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On the spectral gap for fixed 

Burgess Davis 

membranes 

A b s t r a c t .  The distance between the second and first eigenvalues for the Dirichlet Laplacian 

of a domain is called its (spectral) gap. We show tha t  the gap of a convex planar  domain D 

symmetr ic  about  bo th  the x and y axes is no smaller than  the gap of an oriented rectangle which 

contains D. 

1. I n t r o d u c t i o n  

In this paper we study the Dirichlet Laplacian in certain bounded planar do- 
mains D. We denote the normalized solutions of - A u = A u ,  which vanish at the 
boundary of D, by cD, i_>0, and the corresponding eigenvalues by 0<Ao D <A D_< .... 

The difference A D - A  y is called the spectral gap of D. To quote [SWYY], the gap 

is obviously interesting. It is the rate at which heat kernels in D assume the shape 

of the ground state eigenfunction. See [Sm] and [D]. 

van den Berg notes in [Be] that in convex domains (in any dimension) for 

which the gap can be computed, for example parallelepipeds, the gap always exceeds 
37c2/d 2, where d is the diameter of the domain. Although there are a number of 

bounds on the gap for convex domains in the literature--sometimes extended to 

SchrSdinger operators, which are not considered here--no one has come even close 
to 37r2/d 2. See [Sm], [AB], ILl, [SWYY] and [YZ]. Essentially the best that  has 

been done is to show that the gap exceeds ~c2/d 2. Here we prove the following. 

T h e o r e m  1. I f  a bounded domain D is symmetric about both the x and y axes 
and is convex in both x and y, then the gap of D is no smaller than the gap of the 
smallest oriented rectangle containing D. 

Here, D convex in x means as usual that  horizontal lines intersect D in an 
interval or not at all, and oriented means the sides are parallel to the coordinate 

axes. The gap of a rectangle is 37c2/b 2, where b is the length of its longest side. We 

remark that dumbbell shaped domains of diameter 1 can have arbitrarily small gaps, 
so a condition on a domain involving something other than its diameter is necessary 
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to bound its gap from below. The proof of Theorem 1 is based on an extremal 

inequality for ratios of heat kernels, an inequality that holds in all dimensions. 

Despite this, we only prove a poor relation of Theorem 1 in higher dimensions, in 

the last section of this paper. We remark that  the conclusion of Theorem 1 still 
holds if the hypotheses of convexity in x and y are replaced by the essentially weaker 

hypotheses that  the domain D is convex in x and that the nodal line is the y axis. 

2. P r e l i m i n a r i e s  

The Courant nodal line theorem implies that the second eigenfunction of a 

bounded planar domain F is positive on F1 and negative on F2, where El and F2 
are those parts of I '  lying on either side of a curve, called the nodal line, which 

divides the part of F not on the nodal line into two connected regions. The first 

(smallest) eigenvalue of both F 1 and I~2 is the second eigenvalue of F. Second 
eigenfunctions are in general even less knowable than first ones, since often little 

can be said about the location of nodal lines. Here we make use of a theorem of 
Larry Payne [Pa], which implies that if D is as in the statement of Theorem 1 and 

is strictly convex in one variable, then the nodal line is either the intersection of 

the x axis with D or the intersection of the y axis with D. This together with 

both the monotony theorem, which says that if one domain is contained in another 
then the n th eigenvalue of the smaller domain is no smaller than the ?~th eigenvalue 

of the larger for each n, and scaling, show that the t ruth of Theorem 1 under the 

additional restriction that D is strictly convex in one variable implies Theorem 1 
in full generality. For, given any domain D satisfying the conditions of Theorem 1 

and any e>0,  there is a strictly convex in one variable doubly symmetric domain 

U contained in D such that ( l + e ) U  contains D. 

Let p~(x ,  y) be the heat kernel for D. For any domain U, and every u and 

v in U, p~t(u, v ) e ~ t / r 1 6 2  approaches 1 as t approaches infinity, as may be 

seen immediately from the eigenfunction expansion of the heat kernel. Theorem 1 

thus follows from the following proposition, upon letting t approach infinity. More 
specifically, it follows from the t ruth of this proposition for strictly convex in one 

variable doubly symmetric domains, which without loss of generality may according 

to Payne's theorem be assumed to have nodal line along the y axis. We let w* stand 

for the reflection of w across the y axis, and if A is a planar set we designate by A + 

those points of A with positive x coordinate. 

P r o p o s i t i o n  2. Let F be a bounded domain which is symmetric about the y 
axis and convex in x, and let JR be the smallest oriented rectangle which contains F.  
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Let z and w be points in F +. Then 

F+ 1:+ (z,w) 
(1) p ~ ( z , w ) + p ~ ( z , w * )  <- p tR(z ,w)+py(z ,w*)  ' t > 0 .  

Proposition 2 will be proved by first proving its analog for a discrete heat kernel, 
and then proving a local limit theorem connecting the usual heat kernel with the 
discrete one. Studying partial differential equations by discretizing them, even in 
a probabilistic setting, goes back to [CFL]. Let L be the two-dimensional integer 
lattice. 

Let X~, n_>0, and Y~, n_>0, be independent sequences such that  both Xi+ 1 -  

Xi,  i>_O, and ~+l-Y,i. ,  i_>0, are sequences of independent identieMly distributed 
1 Let Zn=(X,~,]ln). random variables, each taking on O, 1, and - 1  with probability 5" 

Then we wilt call Z,~, n>_O, planar random walk started at Z0. If F is a set of points 
of L containing x and y, we designate by qr(x, y) the probability that  planar random 
walk started at x remains in F up to time n and equals y at time n. We will prove 
the following proposition. In the statement of this proposition, connected means 
that  it is possible for random walk to get h'om any point in the set to any other. 

P r o p o s i t i o n  3. Let U be a connected subset of L which is symmetric about 
the y axis and which is convex in x. Let z and w be points in U +. I f  U is contained 
in an oriented rectangle R of points of L which is symmetric about the y axis, and 
the two denominator's' in (2) below are positive, and n>O, then 

u + R+ (z,w) q. 
(2) w)+q  <- q (z, 

3. P r o o f  o f  P r o p o s i t i o n  3 

Let 0 be a connected subset of L. Let Y=(Yo,YI,  ... ,Yn) be a finite sequence 
of integers such that  y0=z2, y~=w2, lyi-yi_xl<_l, l<_i<_n, and more restrictively 
such that  P (Y/= Yi, Zi c 0 ,  0_< i _< n] Z0 = z) > O, where z = (zl, z2). Put  

q Y ' e ( z , w ) = P ( Z ~ = w ,  ZiE(~,  O < i < n [ Z o = z ,  Y i=Yi ,  O < i < n ) .  

We note that  if O is an oriented rectangle then q~'e(z, w) is the same for all y with 
the properties listed just above. We will prove (2) by showing that  for every sequence 
p, the expression arrived at upon replacing q,O by qn y'A in  (2) for A=U, U +, R, R +, 

which we will call conditional (2), holds. Since, as just noted, the right-hand side 
of conditional (2) does not depend on 9, conditional (2) implies (2). 
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Since the x and y components of Z,~ are independent, conditional (2) can 
and will now be phrased in terms of one-dimensional random walk. Let Si+I-S~, 
i_>0, b independent and identically distributed, taking on -1 ,  0, and 1 each with 

1 If is fixed, and 7(k) is the largest j such that  (j, yk) belongs to U, probability ~. y 
then 

with similar versions for the other subsets of L involved with conditional (2). Fix 
n and positive integers m0 and ml for the rest of the proof of Proposition 3. If 

0 < f ( k ) ,  O<_k<n, mo<_f(O), and m z < f ( n ) ,  we put 

P 0 ( S ~ = m z ,  O<Si<_f(i), 0 < i < n )  
Q ( f ) : =  P o ~ , ~ l - - - m 2  ISil<_f(i), 0 < i < n )  ' 

where the subscripts on P designate So =m0. We always assume that  f is such that  
the probability in the denominator is positive. Conditional (2) is implied by the 
fact that  if 9(i)<_c, O<_i<_n, (g<_c for short) for an integer e, then Q(g)<Q(e). This 
in turn is implied by Q(h)<_Q(f), if h<_f. Thus to prove Proposition 3 it suffices 
to prove the following lemma. 

L e m m a  4. / f  O<h(i)< f(i), O<i<_n, and if there is an integer 0 < j 0 < n  such 
that f(i)=h(i) unless i=jo in which case f(jo)-h(jo)+l, then Q(h)<_Q(f). 

Pro@ Lemma 4 follows from 

Po(Sjo =f(jo) lS,.=rn~, 0 <  Mi <f(i), 0 < i < n )  (a) 
_> P0(Isjol =f(Jo) tlSnl = m l ,  IS*I <f(i), 0 < i < n ) .  

For this inequality implies, if we define Q by a quotient as above, that  the 
numerator of Q(h) divided by the numerator of Q(f) is no larger than the denom- 
inator of Q(h) divided by the denominator of Q(f), since the paths removed in 
going, say, from the numerator of Q(f) to the numerator of Q(h) are those which 

go through (j0, f(Jo)). 
Now let a, b, c~, and /3 be integers satisfying O<a<b<_n, 0<ct_<f(a), and 

O</3<_f(b). Define the probability measures P ~ f  on the set of all finite sequences 

(ia, ia+l,... , ib) of integers by 

Ca,,?(ia,ia+l,...,ib)~-P(Sk=ilc, a<lg<blSa=O/, Sb~-/~, O< S i~ f ( i ) ,  a<i<_b). 

Let rcj be the coordinate maps: %j(ia, Q+I, ...,ib)=ij. Under P~,f ,  the finite 
sequence of random variables 7r~, rc~+z, ..., 9rv is a Markov chain started at c~ with 
(nonstationary) transition probabilities, which do not depend on c~, given by 

qjk+l 
for j = i - l , i , i+ l ,  

/ - s  i--1 
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where 

q.~+l =p(Sb =/3, 0 < Sy <_ f(y), k + l _ < y  < b[ Sk+l = s). 

Let A~, A~+I, ..., Ab=A stand for a Markov chain which moves according to these 
transition probabilities. If r/is a probability distribution on { 1, 2, ..., f(a)}, we let P ,  
denote probabilities for A given that  its initial distribution, that  is the distribution 
of A~, is r/. 

We will prove that  if p and u are probability distributions on { 1,. . . ,  f(a)}, then 

(4) c,(x, oc)<_p(x, oc), x > 0 ,  ~ P,,(%t:>x)<P,.(Trk>x), x>O, a<k<b .  

We prove (4) by induction on k. The inductive step is the same for all k, so 
we just prove the special case of (4), in which a<k<b is replaced by k = a + l .  
There is a finite sequence r/i, l_<i_<n, of probability distributions on {1, ..., f (a )}  
such that  rll=U , U~=#, 7li_l(x,c~)<_~i(x, oc), x>O, 2<_i<_n, and ~h_l{j}=rli{j} 
for every integer j except perhaps for two consecutive j .  Thus our special case of 
(4) follows from the still more special case where p { j } = # { j }  for all but perhaps 
two consecutive j ,  and the proof of this special case easily reduces to the (even 
more) special case where p { 0 } = p { 0 + l } = l  for some integer 0. This final case is 
easy because of the particular form of the transition probabilities of A, given above. 
We remark that  just the fact that ~ makes no jumps of magnitude exceeding 1 is 
not sufficient information to imply the conclusion desired here. 

We need the following inequalities. If 0<c~0_<c~l <f(a) and 0</30_</31 <_f(b), 
then 

(5) r l ( 2 0  ,]~0 / (21 , i l l  <P2b (Tcj <_j<_b. ~,b fTcj = f ( j ) ) _  , =f( j ) ) ,  a 

To see (5), note that  the special case 3o=31 follows immediately from (4). Also, 
since everything is reversible (we are just counting paths), the special case ct0-c~l 
also follows immediately from (4). And (5) in its entirety tollows from these two 
special cases. 

Now we use (5) to complete the proof of Lemma 4 and thus of Proposition 3. 
Let P0 be the conditional probability on the left-hand side of (3). We will prove (3) 
by exhibiting a finite partit ion A of P:--{S0 m0, I&l=m~, [S~[<_f(i), 0 < i < n }  
such that  

P(lSjol=f(jo) ]A)<p0 ,  A c A .  

Let M, M + I , . . . ,  N be the longest string of consecutive integers, if it ex- 
ists, such that  both S~r M < k < N ,  and M<jo<N.  Let Q be the event 
that  there is no such interval, that  is, that  Sjo=O, and for each iE{O,. . . , jo} 

and k c { j 0 , . . . , n } ,  let Q.i,k={M=i, N=k}.  Clearly, o=P(lS~ol=f(jo)lQ)<_po. 
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Furthermore, P(lSjol=f(jo)lQo,n)=po, since Qo,n={O<Sj<_f(j), O<_j<_n, So= 
m0, &~=rnx}. Let 0 < i < ? ' 0 < k < n .  Then Q~,k is the set of all the paths of F 
such that  I&l=l, Iskl=l, Isjl_>l, i<_j<_k. Thus the conditional distribution of 
(Isjl, i<j<k), given Qi,k is exactly pl,1 Again, we are just counting paths 

- -  - -  i , k  " 

here. On the other hand, the conditional distribution of (Sj, i<_j<k), given 
{S0=r/t0, S n = m l ,  O<&<_f(i), O<_i<_n}, is a mixture of the distributions ps,t i ,k 
over all the integers s in [1, f(i)] and t in [1, f(k)],  which follows by further con- 
ditioning on & and S~. Thus (5), or more precisely its analog where a and b are 
replaced by i and j ,  implies P(ISjo I = f(Jo)lQ<j)<_po. This completes the proof of 
Lemma 4 and thus of Proposition 3. 

4.  D e r i v a t i o n  o f  P r o p o s i t i o n  2 f r o m  P r o p o s i t i o n  3 

Throughout  this section random walk Z,~=(X,~, Yr~), n>0 ,  will be assumed to 
start at the origin. We put r -1/2 exp(-x2/20),O>O, and Ao(xl,x2)= 
r The classical local limit theorem implies that  if M > 0 ,  both 

(6) max P , & _ , . ~ . (  = a ~ ~  1 + o ,  a s , ~ + ~ ,  
{lil,ljl<M./~.} A2n/3(i,j) 

and 

I P(x,~ =i) 1 
I I l a x  - -  7 . ,  (7) ~ M < ~ } [  r -+0, as n - + o <  

where of course i and j stand for integers. See [DM] for a discussion of local limit 
theorems. In addition, the following holds. 

L e m m a  5. Let~l>O. Then 

sup{nP(Zk=(i,j)):k<_On, lil>_~/n or I j l > ~ l v ~ } ~ 0 ,  a s 0 - ~ 0 ,  n -+c~ .  

Pro@ Since P(Xk i) is symmetric in i and nonincreasing as i increases from 0, 
we have both 

(8) maxiP(Zk = (i ,j)): Iil ~ m or IJl ~ ~ 4  f ( X k  = m ) P ( i k  = O) 

and 

(9) P(Xk = m) < - 
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for every positive integer m. Now by (7) we have 

(10) sup P(Yk = O)v~ = c < co. 
k>0 

Furthermore, using Hoeffding's large deviation inequality (see [Po]), we have 

(11) P(Xk >_j) <_ exp(-jZ/2k), j >_ O. 
Together (8)-(11) give that  if 0 1 2 < grl , then 

sup{nP(Zk = ( i , j ) ) :  1i1 > rlx/~ or [j[ > r l v ~ ,  1 < k < On} 

< s u p { n e ( X ~  _> l r / v ~ ) 2 r l - l n  - 1 /2ck-U2:1 < k < On} 

sup n e x p  -r/2 n 1 <  On}. --~ { ( 181g) 2~1 - ln-1/2c]g-1/2 : ]g< 

Calculus shows that  if 0<_gr/1 2 this last expression is maximized for k=On, from 
which Lemma  5 follows easily. 

Now let Bt=(Ct, Dt), t>_O, be standard two-dimensional Brownian motion 
started at 0. Let G be a bounded domain convex in both x and y which contains 0, 
and in this section let pt(z, w) be the heat kernel for G. Let r=inf{t:Bt r For 
any Borel set A, 

rAPt(O, z) dz = P(Bt e A, t < 7-). 

Also, since G is simply connected 

(12) P(T<t, B, cG, 0 < s < t ) = 0 ,  t > 0 ,  

where the - denotes closure. See [DY]. Put  Z ~ = n  1/2Zj, j~O, gild let P? be the 

distribution of Z~. There is a sequence of random vectors (Cs~, Dt?):=Wi '~, i>_O, 
such that  Z~ ~, j_>0, and Wj ~, j_>0, have the same distribution for each n, and 

(13) max IB2.i/a,~-W}~l--+O in distribution, as n--+oo. 
0<i<3n/2 

Here and fi'om now on let n be an even integer so that  art is an integer. We may 

take s~ ~ to be the times for the s tandard Skorohod scheme (see [Br]) embedding 
of the distribution of X~ ~, j_>0, in the one-dimensional Brownian motion Ct, and 
take t~ ~ to be the independent Skorohod scheme for the embedding of this same 
distribution in Dr. It  is routine to prove (13). We remark that  we do not need the 
full strength of (13) in what  follows, only invariance, although (13) makes things 
conceptually a little easier. 

Let rn=inf{j: Z] ~ r and let 2~] ~ be the distribution of (Z]~; j <rn) .  Then (12) 

and (13) imply that  if c~>0, and if q~ is a sequence of integers such that  %/3n-+c~, 
as n--+oo, then if f is a bounded and continuous function on the plane, 

(14) 
J J 
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L e m m a  6. We have p l ( 0 , 0 ) = l i m ~ o ~  rt73r~/2(O). 

Pro@ Let s>0.  Let S be an oriented square centered at 0 and contained in 
G, and T be a number in (0.9, 1), such that  

(15) [pt(0, z ) -p l (0 ,  0)1 < ~, if z E S and T < t < 1. 

Let F be a number in IT, 1) such that 

(16) ~ A1-F(z) dz > 1 - a ,  

and which in addition has the property that  if Fn is the smallest integer such that  
Fr~> 3rtF, and 0 ~ =  3 ~r t -F~,  then 

(17) ,~(/)  < a_, i f l ~ S a n d k < _ O n .  
n 

This is possible by Lemma 5. Now, if * denotes convolution, 

(18) 7ar~'~/2(0)=7~,.*~/;~(0)-E E P(~n=~ n - k '  ZanY~ 2-k=l)pk(-l)" 
l~G l < k < O ~  

By (17), the double sum of (18) 

We may and do assume that  
fcpr(O,z)A1 r(z)dz  as a s u m  
equality together with (15) and 

is smaller than err 1. In addition (14) and (6) give 

L p v ( 0 ,  z)A1 r(z)dz, r t ~ .  a s  

F >  1, so that  pr(O,z)<)w(z)<l. U p o n  wri t ing  

of integrals over S and S ~, and using this last in- 
(16), we get 

- < * (0) < p l  (0, 0) + 

Together with (18) and the comment, just after (18), this establishes Lemma 6. 

An essentially identical proof will establish the tbllowing lemma. 

L e m m a  7. Let u and v be points of G and suppose there is an integer n>O 
such that u - v  is in the lattice L/n.  Let F}'~=u+n-1/~Zj, j>O, and let ~n=inf'{j: 
F}~C}.  Let g)~ be the distribution of (F}~;N<~). Then 

,~12 2 6/~2n 2 [ \ 
pl (U,v)=  lim o~ rt glsk2~2/2~v). 

Together, Proposition 3 and Lemma 7 prove Proposition 2 in the special case 
that  t = l  and both z - w  and z - w *  lie in one of the lattices L/k, for some integer k. 
Clearly the t = l  restriction can be removed. And since the union of all the lattices 
is dense in the plane, Proposition 2 in its entirety follows easily. 
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5. Higher dimensions 

The analogs of Proposit ion 2 in all dimensions hold. We state this as a propo- 

sition. Points in R '~ are denoted (Xl ,X2, . . . ,x~)=x .  The notat ion A + stands for 
AN{x1 >0}, and x* stands for the reflection of x across {Xl=0}. By an oriented 
n-dimensional rectangle we mean the product  of n intervals. 

Proposi t ion 8. Let n > 2 .  If  "rectangle" is 'replaced by '%-dimensional rec- 

tangle", and "y axis" is replaced by "{xl =0}" ,  and "convex in x "  is replaced by 

"convex in x l "  in the statement of Proposition 2, the resulting statement is still 

true. 

The proof of Proposit ion 8 is almost identical to that  of Proposit ion 2. We let 

x~, i>0,_ x~, i>0,_ ... , x~, i>0,_ be n independent one-dimensional random walks. 
x 2 x 3 x n The analog of Proposition 3 holds, and is proved by conditioning on ( i, ~ , ' " ,  i ), 

i>0 .  Wha t  we need to extend Theorem 1 to higher dimensions is, evidently, an 
extension of Payne's  theorem to higher dimensions, an extension which has not yet 
been shown to hold, al though it seems quite likely to be true. Wha t  we are left 
with is the following. 

Theorem 2. Let D c R  ~ be convex in x I and symmetric in xl .  Let R be the 

smallest oriented n-dimensional rectangle centered at 0 which contains D. Then 

Ag + -Ao  D is at least as large as the gap of R. 
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