has the Dunford-Pettis property and Y does not: 

X = ( ~ - ' ~ I ~ )  1 and Y = X O I 2 .  
n>l 

Call the isomorphism s: X'--+Y', and consider the 2-homogeneous polynomial Q over 
Y defined by Q(x, - 2 a)-~-~_>l a n. The operator Y - + Y '  associated to Q sends (x, a) 

to (0, a) and is therefore weakly compact. Then (gos -1 ) (Q)=sos - l (Q)=Q.  Since 
X has the Dunford-Pettis property, all polynomials over X are weakly sequentially 
continuous [It], in particular (s-1)(Q) is. Thus g sends this weakly sequentially con- 
tinuous polynomial onto Q, which is not weakly sequentially continuous (Q(0, en)--1 
for all n). 
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