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Sharp estimates for 0 on 
convex domains of finite type 

A n n e  Cumenge  

Abstract .  Let Q be a bounded convex domain in C n, with smooth boundary of finite 
type m. 

The equation c)u~f is solved in f~ with sharp estimates: if f has bounded coefficients, the 
coefficients of our solution u are in the Lipschitz space A1/m(f~). OptimM estimates are Mso given 
when data have coefficients belonging to LP([~), p> 1. 

We solve the c)-equation by means of integral operators whose kernels are not based on the 
choice of a "good" support function. Weighted kernels are used; in order to reflect the geometry 
of bf~, we introduce a weight expressed in terms of the Bergman kernel of f/. 

1. I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  r e s u l t s  

This paper  aims at i l lus t ra t ing  the following: if one wants  to solve the cS- 

equa t ion  with est imates  via integral  operators,  one may choose integral  kernels 

whose cons t ruc t ion  is not  based on the use of a sui table  suppor t  funct ion.  

The ma in  appl icat ions  we give are opt imal  HSlder and  L p est imates  for the 

Cauchy R i e m a n n  equa t ion  in smooth ly  bou nde d  convex domains  of finite type  

in C ~. I t  was previously announced  in [C1] tha t  the sharp HSlder es t imate  (7-/t/~) 

defined below holds in such domains.  

We say t ha t  (7~l/.~r,) holds in a pseudoconvex doma in  ~t of finite type m if the 

0-equa t ion  has a solut ion wi th  coefficients in the Lipschitz space A1/~(f l )  for da t a  

with bounded  coefficients. Such an es t imate  is sharp  as was proved in [K1]. 

We restr ict  ourselves to the case of weakly pseudoconvex domains  Q of finite 

type  in order to place our result  in a historical context.  

The  case of smooth ly  bounded  pseudoconvex domains  of finite type  in C 2 is 

well unders tood  and we refer the reader to [FK] for a survey of related results. 

New difficulties arise when one tries to find op t imal  es t imates  for the 0 -equa t ion  

or the 0 - N e u m a n n  problem in pseudoconvex domains  of finite type  in the higher di- 

mens ional  case n > 2. Results  ob ta ined  unt i l  now always need addi t ional  hypotheses 
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on the domain. 

Using methods similar to those in [FK], Fefferman, Kohn and Machedon [FKM] 

proved HSlder estimates for several operators linked to the 0b-Neumann problem 
for pseudoconvex domains of finite type m with a diagonalizable Levi form: for 
the 0-equation in such domains, solutions in the Lipschitz spaces A ~-~+l/'m" (where 
s+l/rn is not an integer and s > 0  is arbitrarily small) have been obtained for da ta  
with coefficients in A ~. 

Regarding the other known results, an additional assumption of convexity has 
been made. All these results are based on 0-solving integral operators. 

The first results in this direction were due to Range [R]; in the case of the com- 
plex ellipsoids in C ~, Range has obtained an almost optimal HSlder estimate (and 
for n = 2  the sharp estimate (~/ , ,~)) .  Diederich, Forn~ess and Wiegerinck [DFW] 
treated the real ellipsoids case; they constructed a new holomorphic support  func- 

tion well adapted to the geometry of the boundary of such domains enabling them 
to get (~1/,,~,,). 

More recently Bruna, Charpentier  and Dupain [BCD] dealt with the equation 
iO0u=# on a bounded convex domain f~ of finite type; so they had to solve the 
g-equation in gt with precise estimates. They obtained (~1/,~) under an additional 
condition (*) of str ict- type on ft, i.e. the condition (*) holds if there exists a constant 
e such that  for all boundary points z, all unit vectors v in the complex-tangent space 
T~(b~) and all small real t, one has 

1 
+tv) <_ +itv) < 

C 

Estimates in other norms or regarding more specific domains are t reated in [BC], 
[S], [CKM] and [Mz]. 

The above results refer to specific convex domains of finite type, while being 
all based on an explicit (or fairly explicit) support  function choice.(1) 

For estimates for the c~-equation, integral formulas are most convenient when 
the kernels involved are expressed in terms of tools reflecting the geometry of the 
domains. These tools are for instance Leray maps, support  functions and weight 
factors. 

The Bergman and Szeg6 kernels reflect the geometry of a domain. Thus, it 
seems natural  to construct the kernel K of a c5 resolving operator with a chosen 
support  function and/or  a weight factor enabling to construct K in terms of the 

(1) Using the support function recently constructed by K. Diederich and J. E. Fornaess [DF] 
for convex domains of finite type, K. Diederich, B. Fischer and J. E. Forn~ess [DFF] have recently 
given a different proof of our Theorem 1.1. 
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Szeg5 and/or  the Bergman kernels of the domain under question. As soon as we 
focus on a class of domains for which we can precisely estimate both  these geometric 

kernels and their derivatives, the integral fbrmulas thus obtained can be very flexibly 

used. 
In this paper  we handle the 0-problem in a smoothly bounded convex domain of 

finite type in C "  by means of integral formulas. We use a Koppelman Berndtsson-  
Andersson type weighted kernel choosing a weight in terms of the Bergman kernel 
of the domain. By using all the precise estimates on the Bergman kernel known in 
this setting thanks to the work of McNeal [ M 1 ] ~ e  prove the following results. 

T h e o r e m  1.1. Let ~ G C  ~+ be a convex domain of finite type rn in the D'An- 
gelo sense with a C~-smooth boundary. For l <<_q<<n-1, there exists a constant C 
such that for every O-closed form f on ft of bidegree (n, q) with bounded coefficients, 
the equation Ou=f  has a solution u which satisfies 

IbllA~/m(~) ~ CIIflloo. 

A 1 /rn Here, A1/~'~(ft) denotes the usual norm in ,~,~,q 1(~-~) while I[" [1oo denotes the 
sup norm in L~q(~).  

We also get results for data  in other Lebesgue spaces. 
The BMO space involved in the following theorem is the isotropic one defined 

by means of euclidian balls. 

T h e o r e m  1.2. Under the assumptions of Theorem 1.1 for the domain f~, 
the equation Ou=f,  for f a O-closed (n, q)-form with coefficients' in LP(ft), has a 
solution u with coefficients belonging to 

(a) LS(a) ,  where 1 / s = 1 / p - 1 / ( , ~ n + 2 ) ,  if l_<p<m,~+2;  
(b) A~(D), where c t = l / r n - ( n + 2 / r n ) / p ,  if p>rnn+2; 
(c) BMO(a), lip m +2. 

Remark. In Theorems 1.1 and 1.2, we consider forms of bidegree (n , . ) ;  this 
makes it easier to get estimates for our solution. 

C o r o l l a r y  1.3. Under the assumptions of Theorem 1.1, the canonical solution 
of the equation On=f,  where f is a O-closed (0, 1)-form on ft with coefficients in 
LP(D), belongs to 

(a) LS(~), where 1 / s = l / p - 1 / ( r n n + 2 ) ,  if  l_<p<rnn+2;  
(b) A~(f}), where c ~ = l / m - ( n + 2 / m ) / p ,  if rn~+2<p<_ +oo. 

Pro@ If u is the solution of the equation O n - f  given by Theorem 1.1 the 
canonical solution of this equation is u - P u ,  where P is the Bergman projection 
operator of fL The corollary follows thus immediately from Theorem 1.2 and some 
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continuity results on 7) proved by McNeal and Stein in [M2] and [MS], more precisely 

the continuity of the operator 7 ) from L~(f~) to L~(f~) when l < s < + o c ,  and from 

A (a) to A (a) when [] 

The plan of the paper is as follows. 

In Section 2 we define a weighted kernel with a suitable weight reflecting the 

boundary geometry and prove an integral representation formula for forms with co- 
etficients of class C 1 up to the boundary. We obtain an integral operator solving the 

0-equation. The differentiability assumption on the forms is, of course, superfluous 

as explained at the beginning of Section 4. In Section 3 we define the notation we 

shall use for the estimates and recall the needed results of McNeal on the Bergman 

kernel. Section 4 is devoted to the proof of Theorem 1.1; the main estimates for 

our kernel are given there. In the last section, we sketch the proof of Theorem 1.2; 

most of the computations are similar to those in Section 4 and we just present what 
has to be changed. 

I take the opportunity to mention here that  I gave a talk about the main ingre- 

dients of the proof of Theorem 1.1 in Warsaw in July 97 (International Conference: 

Complex Analysis and Applications). 

The contents of the present paper (with minor changes) were distributed in the 
preprint [C2]. 

In another paper [C3] we prove weighted L p estimates and boundary L 1 es- 

timates for the solution of the 0-equation in bounded convex domains of finite 

type in C ~ and give applications to the zero sets of functions in some classes of 
Nevanlinna-type. 

2. A r e p r e s e n t a t i o n  formula  for forms  

Let ft be a bounded convex domain in C n with a C~-smooth  boundary. Sup- 

pose every pEbgt is a point of finite type <m,  in the sense of D'Angelo. 

Following [BCD] we may assmne that 0Eft and will choose as defining function 

fbr ft the function g = 9  1, where 9 is the gauge function of ft; g is of class C ~ on 

By B(~, z) we will denote the Bergman kernel for the domain ~2; B(G z) is 
holomorphie in z, antiholomorphic in 4; under the assumptions made on ~2, B(- ,. ) 

is of class C ~ on ft • f t \Abe ,  where /~b~2 denotes the diagonal of bf~ • b~ ([M1]). 

Let 

(2.1) 1 fo C) at, 
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where 

(0~)(r r = 0zj ((, ( + t ( ~ - 0 )  ~ j  
j 1 

and O/OZj denotes a derivative with respect to the second variable. 
Let No>2n be a positive integer. We define for ( ( , z ) E f t x l 2 \ A ,  where A 

denotes the diagonal of C ~ • C ~, 

n - - I  K(~ z)= E C(]~ TL) ( ]~(s Z) ~o-k ( O z l ~ _ _ z l 2 ) i ( ~ _ ~ ) ) k f ( d O z l ~ _ _ Z [ 2 )  ~ k -X 

n - J .  

: ~ ~(k, ~)K(~)(~, ~), 
k~O 

where e ( k , n ) =  (--1)~('~-l)/2(N~ 

P r o p o s i t i o n  2.1. If f is an (n, @-form with coefficients in C1(~), q_> 1, then 
for z ~ ,  

f(z)=C(n,q)(O~ .~ f(()AK((,z)+(-1)"+q-1/~ Of(()AK(~,z)). 

(2.4) 

Let 

Remark. The above proposition is nothing else than an integral formula with 
weight factors of the Berndtsson Andersson type and we refer to [BA] for details 
about such homotopy formulas with weighted kernels. 

Proof of the proposition. We are going to introduce a Koppelman Berndtsson 
Andersson kernel/~.  

Let 

(2.3) % ( ( ,  z) 1 f f  
Og 

(+t(z-O) at. 

Convexity of ~ implies that  we can write, for all ((, z )C~ • ~, 

Z) 
(Q,~-O := ~ Q j((, ~)(~j-<j)- 

Q = ~ %((, ~) d(<j-~j), 
j=l 

n 

j = l  
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v 
For the kernel K,  the ingredients are as follows: 
(1) The maps Qj, j=l ,  ... ,n, defined above, which are of class C ~ on f~• 
(2) A holomorphic function of one variable in a simply connected domain that  

contains the image of ft x ~  under the map ( ~ , z ) ~ l + ( Q , z - C }  and such that  
H(1)=1; we choose H ( ~ ) = ~  ~o. 

(3) A suitable section of the Cauchy Leray bundle over f~ x f~\A; the Bochner 
Martinelli one is convenient here. 

Let for ( r 2 1 5  

r~--I 
K(r z) = E c'(k, n)H (~) (1+ (Q, z-C})  sA(dQ)k A(ds)~' 1 k 

i r  2k k 0 

where 

k! 

( -1 )  '~('~ 1)/2H(,~)(l+(Q,z_r ~(r ~ ) -  ~! 

Define for 0<g<g0<<l ,  f / e={z r  Recall (cf. [BA]) that  

where [A] denotes the current of integration over A. Applying the main result 
of [BA], we thus get a formula of Koppelman-Berndtsson Andersson in ft~: if 

fr q > l  and 0<c<e0 ,  then for zCf/e, 
(2.5) 

Notation: for a kernel L(r z), we will as usual denote by Lp,q((., z) the compo- 
nent of L which is of bidegree (p, q) in z. 

The maps Qj are holomorphic in z, thus the components _Pp,v=0 for q_>l; so 
the last integral in the right-hand side of (2.5) is zero. 

Recall that  the Bergman kernel is Coo-smooth on f~x f~ \Am,  so for any do- 
main FGf~ and any differential operator D~,~, there exist constants co=C(P) ,  
c(~ =C(F ,  D ~) such that  

IZ3(r ~c0, IDr162 ~c~ for (r c ~ x F .  

We also have, /3(r162 fox" r162  so i n f  ~ ( r 1 6 2 1 6 2  
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Besides, (cf. [M1])if 0<-~)(()<Cl  with cl chosen small enough, 

1 
B((, () ~ C(E1)(Lo(()) 2+(2n-2)/m ~ C(gl)(-~o(~)) 2. 

We also use the estimate Icq~)I<(-0(r -2 for -~o(r which is proved later in 
Section 4 cf. (4.11). We thus obtain for 0<e<min(gl ,e0) ,  

sup IK(r 
zCP 

~cb~e 

and therefore the integral over the boundary b ~  in (2.5) tends to 0, as c-+0. 
Obviously, we can use a standard limiting argument regarding the second in- 

tegral and the third one in the right-hand side of (2.5). 
This completes the proof of the proposition if we remark that  K(,~,.)(C,z)A 

f ( ( )  = K ( , . ) ( ( ,  z) A f ( ( ) ,  fox" every form f of bidegree (n, . ) .  [] 

3. N o t a t i o n .  R e v i e w  of  s o m e  e s t i m a t e s  for t h e  B e r g m a n  kerne l  

For the reader's convenience, in this paragraph we recall some estimates on the 
Bergman kernel obtained by McNeal in [M1] for a domain ~, when ~ is a smoothly 
bounded convex domain of finite type in C 'n'. Incidentally, some notation will also 
be made precise. 

In the sequel, we will use the standard notation A<B, for A and B functions 
of several variables, to denote that  A<CB for a constant C independent of certain 
parameters which will be clear in the context. Of course A,-~B will mean A<B and 
B<~A. 

To begin with, there are some related geometric objects and quantities. 
Fox' 71>0 and v r  n, Ivl=l, McNeal has introduced the quantity ~(z,v,7]) 

(where zerO, z close to b~), which measures the radius of the largest complex disc, 
centered at z, in the direction v, which lies entirely in the domain {O<E(z)§ 
More precisely 

c~(z,v,r/) =sup{r  > 010(z-+-~v)-o(z) ~rl, I~1 ~ }  

We will need some properties of o-(z,v,~]), 7]>0, v c C  n, ]v]=l, zEQ, where b~ is 
supposed to be of finite type _<m, 

(3.1) ~r(z,v, ~?) 0(7] 1/~r') and ~r(z, v, 7]) ~ 7] uniformly in z and v. 
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For 71 ~'r]2, we have uniformly in z and v 

(3.2) ~ ~(z,v,~?2)<c~(z,v,71) < ~ ~(z, v, 72). 

We recall now the notion of 7-extremal basis of McNeal as done in [BCD]; we 
will follow the presentation given in [BCD]. 

Let z E ~  dose to bf~ and ~ > 0  be fixed. We proceed to choose a certain or- 
thonormal basis (b )}~ i  of the tangent space T~(C~). The. first vector vl is the unit 
vector of the direction of the gradient vector at z; chosen vl , . . .  ,vi l, we choose 
vi to be a unit vector realizing the maximum of or(z, v, 7) among the unit vectors 
orthogonal in C ~ to Vl, ..., vi-1. Of course the obtained basis (vj)jn 1 of Tz depends 
on both z and 7- 

The polydisc P(z, 7) of McNeal centered at z, with radius 7 is defined as 

{ fi )} 
j = l  

where the constant c-c(n) is chosen such that  w ~ P(z, 7) ~1~( w)-  ~(z)] < 7. 
The construction of McNeal's polydiscs makes f~ a space of homogeneous type. 

Recall some properties of these polydiscs (cf. [M1], [BCD] for details). 

We have for suitable unitbrm constants -y and ~/, z+AvCP(z,7 ) whenever 

lal <-y~(~, v, 7), and lal_<-/~(z,v,7) as soon as ~ + A ~ P ( ~ , 7 ) .  
For each constant C > 0 ,  there exists b=b(C) such that  

p(~, c7) c bP(~, 7), 
(a.s) cw(~, 7) c P(~, by), 

Vol P(~, C7) ~ Vol P(~, 7). 

There exists a constant C1 independent of ~,zEb/Nf~ and r]>0 (where b/ is 
defined below--cf.  (3.6)) such that  if P(z, ~)AP(s ~rl)r then P(z, 7)C Ci P(~, 7). 

We have, with uniform constants, 

~(~, v, 7) ~ ~(z, v, 7) for r ~ P(z ,  7), 
(3.4) 

Vol P(~, 7) ~ Vol P(z, 7), if P(z, 7)AP(~, 7) r O. 

If (vj)jn 1 is an 7-extremal basis of McNeal at z then 

(a.s) Vol P(~, 7) ~(~, ~5,7) ~. 
i--1 
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We are going to recall the estimates of the Bergman kernel proved in [M1] using 
the reformulation given by McNeal and Stein in [MS]. 

For zEbft, ~>0, T(z, ~):=P(z, ~)A~ is called the tent at z of radius ~. 
Let S n be the unit sphere in C n. For v c S  ~ and ~ E C ~ ( ~ ) ,  let Dvp denote 

the directional derivative of p in the direction v. 
For k = (kl, ..., kq) c N  q and A= (A1, ..., Aq), where Aj G S ~, j = 1, ..., q, we will 

be using standard multi-index notation, i.e. D~ denotes the differential operator 
kl  . . .  and A, for 

The following important result of McNeal ([M1], [MS]) is crucial for all that  
follows regarding the estimates we want to get. 

For every pEb~, there exists a neighborhood bt(p) such that  for ~, zEb/A~, k 
and s multi-indices, A and A ~ multi-unit vectors, 

(3.6) ID~DI, B(r z)l < C(k, s) ~(r A, c)-k~(r A', e) -~ 
- V o l  T r  ' 

where Vol Tr is the volume of the smallest tent containing both ~ and z, c=e( ( ,  z) 
the radius of this tent (smallest means of smallest volume). 

One has 

(3.7) if e = e(~, z), then ~(~, A, e) ~ ~(z, A, c) for A �9 S n, 

(3.s) = 10(r IQ(z) l + M ( r  

where Ad(~, z) is the quasi-distance of McNeal; up to uniform constant multiples 

(3.9) Ad(z ,~)~Ad(r149 for Ir r  

McNeal has also estimated the Bergman kernel function fl'om below on the diagonal. 
For every pEb~, there exists a neighborhood LF(p) of p such that  

1 
(3.10) B(r162 >~ VolP(( ,  5)' r �9 L/'(p)A~, 

1 where 5=5(r  It~(r Without loss of generality, we may assume that  L/'(p) =b/(p) 
for p�9 We suppose this is the ease in all that  follows. 

At last let us give an upper bound on the function IB(r162162 The 
estimate given below does not appear in [M1] but is implicit in McNeal's paper; it 
is very easy to get. 

The size of P(( ,  e(; ,  z)) (resp. P(~,5(r in the normal direction is, up to 
uniform constant multiples, e(ff, z) (resp. ~(f)). We have P((, 5(~))cCP(~, e(r z)) 
uniformly in ~ and z, and 

Area[P(r 5(r = 0(r ~< Area[P(r e(r z))n{co = g(r 
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Let pEbFt, g/=U(p). We obtain by using (3.6) and (3.10), 

Vol P(C, 5) Vol P(C, 5) 5(C) (3.11) 113({'z)l < ,~ < { , z E t 4 n f t .  
U(r162  ~ VolTc~  V o l P ( r 1 6 2  ~ ~(r 

Remark. We could have obtained the better bound (5(r162 z)) 2. This latter 
bound is not useful in order to estimate our kernel K defined in (2.2) because we 
can choose No as big as we want. 

4. P r o o f  o f  T h e o r e m  1.1 

A classical approximation argument reduces the proof of Theorems 1.1 and 1.2 
to the case of forms which have coefficients in C 1 (~). There is no difficulty here 
in getting constants independent of ~ in all the estimates, if one approximates for 
instance a form in Ll~,q(ft) by forms smooth in exhausting subdomains ft~j (~ near 1) 
which are homothetic to ft. Define, for f an (n, .)-form 

(4.1) Of(z) = j f  f ( r  z). 

The form O f  is a solution of the equation Ou=f for f a 0-closed form in Cr 
(ef. Proposition 2.1). The aim of this paragraph is to prove the continuity of O 

AI/~ from L~q (ft) to "n,q-1 (ft)" 

4.1. E s t i m a t e  of  f~  f ( ~ ) A K ( ~  z) 

P r o p o s i t i o n  4.1. For 0<c~<1, there exists a constant C=C(c~,ft) such that 
for every f ECI,q(D), 

ffz f(~)AK(~ , z) <_ CHfH~. 
A~(f~) 

Let [BM](~,z) denote the kernel obtained by adding all the components of 
bidegree (n , . )  in z of the Boehner Martinelli kernel. From (2.2) we can write 

j = 0  

It is well known that  the result given by Proposition 4.1 is true if we use the 
Bochne~Martinelli  kernel instead of K (~ (~, z). 
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Let 

E~(f)(z)=L f(r zEa, j = 0 , . . . , N 0 - 1 .  

In order to prove that  E~, I _ < j < N 0 - 1 ,  is a bounded linear operator from 
L~q(f~) to A~,q l(f~), 0 < c t < l ,  we will use the following very classical lemma of 
Hardy-Litt lewood. 

L e m m a  4.2. If geCl(f~)NL~(a) and if for 0<c~<l  and for some real con- 
stant C, ]Vg(z)l<_C dist(z, bf~)-l+% zErO, then geA~(~2) and IlgllA~(f~)~<C. 

In all that  follows we will assume that  zEL/, ~EW=�89 where b/ is  one of the 
neighborhoods/g(p) defined in Section 3. The smoothness of the Bergman kernel off 
the boundary diagonal and the known properties of the Bochner-Martinelli  kernel 
both insure that  the right estimates hold in all the other cases. 

Let D~ be any derivative with respect to the variable z. We have fi'om (3.1), 
(3.6), (3.10) and (3.11), 

(4.2) IDdS(<,z)l < ~ ( r  

We also have from (2.3), (2.4), (3.1), (3.6) and (3.8) the following estimates 

(4.3) ~(C,z)-B(C,r < IC-zl [ ~  dt 
B(r162 ~ B(r162 J0 ~(r162 

(4.4) 
~(4-, ~) ~ Io(r + IQ(~)I +M(~, ~) >~,~(~), 

inf Vol Tr > Vol Tr ~ Vol P (G  5(4)), 
0<t<l 

where z t=(+t ( z - ( )  and Tr is a smallest tent (i.e. of smallest volume) containing ~. 
Collecting the estimates above, using (3.11) and observing that 

(4.5) de, ~)>~ le(r E le(~)l+la(r r ~f~nu, 

we can write for j = l ,  ... , N o - l ,  zEL/nf~ and (EWNf~, 

_dr162 1 ~(r162 1 B ( r 1 6 2 1 6 2  2n' 
I 

IrES(C, z)I < (10(z)l+lQ(()_0(z)l) l<_zl2n_l  - 
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Let 0<c~<1. If z is moving in L/, we have, by integrating first with respect 
to t l = ~ ( ( ) - 0 ( z ) ,  and then using polar coordinates to integrate in the remaining 
variables, 

n~ ]~(z)l 1-~ ns~ Io(C)-~(z)l~§ 2n i-b 

1 < _ _  
i0(z)[1-~ , 

where 0 < b < l - c ~ .  Clearly II~fifll~llfll~, l ~ j ~ N 0 - 1 .  
The operator E~ requires a separate analysis. 

Cla im.  Let ctE]0, 1[, then 

[E~f(z)-E~f(w)[ ~ Ilfllool~-wl ~ un@rmZy in z ,w  c ~t, f E L~q(f~). 

For z close to bft, let ~r(z) denote the point on bft where the integral curve of 
grad ~ through z meets bft; we define for ( and z close together 

where P~(z) (resp. v~(~)) is the unit outward normal vector at 7r(z) (resp. ~(w)) 
to bft. We estimate the expressions IE~ f ( z ) -E~) f ( z ' ) l  and IEr 
separately. The process involved is classical (cf. [K2] for instance), it sumees to 
adapt it to our context and we omit the details. 

4.2. Es t imates  involv ing  the  type  m 

P r o p o s i t i o n  4.3. There exists a constant C such that, for every f EL~,q(ft), 

f a f (  <_C]]f]]~, ~:= 1,... , n - 1 .  ( ) i K ( k ) ( ( ,  z) A1/m(a) 

It will be clear from the computations done in the proof of the proposition that  
we have Ilf~ fAK(~)IIL~(a)<<-c'llfll~. Applying the lemma of Hardy-Littlewood 
we deduce thus the above proposition from the following estimates for k =  1, ..., n - 1 ,  

(4.6) f a  IlVzKCk)((' z)[I dA(C) <~ Io(z)l-l+l/m" 

Of course, we only need to prove (4.6) for k=  1 and k = n -  1. 
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4.2.1. Here, we consider KO)(r z). We have from (2.2), 

( Z3(r ~ No-~ (O=lr162 2 
K(~)(r =) = \ B ( ~ ,  C) / 14-=12~-2 

Let Dz be any derivative with respect to the variable z.  Let us first estimate 

(4.7) 

9B(r162 _ 1 9 R OQ=OcQ-  g~(r n ~ +  z3(r ~ , 

L[j0 ( 0 ) ] D~.R= t D z ~ j B  (r dzj, 
j = l  

where R=fo(OZ13)(r zt)dt, zt=<+t(z-r and Dz means the derivative D acting 
on the second variable. 

From (3.6), (3.1) and (4.3), we get for zcUnf~  and CEWAD, 

(4.s) 

1 jfO 1 t dt 
ID~Rt < 6(r Vol P(r ~) c(C zt)'  

1 ~1  t d t  

IDz0cRI < 6(r VolP(r c(r zt)" 

Because of the convexity of t) we have for ~, zEL/Nt2, 

and thus 

/ 1  tdt ( 1 ) C, zcU~f~.  
(4.9) ~(r - ~  k , (= ) l+ lo ( r  ' 

Using moreover (3.10) and (3.6) we thus obtain 

1 

ID=~QI ~ ~(G)~(l~(z)l+i~(G)_o(z)l) 

We get in an obvious way 

(4.10) O 1 oQ= 



14 Anne  Cumenge  

Collecting all the estimates above, using (3.11), (4.2) and (4.5), we can write for 

zCb/Af~, 

/ w n a  IVz/d*)(r  z)l d4 < Ii(z)-}-I2(z), 

where 

fw d4 /l(Z) = n~ ~(4,~)~14--zl ~ - ~ '  

(Io(~) I + Io(4) - o(=) I )dr  ~)~ 14-z l  2n-a" 

We will estimate I2(z). The finite type hypothesis implies 

M(4", ~) >~ 14-~1 '~". 

In order to integrate over Wnf~ we choose an orthonormal basis (ej)jn=l Of Tz(C n) 
such that  e~=Vo(z)/ lIVo(z)l  I. We will abuse the notation by continuing to call 
(41,..., 4'n) and (zl , . . . ,  zn) the coordinates of 4 and z with respect to the system of 
coordinates corresponding to the basis (ej)yG~. Writing 4 - z = ( 4 ~ - z 1 ,  4 ' - z ' ) ,  we 
have for 4, zCL/N~, 

d4, ~) ~> Io(4)1+ Io(~)l§ ~) >~ Io(~)1§ 14~-=,1§ "~ 
> Io(~)1 + Io(<)-~'(~)1 + I Im(<~-~1)1 + I~'-~'1 "~. 

The change of variables tl  = 6(4) - O(z), t2 =Im(41 - Zl), t , =  4 '  - -  Zt gives 

./F t dtl dt2 dr' 
& ( ~ ) <  1,_<1 It=l_<* ( Io (z ) l+ l t21+ l t ' l ' ~ )2 - ' y ( Io (z ) l§  2n-a '  

It'l<l 

where 0 < ' 7 < 1 - 1 / m  and 

&(~) = o(Io(~)1-~+1/'~). 

Similar and easy computations lead to the same estimate for I1 (z). 

4.2.2.  In this paragraph we estimate the main term. Among the terms K (k) 
(cf. (2.2)), it is the term K (n 1) which has the most interplay with the geometry 
of the domain. In order to estimate K (n-s) one has to use all of the geometric 
information contained in the Bergman kernel (cfl Section 3). 
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To simplify notation, let G = K  (n-l) .  It  has already been observed at the 

beginning of Section 4.1 that  we just have to prove the analogue of (4.6) for 

j;~a IV~G((,z)ldr zeUnf~.  

There exists a constant/3> 1 such that 

(4.11) A 4 ( ( , z ) < r l  : ~  (EP(z,/3rl) , zEftNbl, 0 < r l < < l .  

Define 

do = do(z) := P(z,/3 d(z)) nWnQ, 
el(z) := {( ~ftnW[2l-ld(z) <_M((,z) <21d(z)}  for l>_ 1, 

where d(z)=dist(z, bf~). 

Notation. From now on we will often use the shorthand notation d=d(z) and 

5 = ~ ( 0 .  
Let Dz be any derivative with respect to z. 

In order to clarify our computat ions we proceed to first give an expression for 

D~G((,z) when (CCo(z) and to prove fCo(~)IV~GI d(<lL)(z)l 1+1/~. 

By DzB we will mean tha t  the derivative is with respect to the second variable 
of B ( . , . ) .  For instance (cf. (2.1)) 

D z ~01 (0z~)(< ,  zt)d~ ~- ~o 1 ~(OzOz]~)(r zt)dr, 

where zt=r Let (ej)}~_l be a /3d-extremal  basis at z, we will also write 
Lj=ej. Let us denote by (L~, ..., L*~) the basis of T*(C r~) which is the dual basis 
of (L1, ..., L,~). By L ('w) we will mean that  the derivation L acts on the variable w. 

�9 (z) . . . . .  
If  Lj --Lj =~k  1 c~)(z) dzk, Lj (r of course means ~ k = l  ct~(z) d~k. 

In writing DzG((, z) we express all the differential forms with respect to another 

basis. The derivatives 0~ and Oz will be expressed in terms of L*I(z),...,L*~ (z), and 

c5r in terms of L~(r ..., L• (r 

Convention 4.4. In arty ambiguous case, L(z)~Y(-, .) means a derivative with 
respect to the second variable of 32(. ,. ); y will be essentially B or some derivative 
of B. 
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We have 

(4.12) 
c( r  = \B( r  r  i(-~12 ' 

where N=No-n+l .  We can write, using (4.7) and (4.8), 

(4.13) D~G-- 

with 

1 
r l  (r z) - Z~((, () 

u(r r (rx (r ~)+r~(r ~)), 

E CD~176 (B((, z) ~L(~)Do(io)(l( z123(L(O#35(r 
t 7 7 - z T p )  ~o ~ , , - , , ,  j ,  , ,  r 

ISl=~ 
lal=n-1 

1 
L to(il)tL(~)DO(i~)B~l p ~1 z j~s, zt) dt x 

n-i (LI ) 
X H t O( ik ) /~ ( ( ) r ( z )nO( ik )~w~ ~ ~dt  L*(~)AL *(r k~jk ~ik L~Z k)}k~,, ~t) I g 

k=2 

CDO(ko ) { B((, z) ) L(Z) DO({o) 
r ~ ( ( , z ) =  ~ ~ \ l ( _ z [ 2 / # _ ~ o _  z I ( - z l  ~ 

III--n 
IJl=~-I 

) x H to(ik) (r (~) o(ik) L*(~)AL*(r (Ljk Lik D z B)((,zt)dt • j , 
k=l  

where zt=(+t(z--() and for every (n+l)- tuple (O(ko), O(io), ..., O(i,_l)) all terms 
but one (which is equal to 1) are equal to 0, 

*--L~ A...AL* 1, 

L)  = LJ A...AL} 

if I = (io, it, ..., in - l )  E (N*) n, 

if J =  ( j l , --- , j~ 1) E (N*) n-1. 

f01 ~; 1 t(L )DzS)((,zt)dt < 
~ Vol P(r ~)~(r ~1, ~)(d+ Iv(()-v(~)I)' 

Using (3.6), (4.3) and (3.1), we have 

L i dt 1 L 1 tdt t(L}~)Dzl3) ((, zt) < Vo1 r ( ( ,  5) I~((, eil , ~((1Zf2))~(( , Zt)" 

Furthermore, (3.2) and (4.3) imply or((, eil , r zt))>a((, eil, (~). It follows, by using 
moreover (4.9), 
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Using similar  a rgumen t s  we get 

L ~ L(z)B dt 1 ( i I ) (~ '  Zt) < Vol r(r (~)o-(r ~i l ,  (~)' 

L 1 t@(C)L(~)D B xl~ dt 1 
t Jk ik Z )t%~ Zt) < ~ Vol P(r 6)~((, e~, 6)~((, e{~, 6)(a+ b(O - ~(~)I) 

If  one also takes  into account  (3.6), (3.10), (3.11), (4.2) and  (4.5) the  es t imates  
above imply  t h a t  IV~G(r z)l is domina ted  by a sum of t e rms  which are up to 
mult iple  cons tants  

(4.14) I<-~l-O=s,j(~,~) or (d+lo(()-~(z)l)-15s, j(r  

where n--1 { 6(() .~N 1 ~ 1 

I = ( i l , - - . ,  i n - l )  and J = ( j l , - . .  ,jn-a) are mult i - indices t ha t  satisfy 

l < _ i l < . . . < i ~ _ l < n  and l<_jl<. . .<j~_l<_n.  

Remark. We have solved Ou=f for (n, . ) -forms f ,  so for bidegree reasons forms 

like L~ (~) a p p e a r  in F~ and F2 (cf. (4.13)). This  allows us to  get a nice condi t ion 
on I in (4.14). 

We need addi t ional  es t imates  on 5ci,j. Suppose  (ECo(Z). We have thus 
]Q(()-p(z)[<_/3d and 6 = 6 ( ( ) < _ c l d ( z ) = c l d  (where cl is an absolute  constant) .  So 
we ob ta in  f rom (3.2) and (3.4) 

(~)  1/2 (~)  1/2 

From (3.5), we can thus  write 

m,,~(r \ .((, .)) \~(0) T( - - - ; l ~ ,~J  
with in, jn such tha t  { i l ,  " ' ,  i~}~{ j l ,  ... , j n } = { 1 ,  ..., n}. 

T h e  definit ion of t he /3d -ex t r ema l  basis (ej)jn 1 ensures t ha t  for 0 < / 3 d < l ,  

(4.15) ~(~, e~ ,  Zd) ~ ~(~, e~, Zd), in -- 1,... ,~. 
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Let us write T(O)(z)=Tj(Z, d):=o-(z, ej,/3d), j=l ,  ... ,n. 
Let  us choose N>n. We get thus  f rom (3.8), for #CCo(z), 

(4.16) 7i,j(~, ~) 2 a(;) (~0)(~))2 (~0) (~))2 
e(r z) [ r  I Vol P(z, rid) <~ IC-zl Vol P(z, Zd) 

Let us now es t imate  

y•162 ~) de 
Z0(I, J) =Z0 := d+le(i)-o(z)L 

o(~) 

Recall  t ha t  P(z,/3d) is defined as 

r(z,~d)= ~ = z +  ~ j e j  I~ j l<e~j (~ ,d)  . 
j 1 

In  order  to in tegra te  over P(z,/3d) we can consider the  sys tem of coordinates  

(tl+ita,w2,... ,w~), where  t l = ~ ) ( ~ ) - O ( z )  and t 2 = I m w x  (with wj={~-z,  ej}, j= 
1, ..., n).  We use the  shor thand  no ta t ion  rj=rj(z, d), 

Zo~ VolP(z,/3d) " It~l+lt21<d (d+[tll)lw2l ' J I'~j I<~ ,j=2 ....... 

(4.17) Zo <dr2 VolP(z,/3d) <~d(z)-X+U'~" 
" j - - 2  

(We have used (3.5), (3.1) and the  es t imate  r~(z, d)~d). 
For the  integral  fP(~,Zd) ](--z] 1.T'I,j d( we obta in  the  same es t imate .  

In  order to prove the following 

(4.18) f [VzG(~,z)ld~Sald(z) -l+l/rn, l>1, 
dC l 

oQ with ~ t = 0  at < + ~ ,  we will use a m e t h o d  quite similar  to  the  one used in the  above 
given proof  of (4.17) and we jus t  explain wha t  we have to  change. 

Let  us consider, for l fixed in N,  a /32 td-ex t remal  basis (vjt))~_ 1 a t  z, which we 
n n {r(l)%n shor t ly  denote  by ( e j ) j =  1 o r  (Lj)j= 1 ins tead of (vy))2_l ,  and as above,  let v~j ]j=l, 

. n L for b rev i ty  (Lj) j=~,  be the  dual  basis of ( j)j 1. 
From (4.12) we deduce again  an expression for DzG analogous to (4.13), and 

it is still t rue  t ha t  in order to prove (4.18) it suffices to consider 

fC a~'I,J d;~(C) fc "T'eJd/~(~) ,(z) d ~ z ) l  and ' , ,(z> K-zl 
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where 5ci,j is defined as in (4.14). Of course we keep in mind that  our present 
_ I e \ n  / ( l ) \ n  choice of (ej)}~_l is now ~ j)j=,=ivj )j=l. 

Suppose ~Cgz(z). We have 10(~)-O(z)[</321d, a=a(r and e(r 
(eft (3.8)). From (3.2) we get 

~(r ej~, ~) > \Kad/ ~(r ej~, 92'd). 

Since ~ECt(z)CP(z, fl2td), we get using (3.5) and (3.4), 

(n 
n 

Vol e(r  2'd) ~ Vol P(z,/32Zd) ~ ~Jtx a(z, ej,/52td) . 
k 

\ j = l  

Collecting all the information above and denoting a(z, ej,/32Zd) by rJZ)(z), we 
get as soon as N>n+l, 
(4.19) 

~2"I,J(r Z) s ~s162 Z) / Ir Vol P(z,/32Zd) ' r C Cz(z), z E HC3f~, 

and 

~c "WI'' d( < r(20 (z)2 L dA(() 
Zz(/,o r) := , d+la(r  ~ Volr(z,2Zd) (~,~2'd) (d+lo(r162 

s 12(-l+l/m)ld(z)-l+l/m. 

This concludes the proof of (4.18). 

5. T h e  e s t i m a t e s  o f  T h e o r e m  1.2 

5.1. The continuity of the operator (9 given by (4.1) from Ll~,q(t2) to L~,q_l(t2 ) 
(for q > 1), where r =  ( ran+ 2) / ( ran+ 1), is easily deduced from the following propo- 
sition. 

P r o p o s i t i o n  5.1. Let r = ( m n + 2 ) / ( m n + l ) .  Then 

sup [ IK(k)(r z)l" da(z) < + ~ ,  k = 0,..., ~ -  1. 
.Jf~ 

It suffices to prove the estimate for k=0,  k = l  and k = n - 1 .  For k=0,  the 
result is standard, recalling that  the weight B(~, z)/13(C , ~) is uniformly bounded 
on f~xt2. It is easy to deal with the case k = l ,  so we will just study the integral 
involving G = K  (n-l) . 



20 Anne Cumenge 

Let C0({)=P(G f16(4)), where fl is defined in (4.12), and tbr 1>_1 let 

c,(r := {z e u ~ a  12~-~5(r _< M(z,  r < 2'5(r 

we have c~(<)cP(r ~2~5(C)), l_>0. 
Let (e~.0)}Cl be a 21fl~(ff)-extremal basis at <. If (wl, . . . ,  wn) is the new system 

of coordinates with respect to this basis, we write L~O=O/Owj, and (z). (Lj )j=l is the 

basis of T~C ~ which is the dual basis of (L~0)]_I. In order to estimate G(G z) for 
z E C~ (~) we will first proceed in the same way as in Subsection 4.2.2 (with analogous 
notation and Convention 4.4 except that the (L~Z))j~ 1 basis here is (e~0)}C1). In 

[ r (z)*(~)~n (resp./~(O*(r formula (4.12) given for G(~, z) we will use the basis ~ j  Jj=l ~ j  ~j=~ 
in order to express the tbrms dz~ (resp. d4~). Thus we get 

I G ( ~ , ~ ) l ~ f r , J  for ~C~(C),  
I ,d 

where I=(il, . . . ,  i n - l ) ,  J = ( j l ,  ... ,jn-1) are multi-indices with 1< i1< . . .< in -1  <_n 
and l<_j l< . . .< j~- l_<n,  and ( )1 
(5.1) ~'I,J = ~ (E(-~Z) (~(~) /~N I~--ztr~nlo(~,e(/)((~,t~)o'(~,e~?(~) , ( ~ ) i k  \~, 

k=l 
Using the estimates 

(5.2) ~(~, z) ~ 2z3(~), if z C Cl(~), 

(5.3) ~r(~,e~z)(~),3)>2-U2cr(~,eJz)(~),fl213) uniformly in ~, j and l, 

(5.4) ~(C, eJ 0 (s 8) __< cr(s e~ z) (C), 6) for all j ,  

we obtain as soon as N>_n, 

1 i i 1  
j#2 

where 
~-S ) (r = ~(~, ~)(~/ ,  92~(</ / .  

From (5.5) and Lemma 5.2 below, we deduce immediately the estimate 

c~(<) IG(~, ~)1 ~ d~(z) = O(2-Y'), 

where y =  [n(m-1)+2]/(rnn+ 1). The required result regarding G is thus proved. 
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L e m m a  5.2. We have uniformly in 

fc 1 ~ 1 d.~(z)=o(2nl/(mn+l))" Jl(~) 
,(o I~-~1 ~ ~S)(~) ~ 

Here, for the product in the integrand of ~ ,  we will be using a more convenient 
expression. 

It is proved in [M1] that for ~ in ftNb/, v a unit vector and 7/>0, one has 

o-(~, v, rl) ,..~ min ( rl ) 1/(p+q) ' 

where 
OP+v~ ~=o" 

We can then choose, for every (k,l) with kE{2, ... ,n} and / c N ,  integers ik,z and 
jk,l with Sk:=i<z+jk,z>_2, such that  

1 
(5.s) _(,) 

where A(kO(r (~, e~Z))l. Since ~-~')(()~2'(~, we get 

n 

�9 ~ ' ) (r  - (2,a)~+r~' 3~/s, ;=3 

We can write, tbr zEgl(r 
n 

(5.7) ~ = ~ + ~  aj~5')(~), lajl _< ~o~-~')(~). 
j = l  

We will abuse notation writing 4-z=(4l-zl , . . . ,  ~n-z~), where the coordinates 

~k--zk =Ak are now the ones associated with the basis (e(ff)(~))~=1. 
Using (5.6), (5.7) and the estimate 2za(/)~>M((, z )E [ r  for zCgz, we get 

n 

s(r z) ~ 2t5(() >d(z)+a(g)+lg,-z,l+ZAJO(r sj, 
j 3 

I] jLa AJ 0 (~)2/~, dA(z) 

"zce(c,e2'a)  - (d(z)+a(C)+lCs-ql+s162 x' 
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where H ~ n ( -~ =(r (2-~2) and x=2r+r  Ej=3 2/~j. 
Standard computations yield 

[ dA(~) 3~ 5 J1r [~11__ Z/,'[r((~(()~_[~l__ zID2r-[-(r-l) rj>32/.~j " 

Since sj >2 for all j->3, we get by using polar coordinates 

1--r g2 dgl dp2 
% 01<2t5 ((~(() ~_ k91)1+(r--1)n " 

The lemma is proved. [] 

5.2. In the proof of part (c) of Theorem 1.2, we will use the following classical 
lemma (cf. for instance [MS, Lemma 7]). 

L e m m a  5.3. Let g c C l ( f t )  be such that there exists C > 0  for which IVg(z)l<_ 
Cdist(z,  bf~) -a,  zC~, then g@BMO(~). 

Lemma 5.3, the HSlder inequality and Proposition 5.4 below yield the desired 
result. 

P r o p o s i t i o n  5.4. Let r = ( m n + 2 ) / ( m n + l ) .  Then there exists a constant 
C > 0  such that 

C 
IlVzK(k)(''Z)IIL'(~) <-- d(z--~' ze f t ,  k=O,...,n-1. 

Let us prove the estimate for G = K  (u-l). We use the notation and estimates 
given in Section 4.2.2. Since 5(()<d(z)+lo(() -g(z)[  and e~2 'd(z)  if (ECt(z), we 
deduce from (4.14), (4.16), (4.19) and (3.5) the estimate 

1 j ~  1 ( 1 + ~ )  for ( E  Cl(z). ivza((,z)l < 

The estimate on the L%norm of ]VzG(-,  z)] follows from the following lemma. 

L e m m a  5.5. We have uniformly in z 

(a) 

.~ 1 j ~ 2  d.\(() ~_O(2nl/(mn+l)), Jl(z) 
~(z) I(-~1 ~ r 

(b) 

y/(z) :=fc,(~) I(-zl ~r~(()~ ?~ d),(() H - -  =O(2l(mn-1)/rn(mn+l)d(z) (m 1)/rn(m,n+l)). 
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Par t  (a) is analogous to the result of Lemma 5.2 (mutatis  mutandis).  

In order to prove part (b) we remark first that @ (~)~2ta(~)~>5(r for r 
Next, integrating Ir -~ Hj~__3 ~-y)(z) 2~ the same way as previously 
done in the proof of Lemma 5.2, we obtain the right est imate for J [ ( z ) .  

5.3. In order to prove the remaining estimates of part  (a) of Theorem 1.2, 
we can use a suitable version of Schur's lemma (cf. for instance [FR]). Thus we 
can prove d i rec t ly- -v ia  computat ions similar to those in the proof of Lemmas 5.2 
and 5 . 5 ~ h a t  for 0 < e < l  there exists a constant C~ such tha t  

s IK(<,~)lr d~(z) C~ 
i~(z)l ~ < _ _  - i~(<)1~,  

< 

i~(r ~ -10(~) l  ~- 

The continuity of the operator O from L~,q) (ft) to L ~ (n,q-1) (~)' where 1 < p < r n n + 2 ,  
r=(mn+2) / (mn+l )  and 1 / s = l / p + l / r - l = l / p - 1 / ( r n n + 2 ) ,  follows thus from 
the HSlder inequality. 

The Lipschitz estimates in part  (b) of Theorem 1.2 can be proved by using the 
Hardy Littlewood Lemma 4.2 and by getting convenient estimates for 

s [VzKI p dA(r 

where l / p +  1/p ~=1. [] 

Addendum. In the research announcement [C1] we gave the s tatement  of The- 
orem 1.1 and a sketch of its proof (as is customary, the details of the proof were en- 
closed with the text of the note when it was submitted).  The proof of the estimates 
in Theorem 1.1 relies on estimates of the Bergman kernel given by J. McNeal [M1], 

at the exclusion of other auxiliary results from the same article. 
The estimates of the Bergman kernel given in [M1] are perfectly correct and can 

be proved by interpreting the article in an appropriate  fashion. This was covered 
in an explanatory addendum [M3], to which we refer the reader. I t  is not necessary 
to call upon the support  function recently constructed by K. Diederich and J. E. 
Forn~ess [DF] to validate McNeal 's estimates. 
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