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Sharp estimates for 9 on
convex domains of finite type

Anne Cumenge

Abstract. Let © be a bounded convex domain in C", with smooth boundary of finite
type m.

The equation du=f is solved in Q with sharp estimates: if f has bounded coefficients, the
coefficients of our solution « are in the Lipschitz space AY/™(Q). Optimal estimates are also given
when data have coefficients belonging to LP(Q2), p>1.

We solve the -equation by means of integral operators whose kernels are not based on the
choice of a “good” support function. Weighted kernels are used; in order to reflect the geometry
of b§2, we introduce a weight expressed in terms of the Bergman kernel of €.

1. Introduction and statement of results

This paper aims at illustrating the following: if one wants to solve the O-
equation with estimates via integral operators, one may choose integral kernels
whose construction is not based on the use of a suitable support function.

The main applications we give are optimal Hélder and L? estimates for the
Cauchy—Riemann equation in smoothly bounded convex domains of finite type
in C™. It was previously announced in [C1] that the sharp Hélder estimate (Hy/m)
defined below holds in such domains.

We say that (H1,m,) holds in a pseudoconvex domain Q of finite type m if the
D-equation has a solution with coefficients in the Lipschitz space A/ ™ (1) for data
with bounded coefficients. Such an estimate is sharp as was proved in [K1].

We restrict ourselves to the case of weakly pseudoconvex domains Q of finite
type in order to place our result in a historical context.

The case of smoothly bounded pseudoconvex domains of finite type in C2 is
well understood and we refer the reader to [FK] for a survey of related results.

New difficulties arise when one tries to find optimal estimates for the d-equation
or the -Neumann problem in pseundoconvex domains of finite type in the higher di-
mensional case n>2. Results obtained until now always need additional hypotheses
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on the domain.

Using methods similar to those in [FK], Feflerman, Kohn and Machedon [FKM]
proved Hélder estimates for several operators linked to the Jj-Neumann problem
for pseudoconvex domains of finite type m with a diagonalizable Levi form: for
the d-equation in such domains, solutions in the Lipschitz spaces AS—t1/m (where
s+1/m is not an integer and >0 is arbitrarily small) have been obtained for data
with coefficients in A®.

Regarding the other known results, an additional assumption of convexity has
been made. All these results are based on d-solving integral operators.

The first results in this direction were due to Range [R]; in the case of the com-
plex ellipsoids in C", Range has obtained an almost optimal Holder estimate (and
for n=2 the sharp estimate (#;,,)). Diederich, Fornzss and Wiegerinck [DFW]
treated the real ellipsoids case; they constructed a new holomorphic support func-
tion well adapted to the geometry of the boundary of such domains enabling them
to get (Hi/m)-

More recently Bruna, Charpentier and Dupain [BCD] dealt with the equation
i00u=1 on a bounded convex domain Q of finite type; so they had to solve the
d-equation in Q with precise estimates. They obtained (#; /m) under an additional
condition () of strict-type on €, i.e. the condition (*) holds if there exists a constant
¢ such that for all boundary points z, all unit vectors v in the complex-tangent space
T2(b2) and all small real ¢, one has

1
E,Q(z—}—tv) < p(z+itv) <colz+tv).

Estimates in other norms or regarding more specific domains are treated in [BC],
[S], [CKM] and [Mz].

The above results refer to specific convex domains of finite type, while being
all based on an explicit (or fairly explicit) support function choice.(!)

For estimates for the J-equation, integral formulas are most convenient when
the kernels involved are expressed in terms of tools reflecting the geometry of the
domains. These tools are for instance Leray maps, support functions and weight
factors.

The Bergman and Szegé kernels reflect the geometry of a domain. Thus, it
seems natural to construct the kernel K of a 0 resolving operator with a chosen
support function and/or a weight factor enabling to construct K in terms of the

(1) Using the support function recently constructed by K. Diederich and J. E. Fornzess [DF]
for convex domains of finite type, K. Diederich, B. Fischer and J. E. Fornzess [DFF] have recently
given a different proof of our Theorem 1.1.
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Szegé and/or the Bergman kernels of the domain under question. As soon as we
focus on a class of domains for which we can precisely estimate both these geometric
kernels and their derivatives, the integral formulas thus obtained can be very flexibly
used.

In this paper we handle the J-problem in a smoothly bounded convex domain of
finite type in C™ by means of integral formulas. We use a Koppelman—Berndtsson—
Andersson type weighted kernel choosing a weight in terms of the Bergman kernel
of the domain. By using all the precise estimates on the Bergman kernel known in
this setting—thanks to the work of McNeal [M1]—we prove the following results.

Theorem 1.1. Let Q€C™ be a conver domain of finite type m in the D’An-
gelo sense with a C°°-smooth boundary. For 1<qg<n-—1, there exists a constant C
such that for every O-closed form [ on Q of bidegree (n, q) with bounded coefficients,
the equation Ou=f has a solution w which satisfies

[ull arm ) S Cll flloo-

Here, AY/™(Q) denotes the usual norm in Ai{gﬁl(ﬁ) while || - || denotes the
sup norm in Lg°, ().

We also get results for data in other Lebesgue spaces.

The BMO space involved in the following theorem is the isotropic one defined
by means of euclidian balls.

Theorem 1.2. Under the assumptions of Theorem 1.1 for the domain Q,
the equation Ou=f, for f a O-closed (n,q)-form with coefficients in LP(2), has a
solution u with coefficients belonging to

(a) L*(Q)), where 1/3=1/p—1/(mn+2), if 1<p<mn+2;

(b) A¥(QY), where a=1/m—(n+2/m)/p, if p>mn+2;

(c) BMO(Q), if p=mn—+2.

Remark. In Theorems 1.1 and 1.2, we consider forms of bidegree (n,-); this
makes it easier to get estimates for our solution.

Corollary 1.3. Under the assumptions of Theorem 1.1, the canonical solution
of the equation Ou=f, where f is a O-closed (0,1)-form on Q with coefficients in
L*(Q), belongs to

(a) L5(Q2), where 1/s=1/p—1/{mn+2), if 1<p<mn+2;

(b} A%(Q), where a=1/m—(n+2/m)/p, if mn+2<p<+o00.

Proof. 1If u is the solution of the equation Ju=f given by Theorem 1.1 the

canonical solution of this equation is u—Pu, where P is the Bergman projection
operator of 2. The corollary follows thus immediately from Theorem 1.2 and some
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continuity results on P proved by McNeal and Stein in [M2] and [MS], more precisely
the continuity of the operator P from L*(Q) to L*(£2) when 1<s<+oo, and from
A%(Q) to A*(Q) when a>0. U

The plan of the paper is as follows.

In Section 2 we define a weighted kernel with a suitable weight reflecting the
boundary geometry and prove an integral representation formula for forms with co-
efficients of class C* up to the boundary. We obtain an integral operator solving the
0-equation. The differentiability assumption on the forms is, of course, superfluous
as explained at the beginning of Section 4. In Section 3 we define the notation we
shall use for the estimates and recall the needed results of McNeal on the Bergman
kernel. Section 4 is devoted to the proof of Theorem 1.1; the main estimates for
our kernel are given there. In the last section, we sketch the proof of Theorem 1.2;
most of the computations are similar to those in Section 4 and we just present what
has to be changed.

I take the opportunity to mention here that I gave a talk about the main ingre-
dients of the proof of Theorem 1.1 in Warsaw in July 97 (International Conference:
Complex Analysis and Applications).

The contents of the present paper (with minor changes) were distributed in the
preprint [C2].

In another paper [C3] we prove weighted LP estimates and boundary L! es-
timates for the solution of the O-equation in bounded convex domains of finite
type in C™ and give applications to the zero sets of functions in some classes of
Nevanlinna-type.

2. A representation formula for forms

Let €2 be a bounded convex domain in C" with a C°°-smooth boundary. Sup-
pose every pebfl is a point of finite type <m, in the sense of D’Angelo.

Following [BCD] we may assume that 0€Q and will choose as defining function
for € the function p=g—1, where g is the gauge function of ; p is of class C°° on

By B((,z) we will denote the Bergman kernel for the domain Q; B((,z) is
holomorphic in z, antiholomorphic in ¢; under the assumptions made on Q, B(-,-)
is of class C° on QxQ\Ayn, where Apg denotes the diagonal of b x b2 ([M1]).

Let

(2.1) é:é«:z):lg(%o / (02B)(C,C+(z—C)) dt,
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where
oB
(02B)(¢, C+t(2—¢)) = @(C,C+t(z—€))d2j
j=1
and 90/0Z; denotes a derivative with respect to the second variable.
Let Ng>2n be a positive integer. We define for (¢,2)€QxQ\A, where A
denotes the diagonal of C” x C",

( (© z))“"“<az|<—z|2>A(ag@m(dazlc—wH

M i

B(¢¢) |{ — 2|2k
(2.2)

)-—AO

I

c(k,n) KM, ),

k
where c(k,n)=—(—1)n=1)/2 (]\110) '

Proposition 2.1. If f is an (n, g)-form with coefficients in C1(Q), ¢>1, then
Jor ze,

$&1=Cta) (0. [ FOAK(C 21 [ ar0nK(ca)

i
=

Remark. The above proposition is nothing else than an integral formula with
weight factors of the Berndtsson—Andersson type and we refer to [BA] for details
about such homotopy formulas with weighted kernels.

Proof of the proposition. We are going to introduce a Koppelman—Berndtsson-
Andersson kernel K.

Let
3 = d
(23) Qi(¢.2) {O/ (G CHt(e—0))
Convexity of @ implies that we can write, for all ((,2)eQxQ,
B(¢, )
(24) (@ 2=C): ZQ] CA=6) =gy b
Let
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For the kernel K, the ingredients are as follows:

(1) The maps Q;, j=1,...,n, defined above, which are of class C'™° on aOxQ.

(2) A holomorphic function of one variable in a simply connected domain that
contains the image of 2xQ under the map (¢, 2)~>1+(Q,2—¢) and such that
H(1)=1; we choose H(a)=a™".

(3) A suitable section of the Cauchy-Leray bundle over Qx Q\ A; the Bochner—
Martinelli one is convenient here.

Let for (¢,2)€QxQ\A

- sA(dQ)F A (ds)n—1—F
; (k) H O (144Q, 2= O) == e

where
, -1 n(n—1)/2
c (k, n) = ( ) ! )
- _1\n(n—1)/2 _
p(¢,z)= T g4, - )@@y

n!

Define for 0<e<go< 1, Q.={2€Q|0(z)<—¢}. Recall (cf. [BA]) that
de . K = [A]+P,

where [A] denotes the current of integration over A. Applying the main result
of [BA], we thus get a formula of Koppelman-Berndtsson-Andersson in Q.: if

fGC}W(Q), g>1 and 0<e<egg, then for z€Q,,
(2.5)

f(2)=C(n,q) ( / HONRG -1y /QaafAK—az / s /ngﬁ)

Notation: for a kernel L(¢, z), we will as usual denote by L, ,({, z) the compo-
nent of L which is of bidegree (p,q) in z.
The maps ; are holomorphic in z, thus the components Pp,qzo for g>1; so
the last integral in the right-hand side of (2.5) is zero.
Recall that the Bergman kernel is C*-smooth on QxQ\ Ayq, so for any do-
main '€} and any differential operator D¢ ,, there exist constants co=C(I"),
¢ =C(T, D%) such that

IB(C,2)| <o, [DE.B(C,2)| Sca for (C,2) €QxT.

We also have, B(¢,()>0 for (€9, so inf_,y>c, B(¢, () >c1>0.
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Besides, (cf. [M1]) if 0<—p(¢) <&y with £ chosen small enough,

< Cle)(—0(O)*HE /™ < Oer)(—e())*

B(¢,¢)

We also use the estimate [3Q|<(—p(¢))~? for —o(¢)< e, which is proved later in
Section 4—cf. (4.11). We thus obtain for 0<e<min(e,g9),

sup |K(¢,2)|<Ce
zcl
e,

and therefore the integral over the boundary b9, in (2.5) tends to 0, as e —0.
Obviously, we can use a standard limiting argument regarding the second in-
tegral and the third one in the right-hand side of (2.5).
This completes the proof of the proposition if we remark that K (n, ), Z)A
F(Q)=Kn, (¢, 2)Af(C), for every form f of bidegree (n,-). O

3. Notation. Review of some estimates for the Bergman kernel

For the reader’s convenience, in this paragraph we recall some estimates on the
Bergman kernel obtained by McNeal in [M1] for a domain €2, when € is a smoothly
bounded convex domain of finite type in C”. Incidentally, some notation will also
be made precise.

In the sequel, we will use the standard notation A<B, for A and B functions
of several variables, to denote that A<CB for a constant C independent of certain
parameters which will be clear in the context. Of course A= B will mean A<SB and
B<A.

To begin with, there are some related geometric objects and quantities.

For >0 and veC™, |v|=1, McNeal has introduced the quantity o(z,v,n)
(where z€€, z close to bQ2), which measures the radius of the largest complex disc,
centered at z, in the direction v, which lies entirely in the domain {p<p(2)+n}.
More precisely

o(z,u,n)=sup{r>0|e(z+Iv)—o(z)<n, |A<r}

We will need some properties of o(z,v,n), n>0, vEC™, |Jv|=1, 2€Q, where bS) is
supposed to be of finite type <m,

(3.1) a(z,v,n)=0n"™) and o(z,v,71)>n uniformly in z and v.
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For 7y <2, we have uniformly in z and v

1/2 1/m
(3.2) (37—) o(2rv,m) So(zvm) < (”—) oz, v,m2).
2 2

We recall now the notion of 7-extremal basis of McNeal as done in [BCDJ; we
will follow the presentation given in [BCD].

Let 2€Q close to b and >0 be fixed. We proceed to choose a certain or-
thonormal basis (v;)7_; of the tangent space T,(C™). The first vector v is the unit
vector of the direction of the gradient vector at z; chosen wy,...,v;_1, we choose
v; to be a unit vector realizing the maximum of o(z,v,7) among the unit vectors
orthogonal in C™ to vy, ...,v;—1. Of course the obtained basis (v;)5_y of T, depends
on both z and 7.

The polydisc P(z,7) of McNeal centered at z, with radius 7 is defined as

P(z,m)= {w= Z+ Y wiv;

=1

;| Saf(z,vj,n)},

where the constant c=c(n) is chosen such that we P(z, n)=|o(w)—o(z)|<n.

The construction of McNeal’s polydiscs makes 2 a space of homogeneous type.
Recall some properties of these polydiscs (cf. [M1], [BCD] for details).

We have for suitable uniform constants 4 and +', z+ ve€P(z,7) whenever
|A|<yo(z,v,n), and [A|<+'o(z,v,n) as soon as z+Ave P(z, 7).

For each constant C'>0, there exists b=b(C') such that

P(z,Cn) CbP(z,n),
(3.3) CP(z,n) C P(z,bn),
Vol P(z,Cn) ~ Vol P(z,n).
There exists a constant C; independent of {,z€UNS and >0 (where U is

defined below—cf. (3.6)) such that if P{z,n)NP{{,7n)#0, then P(z,n)CCLP((,n).
We have, with uniform constants,

(3.4) Vol P(¢,n) ~ Vol P(z,1), if P(z,9)NP(C, 1) 2 0.

If (v;)7-1 is an 7-extremal basis of McNeal at ~ then

(3.5) Vol P(z,n) = H o(z,v;,m)°.
i=1
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We are going to recall the estimates of the Bergman kernel proved in [M1] using
the reformulation given by McNeal and Stein in [MS].

For zebQd, n>0, T(z,n):=P(z,n)N8Q is called the tent at z of radius 7.

Let 5™ be the unit sphere in C™. For veS™ and ¢eC™>(Q), let D,y denote
the directional derivative of ¢ in the direction v.

For k=(ki,...,kg) EN? and A=(\1,..., Ag), where X\;€S8", j=1,...,q, we will
be using standard multi-index notation, i.e. D/’“\ denotes the differential operator
Dy D];\Z and o (z, A, n)F=0(2, \1,n)* ...0(2, Ag, n)*e for z€Q.

The following important result of McNeal ([M1], [MS]) is crucial for all that
follows regarding the estimates we want to get.

For every pebf}, there exists a neighborhood U(p) such that for ¢, 2edNQ, k
and s multi-indices, A and A’ multi-unit vectors,

(¢, A ey Ra (¢, N )8
Vol TQZ ’

(3.6) |Di D3 B(¢, 2)| < C(k, s)

where Vol T , is the volume of the smallest tent containing both ¢ and z, e=¢((, 2)

the radius of this tent (smallest means of smallest volume).
One has

(3.7) if e=¢(C, z), then o((, A\, &) ~a(z, A e) for Ae S,

(3.8) e=2(¢, 2) & |o(O)+|o(2) [+ M(C, 2),

where M((, z) is the guasi-distance of McNeal; up to uniform constant multiples
(3.9) M(z, )M, z)=inf{n|(e P(z,n)} for|(—z|<k1, ¢ close to b

McNeal has also estimated the Bergman kernel function from below on the diagonal.
For every peb(l, there exists a neighborhood U'(p) of p such that

1 /
(3.10) B(C,¢)2 Vol P(C,0)’ CeU’(p)NLY,
where §=6(¢)=21|0(¢)|. Without loss of generality, we may assume that U’ (p)=U(p)
for peb). We suppose this is the case in all that follows.

At last let us give an upper bound on the function |[B((,2)|/B(¢,¢). The
estimate given below does not appear in [M1] but is implicit in McNeal’s paper; it
is very easy to get.

The size of P(¢,e(¢,2)) (resp. P((,8(¢)) in the normal direction is, up to
uniform constant multiples, (¢, 2) (resp. §(¢)). We have P((,8(¢))CCP(¢,e(¢, 2))
uniformly in ¢ and z, and

Area[P(C,6(¢))N{e=o(C)}] S Area[P((,£(¢, 2))N{e=o({)}].
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Let pebQ), U=U(p). We obtain by using (3.6) and (3.10),

IB(¢,2)| _ VOLP((,8) Vol P(¢,8)
B((,¢) ~ VolT..,  VolP(¢,e(¢,2))

5(¢)
’SE((,Z)’ C,zelUNQ.

Remark. We could have obtained the better bound (6(¢)/e(¢, 2))2. This latter
bound is not useful in order to estimate our kernel K defined in (2.2) because we
can choose Ny as big as we want.

(3.11)

4. Proof of Theorem 1.1

A classical approximation argument reduces the proof of Theorems 1.1 and 1.2
to the case of forms which have coefficients in C1(€2). There is no difficulty here
in getting constants independent of 5 in all the estimates, if one approximates for
instance a form in L}, ,(€2) by forms smooth in exhausting subdomains €2, (1 near 1)
which are homothetic to 2. Define, for f an (n, - )-form

(4.1) Of(z) = / FOAK(,2).

The form ©f is a solution of the equation Ju=f for f a d-closed form in C} ,(£2)
(cf. Proposition 2.1). The aim of this paragraph is to prove the continuity of ©
from L () to AY™ ().

n,q—1

4.1. Estimate of [, FIOAKO(¢, 2)

Proposition 4.1. For 0<a<1, there erists a constant C=C(c, ) such that
for every feC}L’q(Q),

Let [BM](¢,z) denote the kernel obtained by adding all the components of
bidegree (n,-) in z of the Bochner—Martinelli kernel. From (2.2) we can write

< flloe-
A2 ()

/ FOAKO(C, 2)
Q

No—1 J
K© =[BM]+ Z E;, where E;(¢,z)= (ggg:g —1) (gég:g) [BM](C, 2).

=0

It is well known that the result given by Proposition 4.1 is true if we use the
Bochner-Martinelli kernel instead of K9 (¢, 2).
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Let
(DG = [ FOABG2), 2€R =0, No=1L.

In order to prove that EY, 1<j<Np—1, is a bounded linear operator from
L3, () to Ag , 1(Q), 0<a<1, we will use the following very classical lemma of
Hardy-Littlewood.

Lemma 4.2. If geC{(Q)NL>(Q) and if for 0<a<1 and for some real con-
stant C, |Vg(z)|<C dist(z,bQ) 71>, 2€Q, then geA*(Q) and ||g|la=(0)SC.

In all that follows we will assume that z€l, { GWZ%M , where U is one of the
neighborhoods ¢(p) defined in Section 3. The smoothness of the Bergman kernel off
the boundary diagonal and the known properties of the Bochner—-Martinelli kernel
both insure that the right estimates hold in all the other cases.

Let D, be any derivative with respect to the variable z. We have from (3.1),
(3.6), (3.10) and (3.11),

DB 2)] - 6()
B, Vel 2P

We also have from (2.3), (2.4), (3.1), (3.6) and (3.8) the following estimates

B(¢,2) =B Ol 1¢—2 [T dt
(43) l BCO) |5B<<,<)/o o) Vol T,

(4.2) 2 €UNQ, CEWNQL.

e(¢, z) = [o(O)|+le(z0) [+ M(C, 2¢) 2 6(9),

plnf Vol Tz, 2 Vol T ~ Vol P(C, 5(¢)),

(4.4)

where z;=(+t(z—¢) and T} is a smallest tent (i.e. of smallest volume) containing ¢.
Collecting the estimates above, using (3.11) and observing that

(4.5) &(¢,2) Z [e(Ol+le()] 2 le(2)+e(C)—e(2)l, ¢ zeQnl,
we can write for j=1,..., Ng—1, zeldNQ and (eWNQ,

2|
¢ ==

N e(C, 2)2|C— 21
1
(le()+1e(¢)—e(2) I — 21

IVE;(¢,2) +'B(<,z) _1’ ‘B(C,z)

B(¢, <) B(¢, Q)

IVE;(C 2l S
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Let O0<a<l. If z is moving in U, we have, by integrating first with respect
to t1=0(()—0{z), and then using polar coordinates to integrate in the remaining
variables,

/ dA(Q)
"= Jiwma l0()—o(2)|etb|¢—z2n—1-0

Il a’

/W VLB >N' ;

[Q(

where 0<b<1-a. Clearly |ES flloo S| flloo, 1< <Np—1.
The operator Ej requires a separate analysis.

1
)
1
)

Claim. Let a€]0,1], then
|EG f(2) = Eg f (W)l S lloolz—w|®  uniformly in z,w e Q, fe Ly, ().

For z close to b2, let 7(z) denote the point on 82 where the integral curve of
grad ¢ through 2 meets bQ2; we define for { and z close together

2 =z—|z—wlvpy and W =w—|z—wlve,
where v,y (resp. Vr(w)) is the unit outward normal vector at 7(z) (resp. m(w))
to bQ). We estimate the expressions |E}f(z)—E}f(2')| and |Egf(2/)—E§ f(w')

separately. The process involved is classical (cf. [K2] for instance), it suffices to
adapt it to our context and we omit the details.

4.2. Estimates involving the type m

Proposition 4.3. There exists a constant C such that, for every feLy (Q),

H JRIGIES

<Cflloss k=1,...,n—1.
AY/m(5)

It will be clear from the computations done in the proof of the proposition that
we have || [, f/\K(k)HLOO(Q)SC’HfHOO. Applying the lemma of Hardy-Littlewood
we deduce thus the above proposition from the following estimates for k=1, ... ,n—1,

(4.6) J 19RO 130 ol

Of course, we ouly need to prove (4.6) for k=1 and k=n—1.
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4.2.1. Here, we consider K1) (¢, z). We have from (2.2),

W ey (BT 0l —2)(9Q) (0. ¢~ 2
K (Ca ) (B(C»§)> |C_Z‘2n_2

Let D, be any derivative with respect to the variable z. Let us first estimate
D.(0Q),
AR+ O:R
B¢, BG O

D.R= ZU (Do) ]

0Q=0.Q=—4

(4.7)

where R:fol(azB)(g,zt) dt, zz=C+1t(z—¢) and Dz means the derivative D acting
on the second variable.
From (3.6), (3.1) and (4.3), we get for zeU4NQ and (EWNQ,

1 Yotdt
ID-RIS 3(C) Vol P(C, 3) /0 (¢, 21)’

1 Votdt
|DzacR|~5(g)2V LP(C,8) Jo e(Cz)

(4.8)

Because of the convexity of ¢ we have for ¢, zel/NQY,

(Cs 2) 2 —0(Q) —olz) > t(lo(2)|+]o(O) —e(2) ) +e(O),

and thus

botdt 1
4.9) / e<<,zt>‘O<|g<z)l+lg<c)—g<z>|>’ GxeUntt

Using moreover (3.10) and (3.6) we thus obtain

1
(©2(e(z)|+le(¢)—e(2)])

1D.6Q15 -

We get in an obvious way

(4.10) "9@':()(%5)'
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Collecting all the estimates above, using (3.11), (4.2) and (4.5), we can write for
zeUNQ,

/ V. KW(C, 2)| de S I (2)+ To(2),
wnQ

where
KO- [, T
12(z) ‘/Wm (o H1e(0)—e2)Ne(C, 2P -2

We will estimate Iz(z). The finite type hypothesis implies
M(C,2) 2 [¢—2™

In order to integrate over WNEQ we choose an orthonormal basis (ej);.’zl of T,(C")
such that e;=Vo(2)/||Vo(2)]. We will abuse the notation by continuing to call
(C1, .., Cn) and (21, ..., 2,) the coordinates of ¢ and z with respect to the system of
coordinates corresponding to the basis (e;)7_;. Writing (—2=((1—21,( —2'), we
have for ¢, zeldNQ,

e(¢; 2) 2 1e(Ol+1e(z) [+ M(¢, 2) Z le(2)[+]e(C) —e(2) |+ =21 |+ |¢ — =™
2 le(z)1+1e(¢) = e(2) |+ Im (¢ — 21) [+¢" = 2|

The change of variables t1=0(¢)— 0(2), toa=Im({; —21), =" —2" gives

BE)S fus A da o
~ [it 1 om—3°
13 QeI (oG + D P
[t']<1

where 0<y<1—1/m and
Iy(2)=O(le(=)| 71 /™).

Similar and easy computations lead to the same estimate for I1(z).

4.,2.2. In this paragraph we estimate the main term. Among the terms K (k)
(cf. (2.2)), it is the term K1 which has the most interplay with the geometry
of the domain. In order to estimate K ("1} one has to use all of the geometric
information contained in the Bergman kernel (cf. Section 3).
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To simplify notation, let G=K~1. It has already been observed at the
beginning of Section 4.1 that we just have to prove the analogue of (4.6) for

/ V.G, 2)|d¢, zelUnsh.
wno

There exists a constant >1 such that
(4.11) M((,z)<n = (€P(z,Pn), z€QNU, 0<n<]l.
Define

Co=Co(z):=P(z,8d(2))NWNAQ,
C(z):={CeQnW |27 d(z) S M((,2) <24 d(z)} for 1> 1,

where d(z)=dist(z, b82).

Notation. From now on we will often use the shorthand notation d=d(z) and
5=5(0).

Let D, be any derivative with respect to z.

In order to clarify our computations we proceed to first give an expression for
D,G(¢, z) when (€Cy(z) and to prove fCO(z) \V.Gld¢<o(z)] ™.

By DzB we will mean that the derivative is with respect to the second variable
of B(-,-). For instance (cf. (2.1))

1 1
D. /0 (O4B)(C, ) dt = /0 HOy D7 B)(C, 2) dt,

where z,=C+t(2—(). Let (ej)?:l be a fBd-extremal basis at z, we will also write
Lj=e;. Let us denote by (L}, ...,L¥) the basis of T7(C™) which is the dual basis
of (Ly,..., Ly). By L") we will mean that the derivation I acts on the variable w.
If L;(z):L;f:Zzzl o (2) dzg, L;(O of course means Y, o (2) d¢y.

In writing D,G((, z) we express all the differential forms with respect to another
basis. The derivatives 0, and 9z will be expressed in terms of L’{(z), ,Lz(z), and
54 in terms of E;(C), s EZ(<).

Convention 4.4. In any ambiguous case, L(*)Y(-,-) means a derivative with
respect to the second variable of Y(-,-); Y will be essentially B or some derivative
of B. '
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We have
B(m))” (0:Q)"8:[¢ 2P
. G =
) 9= (5cg) S
where N=Ng—n-+1. We can write, using (4.7) and (4.8},
B N-1
(4.13) DzG:B—(%)Vm(Fl(QZH—FQ(C,Z)),
with
o Ca z io M
M9 = g HIZ ontes (2 e () ETBIG 0
=

1 .
XA tG(n)(Lgf)Dg(ll)B)(C’ Zt) dt
5 H (/ (L L DL ) ¢, zt)dt>L’;(z)/\L ©,

R R Il Gy e

T=n
|J|=n 1

% H (/ tO i%) L(C)L Z)D ix) )(C Zt) dt) *(Z)A‘E;(C)’
where z;=(+#(z—¢) and for every (n+1)-tuple (8(ko),0(i0),...,0(in—1)) all terms
but one (which is equal to 1) are equal to 0,

L}i :Lro/\.“/\L:n_l, lf I= (7;0,2']_7 >i71—1) € (N*)n,
Ly=L5 AAL: |, i JT=(j1,. dn-1) €N L

Using (3.6), (4.3) and (3.1), we have

(z) 5 1 ! tdt
’/ L DZ )(C’Zt) dt‘ ~ Vo IP(C 5) / (C,ei1,€(g,2t))5(<.,zt).

Furthermore, (3.2) and (4.3) imply o({, e;,, (¢, 2¢)) Z0((, e;,, 6). It follows, by using
moreover (4.9),

1
~ Vol P(¢,6)0 (¢, eiy, 0)(d+]o(¢) —a(2)])

‘/ H(LE D2 B)( C,zt)dt'
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Using similar arguments we get

1
(=)
‘/0 (Ls; B)(C’Zt)dt‘g Vol P(¢,8)0(, :,,6)

1
S Vol PG, 810G (G om0 — 2@

If one also takes into account (3.6), (3.10), (3.11), (4.2) and {4.5) the estimates
above imply that |V.G({,z)| is dominated by a sum of terms which are up to
multiple constants

1
[ QL Do
0

(4.14) IC—27"Fra(¢,z) or  (d+|e(¢)—o(2))) " Fr1,5(¢, 2),

where

O\ 1 1
Fra= H )
5(47 Z) ¢ -z k=1 U(C7 eik75)0(<’ ejk75)
I=(i1,...,3n—1) and J=(j1,..., jn—1) are multi-indices that satisfy
1<ii <. <in1<n and 1< <..<jp-1<n.

Remark. We have solved du= f for (n, - )-forms f, so for bidegree reasons forms
like LF(Z) appear in I'; and T’y (cf. (4.13)). This allows us to get a nice condition
on I in (4.14).

We need additional estimates on Fr ;. Suppose (€Co(z). We have thus
lo(¢)—o(2)|<Bd and §=46(¢)<c1d(z)=c;d (where ¢; is an absolute constant). So
we obtain from (3.2) and (3.4)

5 1/2 5 1/2
U(Ca ejk’é)z (8) O'(C7ejk7ﬂd)’~\’ (8) U('Z:e§k7ﬂd>'

From (3.5), we can thus write

5(¢) )N (d(z))"_l o(z,e;,, Bd)o(z, €;,, Bd)
£(¢, 2) 5(¢) |¢ —z| Vol P(z, A3d)

with i, j, such that {i1,...,in}={51, .-, dn}t={1,...,n}.
The definition of the Jd-extremal basis (e;)7_; ensures that for 0<gd<1,

Fii(6, )< (

(4.15) o(z,e;,,0d) <o(ze3,08d), in=1,..,n



18 Anne Cumenge
Let us write T;O)(Z):Tj(z, d):=o(z,e;,8d), =1, ..., n.
Let us choose N>n. We get thus from (3.8), for {€Cy(2),

IO NG ©) PR G 1 €)%
~¢e(¢, 2) [C—2| Vol P(z,8d) ~ |¢—z| Vol P(z, Bd)”

(416) .7:]’(]((,2)

Let us now estimate

FI,J(CJZ) dC

(1, J)ZIOZZ/CU(Z)W'

Recall that P(z, 8d) is defined as

lw,| < ery(z, d)}

P(z,8d)= {w = Z+Z w;e;

=1

In order to integrate over P(z,3d) we can consider the system of coordinates
(t1+1ty, we, ... ,wy), where t;=p(¢)—o(z) and ta=Imw; (with w;=((—2,¢;), j=
1,...,n). We use the shorthand notation 7;=7;(z, d),

2 / dty dto dM(ws) ... dA(wy,)
(Z, ﬁd) |w

To< 2
0 Vol P el Hital<d (d+]t1])|wa| ’

i 1<75,0=2,...,n

& 1
4.1 Io<d 2y___ - < —141/m
Wi e (E TJ)VOIP(z,ﬁd) ~dz)

(We have used (3.5), (3.1) and the estimate 71 (z, d)~d).
For the integral fp(z ) |¢ —2| 7' Fr 7 dC we obtain the same estimate.

In order to prove the following
(118) [ 96 aldcsmazom, ix1,
C

with 3772 a1 <+o00, we will use a method quite similar to the one used in the above
given proof of (4.17) and we just explain what we have to change.

Let us consider, for [ fixed in N, a $2!d-extremal basis (”u](l))?:1 at z, which we
shortly denote by (e;)7_, or (L;)}-, instead of (v](.l))?:l, and as above, let (Lgl)*)?:l,
for brevity (L})7_,, be the dual basis of (L;)?_,.

From (4.12) we deduce again an expression for DG analogous to (4.13), and

it is still true that in order to prove (4.18) it suffices to consider

Fr,1dA(C) Fr,7dA(C)
S LA S LA d P LSS ST
/Cl(z) d+|e(¢)—o(2)] . /Cz(z) (=2 7
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where Fr ; is defined as in (4.14). Of course we keep in mind that our present

choice of (e;)7_; is now (ej)?:lz(v(-l))?:l.

Suppose (€Ci{z). We have |o(¢)—o(2)|<B82!d, §=6(¢)<2!d and (¢, 2)~2!d,
(cf. (3.8)). From (3.2) we get

5\ 12 l
U(§>€jk75)5 (%) J(C’ejk’/@2 d)
Since (€C(2)C P(z, B2!%), we get using (3.5) and (3.4),

Vol P(¢,2'd) ~ Vol P(z, 32'd) ~ (H o(z,e, ﬂ2ld))

Jj=1

2

Collecting all the information above and denoting o(z, e;, 32!d) by T;l)(z), we
get as soon as N>n+1,

(4.19)

5(¢) ()’
F1,4((,2) S (g(ﬁ,z)) |C—z|\/2()1P(z,[32’d)’ CeC(z), zeUNQ,

and

()
T(1.0) = /C Frodd o 7 (2)° dA(¢)

A0 6 VAPTE) oy ol
< l2(‘1+1/m)ld(z)—l+1/m.

This concludes the proof of (4.18).

5. The estimates of Theorem 1.2

5.1. The continuity of the operator © given by (4.1) from L}, .(Q) to L7, , ()
(for ¢>1), where r=(mn+2)/(mn+1), is easily deduced from the following propo-
sition.

Proposition 5.1. Let r=(mn+2)/(mn+1). Then
sup/|K(k)((,z)|Td)\(z)<+oo, k=0,...,n—1
CEQJQ

It suffices to prove the estimate for k=0, k=1 and k=n—1. For k=0, the
result is standard, recalling that the weight B((, 2)/B({,¢) is uniformly bounded

on OxQ. It is easy to deal with the case k=1, so we will just study the integral
involving G=K"~1,
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Let Co(¢)=P(¢,36(¢)), where 3 is defined in (4.12), and for [>1 let
Ci(¢):={zcUnQ|2715(¢) < M(2,¢) < 255(¢)}.

We have C;(¢)CP(¢, 82'5(¢)), 1>0.

Let (eg.l))?:l be a 2!35(¢)-extremal basis at ¢. If (w1, ..., w,) is the new system
of coordinates with respect to this basis, we write L(-l) =3/0w;, and (L(l)*) ', is the
basis of TF C™ which is the dual basis of (L( ) )7—1- In order to estimate G((, z) for
zeCi{¢) we will first proceed in the same way as in Subsection 4.2.2 (with analogous
notation and Convention 4.4 except that the (L§l>) 7_1 basis here is (e (l)) 1) In
formula (4.12) given for G{¢, z) we will use the basis (Lg-l) (= ))?:1 (resp. (L § *(©) any
in order to express the forms dz; (resp. d{;). Thus we get

|G(C72)|§ZTI,J fOI‘ZECl(C),

1,70

where I=(i1,...,in—1), J=(J1,...,Jn—1) are multi-indices with 1<i; <...<i,_1<n
and 1<j;1<...<jp—1<n, and

N
(5.1) f:(fé%) (\«; leo«, D), 8)0(6,¢2(0), 6))

Using the estimates

(5.2) e(¢, 2) = 2'6(¢), if z€Cy(¢),
(5.3) (¢ eP(0),6) 22720 (¢, eP(¢), 52'6) uniformly in ¢, j and [,
(54)  a(6,e(¢),8) <o(¢,e(¢), 0) for all j,
we obtain as soon as N >n,
(5.5) <<,z>N2ZIC ZIH w c>’ z€G(Q),
¢2
where

700 = (¢, e (0), B25(0)).

From (5.5) and Lemma 5.2 below, we deduce immediately the estimate

|16 ae o),
1(9)

where y=[n(m—1)+2]/(mn+1). The required result regarding G is thus proved.
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Lemma 5.2. We have uniformly in ¢

1 1
= d\(z) = 02"/ (mnt1)y
ORI = L e =X )

Here, for the product in the integrand of 7;, we will be using a more convenient
expression.
It is proved in [M1] that for ¢ in QN, v a unit vector and 1>0, one has

1/(p+q)
U(C,Uan)%1<;&1;1<m<m> 7

where
B ap-&-qg(c_,_/\v)

&V ="

We can then choose, for every (k,l) with k€{2,...,n} and l€N, integers 4 and
Ikl with Spi=1lk1+Jk,1=>2, such that

1 A(l)(C) 2/5k
5.6 ~ |~k ) ,
Y ()2 ("5

where A (¢):=|as, , .. (¢, e)]. Since 77 (¢)~216, we get

A=0

n

1 1 I3 )
s s 11 45707
W * aapres LA
We can write, for z€C;({) CP(¢, 52'6),
(5.7) 2=CHY_ nel () Nl <eor(0):
j=1
We will abuse notation writing ¢(—2z=(¢1—z1,...,(n—2n), Where the coordinates

(r— 2z =Xk are now the ones associated with the basis (eg} Q) ay
Using (5.6), (5.7) and the estimate 2!6(¢) > M(¢, 2) 2|¢1— 21| for 2€C;, we get

£(C,2) ~ 2'6(Q) 2 d(2)+(Q)+IC — 21+ AVOIG— 21",

j=3

T10_, AV (C)%/53 dA(2)
TS | e =37 -
l /ze‘%«;,'éé% 17— (d(2) +0(0) I — 21+ 5y AV (Q)IG — 2517
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where (" —2"=(C1—21,(2—22) and z=2r+r 377 _,2/s;.
Standard computations yield
dX(z)
=GO IG—za T B 2

VS ﬁ(lleigﬂé
[Ga—z2| <7

Since s;>2 for all 72>3, we get by using polar coordinates

1—r
05" " do1 des
5[ e .
92<9211§3L§61/m (0(¢)+o1)Hlr=1m

The lemma is proved. I

5.2. In the proof of part (¢) of Theorem 1.2, we will use the following classical
lemma (cf. for instance [MS, Lemma 7]).

Lemma 5.3. Let geC(S2) be such that there exists C>0 for which [Vg(z)|<
C dist(z, b2) 71, z€Q, then geBMO(Q).
Lemma 5.3, the Holder inequality and Proposition 5.4 below yield the desired

result.

Proposition 5.4. Let r=(mn+2)/(mn+1). Then there erists a constant
C>0 such that

C
KB ) < Q, k=0,...,n—1.
”v ( 7Z)”L (Q)~d(z>7 z el ) T
Let us prove the estimate for G=K =1 We use the notation and estimates
given in Section 4.2.2. Since §(¢)Sd(2)+|0(¢)—o(z)| and e=~2ld(z) if (€Ci(2), we
deduce from (4.14), (4.16), (4.19) and (3.5) the estimate

. 1 1 5(¢) . N
IV.G(C, )|52ld(2)jgﬂ}”(z)2|g—z| <1+|c—z|> for ¢ €Cy(2).

The estimate on the L"-norm of |V,G(-, z)| follows from the following lemma.
Lemma 5.5. We have uniformly in z
(a)

R 1 d)‘(g) _ nl/(mn+1)
= =0 ,
«.7[(2) /Cl(z) |<—ZIT ]1;[2 TJ(Z)(Z)QT (2 )
(b)

’ 5(Q)" dA(¢) L(mn—1 - ,
VAT ::/ =0(2 (mn )/m(mn+1)d (m—1)/m(mn+1) )
1 ( ) i) |C—Z|2T ]1;12 T;l)(z)” ( (Z) )
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Part (a) is analogous to the result of Lemma 5.2 (mutatis mutandis).

In order to prove part (b) we remark first that 7'( )( yas2ld(2) 26(¢) for C€Ci(2).
Next, integrating |¢—z|~2rr{"(z)~ "= J(l)( )~2" the same way as previously
done in the proof of Lemma 5.2, we obtain the right estimate for .7/(z).

5.3. In order to prove the remaining estimates of part (a) of Theorem 1.2,
we can use a suitable version of Schur’s lemma (cf. for instance [FR]). Thus we
can prove directly—via computations similar to those in the proof of Lemmas 5.2
and 5.5—that for 0<e<1 there exists a constant C. such that

KA dNz) _ C.
o le@lF Tl
[ gD C
le(z)le
The continuity of the operator © from L?n’q) (€) to L, ,—1y(€), where 1<p<mn+2,
r=(mn+2)/(mn+1) and 1/s=1/p+1/r—1=1/p—1/(mn+2), follows thus from
the Holder inequality.

The Lipschitz estimates in part (b) of Theorem 1.2 can be proved by using the
Hardy-Littlewood Lemma 4.2 and by getting convenient estimates for

/ VLK dA(Q),
0

where 1/p+1/p'=1. O

Addendum. In the research announcement [C1] we gave the statement of The-
orem 1.1 and a sketch of its proof (as is customary, the details of the proof were en-
closed with the text of the note when it was submitted). The proof of the estimates
in Theorem 1.1 relies on estimates of the Bergman kernel given by J. McNeal [M1],
at the exclusion of other auxiliary results from the same article.

The estimates of the Bergman kernel given in [M1] are perfectly correct and can
be proved by interpreting the article in an appropriate fashion. This was covered
in an explanatory addendum [M3], to which we refer the reader. It is not necessary
to call upon the support function recently constructed by K. Diederich and J. E.
Fornzess [DF] to validate McNeal’s estimates.
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