
Ark. Mat., 39 (2001), 27 64 
@ 2001 by Institut Mittag-Leffler. All rights reserved 

Optimal decompositions for the 
K-functional for a couple of Banach lattices 

Michael Cwikel( l )  and  Uri Keich 

Abstract .  Let f=gt +ht be the optimal decomposition for calculating the exact value of the 
K-functional K(t, f; X) of an element f with respect to a couple X (X0, X1) of Banach lattices 
of measurable functions. It is shown that this decomposition has a rather simple form in many 
cases where one of the spaces X0 and X1 is either L ~ or L 1. Many examples are given of couples 
of lattices X for which Igt[ increases monotonicMly a.e. with respect to t. It is shown that this 
property implies a sharpened estimate from above for the Brudnyi-Krugljak K-divisibility constant 
~y(X) for the couple. But it is also shown that certain couples X do not have this property. These 
also provide examples of couples of lattices for which y(X) > 1. 

1. I n t r o d u c t i o n  

Let X0 and  X1 be Banach  latt ices of (equivalence classes of) real vahled mea- 

surable f \mctions on the same measure  space ( ~ , E , p ) .  It  is well known (see 

e.g. [13], pp. 40-42 or Remark  1.41 of [10]) t ha t  X0 and  X1 form a Banach  couple 

- ~ = ( X 0 ,  X1) in tile sense of in te rpola t ion  theory ([4], p. 24, [5], p. 91). 

A basic no t ion  in the s tudy  of in te rpola t ion  spaces with respect to any Banach  

couple A = ( A 0 ,  A1) is the  Peetre K- func t iona l ,  defined for each f E A o + A 1  and  each 

t > 0  by 

(1) t (( t , f ;A)=inf{l lgl lAo-ktl lhl{A , : g C A o ,  h c A 1 ,  9 §  

The norms  of m a n y  in te rpola t ion  spaces are ob ta ined  by composing the K-  

funct ional  with sui table  latt ice norms defined on funct ions on (0, c~). For m a n y  

couples fi~, all in te rpola t ion  space norms with respect to A can be ob ta ined  in this 

way. 

There  is a ra ther  extensive l i te ra ture  devoted to the calculat ion of K- func t ion -  

als for par t icu lar  couples. In  many  cases there are concrete formula~ for funct ionals  
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which are equivalent to K(t, f; A), i.e. the constants of equivalence are independent 
of f and t. Furthermore, for a number of specific couples, an explicit and exact 
formula has been obtained for the K-functional for each element fEAo+A1 and 
it is also possible to describe elements 9t and he for which the infimum in (1) is 
attained, i.e. 

(2) f - g t + h t ,  gtEAo, htEA1 and K ( t , f ; f t ) = l l m l l A o + t l l h t l l a  1. 

See e.g. [1], [2], [11], Lemma 4.1, [16] and [19]. It will be convenient to refer to 
any pair of families {gt}t>O and {ht}t>o satisfying f gt+ht, gtcAo and htcA1 
for some fixed fEAo+A1 and for each t > 0  as a decompositio~ off .  We shall also 
use the notation {f=gt-l-ht}t>o. Such a decomposition will be called an optimal 
decomposition of f if it satisfies (2) for each t>0 .  

Every optimal decomposition {f=gt+ht}t>o of any given element f has the 
property that  

(3) ~, > IbtllAo is non-decreasing and t~ ',llhtllA1 is non-increasing on (0, oo). 

Let us describe a slightly more general result which implies (3) and which holds also 
if f does not have an optimal decomposition: For each fixed t > 0  there always exist 
sequences of functions {gn,t}r~eN and {h~z,t}r in A0 and A~ respectively such that  
f =g~,t+h~,t and K(t, f; 7t)< IIg~,tllAo +tllh.,,ellA1 <_ (l + l/~z)K(t, f; 4). By passing 
if necessary to subsequences, we can suppose that  the limits x(t) l im, ,_~  Ibn,tllAo 
and y ( t ) = l i m , ~  IIh,,.,~llA~ both exist. Then z(t)+ty(t)=K(t, f; A). Every pair of 
functions x(t) and y(t) obtained for each t > 0  in this way satisfies 

(4) x(t) is non-decreasing and y(t) is non-increasing on (0, oo). 

The validity of the condition (4) and so also of (3) is rather well known. It 
can be deduced from an examination of the Gagliardo diagram (cf. e.g. [4], p. 39). 
For the reader's convenience, we also provide an explicit proof at the end of this 
section. (See Remark 1.9.) 

For quite a number of previously studied particular Banach couples which are 
couples of lattices, there always exist optimal decompositions which have a certain 
monotonicity property, which is in some sense a "refinement" of (3). This property, 
which will be our main object of study here, is described precisely in the following 
definition. 

Defi~itiort 1.1. Let X = ( X 0 ,  X1) be a couple of Banach lattices of measurable 
functions on the measure space (ft, E ,#) .  A decomposition {f-gt+ht}t>o of an 
element fEXo+X1 is said to be monotone if, for a.e. wet2, it satisfies 

Ig ( )l whenever O<s<t. 
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The couple X is said to be exactly monotone if every f C X o + X  1 has a monotone 
optimal decomposition. 

In this paper we shall identify a number of exactly monotone couples. These 
include couples of L p spaces (in Sections 2 and 6), and of certain Lorentz spaces, 
and also couples of the form (B, L ~ for "most" Banach lattices t3. (Section 2). 
They also include the couple (L s, X) for "most" rearrangement invariant spaces X 
(Section 5). We also show (Section 3) that  (X0, X1) is exactly monotone whenever 
the dimension of X0 +X1 is no greater than 2. On the other hand we give examples 
(Section 4) of couples (X0,X1) which are not exactly monotone. These, too, can 
be finite dimensional. In fact, in our examples, the dimension of X0+X1 is 3. 

In some of our examples in Sections 2 and 6 we will also consider weighted 
Banach lattices. 

Definition 1.2. Given any measure space (f~, E, #), we shall use the usual termi- 
nology weight function fbr a w  measurable u: [~--+(0, oc). For each Banach lattice 
X of measurable functions on (ft, E, #) and each weight function u, we shall use 
the usual notation X.,, for the weighted Banach lattice consisting of all measurable 
fhnctions f on ft such that  f'uEX. It is normed by Ilfllx=llfullx. 

Remark 1.3. If p, qE[1, oo] with p#q, then many results about the couple of 
weighted L p spaces (L~, Lq) on a given measure space (ft, E, #) can be deduced 
from corresponding results for the "unweighted" couple (LV(u), Lq(u)) on the same 
measurable space (ft, E) equipped with a suitably chosen different measure ~. This 
can be done using a positive one-to-one linear mapping introduced by Stein and 
Weiss (see [21], pp. 162 163, Lemma 2.6) which is simultaneously an isometry of 
L~,(#) onto LP(~) and of Lq(#) onto Lq(~). (Cf. also [7], Corollary 2, p. 234.) 

The exact monotonicity of a couple implies that  it has other special proper- 
ties. We give one explicit illustration of this in Section 7, where we investigate the 
relationship between exact monotonicity and the size of the K-divisibility constant. 
This is the constant 7 = v ( X )  which is the infimurn of all values of the constant 
appearing in the important  "K-divisibility theorem" of Brudnyi and Krugljak (see 
[5], p. 325, or the beginning of Section 7 below). Moreover, 7(X)  is also the infi- 
mum of all values of the constant appearing in the strong form of the "fundamental 
lemma of interpolation theory" (see [9] and also Remarks 1.34 and 1.36 and Propo- 
sition 1.40 of [10]). We show that 7(X)_<4 whenever X is exactly monotone. This 
is an improvement (for such couples) of the sharpest result obtained thus far fbr 
general couples, namely that  7 (X)_<a+2v~  (see [9]). It is relevant to note that,  on 
p. 492 of [5], Brudnyi and Krugljak claim that there are sound reasons to believe 
that  7 ( X ) < 4  for all couples X. 
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In some cases, rather  than using exact monotonicity to obtain bet ter  estimates 
for the constant ~/(X), we can, conversely, use information about  7 (X)  to deduce 

that  K has a property related to exact monotonieity. In particular, if 7 ( X ) = l  for 
some couple X of Banach lattices, then X is "almost exactly monotone" in a sense 
which we will define now, via a slight generalization of the notion of an exactly 
monotone couple. 

Definition 1.4. A couple X of Banach lattices of measurable functions on a 
measure space (ft, E, #) is A-monotone for some number t_>1 if, for each f E X o + X 1 ,  
there exists a decomposition {f=ge+ht}e>o such that,  at almost every cv~f~, the 
function t~-+ 19e(c~)l is non-decreasing and 

119e Ilxo + ttlht IIx~ <- AK(t, f; X)  

tbr all t r  oc). 

The couple X is almost ezactly monotone if it is A-monotone for every I >  1. 

Remark 1.5. I t  is very easy to see tha t  a couple (X0, X1) is A-monotone if and 
only if the corresponding weighted couple (X0,,,., X1 ~,,) is A-monotone for any, or 
every, weight function u. 

The property of A-monotonicity is also related (see Proposit ion 7.5 below) to 
another property of the K-functional  for arbi trary couples of Banach lattices. 

(*) For some constant C=C(  X ) and each f ~ Xo+ X~, there exists an increasing 
family {Et}t> o of measurable subsets of ~ (depending on f )  such that 

(6) K( t , f ;X)<l l f xmt l l xo+t l l f (1  Xz , ) l lXl<_CK(t , f ;X)  foreacht>O.  

This proper ty  is established in Theorem 4.1 of [10] and plays an important  r61e in 
the general results of [10]. I t  has also been obtained independently by Brudnyi and 
Krugljak ([5], Lemma 4.4.30, pp. 599, 603 605). 

Remark 1.6. If  f is a non-negative function in Xo+X1 and it has a decomposi- 

tion {f=gt+ht}t>o, then the new decomposition {f=Gt+Ht}t>o obtained by set- 

ting Gt=min{f ,  Ig, I} and H t = f - G t  satisfies IIc,,llx0 _< IlgellXo and tlHeltxl < tlh llxl 
and also O<_Ge <f .  Using this and other obvious facts, it is easy to see that  a couple 
X of Banach lattices is A-monotone if and only if for each non-negative function 

fEXoq-X  1 and each t > 0  there exist non-negative functions gt and he such that  
f at+he and, at almost every point of the underlying measure space, 9t is non- 
decreasing with respect to t and (5) holds. 

For such a decomposition we also, of course, have that  he is non-increasing with 
respect to t at  almost every point of the underlying measure space. This observation 
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enables us to immediately see that the couple (X0, XI) is k-monotone if and only 

if the "reversed" couple (Xl ,  X0) is A-monotone. 

It follows almost immediately from the definition that  o , (X)>I  for all cou- 
ples X. It is also known that  7 ( X ) =  1 for certain special couples. In particular the 
couples (L I'~, Lq), where u and v denote arbitrary weight functions and the expo- 
nents iv and q are each either 1 or oc, satisfy ~(L p Lq ]= l .  (We refer to [5], p. 335, 
Proposition 3.2.13, for the proof in the cases where p=q. The case where pT~q and 
both u and v are identically 1 is proved in [12] or by (an obvious generalization of) 
the proof of Lemma 5.2 of [10], p. 44. To extend this case to general u and v we 
use the mapping of Stein Weiss mentioned in Remark 1.3.) 

It is also easy to show (see Section 2 for details) that  these same couples 
L I) Lq] for p and q as above, are all exactly monotone. We shall extend this latter 

result (in Section 6) by showing that  (L p L q ] is exactly monotone for all values of 
p and q in [1, oo]. 

Remark 1.7. It is known that  7 (A)>1  tbr certain couples A=(A0,  A1) of Ba- 
nach spaces (which apparently cannot be represented as couples of Banach lat- 
tices on a measure space). This was first shown in [14] for the couple A=(C ,  C 1) 
and it was subsequently shown in [17] that  this same couple satisfies 7(4)>_ 
( 3 + 2 x / 2 ) / ( l + 2 x / 2 ) .  a different approach in [20] produced a couple A=(A0,A1) 
for which 7 ( A ) = ( 3 + 2 , / 2 ) / ( 1 + 2 x / 2 ) .  Here Ao is R 2 equipped with the l ~ norm 
and A1 is a one-dimensional subspace of R 2 whose unit ball is a line segment 
which makes an angle of gwl with one of the coordinate axes. Furthermore, it was 

shown in [20] that  7 ( A ) < ( 3 + 2 ~ / 2 ) / ( l + 2 x / 2 )  for all couples A such that A o C R  2 
and A~ c R  2. Our results here enable us to produce the apparently first known 
examples of couples of lattices X which satisfy ~/(X)>I .  (See Corollary 7.3.) 

Let us recall one more notion which will be needed later. 

Definition 1.8. Let A=(A0,  A1) be a Banach couple. For j = 0 ,  1 the Gagliardo 
completion of A j, which we denote by A7 is the set of elements a E A0 +A1 which are 
limits in the Ao+A1 norm of bounded sequences in Aj or, equivalently, for which 
IlallAy =suPt>0 K(t, a; A) / t  j is finite. 

We refer, e.g., to [11] and also [10] for examples and more details concerning 
Gagliardo completions. 

Remark 1.9. As promised above, we close this section with a proof of (4) 
and (3). 

For each t > 0  let Pt be the point ( z ( t ) , y ( t ) ) c R  2 and let Lt be the line {(x ,y)E 
N ~ : x + t y = K ( t , f ; f t ) }  which passes through Pt. Now let us make an arbitrary 
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choice of s and t such that  0 < s < t and show that  

(T) x(t) >_x(s) and y(t) <y(s) .  

We first claim that  

(8) Pt lies on or above Ls and P~ lies on or above Lt. 

If, on the contrary, Pt lies strictly below L~ then 

K(s ,  f )  <_ lim (llg~,t IIAo +sll hn,t IIA~ ) = x ( t )+sy ( t )  < x ( s )+sy ( s )  = K(s ,  f )  

which is, of course, impossible. Similarly, if P, lies strictly below Lt, then 

K(t, f) < ,l~s IIAo +tllt<,~ liar) = x(s )  + t y ( ~ )  < x ( t ) + t y ( t )  : K (t, f )  

which is again impossible, and we have established (8). 

Since Lt passes through the points (K( t , f ) ,O)  and ( O , K ( t , f ) / t ) ,  since 
K ( s , f ) < K ( t , f )  and K ( s , f ) / s > _ K ( t , f ) / t ,  and since sJ:t, we see that  L=NLt is 
a single point (x ,y)  with x_>0 and y>0 .  In view of the slopes of these two lines 

and (8), we obtain that  P= cannot lie strictly to the right of (x, y) and Pt cannot 
lie strictly to the left of (x,y) .  Consequently x(s)<_x<_x(t) and (again using the 
slopes) y(t)<y<_y(s). This establishes (T) and so also (4) and (3). 

2. Some previously known examples  of  exactly monotone  couples 

In many, but not all, of the couples X which we shall show to be exactly 
monotone, this is a consequence of the fact tha t  each non-negative fEXo~-X1 has 
an optimal decomposition { f=g t§  where for each t > 0  the function ht is of 
the form h t = m i n { f ,  At} for some constant At.C[0, oc]. The most obvious instance 
of this phenomenon is the next theorem. 

Theorem 2.1. Let t3 be any Banach lattice of real valued measurable functions 
on a measure space (ft, E ,# )  and let L ~176 denote the space L~176 of essentially 
bounded measurable .functions on fL Then the couple ( B , L  ~176 is almost exactly 
monotone. Furthermore, this couple is exactly monotone if 

(i) B has the Fatou property, or 
(ii) B coincides isometricaUy with its Gagliardo completion B ~ with respect to 

the couple ( B , L ~ ) . 



OptimM decompositions for the N-functionM for ~ couple of Banach lattices 33 

Remark 2.2. In fact, (i) implies (ii). (See [10], Corollary 1.17.) 

Proof. Let f be a non-negative function in B+L ~176 If we know that  every 
such f has some optimal decomposition {f=gt+ht}t>o into non-negative func- 
tions, then it is simple and immediate to show that  ( B , L  ~176 is exactly mono- 

tone: We use tile decomposition {f=Gt+Ht}t>o, where Ht=min{f, llhtllc~ }. 
Clearly this decomposition must aiso be optimal, and Gt=f-Ht  must be point- 
wise non-decreasing as a function of t because, by (3), [[ht IIs~oo is a non-increasing 
function of t. The general proof uses an elaboration of the same simple idea. 
For each t > 0  and n c N ,  we can (cf. Remark 1.6) express the above function 
f as the sum of two non-negative functions f=gn,t+hn,t such that  gn,tcB and 
h~,tEL ~176 and S~(t,f)<_ltg,~,tltB+tllhn,tllL~<_(l+l/n)K(t,f). As in the formula- 
tion of (4), we can suppose that  l i m ~ o o  IIg~,t lib =z ( t )  and limn--+oo II h,,,t II L~ =y( t ) ,  
where, by (4), y(t) is a non-increasing function of t. Given any A>I,  we define 
Ht=min{f,y(t)+(A-1)K(t, f)/4t} and we choose h E N  sufficiently large so that  
(1+1/%)<_1+�89 and also 

- A-IK. t y(t)-~!K(t,f) _< llh~,,.ll~ _<y(t)+~T- (,f). 

O<h~,t<f, we have that h~,t<Ht. Consequently, O<f-H,<f-h~,t= 

A - ]  
IIf-u<ll.+ llH<ll   <_ Im,,ll.+*Iy(t)+TK(:, f) / 

l-I l-i 
<_ Ng~,tlIB+t(y(t)-~-K(t, f ) )  + =  K(t, f) 

(9) 
A -1  

_< tlg,,,,llu +tllh,~,tllL~ + ~ - - K ( t ,  f )  

<_(<l+AT~l)+~)K(t,f)=AK(t,f). 

Since y(t)+(A-1)K(~,f)/4t is a non-increasing function of t, this shows that 
( B , L  ~176 is A-monotone. Now suppose that  B satisfies condition (i) or (if). For 
ally fixed t>0 ,  consider the sequence of functions/s =rain{f ,  y(t)+K(t, f)/rnt}. 
If we choose A = l + 4 / r n ,  then � 8 8  and we obtain from (9) that  

(10) IIf-H.~,,Ib+tIIH.~,,IIL~<_ (1+ 4) D2(t, f). 
Obviously, Hm,t converges pointwise and in L ~176 norm to H.,t=min{f, y(t)}. So the 
sequence Gm,t=f-H,m,t is pointwise non-decreasing and converges pointwise and 

T h e n ,  s i n c e  

g~,t and so 
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also in B+L ~176 to G., t=f-min{f ,y( t )} .  Thus, using either the Fatou property, 
or the condition B~=B, we deduce that  G.,tEB and IIG.,tllB_<lim,~,_~ IIG,,~,tlIB. 
(Obviously the reverse inequality is also true.) These remarks, together with (10), 
show that  {f=G.,t+H.,t}t>o is an optimal decomposition. So, since y(t) is non- 
increasing, we have shown that  (B, L ~ is exactly monotone. [] 

In the rest of this section we list some other couples which can readily be seen 
to be exactly monotone. 

Example 2.3. The result of the previous theorem can be immediately general- 
ized to show that  the couple (B, L ~ )  is exactly monotone for all choices of weight 
functions u, since this is equivalent to the exact monotonicity of (B1/,,, L~176 (Cf. 
Remark 1.5.) 

Eccample 2.4. The couple (L~,L~) of weighted L 1 spaces on some arbitrary 
measure space is exactly monotone. This follows since for each element f we can 

choose 9t= fx{u<_tv}. 

Example 2.5. The couples of Lorentz spaces (A(60), A(6~)) studied by Sharp- 
ley [19] are also all exactly monotone in view of the exact formula obtained in [19] 
for the K-functional. 

It is interesting to note that  the optimal decompositions of a function f for 
Sharpley's couples, obtained by dividing the graph of Ifl into two separate se- 
quences of horizontal "slices" are of a radically different nature to the optimal 
decompositions obtained in the other examples mentioned here. 

Example 2.6. The couple (L1,L p) for any pC(1, oo] is exactly monotone in 
view of the exact formula for its K-functional which is given in [16]. (In fact some 
further small steps are needed to extend the formula given in [16] to the cases of 
more general functions f and more general measure spaces.) The papers [1] and [2] 
give more details and various generalizations of the results of [16]. With the help 
of the mapping of Stein Weiss (see Remark 1.3), this result also extends to all 

L 1 weighted couples ( ~, L~). 

In Section 5 we shall prove a theorem which includes the exact monotonicity of 
(L 1, L p) as a special case. In fact the couple {L p Lq~ is also exactly monotone for 

\ u' v] 

all choices of p, qC [1, oo] and all choices of weight functions u and v. For the proof" 
of this in the remaining cases which are not covered by the preceding material of 
this section, we refer to Section 6. 
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3. Exact ly  m o n o t o n e  couples  of  finite d imens iona l  latt ices  

Let (Y0,Y1) be a couple of Banach lattices of measurable functions on the 
measure space (ft, E, #) and suppose tha t  dim Y0 and dim ]71 are both  finite. Then 
of course Y=Yo+Y1 also satisfies n = d i m Y < o c .  Let {fk}~=l be a basis of Y and 

let f~*={czEf t :E2=l  t fk (~) l>0  }. Then, of course, each f c Y  must vanish a.e. on 
f~\~F. Furthermore,  f~* must be the union of n atoms, f~*=U~=l Ek. Similar 
reasoning shows that  there are also two subsets f~  and ~2~ of f~*, either or both  of 

which may coincide with ft* or be empty, such that  for every measurable function 
f on f~, we have that  f c Y j  if and only if f = 0  a.e. on f~\ft~. 

The map ~2=1  C~kXEkF-~((tl, a2 , - . - ,C~)  enables us to naturally identify the 
couple (Y0, I/1) with the couple of lattices (X0, X~) where 

(n) Xj = {((~l,c~2,...,Ctn) cR** :c~k = 0  for all k@Ij}  

and Ij = {k E {1, 2, ..., n} :Ek C ft~ }. The lattice norm on Xj is naturally induced by 

II - IIg~.  Tha t  is, here we are considering R '~ as the space of all real valued functions 
on a set of n points, and so the notation x<_y means that  x=(xl ,x2 ,  ... ,x,~) and 

y = ( y l ,  Y2, ..., Yn) satisfy xk<yk  for k = l ,  2, ..., n. 

T h e o r e m  3.1. Let X = ( X 0 , X 1 )  be a couple of Banaeh lattices on some meas- 
ure space, such that dim(X0+X1)_<2 for j = 0 ,  1. Then X is exactly monotone. 

Remark 3.2. As we shall see in the next section, this result is false if we weaken 
the hypotheses to dim(X0 +X1)  _< 3. 

Pro@ By the remarks preceding the s ta tement  of the theorem, we may sup- 
pose without loss of generality that  the spaces Xj are each of the form (1l) for n = 2  
and for index subsets Ij each containing at most two elements. We fix some element 

f=(c~, ~ ) E X 0 + X I = R  2 and will show tha t  it has a monotone optimal decomposi- 
tion. It  suffices to do this for the case when c~>0 and ~>_0 (cf. Remark  1.6). An 
obvious compactness argument guarantees the existence of an optimal decomposi- 

tion {f=gt+ht}t>o. We can assume (cf. again Remark  1.6) that  

(12) O<_gt<_f andO<ht<_f for a l l t > 0 .  

If  dim Xj =0  for either j =0  or j =  1 then the result is trivial and obvious. If  dim X0 = 
1 then I0 is either {1} or {2} and gt is of the form gt=O(t)e where 6: (0, oc)--+[0, oc) 
and the fixed element e ~ R  2 is either (1,0) or (0, 1). Now ~(t)--- i i~i]Xo/] iel lxo and, 
in view of (3), this must  be a non-decreasing function of t and so the proof is 
complete. A slight variation of this argument  takes care of the case dim X1 = 1. Thus 
we can suppose from here on that  dim X0 = d i m  X1 =2,  i.e. X0 =X1 = R  2. Let us use 
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the simpler notation H' II0 or II" ftl for II" ttXo or II. IIx~, respectively. For j = 0 ,  1 and 
each u ~ R  2 and each r>0 ,  let Bj(u,r) denote the closed ball {v~R2:ltu-vtlh<r}. 
We denote its interior by B~ (u, r) and its boundary by OBj (u, r). That is, 

B~(u, r) = {v E R2:  II~-vllj < r} and OBj(u, r) = {v E R2: Ilu-~llj = r}. 

We shall make a temporary auxiliary assumption: (A) For j = 0 ,  1, the boundary 
OBr 1) of the unit ball of Xj has a unique tangent at each point (x,y) and this tan- 
gent is not parallel to any other such tangent, except of course at the point ( -x ,  -y) .  
Since Xj is a lattice, OBj(O, 1) is invariant under the maps (x,y)~->(-x,y) and 
( x , y ) ~ ( x , - y ) ,  and the assumption (A) implies that  the tangent is horizontal at 
the points of intersection with the y axis and vertical at the points of intersection 
with the x axis. For each fixed t > 0  the balls B;(0, Ilgtll0) and Bl(f ,  llh~ll~) satisfy 

B; (0, t}gt ]lO) ["1~1 (f ,  11 h, I11) = l?, 

since any g C B;  (0, lilt I[0) AB1 (f, II ht II1) would satisfy the impossible estimates 

K(t, f; X) < {Igllo+tllf -gll,  < Hgtllo+tl]ht(ll = K(t, f; X). 

The same argument shows that  

Bo (0, Hgt II o) NB~ ( f  , II ht Ill) = (a. 

We deduce that  the intersection of the corresponding closed balls, namely J r=  
B0(0, 119t II0)nB~ (f, IIh~ II 1), must be disjoint from each of the open balls B;(0, lilt 116 
and B~(f, Hht]ll), and therefore Yt=OBo(O, IIg~ll0)n0Bl(/, Ilhtl]l). This set is non- 
empty since it contains the point gt. It must also be convex. This means it cannot 
contain any point other than g~, since our temporary assumption (A) precludes the 
possibility of either OBo(O, llg~ll0) or 0Bl( f ,  [[h~lll) containing any line segments. 
If gt and ht are both non-zero, then, since gt lies on the boundaries of both of 
the non-empty disjoint open balls B•(0, IIg~ll0) and B~(I, flhtll~), it follows that  
the two uniquely determined tangents at gt, to OBo(O, llgtH0) and to OBl(f, IIhtlls), 
respectively, must both be the same line which we shall denote by Lt. We shall 
denote the slope of Lt by mr. For j = 0  and j = l  we can write the set 0Bj(0, 1)n 
{(x ,y) :x>0,  y>0} in the form {(x, Oj(x)):O<_x<6j} where r [0,dj]-~[0,o~) is a 
strictly decreasing concave function with 6 j (~j )=0 and 05} exists and is strictly 
decreasing on [0, ~j) with 05}(0)=0 and limx-+aj 05}(x)=-oo. Thus, for our purposes 
here we can and shall unambiguously introduce the notation @ ( ~ j ) = - o c  so that  
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now 4D} is strictly decreasing on all of [0, S j]. This representation of (9t73(0 , 1)N 
{(x, y):x_>0, 77_>0} immediately implies that,  for each r > 0 ,  

and also tha t  the slope of the tangent line to OBj(O, r) at the point (x, rCj(x/r)), 
equals r for all xE [0, r50) and also for x rSO, in accordance with the conven- 

tion adopted  above. Let us write gt in terms of its coordinates, i.e. gt=(x(t), y(t)). 
By (12) we have 0<x( t )<c~ and 0<y(t)_</7 for all t > 0  and so both gt and he= 
(ct-x(t) , /3-y(t))  are in the first quadrant  {( , ,  y):._>0, y_>0}. As a special  case of 
the above formula for slopes of tangents, we obtain tha t  

, I x ( t )  "~ mt=r whenever gt r 0. 

We will need a second formula in terms of r for me. This is easily obtained, e.g., 
with the help of the aitine involution map J defined by 

a(x, y) = (c~-x,/3-y) = f - ( x ,  y). 

The map J maps each straight line in R 2 onto another straight line with the same 
slope. Since Lt is also the tangent to (gB,(f, Hhtlll) at gt, its slope me must equal the 

slope of the tangent d(Lt) to J(OB,(f,  Ilht/l~))--OBl(0, Ilhell~) at y(gt) he. This 
gives that  

~V?,t=el  ~ , whenever he~k0 .  

We have to show that  both  x(t) and y(t) are non-decreasing functions of ~. We 
shall now do this for x(~). Thus we fix arbi t rary numbers s and t with 0 < s < t  
and have to show that  cc(s)<_m(t). This is obviously true if g~=0 or ht=O since in 

these cases x ( s ) = 0  or x(t)-ce, respectively. So from here on we can assume that  
both  g.~ and ht are non-zero. We shall show tha t  supposing x(t)<x(s) leads to 

a contradiction. On the one hand it implies, since 0 < I Ig~ II0 _< live II0 (by (3)), that  

0<_~(t) / l lgel l0<~Q~)/l lv. l l0<50 and  so we have 

(13) oo_<.~=r ) <~Otllgello ) . ~ _ < 0 .  

On the other hand, x(~)<x(s)  also implies that  c~ x(s)<c~-x(t) and, since, again 
by (3), 0<  Ilhell~ <llh~lll, it then follows that  (c~-x(s))/llh, lll<(O~-z(t))/llhtll, and 
SO 

, / ,~-x(t) ' ,  ,~,, ( ,~ -~(~) '~  
--o~ )<vet IIh~lll )--m~-<o" 
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This contradicts (13) and so proves that  x(t) must be non-decreasing. The proof 
that  y(t) is non-decreasing is exactly analogous and we leave it to the reader. The 
last step will be to extend our proof to the general case, i.e., where the unit balls 
of X0 and X1 do not necessarily satisfy the above mentioned temporary assump- 
tion (A). It is not difficult to show that,  for j = 0 ,  1 and for each positive integer 
n, there exists a two-dimensional lattice Xj(n) whose unit ball Bj,,~(O, 1) satisfies 
assumption (A) and furthermore 

B (0,1) c Bj, (0,1) c 0,1+  . 

Then, by the preceding part of the argument, for each n there exists an opti- 
mal decomposition {f=g(t ,  n)+h(t, n)}t>0 of f with respect to the couple X ( n ) =  
(Xo(n),Xl(n)) such that,  if g(t ,n)- (x( t ,n) ,y( t ,n)) ,  both x(t,n) and y( t ,n)  are 
non-decreasing functions of t. Furthermore, by (12), 0_< x(t, n) <<_ a and 0 < y(t, n) </~ 
for all t > 0  and hEN.  By Helly's selection theorem (see e.g. [18], Exercise 13, p. 167) 
there exists a strictly increasing sequence of integers {nk}k~N such that  x(t, nk) 
and y(t, nk) converge for each t to non-decreasing functions x(t) and y(t). Let 
g(t)=(x(t),y(t)) and h( t )=f -g( t ) .  It is easy to check that  {f=g(t)+h(t)}t>o is a 
monotone optimal decomposition of f tbr t with respect to the original couple X. 
This completes the proof. [] 

4. A c o u n t e r e x a m p l e  in R 3 

T h e o r e m  4.1. Let Xo be R 3 equipped with the lattice norm 

3 5 4 II(x, y,  )lio = max{Ixi,  iyi,  -iyi+t l,  lxi+ lyl+ i i} 

and let X1 be the subspaee of R 3 consisting of elements of the form (x, y, O) equipped 
with the lattice norm 

II(x, y, o)H1 = lO-3lxl+ lyl. 

Then the couple X = ( X 0 ,  X 1 )  is not exactly monotone. 

Proof. We shall establish the result by determining the optimal decomposition 
f = gt -~- ht  for the element f = (1, 1, 1) exactly when t = 10- 6 and approximately when 
t=10.  For the case t=10  6 it is convenient to use the function 

r x,y, 1)llo+lO-611(x,l-y,O)ll~. 
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Obviously K(10 6, f ;  X)=inf{O(x, y): (x, y)CR2}. Note that  0(0, 0 ) = 1 +  10 -6. We 
shall see that  this is the infimum, and that  it is not attained at any other point 
(x, y) # (0, 0). Now 

~(x, y) ~ ~-Iy[+1+10-6[1-yl > ~ ly l+1+10-6 (1 -1y l )=  1+10-6+  (1 -10 -~ )  ly I. 

So if the infimum is attained at (x, y) we must have y=0.  But then 

0(x, 0) = II(1-x, 0,1)110+10 611(x, 1,0)lit ~ 1+10-91x1+10 -6, 

and so necessarily x=0.  Consequently f=gt+ht ,  where gt =(1, 0, 1) and ht=(0,  1, 0) 
is the unique optimal decomposition of f ibr t=10-% Now to treat the case t=10 
we shall use the function 

~ ( x , y )  = IICx, l -y ,  1) 0+10 I(1-x,y,0)lll. 

9 First observe that  ~p(0, 0) = ~ + 10-10 .3 = 7 + 10 -2. We shall not explicitly show that  
this is the infinmm, but we shall see that  the infimum can only be attained in a 
very small neighbourhood of (0, 0). Indeed, suppose that  

(14) ~p(x, y) < ~p(0, 0). 

Then it follows from the estimate 

4+101y I > 5(1-1yl)+ @+lOly I = 9 + ~ l y  I ~(x,y)_> ~ll-yl+~ 

that  

(15) lYl < z 
6500 " 

We then also have the estimate ~(x, y)_>-~ Ix] + ~ (1-lYl)+ 4, which, combined with 
3 5 7 and so Ix I is considerably smaller (14) and (15), yields that  ~1x1<10-2+~6~0 

than ~0 This shows that  any optimal decomposition f = g t + h t  for t=10 must have 
gt very close to (0, 1, 1) and ht very close to (1, 0, 0). Thus the first coordinate 
of Igt[ c a n n o t  be an increasing function of t which proves that  X is not exactly 
monotone. [] 

Remark 4.2. There is nothing special about the fact that  X1 in the previous 
theorem has dimension 2. This choice was made only to simplify the calculations. 
To obtain an example of a couple (X0, Xt)  which is not exactly monotone and where 
both spaces have "full" dimension 3, we can simply use a small "perturbation" of 
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the example of Theorem 4.1. For example, we can define X0 as above and modify 
X~ to now be R 3 equipped with the lattice norm 

]] (x, y, z)II1 = 10-:3 Ixl + lYl + 107 Izl - 

Then a straightforward variant of the above proof shows that  here again the optimal 
decomposition of f =  (1, 1, 1) for t =  10 .6  is exactly (1, 0, 1)+ (0, 1,0) and for t =  10 it 
is again very close to (0, 1, 1)+(1, 0, 0). Thus we have the required counterexample. 

Remark 4.3. It is easy to see that  neither of the couples introduced in Theo- 
rem 4.1 and Remark 4.2 can be ahnost exactly monotone. Otherwise, for f = ( 1 ,  1, 1) 
and each n C N there would exist a decomposition into non-negative monotonic func- 

tions { f=gn, t  +h~,t}t>0 such that  ]]gn,t Ilx0 +tllh,~,t Ilx~ -< (1+ 1/n)K( t ,  f ;  X) .  Then, 
as in the final step of the proof of Theorem 3.1, we could use Helly's selection theo- 
rem to pass to subsequences of {gn,t} and {hn,t} which, for each t, converge in R 3, 
and therefore also in X0 and X1, to give a monotone optimal decomposition of f ,  
contradicting what we have shown above. 

5. T h e  c o u p l e  (L  1, X )  for  a large class 
of  rearrangement  invariant spaces X 

The "large class" referred to in the title of this section consists of those spaces 
X which are exact interpolation spaces with respect to the couple (L ~ (#), L ~ (#)) 
on the same underlying measure space (ft, E, #). Characterizations of these spaces 
have been obtained by Calderdn [6], Theorem 3, p. 280, and also by Mityagin [15]. 
Such spaces X are necessarily reaTTangement invariant. That  is, if f E X and g is a 
measurable function on ft such that  the non-increasing rearrangements of f and g 
satisfy g* (t) _< f* (t) for all t > 0, then .q E X and I lgll x <_ II f ll x .  However, rearrange- 
ment invariance alone is not sufficient to imply exact interpolation with respect 
to (L 1, L~ ) .  Under appropriate conditions on (f~, E ,#)  it is sufficient to have any 
one of the additional conditions that  X has the Fatou property, or it is separable, 
or it contains L1NL ~ densely. We refer to [6], Theorem 4, p. 281, and Sections 4 
and 5 of Chapter II of [13] for details of these matters. 

T h e o r e m  5.1. Let (ft, E, #) be an arbitrary measure space. Let X be a Banach 
lattice of measurable functions on f~ which is an exact interpolation space with re- 
spect to (L 1, L~  L ~ ( # ) ) .  Suppose also that X has the Fatou property. Let 
f :  ft--+ [0, oc) be an element of L 1 + X  and, for" each AE [0, oo], define fa  =rain{f ,  A} 
and fx = f - f x .  Then, for each t>0 ,  there exists A=A(t) E [0, ec] such that 

(16) K(t ,  f;  L 1, X )  = IIfAIIL ~ +tllfAllx.  
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Furthermore, the couple (L1 ,X)  is exactly monotone. 

Remark 5.2. Theorem 5.1 cannot be generalized to the case of all Banach 
lattices X on (ft, E ,#) .  We can see this with the help. of the couple (Xo,X~)  of 
Remark 4.2. Here X I = L I ( # )  for a suitable measure # on f t={1,  2, 3}, but neither 
this couple, nor (X1, X0) (cf. Remark 1.6) is exactly monotone. 

Pro@ Since f E L I + X  and X c L I + L  ~ ,  we have f = u + v + w  where u, v CL  1 
and w E L  ~176 and of course these three functions can all be taken to be non-negative. 
It then follows that  fA EL 1 for A= Ilwiic~. Consequently A. :=inf{AE [0, oo] :fA EL 1 } 
satisfies 0_<A. <oo. Let g be a measurable function which satisfies O<_g<_f, gE L  1 
and f - g E X .  The main step of our proof will be to show that  for a suitable choice 
of A E [A., co] the function G= f - r a i n { f ,  A} satisfies 

(17) G E L  1 with IIGIIL ~ <IIgIIL ~ 

and 

(18) f - G E X  with I I f -GI Ix  <_llf - g l l x .  

Clearly, the function ~-+ IifA IlL * is non-increasing on [0, oo]. By dominated conver- 
gence it is also continuous on (~., co). By monotone convergence, we have 

lira IIfAIIZl = IIfA. IlL1 ;~'NA. 

whether or not IIfA. IlL1 is finite. Furthermore, by dominated convergence, we also 
have l imA/~  IIIAIILI=ilIoolILI=O. Using these properties we see that,  if IIgIIL* < 
IIA. IIL1, then there exists some ),E()%,oo] such that  IIZAIILI=IIglILI. In the re- 
maining case, when IlgllL1--> IliA. ILL1, which of course can only arise if IliA. IlL1 <oo, 
we set ~ = ~ . .  Obviously the function G = f - m i n { & ,  f } = f A ,  obtained by choosing 
), as above, satisfies (17). To show that  it also satisfies (18) it will suffice, in view of 
the interpolation properties of X, to show that for each n E N  there exists a linear 
operator S (depending on n) such that  

(19) S: L p > L p with norm not exceeding 1 for p = 1, cx~, 

and 

(20) ( 1 - 1 ) ( f - G ) < _ S ( f - g ) .  

Our construction of S will use a number of arguments similar to ones which appear 
in various papers, such as [6] and [7]. However it seems simpler to give a fairly 



42 Michael Cwikel and Uri Keich 

self contained explanation rather  than patching together miscellaneous components 

from those papers. Let us first construct S in the case where IlgllL~-> II/~. IIL~" We 
have that 

(21) I I f -GIIL~ _<A=A,.  

We can suppose tha t  A, >0  since if ~, --0 we can of course simply take S = 0 .  Thus it 
follows from the definition of ,~, that  F.~={~o~a:(~-l/,~)a.<_f(~)<_(l+l/~)a.} 
satisfies # (F ,~ )=cc  for each m c N .  We now construct a bounded linear functional 

r on L I + L  ~176 for each m. We do this in one of two different ways, corresponding 
to two separate subcases. 

Subcase 1. This occurs if Fr~ has a measurable subset / (*  with the property 
that  # (E* , )=ec  and every measurable subset of F.* has measure which is either 0 
or oc. Then we have hx~;~ =0  a.e. for each h E L  1. In this case we define 6 ~  by 
setting r , where ~,,~ is a norm one linear functional on L ~176 such 

tha t  ~,~ (fXF,~) = II fx~:,$~ [[ L~. 

Subcase 2. If Subcase 1 is not applicable then Fr~ must contain a measurable 
subset of finite positive measure. We claim tha t  this implies tha t  the quantity 

M : = s u p { p ( F ) : F � 9  ~, F C  F .... #(F) < oc} 

must be infinite, since if not there exists a sequence {Ek}kE N of measurable subsets 
of F,~ with M - 1/k < #(Ek) < oc, and also, necessarily # (El  U E2 U... t0 E k ) < M for all 

k � 9  Then P(Uk~N E k ) = M  and it is easy to check that  the set F *  :=F,~\  UkeN Ek 
has the property dealt with in Subcase 1. Since M = o c ,  there exists a sequence of 
measurable sets { Ek } keN such that  Ek C F,~ and k < p(Ek) < oc. By passing if neces- 
sary to a subsequence, we can suppose that  {Ek}kcN has the further property that  
the bounded sequence {(1/#(Ek))  fEk f dp}kcN converges as k tends to oo. We can 

now define r by setting 0,~ (h) = B - l i m k ~  (1/#(Ek))  fEk h dp, where B-limk_,oo 
denotes a Banach limit on l ~176 i.e. a norm one linear functional which extends the 
functional ~b({c~k})=limk-+oo c~k, defined on the subspace of convergent sequences 
in l ~176 

Note that  in both  of these subcases we have 

(22) r = 0  for all h E L  1, 

(23) Ir E IlhllL~ for all h E L  ~ ,  

and so, since gCL 1, we also have 
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It follows from (22) and (23) that  the operator S defined by 

f - G  
Sh = r  ~ 

has the required boundedness property (19) for all choices of n CN .  Furthermore, 
at all points wCFt, we have, using (24) and (21), that 

S(f  -g) > ( 1 - 1 ) A .  f -~G 

i.e., we can obtain the second required property (20) for any given h E N  by choosing 
m = n .  As a preliminary to the next step, we consider another similar operator 
which can be constructed, whenever A. >0, using the same functional 0,~, and the 
set F:={wEgt:f(w)<_A.}. This is the operator U~ which is defined by 

(25) Utah= 1 -  r  II/XI%~IIL~ 

and which clearly has norm not exceeding 1 on L ~ and maps L 1 to {0}. Furthermore 

(26) Urn(f-g) = U~(f) >_ 1-  ~ IXF at all points of a .  

We now turn to constructing S in the remaining case where IIglIL1 < Ilf~'. Ilcl. Let r 
be a constant in (0, 1) whose precise value will be specified later. Since in this case 
we have A>A,, the sequence {~k}~_-o defined by 

Ak = A , + r k ( A - A , )  

is strictly decreasing. Note also that  

Ak 1 
(27) Ak+l r 

A o~ We define a pairwise disjoint sequence of measurable sets { k}k=0 by setting 

A0 := {w �9 a :  A0 < f(w)} 

and 

Ak:={c~ef~:Ak<_f(c~)<Ak_~} f o r k = l , 2 , . . . .  
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For each c~>A, it follows easily (e.g. by applying Chebyshev's inequality to the 
function fz EL 1, where/3 is some number in (A., a)) that the set { ~ E a : / ( w ) > a }  
has finite measure. Thus, for each k=0, 1, ..., we have #(Ak)<ec. We define a 

k--1 sequence of disjoint intervals Ik=[ak, ak+l) by setting a0=0 and a k = ~ j = 0  p(Aj), 
i.e. we have IIkl=~(Ak) for k=0, 1, .... Let ~2: [0, ec)--+[0, oc) be the function 

k E K  k 

where K is the set of non-negative integers k such that #(Ak)>O. It is clear that 
is non-increasing. Let U: LI([O, ec), dx)+L~([O, oc), dx)-+Ll(p)+L~(#) be the 

operator defined by 

Of course U: LP([0, oc), dx)-+LP(#) with norm 1 for p = l ,  oc. Furthermore, 

k ~ \ # (  k) YAk 

and f -G=min{f ,  A}=min{f, A0}. Consequently, f - G = A = A 0  on A0 and for each 
k=~,2,..., / (~)-a(~)=f(~)c[ak,  A~_l) for all wEAk. So, using also (27), we 
obtain that 

r ( f -G)  _< U~2 at almost every point of [ J  Ak. 
k=0 

We observe that, by our definition of G, 

and consequently, 

(29) fAo 
We now define the operator V: L 1 (#) + L ~176 (#)-+ LI([o, ~ ) ,  dx) + L ~176 ([0, oo), dx) by 
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It  is clear tha t  V: LP(#)-+LP([O, co), dx) with norm 1 for p = l ,  oc. We claim that  

for every t > 0 

f0 f0 (30) V ( f  - g )  dx > ~t dx. 

By (29), V ( f - g )  assumes a constant value greater than or equal to ~ on I0. Since 
~(x)_<A for all x, we see that  (30) holds for all tEI0=[0 ,  (~1)- Using once more the 
fact that  f - G = f  on each Ak for k > l  we see that  V ( f )  and g assume the same 
constant value on Ik for each k>_l. In other words, 

So, for all t>c~l, 

V f ( x )  = g ( x )  for all x > a l .  

~0 t fo ~ I t V ( f - g )  dx = V ( f  - g )  dx+ V ( f - g )  dx 

= V f  d x -  Vg dx 
1 1 

>- ( f - g )  d#+ ft d x -  Vg dz 
0 1 1 

= ( f - g )  d#+ • d z -  9d# 
o 1 k = l  k 

> f d# + (t d x -  g d#. 
0 1 

By (28) this last expression equals 

f d# + ft dx - G d# = d# + (t dx 
0 1 J Ao  J o#1 

and so we have established (30) for all t>0 .  Let h* denote the non-increasing 
rearrangement of h e C  1([0, oo), dx)+C ~ ([0, ~ ) ,  dx). Then, for each t>0 ,  

} /o (31) h* dx=sup  Ihldx:EC[O, cc), Emeasu rab l e ,  IEl=t  > hdx. 
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(Cf., e.g., Proposi t ion 3.3 on p. 53 of [3] or Assertion 8 on p. 64 of [13].) Since 
~2= (~2)*, we obtain from (31) and (30) that  

/o f0 ( v ( f -g ) )*  d~ >_ (~)* dx for afi t > O. 

This is a sufficient condition, by Theorem 1 of [6], p. 278, (and also a necessary one) 
for the existence of an operator T: L1 ([0, oo), dx)+ L~ ([0, oo), dx)--+ L1 ([0, oo), dx)+ 
L~176 ([0, oo), dx) such that  T(V(f-9))=~2 and T: LP([0, oo), dx)--+Lv([O, oo), dx) with 
norm not exceeding 1 for p = l ,  oc. Combining the previous steps, and writing 

O O  
A,=[.Jk= 0 Ak we see that  the operator So defined by 

Soh = UTV h 

satisfies S0:LP(p)--+LP(>) with norm not exceeding 1 for p = l ,  oc and also that  
So((f--g)XA.)>_r(f--G)XA. at almost every point of a .  To complete the construc- 
tion of S for any given n E N  we need to choose r= l -1 /n  and to find a second 
operator $1: L ~ (#) -+L ~ (#) with norm not exceeding 1 such that  $1 (L 1 (#)) = {0} 
and 

(32) Sl( f -g)>_(1-1)( f -G)XakA.  at almost every point of ft. 

Then, of course, 

Sh := XA. So (hXA.) +X~\A. $1 h 

will have the required properties (19) and (20). Now ft \A.={wEf~:/(w)_<A.} and 
so, if A.=0,  then both of the functions (f--9)Xa\A. and (f--G)Xa\A. vanish iden- 
tically, i.e., we can simply take $1=0.  If, on the other hand, A.>0,  we can use 
the operator Um defined above by (25). We have F = f l \ A .  in that  definition, and 
furthermore, fXF=(f--G)xF and U~,,,(h)=0 for all hcLX(#).  Thus, if we choose 
m = n  and SI=U,~, then (26) immediately gives us (32). Having constructed the 
operator S we can now easily finish the proof of the theorem: Given any fixed t>0 ,  
there exists a sequence of functions {gn}neN such that  (i) O<_gn(w)<<f(w) for a.e. 
wcf t ,  (ii) 9hE L 1, (iii) I - g ~ c X  and 

(33) IlgnllL1 +tllf --gn IIX ~ 1 + K(t, f; L 1, X). 
n 

We shall now define a new sequence {G~}~eN by choosing Gn = f - r a i n { A n ,  f}  =fa~,  
where AnE[A.,oc] is chosen to satisfy IIfx,~llLl=llgnllL1, if IlgnllLl<llfa. llL1, and 
otherwise A,~=A.. Applying our main step for each n, we see that  conditions (i), 
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(ii), (iii) and (33) all hold when gn is replaced by Gn. Thus {IIGnIIL~}~cN and 
{llf--anitX},~cN are both bounded sequences and 

(34) lim sup (IIGnIIL1 +ell f - -  Gnllx) ~< K(t ,  f ;  L 1 , X).  
n--+ oo 

By passing, if necessary, to a subsequence, we can suppose furthermore that there 

exists/~** --/~** (t) E [/~., (x~] such that either 

(35) 

or 

(36) 

If (35) holds, then, using the Fatou property of X,  we obtain that the pointwise limit 
rain{ f, A** } of the norm bounded monotone increasing sequence f - G ~  = min{ f, An } 
is an element of X with norm 

(37) II rain{Z, ~**}llx = lim II min{/,  ~,dllX" 
n--+oo 

Since (77 = f - r a i n { f ,  A1 } C L 1, we can apply dominated convergence to the mono- 
tone decreasing sequence {Gn} of non-negative functions to show that 

(38) f -min{ f ,A**}EL 1 and IIf-min{f,A**}llLl= lim IIf-min{f,A~}llL~. 
n ~ +  CX) 

If, on the other hand, (36) holds, then we still obtain (38) by monotone convergence, 
and, instead of (37), we have simply that 

min{f ,A**}EX and [Imin{f,~**}Ux_< Ilmin{/,),n}llx for all h E N .  

Thus in both cases we can substitute in (34) to obtain that (16) holds for A=a** (t). 
Finally, to show that (L 1 , X)  is exactly monotone, it suffices to show that (16) also 
holds for A=~(t),  where A(t) is a non-increasing function of t. Let us define the 
function ~: IX., ce]--+ [A., eel by setting 

g)(A) = inf{a E [A., A]: ] I f - ra in{f ,  o~}llL1 = U / - m i n { f ,  .)~}IIL1 }. 

We observe that  this infimum is always attained: This is obviously the case when 
~ = ~ .  and so ~ (A . )=~ . .  Furthermore', for each ~ > ~ . ,  we have, by monotone 
convergence, that 

(39) U / - m i n { f ,  ~(a)}llL1 = ]If-rain{Z,/X}IIL1 < oc. 
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From (39) we also obtain that  ff~ min{f,  A}-min{f ,  r dp=0  for each A>A. and 
so the non-negative function integrand satisfies 

(40) rain{f, A}-min{f ,  r = 0 for a.e. a~ �9 ft. 

Obviously (40) also holds when A=A,. We deduce that  

II min{f,  s = II min{f,  r for all s �9 [A., ec]. 

We can now define the function A(t) by setting s The preceding 
remarks show that,  for each fixed t>0,  (16) holds also for A=A(t). Suppose that  
0 < s < t .  Then, by (3), 

0 _< I I f -min{f ,  A(t)}IIL1 -II f - m i n { f ,  .~(s)}l)L1 = - - -  s min{ f ,  ~(S)} --min{f, A(t)} d#. 

On the one hand, if this integral is strictly positive, then we must have A(s)>A(t). 
On the other hand, if it is zero, then, necessarily, 

(41) ~(A(s)) = ~)(A(t)). 

But, since the infimum in the definition o f ~  is attained, we have that  ~(~(A))=~(A) 
for each AC[A., cxD]. Consequently (41) implies that  A(s)=A(t). Thus we see that  
A(t) is a non-increasing function, which shows that  (L 1, X) is exactly monotone and 
so completes the proof of the theorem. [] 

6. T h e  c o u p l e  ( L  p L q'~ for arb i t rary  p and  q in 
\ u ~ v /  

[1, o0] and  arb i t rary  w e i g h t  f u n c t i o n s  u and  v 

In this section we complement the remarks of Section 2 and show that  the 
couple ~(L p~, Lq~v, on an arbitrary measure space (f~, E, #) is exactly monotone for all 
p, qC [1, oo] and all weight functions u and v on ft. 

The case max{p,q}=oc is covered by Theorem 2.1 and Example 2.3. The 
case rain{p, q } = l  is covered by Example 2.4 when p = q = l  and by Example 2.6 or 
Theorem 5.1 when max{p, q} > 1. (As already mentioned, the case of general weight 
functions here can be deduced from the case where both u and v are identically 1, 
via the mapping of Stein-Weiss referred to in Remark 1.3.) 

Thus the remaining case which we have to treat is when both p and q are 
in (1, cxD). Although the K-functional for (L p Lq~ looks quite different when p=q 
as compared to when pCq, and although for pCq, its formula is very much simpler 
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when u and v are identically 1, it turns out that  we can just as easily t reat  all these 
cases simultaneously by the same "calculus of variations" approach similar to that  
used by Bastero, Raynaud and Rezola in [2] to obtain various exact K-functional 
formulm. We shall use some rather straightforward modifications or generalizations 
of some of the proofs and results of [2]. 

Let f be an arbitrary non-negative function in LP+Lq~. For some fixed t>0 ,  
let {Gk}kEN be a sequence of functions in L~ such that  f -GkEL q and 

P q lira IIGkllL~ +t[lf-akllL~ = K(t, f; L~, L,). 
k-+oc 

We can of course (Remark 1.6) choose the functions Gk so that  they satisfy 0_< 
Gk<f. Furthermore, since p, qE(1, oc), we can suppose, by passing if necessary 
to a subsequence, that  Gk converges weakly in L~ to a function g=gtEL~ and 
f -Gk  converges weakly in L~ to a function h=ht EL q. These functions satisfy 

IlgllL~ +tllhllL~ _< K(t ,  f ;  Lg, Lq). Furthermore, since fa(g+h)r dp=fa fr d# for all 

r we have that  f=g+h and so 
/ 

(42) IIgHL~ +tlIf -g11L~ = K(t, f; L p, L{) 

for the particular t > 0  chosen above. Since f~gOd# and ff~(f-9)r are non- 
p~ qr 

negative for every non-negative CEL1/~L1/~ we also have that  9 and h = f - g  are 
non-negative almost everywhere. 

Let F = { w E f t : f ( w ) > 0 } .  Our next step will be to show (cf. [2]) that  the func- 
tion g obtained as above must satisfy 

(43) (i) g ( w ) < f ( w )  fora.e ,  w E F  or (ii) g ( w ) = f ( w )  fora.e,  wEQ.  

Suppose that  (43) is false, i.e. that  the sets B={a~EF:9(w)=f(co)} and F\B 
both have positive measure. Then, since F is ~-finite, B has a subset B'  with 
positive and finite measure, and furthermore, for some h E N ,  the subset 

Bin= w E B ' : - <  f(c~)<n, -<u(cz)<n, -<v(w)<n  
n n Tt 

also has finite positive measure. We define the function r R--+ [0, oo) by 

r = IIg+6XBr IIL{ +tllf -g-dXB'~ IlL q. 

We claim that  r is differentiable at every point 6E (-1/n, 0) and, for these 5, 

~9'((~) : fB:, (g@(~)P--I~I"P d~t t fB:, ( f -g-5)q-lvq d# 
(f~(g~-(~XB. )PuP dp)l-1/P (fn(f --g--~XB, )qvq d#)~-i/q" 
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This follows of course from a standard theorem for differentiating under the integral 

sign. But note that various conditions appearing in the definition of 13r~ have been 

imposed to ensure the validity of this theorem. To be more specific, what we 

need and have used here (and will also use again later) is the following simple 

fact, which follows immediately from Lagrange's theorem and Lebesgue's dominated 

convergence theorem. 

Fact 6.1. Suppose that ~) and w are non-negative measurable functions on 

(ft, E,p) such that ~w~ELI(#) for some rE(l, oc). Let AEE be such that the 

functions g~ lW~XA and w~'XA are also in LI(#). Let r l~+~XAl~wrdp. 
Then, for each 5>- inf~EA P(co), ~ is differentiable at ~ and 

~)t ( (~ ) = ./A l'( O-~- (~ ) r-- l wr  d]2. 

From our assumptions about t3, F\13 and 13~ it follows that  the one sided limit 
lims/~0 r exists and is strictly positive. But this is impossible, since, by (42), we 
have r162 for all 6~0.  This contradiction proves (43). 

We next claim that  

(44) (i) g(co)>0 fora.e,  coEF  or (ii) g(co)----0 for a.e. coCft. 

This is proved by an exactly analogous argument to the one we have just presented 

for (43). That is, one has only to permute the r61es of L p and L q, and also the r61es 

of the functions g and h=f- 9. 
We now establish another property of the function g=gt in the case when it 

satisfies 

(45) O<gt(co)<f(co) fora.e,  coEF. 

For each h E N ,  let Fn be the subset of F consisting of all points co at which the 
values of the functions g(co), f(co)-9(co), u(co) and v(co) are all in the range (1/n, n). 
Let B be any measurable subset of F~, and consider the function 

Since of course #(B)<oe we can use Fact 6.1 to show that, for all c~E(-i/n, i/n), 

d, t jB ( f -g -   )q-lvq 
r  = (f~(g+dx.)PuP d#)~-l/P (f~,(f --g--SXB)qvq d#) l-l/q" 
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Since r assumes a minimum value at 6=0,  it follows that  

~ ['gP-luP t(f-g)q-lv q) r ~ -  ~ d~=O 
\ IMI~ IIf-gN~z 

for all sets B as above. This implies tha t  

(46) 
gp- luP __ t ( f  - - g ) q - l v  q 

at almost every point of F~ and so also at almost every point of 0hEN f'n=[?" 
We are now ready to consider the behaviour of the above functions g=gt and 

h=ht=f-gt as t ranges over all possible values in (0, co). 
Let E ,  denote the set of M1 numbers t > 0  for which the function g=gt satis- 

fies (45). In view of (43) and (44) the set (0, o c ) \ E ,  is the union of the two disjoint 

sets Eo={t>O:gt(w)=O for a.e. wCft} and Ef={t>O:gt(w)=f(w) for a.e. wGft}. 
Since t~+Ng~IIL~ has to be a non-decreasing function on (0, c~) (cf. (3)) we see 
tha t  either E0 is empty, or it is an interval whose left endpoint is 0. Similarly, 
either E /  is empty, or it is an interval whose right endpoint is oc. 

Suppose that  0 < s < t .  We claim tha t  

(47) gs(W) ~_gt(w) for a.e. wf f fL  

This is obvious if sEEo or if tcEf. I t  is also obvious if s~Ef or, alternatively, if 
t~Eo, since then of course rEEf or sEEo, respectively. Thus it remains only to 
consider the case when both  s and t are in E . .  Here we can apply (46) to obtain 
that  

(48) ~-~,~ ~llg~ll~ ~ g~-%~ sllgsll~'~ and ~t 
( f - - g s ) q - l v  q IIf-g~llqg ~ ( f - - g t )  q lvq I ] f - g t I ] ~  1 

at almost every point of F.  Now, using (3) once more (i.e. that  t~-~[[gt]]L~ is non- 
decreasing and t~+ [[f--gtI]Lg is non-increasing), we deduce fi'om (48) that  

gs(Cd) p-1 gt(Cd) p-1 
(49) (f(w)__gs(w))q__l < (f(w)__gt(w))q_l for almost every w E F. 

For each fixed w E F  we have f ( w ) > 0  and therefore the continuous function x~-~ 
xS)-l/(f(w)-x) q-1 is a strictly increasing map of the intervM (0, f (w))  onto (0, oQ). 
Hence this function has a strictly increasing inverse on (0, oe) which can be applied 
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to (49) to yield that  9s(w)<gt(w) for a.e. cvEF. Since gs(aJ)=gt(~v)=f(w)=O for all 
w ~ F  this establishes (47). 

We have still not quite established that  (L p, L q) is exactly monotone, since it 
could happen that  the exceptional subset of measure zero N~,t C F,  which contains 
all points a~ where (47) does not hold, depends on s and t in such a way that  
l .J{Ns,t :0<s<t} might not be contained in a set of zero measure. To overcome 
this (small) problem we first consider the set N.=U{N~,t:O<s<t, sEQ,  tEQ}.  
This is of course measurable and # ( N . ) = 0 ,  and for each a~EF\N, we have that  
the function t~+gt(w) restricted to (0, oc)MQ is non-decreasing. Now let us define 
Gt(w) for each t > 0  and each a E F \ N ,  by Gt(w)=sup{g~(w):O<s<_t, sEQ}.  It is 

then easy to check that  I]GtiiL~ +tiif--GtllL~ = K ( t ,  f; L p", Lq~j for all rational and 
irrational points rE(0, oc) and to use the decomposition { f = G t + ( f - G t ) } ~ > 0  to 
show that  (L p Lq) is exactly monotone. 

\ U '  ~ ) /  

7. The  K-div i s ib i l i ty  cons tant  and A-monotone  couples  

According to the Brudnyi-Krugljak K-divisibility theorem ([5], p. 325), for any 
given Banach couple X, there exists a constant C having the following property. 

(**) If  x is an arbitrary element of Xo+Xl  for which K(t ,  x; X)_<En~_l Cn(t) 
for all t>0 ,  where the functions r are all positive and concave and ~n~_l r  
0% then there exist elements xn E Xo+X1 such that x=~n~=~ xn and K(t, Xn; V~ )~_ 
Cr for all t>0 .  

We shall let 7 (X)  denote the K-divisibility constant for X, i.e. the infimum of 
all numbers C for which (**) holds. We recan (cf. [9]) that  

(50) 1 _< _< 3+2v  

for every Banach couple X. 

In this section we shall investigate certain connections between the condition 

of exact monotonicity for couples of lattices X and the value of 7(X). On the one 

hand, when X is exactly monotone, or "close" to being exactly monotone, we shall 

obtain an estimate for ~(X) which is sharper than (50). On the other hand we shall 

see that if 7(X) is "small" then this implies that X has a property similar to exact 

monotonicity. In particular (see Corollary 7.2) every couple of lattices X satisfying 

7(X)--1 must necessarily be "extremely close" to being exactly monotone. 

The precise formulations of these results are in terms of the notion of /k- 

monotone couples and almost exactly monotone couples (see Definition 1.4). 

In fact every couple of Banach lattices is A-monotone for some A. More precisely 
we have the following result. 
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T h e o r e m  7.1. Each couple X of Banach lattices of measurable functions is 
)~-monotone for every I > 7 ( X ) .  

Proof. As already observed in Remark 1.6, it suffices to obtain the decomposi- 
tions f - -gt+ht  for the case where f > 0 .  This can be done exactly as in the proof of 
Theorem 4.1 of [10], i.e. we can set gt=~o(t) and h t=~l( t )  in the notation of [10]. 
Note that  the estimate (ii) at the beginning of the proof in [10] corresponds exactly 
to (5) above with A=Cp( l+c ) .  In our case p = l  and it is clear that  we can take 
Cp=Cp=7(X) and c > 0  arbitrarily small. [] 

C o r o l l a r y  7.2. If  7(X')=1 then X is almost exactly monotone. 

C o r o l l a r y  7.3. If  X is either of the couples introduced in Theorem 4.1 and 
Remark 4.2 then 7 ( X ) > 1 .  

Proof. This is an immediate consequence of Corollary 7.2 and Remark 4.3. [] 

Remark 7.4. We can rewrite the result of Theorem 7.1 as A(X)_<7(X) if we 
define A(X) to be the infimum of all A>I  such that  ,~ is A-monotone. In fact, 
Theorem 7.7 below will enable us to obtain an approximate reverse of this inequality 
so that  altogether we will have 

~(~) _< ~(~Y) _< 4~(X). 

The r61e played by the proof of Theorem 4.1 of [10] in the proof of the preceding 
theorem, points to the fact that  the A-monotonicity of each couple of lattices X is 
also related to the formula to within equivalence for K(t, f; X)  stated above as (6) 
(i.e. Property (,)) .  The proof of Theorem 4.1 of [10] shows that  the constant C in 
(6) can be chosen to be any number greater than 27(X ). Our next (very simple) 
result provides an alternative estimate for this constant C. Since Theorem 7.1 does 
not exclude the possibility that  a given couple of lattices X" may be A-monotone also 
for some ;~<ff(X), it is possible that  this alternative estimate for C may sometimes 
be sharper than the one provided by Theorem 4.1 of [10]. 

P r o p o s i t i o n  7.5. Let X be a A-monotone couple of Banach lattices. Then 
for each f E Xo + X1 there exists an increasing family {Et}t>0 of measurable subsets 
of the underlying space such that 

II fxE, Ilso +tllf(1 --XE,)II x1 ~ 2/~K(t, f; X) 

for each t>O. 

Proof. This is similar to a different (and quite simple) part of the proof of 
Theorem 4.1 in [10]. Let f=gt  +ht be the decomposition which exists according to 
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Definition 1.4 and, for each t>0 ,  let Et be the set where Igtl>_lhtl. It  is easy to 
check that  these sets have all the required properties. [] 

We next present a simple lemma which will be needed for the proof of the last 
main result of this section. 

m 

L e m m a  7.6. Suppose that X is a )~-monotone couple of Banach lattices. 
Then, for each c > 0  and each non-negative function f EXo+X1,  there exists a de- 
composition { f =Gt + Ht } t >o such that 

(51) IIG~llxo+tllHtllxl <_A( l+e)K( t , f ;X)  for hil t>O, 

and for a.e. w in the underlying measure space Gt(w) is a non-decreasing non- 
negative function of t and Ht(w) is a non-increasing non-negative function of t. 
Furthermore, we can suppose that the functions t~-+llGtllx o and t~-+llHtllx ~ are 
continuous on (0, oo). 

Proof. Fix a non-negative function f E X o + X 1  and let f = g t + h t  be a de- 
composition having all the properties specified in Definition 1.4 and Remark  1.6. 

We first set Gt=gt and Ht=ht  for each t of the form f = ( l + c )  n for each nEZ.  
Then we extend Gt and Ht to all of (0, oo), so that  they are affine functions of 
t on each interval [ ( l+e)  ~, ( l+e)~+l ] .  To show that  (51) holds, given any fixed 
t>0 ,  we choose n E Z  and 0E[0,1] so that  t=(1-O)( l+c)n+O(l+c)  ~+1. Then 

Gt=(1-O)g(I+e),~-FOg(I+e)~+~ and Ht=(1-O)h(l+w~+Oh(l+e)~+~. By (5) we have 
that  

IIG~llXo+sllH~llx~ <_/~K(s,f) for s = ( l + c )  '~ and s = ( l + c )  n+l. 

Consequently, 

[[GtUXo +(l +c)n[[Ht[[xl ~ (1-O)([IG(l+~)~[lXo +(l +c)~[[H(l+~y~[[Xl) 
+0(llG(l+~)n+~ [Ix0 + ( l+e)n  IIg(l+~)~+ ~ Ilx~) 

< (1 -0)AK(( I+c)  n, f)+OAK((l+c) ~+1, f). 

The concavity of the function t~--~K(t, f) implies that  this last expression does not 
exceed/~K(t ,  f ) .  We deduce (51) immediately, since 

IIGtllxo +tllH~llx1 ~ (l +c)(llC~llXo +(l +cFIIHtllxl). 

I t  is very easy to check that  Gt and Ht also have the other properties s tated in the 
lemma. [] 
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Our final main result in this section is the inequality 

(52) _< 4 (x) 

which has already been alluded to above. Tha t  is we must show tha t  y(X)_<4A for 
each A such tha t  the couple of lattices X is A-monotone. We can deduce this easily 

from Theorem 7.7 which we shall s t a t e  immediately after this paragraph.  This 
theorem is an analogue of Theorem 4 of [8], pp. 49-50, and of Theorem 1.7 of [9], 
pp. 71 72, i.e. it is a variant of the so-called "strong fundamental  lemma" of [9]. 
The estimate (52) will follow from the fact that  3 '(X)<_4A(I+e) for each A and c as 

in the s ta tement  of Theorem 7.7, and this in turn can be deduced from Theorem 7.7 
in exactly the stone way as Theorem 1 of [8] is deduced from Theorem 4 of [8] on 
pp. 54-55 of [8], except, of course, that  the constant 8 appearing there has to be 
replaced here by 4A. (Cf. also Remarks 1.34 and 1.36 and Proposit ion 1.40 of [10].) 

T h e o r e m  7.7. Let X = ( X 0 , X 1 )  be a A-monotone Banach couple of lattices 
of measurable functions and let X ~ denote the couple (X~,  X~) ,  where X 7  is the 
Gagliardo completion of Xj  in X0+X1,  j = 0 ,  1. Let f E X o + X 1 .  Then for each 
e > 0  there exists a sequence of elements {Un,~}nCZ={U~}~cZ in X o @ X  1 such that 
u,~CXoNX1 for all but at most two values of n, ~no~ u~=f ,  with convergence 
in the X 0 + X 1  norm, and 

(53) • min{llunlIxu, tlI~n IIx~ } ~ 4 A ( I + e ) K ( t ,  f ;  X)  for all t > O. 
n ~ - - o o  

(In the preceding estimate we set IlunllxT=  if n x ,) 
Proof. Clearly it suffices to consider the case where f r  is a non-negative func- 

tion. Many, but not all steps of this proof are modelled on the proof of Theorem 1.7 
in Section 2 of [9]. For the benefit of the reader who may wish to refine either of 
these theorems, we shall draw at tention at various stages to some of the similarities 
and differences between the two proofs. We first need to choose a constant r >  1. 
We can of course suppose, without loss of generality, that  the number e appearing 
in the  s ta tement  of the theorem satisfies 

(54) l + e  < r. 

In fact, we shall see later that  the optimal  value for r is 2. But we shall present 
most of the steps of the proof for general r, again with a view to facilitating future 

improvements.  We introduce the set D ( f ) =  {(llGt IIXo, IIHt Ilxl):tC (0, oc)}, where 
f = G t + H t  is the continuous decomposition of f constructed in Lemma 7.6. This 
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set will play a r61e more or less analogous to that  of the set D(a) introduced in [9]. 
(Let us note in passing that  D(f)  is always non-empty, whereas the set D(a) of [9] 
may be empty. This case is not dealt with explicitly in [9], but it can be immediately 

disposed of, since D ( a ) = 0  if and only if a=0 . )  Let us set 

x_co = lim llGtllxo, xoo = lim IIGell/0, Y-co= lim llHellxl, Yco = lim IIHtllx~. 
t--+0 t--+oo t-+O t - + c o  

These are approximate  counterparts  of the quantities defined by the formulm (2.1) 
on p. 74 of [9]. However, they do not necessarily satisfy the formulae (2.2) of [9]. 
(Note also that  here we have permuted part  of the notat ion adopted in [9] so that  
y_oo is now the "largest" and yco is now the "smallest" value of y for (x, y)cD(f) . )  
The next step of the corresponding proof in [9] is to construct a certain finite 
or infinite sequence of points {(x,~,yn)}~_~<,~<~ in D(a). (We have taken this 
opportuni ty  to correct a minor misprint in [9], where the range of n for this sequence 
is incorrectly stated to be t _ c o - l < n < t c o + l . )  Here, analogously, we shall now 
construct a special sequence of points lying on D(f).  This is done in a way which is 
quite similar to the construction of the sequence {(Xn, Yn)}~_~ <n<-oo in [9], except 
that  in some cases we have to make some modifications when n is at one of the 
"endpoints" t_co and too if these are finite. Here the index n will range over a 
possibly larger set which we will denote by 0-co < n <  ~)oo. (These modifications are 
needed because of the above mentioned possible failure of the quantities x+oo and 

y~:co to satisfy (2.2) of [9].) The actual values of the four parameters  L)-co, 0co, 
t oo and too will be determined in the course of the construction. They can either 
be integers, or -t-oo. More specifically, they will satisfy - o c  < 0_oo < t_co <0  < tco < 

L)co<+cc. Our sequence {(x,,, Y~)}o ~<n<o~ of points of D(f)  will correspond to 
an increasing sequence of points {tn }o-~ <n<Oor in (0, OC), where we set x,~ = IIGt~ Ilxo 
and Yn = IIHe~ IIx1. In the two trivial cases, where Gt = 0  for all t, or He =0  for all t, we 
can prove the theorem by simply choosing uo=f  and u ~ = 0  for all n r  So we can 
assume that  the sets {t>O:Ger and {t>O:Htr are both non-empty. These sets 
are necessarily intervals of the form (a, oc) and (0,/3), respectively. Furthermore, 
since f r  we have /3>a.  We begin the construction of {t~} by choosing some 

arbi trary to E ((~,/3) and, correspondingly, (x0, Y0) = (llGto IlXo, IIHto 1121). Then, for 
each n > 0 ,  we construct (x,~, Yn)=(lla,,~ Ilxo, IlHtn I lx ,)cD(f)  inductively such that  
t~ > t~_ 1 and 

{ x~=rxn-l,t or { x~>>_rx~-l,1 

Yn <- - Yn- 1 Yn = - Y n -  1 
?~ r 

holds. Because of the continuity and monotonicity of the functions t~->llGtllx o and 
t~--~ IIHt ILK1, such (xn, y,~) and t~ will always exist whenever the integer n satisfies 

1 
(55) rx~_l <xoo and - y n - 1  > Yoo. ?- 
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X oo If  (55) holds for every posi t ive n then  we ob ta in  an infinite sequence {( ~, Yn)}n=0 
and, accordingly, we set  9 o o = t o o = ~ .  In  this case, since x 0 > 0 ,  it follows t h a t  
l i m ~ o ~  x n - - o o  and therefore  lim~-+oo t~ =c~ .  On the other  hand,  if a t  some stage 
of the cons t ruc t ion  we encounter  an integer n > 0  which satisfies 

1 
r X n _  1 ~ Xoo o r  - Y n - 1  ~_ Yoo, 

r 

t hen  we set t o o = n .  In such a s i tua t ion  there  are two possibili t ies which mus t  be 
dealt  wi th  separately.  First ,  if 

1 
(56) -Y,~ 1 ~ ycx~ or yoo = 0, 

r 

then,  as in [9], the  cons t ruc t ion  s tops  at  this stage, i.e. we also set Ooo=n and do 
not  define (x~, y,~) and t,~. T h e  remain ing  possibil i ty is t ha t  

(5"/) r X n - l > X ~  and y ~  > 0 .  

In this case we set 0oo = too + 1 and (in contras t  to [9]) the  cons t ruc t ion  has one more  
step, i.e. we choose t , ~  sufficiently large so t ha t  the  addi t ional  point  (x.oo , y ~ ) =  

Ilxo, line) satisfies y , ~  < (lq-c)yoo. 
Now, in a similar way, for n<O we go "backwards"  and induct ively const ruct  

(x~, yn)=(llGtn IlXo, IIHt~ IIX~)~D(f) such t h a t  t,~, < t n + l  and 

{ 1 { 1 
X, n ~- - - X n + l ,  X n ~ --32rz4-1, 

?" o r  T 

Yn --~ r Y n + l  Yn = r Y n + l  

holds. Again the  existence of these  points  is guaran teed  by the  proper t ies  of t~-~ 

IIC~]lxo and t ~  IIH~IIx~ whenever the  negat ive  integer n satisfies 

1 
(58) -x ,~+l  > x _ o o  and ry~+l <y_oo. 

If  (58) holds for all negat ive  n then  we ob ta in  an infinite sequence {(xn, 1 

and we set t - o o = p - o o = - o o .  In  this case, since y0>0 ,  we have lim,>+_oo y,r~-oa 
and therefore  lirn~-+_o~ t.~=0. If, however,  we encounter  an integer n < 0  for which 

1 
-xn+s <~x-oo or ryn+l >Y-oo ,  'F 

then  we set u-oo  = n .  Here again there  are two possibili t ies which need to be t r ea ted  
separately,  The  first occurs when  

1 
- - X n +  1 ~ X _ c ~  o r  x _ o o  ~ 0~ 
T 
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and if this happens we proceed as in [9], setting g_~=p_o~=n and not defining 
(x,,, y~) and tn. On the other hand, if 

ryn+l >_y-~ and x _ ~ > O ,  

then we set g ~ = ~ - o c - 1  and, as an additional step, choose t ,_~  >0 sufficiently 

small so that (x . . . .  Y--~) = ( 1 1 G ~  Ilxo, ttH~,, ~ IIx~) satisfies x~_~ < (1 + s ) x _ ~ .  
Note that  in all cases, whether or not P• and ~j:~ are finite, we have defined 
(xn,yn) and tn for all integers n which satisfy g-oo<n<go~ and for no integer n 
outside this range. We can now define the sequence {u~},,~z by 

{ Gtn-Gt.,~ l=Ht~ 1-Htn, i f g _ ~ + l < n < g o ~ ,  

f - G t ~  ~=Hto~_~, i f n=L)o~<oc ,  
~1~ n 

f-Ht~_~+z=Gto ~+~, i f n = o _ ~ + l > - o c ,  

0 otherwise. 

Observe that  ~-~,~176 o ~ u,~=f, where the series converges in the X o §  1 n o r m .  In 
0 fact, if g _ ~ > - o c ,  then ~ n  e ~+1 un~G%, and if g _ o ~ = - o o  then 

0 

~_~un-Gto_ x~ = ,~-~lim~ IIG~n Ilxo n-~lim IIO~o IlXo~-~ = 0. 

Similarly, ~n~__l un=Hto with convergence in the X1 norm, whether or not goo is 
finite. 

As a first step towards proving (53) we need some preliminary estimates for 

Ibnllxo and Ilunllxl. This is exactly the place where the monotonicity of Gt and Ht 
enables us to obtain better  bounds than those which hold in the analogous proof 
for a general Banach couple (cf. (2.9) and (2.10) on p. 75 of [9]). If g _ ~ + l < n < g ~  

t h e n  II nllxo=lfG,n-at . . . .  Ilxo-<lla nllx0, so we have 

(59) II~nllxo~llG~llxo=X~ for g - o ~ < n < g ~  

(i.e. we have also observed that  obviously (59) holds also for n = g - o o + l ,  if s 

is finite). Similarly Ibn UXa = IIH~ 1 - H ~  fix1 _< IIH~ 111x~ for g-o~ + l < n <  go~ and 
s o  

(60) II~'n, l l X l ~ t l  [~, . . . .  IIXl =Yf~ 1 for ~) ~ + l < n < L ) o o + l  

(where again the additional case where n=po~ is obvious, when go~ is finite). 
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Now let us fix an arbitrary t > 0  and show that  (53) holds for this t. There are 
three cases which must be considered. Case 1 is when there exists an integer n* in 
the range v-oo+l<n*<voo such that  t,~. l<t<tn. .  Case 2 is when v ~ < e c  and 
t>_tvo~_l. The remaining possibility, Case 3, is when z/ ~ > - o c  and t<t,_~+l.  
Let us first deal with Case 1. We use the notation ,rz,~=n, in{llu,~llxo,tllu~,llx~} and 
write the sum 

OG 

min{l lunl lXo,  t l l ~ l l x ~  ) -- 

We note that,  by (59), 

n *  - - 1  

(61) z _ =  
n = L o _ ~ + l  

Here we are using the notation 

n* --1 ~'tn-~-?~ln * 
E + = I_ +m,,~, +I+. Trt n 

n --cx~ n=n*  +1 

n* --1 n* --1 

n=~  oo+l  n = v _ e o + t  

Our construction of {(x~, y~,)} ensures that 

1 
(62) Xn <_ -Xn+l, whenever L'-oo < n < uoo- i. 

r 

Consequently xn<(i/r') ~* n ix7~._1 for u_oo<n<_rt* 1 and so 

r~*-I n ~ l  ( 1 ~ n*-7~,-1 l__7_n*+v_~+l 
(63) E X n  ~ -- X n * - i  = X n * - - i  

n = v _ ~ + l  n = t J _ ~ + l \ r /  1 - - r  - 1  

where we are adopting the convention that  r -'~*+"-~+1 =0 if u_~  =-cx~. If p_~ is 
finite and equal to u _ ~ -  1, then 

(64) xo ~+1 = x ,_~ < ( l + e ) x _ ~  < ( l + a ) x , _ ~ + l  < ( l+c ) r  "-n*+" ~+2x,~.-1. 

Combining (61), (63) and (64) gives us that  

(1-< 

(65) =Xn* 1 1 ~_  1 Fr -~*+ ' -~+2 l + e  l - r -  1 

1 
< x n * - l ( ~ + _  \ l + S - l _ r  1 ) r - 1  m 
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(67) 

where 

On the other hand, if Q_oc=t,_oo, whether or not this quantity is finite, a simpler 
version of the preceding estimates gives us that  

1 
(66) I < _ x ~ , _ i l _ r  - ~ "  

We next apply very similar arguments to estimate I+. By (60) we have 

~0oo @oo Poo 

1+= E ~7~n~ E Y'n--l=~ E Yn--l-}-~ylcooc--l' 
n=rz* +1 n = n * + l  n=n*• 

, [ O, if Q~ = ~ ,  

Y ~  Y ~ - l ,  i f t ~ = ~ o o + l < o o .  

Our construction of {(xn, Yn)} ensures that  Yn _< (1/r)y.,~_l, whenever P-c~ + 1 < n <  
~ .  Consequently y~_i<_(1/r) ~*-l+,,,y~. whenever n * + l < n < u ~ + l .  So 

(1y 
( 6 s )  Y ' * = Y " *  ' 

n n * + l  n = n * + l  \ ~ ' /  

where we are adopting the convention that  r '~*-'~ =0 if v~  =oo. If t ~  is finite and 
equal to v~ + 1, then 

(69) Y~-I =Y,~ ~ (l+S)yoo < ( l + g ) y , ~  1 _< (l~-s)rn*--'~ 

and we can combine (67), (68) and (69) to obtain that 

/ +  ~ t Y n *  \ ] - - r  1 

1 + r ] 
< _ t y , ~ . ( ~  1 + ~ -  l _ r _ ~  ) .  

On the other hand, when ~oo--~o~, whether or not t~oo is finite, we obtain similarly 
that 

1 
I+ < ty~* 1 - r  -1 " 

Summarizing the preceding estimates, we see that  in all subcases of Case 1, i.e. 
whether or not the quantities t~• and ~• are equal to each other or finite, 

( 1  t+s_  r - i  ) 
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We observe that  

(71) Xn*--l+Syn* <_A(I+c)K(s,f) for s=t~*-i and s= tn*  

and, since the left-hand side of (71) is an affine function of s and the right-hand side 
is a concave function of s, we obtain the same inequality tbr s=t. This, combined 
with (70), gives 

(72) L+I+ <A(l+c) (_  ~-1 c+~-1r-2 )K( t , f ) .  

We can also see that  m~. <_A(l+e)rK(t, f) since either rxr =x~. holds, in which 
case ~,~. <t1~* Ilxo <_x~. =rxr~._l<A(l+c)rK(t, f), or otherwise rye. =Yn* 1 must 
hold and then ran* -<tll~,,~* Ilxl <_tryst. <_erllHtllxl _<),(l+c)rK(t,  f ) .  Combining the 
estimate for m~. with (72) we obtain that,  in Case 1, 

(73) 

We now turn to Case 2, i.e. when ~o~<oc and t>_t~ 1. Now we write ff~,~= 
min{llunllx~, ttlu~llx~} and we shall estimate ~ _  o~ ff~. We first observe that,  
quite similarly to before, using (59) and (62), we have 

~ 1 ~o~--i ~o~--I 

:-- ~ ~,~<_ ~ II~llx~_< ~ It~llxo 
n = - - o c  n =  oo n = O  o~q-1 

n = u  ~ c + l  -- _ + 1  

By substituting n*=-o~ in (63), (64), (65) and (66) we obtain that,  whatever the 
value of ~ o~, whether or not it is finite or equal to y ~ ,  

(74) / ~ < z ~ - i  ~ +  c+r-2r-1 ] ~ < A ( I + a )  r _ ~ +  a+  r - 2  ~ K ( t , f ) .  
- - ~ _ - 2 T  7 

Since now uoo < oc, there are only two possibly non-zero terms in ~n~__~ ff~, namely 
f f ~  and r ~ + l ,  and we have to estimate these terms in the two possible "subcases" 
(56) and (57). Let us f rs t  suppose that  (56) holds and so ~ = ~  and ~ , ~ + 1 = 0 .  
One possibility here is that  yu~-l/r<~yec and so 

~o~ ! tllHt~ 1UXl = l~YL, oo-1 ~ l~Yoo ~ /~(1-l-s f) .  
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Alternatively, we must have yoo=0 and also y~-z / r>yoo .  Since (55) does not 
hold, this also implies that  rx, ,~-i  >_zoo. It follows that  

K ( s , f )  <_l~(]lG~[Ixo+sllH,-llx,)=zo~ <o o  for each s > 0 .  

Consequently, I l f l lx ;~=l im~.~ K(s,f)<_.~c~ (cf. [9], (2 .2))and 

<.~  <- Ilu.~ llxg = llHt.oo_~ Ilxa" <- IIfllxg <- zoo <_ rz,.oo 1 < .~(l+e)rK(~,  f ) .  

It remains to deal with the second "subcase" i.e. when (57) holds. Then L)oo = 
~ + l a n d s o ,  by ( 5 9 ) , ~  <llu,~llXo<_X, <xoo<_ra:~ 1. Sincet>_t,~o_l , this  
last term is dominated by rllGtllXo. We also have that f fz~+l_<@t~+l l lXz  = 

IlXl _<t(l+ )liNt IIx,. Combining these estimates and also using 
(54), we obtain that  

~ z ~  q - < ~ + l  <_ rllGtllxo § 5 >, ( l+c) rK( t ,  f ) .  

These estimates combined with (74) show that,  in all possible subcases of 
Case 2, 

(75) K(t,f). 

An analogous argument, whose details we leave to the reader, shows that  (75) 
also holds in the remaining case, namely Case 3. Thus, (cf. (73)) it holds for all 
cases. We now substitute r = 2  to obtain 

L ?nn<_A(l+e)(4+c)K(t,f) for a l l t > 0 .  
n ~  o o  

This immediately gives (53), since we can of course carry out M1 preceding steps 
of the proof with c replaced by any smaller positive number. This completes the 
proof of the theorem, and consequently, as already explained above, also estab- 
lishes (52). [] 
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