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An example of a real analytic strongly 
pseudoconvex hypersurface which 
is not holomorphically equivalent 

to any algebraic hypersurface 

Xiaojun Huang(1), Shanyu Ji and Stephen S. T. Yau(2) 

1. I n t r o d u c t i o n  

A submanifold in C n is called algebraic if it can be defined by polynomials. 
As is clear, any totally real analytic submanifold is locally biholomorphie to a cer- 
tain coordinates space, hence equivalent to an algebraic manifold. By the work of 
Moser and Webster [MW], the germ of a real analytic surface M c C  2 at an iso- 
lated elliptic complex tangent poEM with 0<)~< 1 (where ~ denotes the Bishop 
invariant), is biholomorphically equivalent to a real algebraic one. However, the 
corresponding statement is generally false even for CR manifolds in C 2. An explicit 
example of this type has appeared in a recent survey article of Baouendi Ebenfel t-  
Rothschild [BER2, Section 7]: In [BER2], they constructed a real analytic hyper- 
surface M in C 2 and a smooth CR map f from M into an algebraic non-Levi-flat 
hypersurface such that  f is locally biholomorphic away from a certain subset EcM, 
but f is not real analytic along E, where E is a non-trivial holomorphic curve. In 
such an example, for each pEM\E, (M,p) is equivalent to the germ of a strongly 
pseudoconvex algebraic hypersurface, but for each pCE, by the reflection principle 
proved in [BHR], (M, p) can not be holomorphieally equivalent to the germ of any 
real algebraic hypersurface. The key feature in this example is the degeneracy of 
M along E. (See also related examples in [E] and [BHR]). 

In this paper, using a different approach, we provide an explicit strongly pseu- 
doconvex hypersurface in C 2, that  is not biholomorphically equivalent to any real 
algebraic manifold in the complex spaces. 
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T h e o r e m  1.1. Let M = { ( z , w ) C C 2 : I m w = e l ~ l : - l } ,  which is apparently 
strongly pseudoconvez and real analytic. But for any pEM,  the germ of M at p 
is not holomorphically equivalent to the germ of any algebraic real hypersurface 
in C 2. 

Real algebraic hypersurfaces form an important  subclass of real analytic hyper- 
surfaces in complex spaces. There are many substantial results in the CR geometry 
which exclusively hold in this subclass. To name a few of the works in this re- 
gard, we mention Webster's algebraic mapping theorem [We], Baouendi-Ebenfel t -  
Rothschild's algebraicity theorem [BER1] and an algebraic Riemann mapping the- 
orem of the first two authors [HJ]. (See also [BER2] and [HI tbr a detailed list of 
references). 

Our approach uses CR holomorphic invariant flmctions. For any strongly pseu- 
doconvex real analytic hypersurface M c C  2, we have a projective structure bundle 
32 associated with it [C], [F], which will further be parametrized locally by 8 com- 
plex variables: z, w, p, u, ul,  u 1, Vl and t. Using the curvature functions L 11 and 
Pl l ,  we will derive the following Cartan-type holomorphic invariant functions on Y 
(see Lemma 4.1 for the explanation of notations): 

Ll l  Ll l  11 
021IoJ 1 ' 02 1 , Lwl, Nil,w1 and Pl1,~1. 

In case M is rigid, we will show- that  these seven invariant functions depend only on 
the variables z, p, u, ul,  u 1 and vl. Hence, they would be generically functionally 
dependent. If M would be locally bihololnorphically equivalent to a certain real 
algebraic hypersurface, there would exist a non-zero polynomial R such that  

R(L~ll IWl' L11,Lll.~l, Lwl,11 N i l , / D l l , w l ,  p l l , w l )  _-- 0 .  

Finally when M is in the specific form as in Theorem 1.1, we will get a contradiction 
to the existence of such an R. 

Acknowledgement. The authors acknowledge many stimulating conversations 
with S. Baouendi, P. Ebenfelt, L. Rothschild and S. Webster. Most of the symbolic 
computation in this paper was further checked by using Maple V Release 4. 

2. P r e l i m i n a r i e s  

Let 2td be a complex manifold of complex dimension 3. V~Te say that  a G- 
structure ~ on A4 is admissible, if it is given by holomorphic subbundles A, B CT*3d 
such that  the fiber dimension of A (respectively, B, A n N )  is 2 (respectively, 2, 1). 
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A basis (0,{91,01) of T*J~ will be called a cofrarne of ~ if OcANB, 0lEA and 
01 EB. Let J~l and M2 be two complex manifolds with admissible G-structures ~1 
and G2. A biholomorphic map from M1 onto 542 is called a G-isomorphism from 
541 to 542, if it preserves the G-structures of M1 and M2, respectively. The local 
isomorphism of G-structures can be defined in a similar way. 

Assume that  M = { ( z ,  w ) E C  2 :r(z, w, 2, 0)=0, d[MrTs is strictly pseudocon- 
vex near pEM. Its Segre family is then the complex three-fold 54={(z,w, r 
r(z,w,~,rl)=O}cC 4. And, as is well known (see [CJ1]-[CJ2]), there is a canon- 
ically associated admissible G-structure on 54 near the point (P0,P0), where A 
(respectively, B) is generated by dz and dw (respectively, dC and drl), and ANB 
is generated by O=(Or/Oz)dz+(Or/Ow)dw. If M c C  2 is biholomorphic to an- 
other real analytic hypersurface M ' C  C 2, namely, if there is a local biholomorphism 
F=(f ,  g) from an open subset of C 2 onto an open subset of C 2 such that  its restric- 
tion FI~/t(M)cM', then it induces a local G-isomorphism from the Segre family 
54 of M to the associated Segre family 54t of M ~, through the map (z, w, s r/)~--) 

(f(z, w), 9(z, w),/(~, rl) , ~(~, rl) ). 
Let M be as above. Assume further r~o(po) = (Or/Ow)lM (P0) r  Define 

_ ( ) (2.1) S:54---~54cC2xp ~, (z,w,C,r~)~-~ z,w, 07z:~  

Here we may regard (z, w, C) as a local coordinate system for 54, and use (z, w, p) 

as the local coordinate system for 54 with p=-r~/r~.  We can define a unique 

admissible G-structure bundle over Ad to make S a G-isomorphism, by assigning 
its coframe along 54 as 

(2.2) 0 = d w - p  dz, 0 1 = dz, 01 = a l p - P 1 1  dz, 

where Pl l  (z, w, p) is holomorphic so that  S* (01) is in the span of d~ and (Or/Oz) dz+ 
(Or/Ow) dw. Since dO=O ~A01 (mod 0), the coframes, satisfying the normalization 
condition &o=iwlAwl (rood w), are in the form of 

(2.3) w=uO, a)l = ?.tl0-[-~ 0 1 , COl mVlOq-vl01, 

where u, u I, ~t I and vl are holomorphic functions with u=iulv 1r 
In what follows, we will perform calculations on 54 and its associated bundles. 

This will greatly simplify the later computation. 
Over 54, there exists a holomorphic principal bundle y ,  called the projective 

structure bundle. A result of Chern [C] asserts that  there is a uniquely deter- 
mined holomorphic Cartan connection, called Hachtroudi connection, which is de- 
fined on y .  The Hachtroudi connection is given by the holomorphic 1-forms w, w 1, 
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Wl ' (~, r r r and ~ defined on 32, which satisfy the structure equations 

(2.4) 

dw = iw 1 Awl +wAr 

dw 1 = w 1 Ar +wAr  1, 

dWl = r AW 1 -~-Wl Ar162  

de = iw 1Ar Awl +wAr  

�9 i := dr162 1+2ir  +�89162 =0, 
q~l : = d r 1 6 2 1 6 2 1 6 2  1 1 1 A(;b 1 + ~r = Ll lwAWl,  

~D1 : :  dr - r  Aq)l zr ICAWl : PllWAW 1 ' 

k~ := d r 1 6 2  2ir 1Ar = HlwAw I +KlwAWx. 

Here the functions L 11, Pl l ,  H1 and K 1 are called CR curvature functions. If we 
let ((~1, .--, a s )=(w,w 1, ---,~P), it is known that  2,4 is locally G-isornorphic to 31t' 
coming from M'  if and only if there is a local biholomorphic map ~ from y onto 
Y s u c h t h a t  * ' _ _ jz  o j = a j  for all 1 < j < 8 .  In what follows, we denote the push-forward 

of y to by 

3. C R  c u r v a t u r e  f u n c t i o n s  

T h e o r e m  3.1. Let M be as given by (2.1) and let ~ the corresponding holo- 

morphic principle bundle associated to Ad. Keep the notation which we have set up 
in (2.2) and (2.3). Then besides the three holomorphic l-forms in (2.3), there exist 
five more holomorphic 1-forms r r  1 r (bl and r defined over y ,  with complex 
variables z, w, p, u, u~, u 1, vl and t, where u ,u~r  and ( z ,w)~po .  These holo- 
morphic forms are linearly independent, satisfy the structure equations (2.4), and 
are explicitly given by the formulas 

r du + tw+ iVlwl - iuI 
u g n 

+,  ulul ( 3,UlVl ,02 ,1) 
- u u r  + _ y ~ _ 2  + 4  u 0p 2 a l  

( t U  1 i (~l )2vl  U 1 ~2pl I tt~ 0 3 p l l )  
+ \ 2u 2u 3 4u 2 019 ~ H 6u 2 0 p  3 w, 



A real analytic strongly pseudoconvex hypersurface 

(~  3iulvl  1 0 2 P n ~ w  ~ r  dvl vA r  r i OPnwl+ 

+[vlt  iul(vl)  2 i~1,1 Opj~ Vl 02pll 2i 02Pll 

i f 03pll . O3pll , 03pl~ "~] 
6uu~ ~ 0p-~0z +Pn OpS-p3 ~-P ~ ) J ~' 

~ = _ d t + t c + i v - t r 1 6 2  (u1)2vl iu 1 02pll 1 O3pn~ , 
u u \ 2u 2u ~ ~4u ~ Op ~ 6nv~ ~ ) ~  

ivlt  u l (v l )  2 U 1 07911 iv1 02pll  2 02pll  
+ ~u 2 ~  + u(u~)2 o ~  ~ ~ ~;~ 3~} o p o ~  

1 / 03pll , 03pll , 03pll "~] 

+ _~d_(ul)2(Vl) 2 iulv102pll (ul) 2 @11 4ul 02pll 

tt I 03pll (iu~v I '~1pl1 ) 03pl I ulp 03pl1 1 (02p11~ 
3u2u~ Op~Oz Jr \ 3u 3 3u2u~,, Op 3 3u2u~ Op2Ow 8u ~ \-op-~p~ ,# 

1 0 p l l  03pll  ] 03pll  1 04I)11 Pll  04PJ P 04pll  ] 
d 3u ~ 019 Op 3 2u~Owap ~ ~3u~OzOp~+3u ~ Op 4 ]- 3~t 2 O-~Op3J 02" 

79 

Moreover, the CR curvature functions are given by 

L 11 = i(u~) 20apn  
6u ~ Op n ' 

i [02pll 1 0p11 02pn 20p11 02pn pu 03p11 

1 0Pll [" 03pll , 03pll ~ 2 / 03p11 d- 11 03pll 03pll ~ 

1( 04~11 04pll  , 04pll  ~ 1 03pll  (Opl l  OPll'~ 

Pal /t Oapn . O4pxa , 04pll "~ 

P / 04pll , cOapn , c94pl1 
+ 6 t O z ~ p 2 0 w + P 1 1 ~  t p  Op2Ow2 ) ] ' 

= - -  ~ ~} Op Ou ' 
~i \-5;-~ +Vl~-Sp-; +vO~ ) +2iv~-~ +2u~ 2 

2iu~u~ 0Pl1 H1--  2in~ OPn 2iul d -- . 
u OF u Ou I 
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Proof. These forms are constructed by applying a similar, but complicated, 
process for getting (2.4) as in [CM], [C]. Here, for the convenience of the reader, we 
verify, in certain details, that  the connection forms constructed satisfy the structure 
equations in (2.4). This is good enough to complete the proof of the theorem, by 
the uniqueness property of connection forms. 

For simplicity, we write 

{r 1 _  u u r + A I ~ I + A ~ '  

r  dvl v1r  r ~ i Opll 
U ~ ( ~ ) 2 0 W  ~176 

i v 1 - 1  i u l  , - ~ 1  1 r 1 6 2  - - - 0 1 + C ' 1 c ~ 1 + U  a3 +O'w, 
~t U 

where A 1, A, B1, B, C, C 1 and C1 denote the corresponding coefficients in the 
formulas. 

It is easy to see that  the first three equations in (2.4) hold. Let us first verify 
the fourth identity in (2.4). In fact 

de d +tw+Wlw 1 iul - -  021 
U ~t 

=dtAw+tdw+iUdvl-Vl " udul_ul  du _iuldw 1 u2 duAwl +~Vl dwl- i  Awl 
U U 2 U 

+ ( i t - iB1 - iA1)w x Awl + iw ~ Ar + i r  :L Awl +wA~ 

=,/~1 Ar + i r  1 A~I + ~ A f .  

Next we verify the fifth identity in (2.4), 

dul  iu I / '2ivl 1 0P11"~ 1 

/ 'It 3 /u lv l  ul  ~Pll 1 02p11~ ] 

ul  - . 

+ ~ - - + u  I Op J dwl+d 2u 2 uu I Op 

t 3iUlVl u 1 0pll 1 02p115_. 
+ 2 2u 2 uu~ Op ~4u ~ )/\aa~ 

_1 02pii 
4u 0192 ]Aw 
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( 9ulvl 3iO2pll 7 )  021 A~ 1 = iA1-2iBx-~ ~ ~ oTTp ~ ~- 

{ A  3iulB 1C iult 3(uX)2vl 3iul 02p1~ 1 03pll ) 

[ 1 t ) 3u1(vl) 2 2ivlt ~3iv1 1 0/)11 A 1 3~ 1 0Pll [ + 2iB-2CI+\TU-u d u] Op 2u(u~) 2 0 w  u 3 u 
OPll /3 iu lv l  /: "~ 1 OPll 02pll 3iv1 02pll 1 02pll 
019 t 2~u~ + ~ ) 4uu~ 019 Op 2 4u 2 0192 § uu] OpOw 
1 //03pll . 03pll 03pll ,]wAwl+i w 1 4uu~ t O ~ p 2 + P 1 1 - ~ - p 3 + P ~ ) J  1Ar162 2 g~Aw 

= iwl AO 1-2i01Aw 1 -- �89 

We check the sixth identity (I)I=LllwAwl in (2.4) as follows, 

~1 =d01--0A01--01A0[§189162 1 

=d[ dUl ul (tttl i(ttl)2Vl tt102pll tt~ O3p11) 
0~+ U U \ ~ 2U 3 4U 2 0 p  2 t- - -  6u 2 0p8 

(~; 3iulv1 1 C~2pl 1~O211.OA01.01AO~_F~I/)/~(M 1 
+ ~ + ~ 7 - ~  ~ -t 4~ ~ j j 

U 1 

-]-(--I/)-]-'O-]-t?-ol--i'l~lOl-i-C1DolJf-C1Dul-t-O~176 A 7/, t ~&d-]- 2 '7/'1 10J 1 ''~ ) 

_l_ (_  01 _ ~_ 0_i_ ~_ 0~ _i_ (ul) 2 ~(gPIAjl_I L.O 1 _i_ B1 Do1 _t_ B(..o) A (_  i (it 1 ) 2 ~ $ 2  Cd_t_ ~_U D g 3i%tl 1' ) 

_l_(_0_]_tCO_i_Lt~_0g I i%tl ) ( 7s 1 ~'%tl 3i(%tl)2v1.ix.)_ [ I/, 1 02p11 
u wx A - ~ - 0 1 - ~ - u w +  2u 3 2u 2 OpTW 

U] 03pll 3iulvlw 1 1 02p110.,1" ~ 
3u 2 0p~ ~ - - u  2 4u K~p 2 ) 

[--0~ iul ' 1 G~P11' 1 + 
L 

( :  3iulvl 1/, 1 (9p11 i (92p11)]A lt~ 03pl1 
+ 2u 2 uu~ Op ~4u Op 2 ~z 6u 2 Op~ 

1 u1(iWlAOl--2iO1Aw1--~Aw) 



82 Xiaojun Huang, Shanyu Ji and Stephen S. T. Yau 

//tu I i(U1)2Vl ~t 1 02;11 U~ cQ3p11"~ 
+ ~ Tu 2u 3 4u e a p  ~ q  6u 2 0 p  3 J (iwlAwl+wAr 

+ ~ - ~ - U 2  q-4U Op2 (wlAr176162162162162 +l~;Aa;1 

U 1 ,/a2p11"~ U~ ./'a3p11"~ 1 /02p11~ 

= L l l w A u o 1 .  

We continue to check the seventh identity (lbl=Pilo2Aw 1 in (2.4), 

~1 = d r 1 6 2 1 6 2  

=d( dvl Vl~)~_~)l~_ i ~  ) 1 
u ~t (U~l) 2 ajI+Blwl+Bw --~11A4D] -t- 2 ~Awl 

i Opncjl+BlcJl+Bcu) 

( . - , ) (~__t~__~Vl021~_iUldl__(~_[_(~l 3iu 1 t iulvl 1 c~2pl 1 A u u 2u ~1 4u Op 2 
+ ( - r  wl-iulu Wl) 

/ k [ ~ ,  Vl 1 3i%tlv1 1 ~2pl I Vlt 3i%tl(vl)2 d_~ i~tl ~Pll 
U - r  t 0/)2 021--~-U02 2U3 U(~) ~ O~  -w 

[ -  

Vl 02pll 2i 02pll -- i / 03p11 , 03pll C93pl1 ~ 7 
2u 2 Op~ W - 3uu~ O ~  w+ 6uu~ t O ~  + Pn --O~-p3 + P ~ ) W J 

[ ( ~  ] OP11"~D01 + -r + iul D21Jr_ -~ 

( t 3iulvl ~tl OP11 1 02pll ] 
+ 2 2U 2 UU] Op } 4U Op 2 W 

2i 0pll 2iul ~Pll 2i 02pll 
A (~I) 2 o~  ~ + ~ ( ~ I )  ~ o ~ - ~ - 3 ~ o p a ~  ~ 

i / 03pll , 03pll , (93pll h ] 
-I- ~ t ~  ~-Pll ~ d - P ~ )  ] 

-i-(-+-~-'r162162176176176 ~ 
u 1 _~(_+l_~+~_Aoo~_A1cu1) i (_3 iv ,  2~-u D~ ~U2 LU /(Vl) 2 (U~)2 ~wla DU) i 
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i @11 (wlA~_[_wA~I) 
(~)~ o~ 
(2  3iulv1 1 02p11) A(r162162 

+ 2u 2 4u 0192 

[Vlt iul(vl) 2 iU 1 G~P11 Vl 6~2pll 2i 02pll 

+[~+ 2u ~ u(u~) 2 Ow q 4u~ @2 ~-3uul OpOw 
i /' 03pll . 03pll . 03p11 ~] 

6U-~t~ ~ ~ t P l l  O~-p3 ~ C P ~  / ] (iO')l i(zJl-~o2i~) 

1 , i . fcQP11 

~_d ( ~  Ao21 iltl d (~wl l )  Ao2 _I._ Vl 02pll 

2i .//02pll "~ ~ d  ( ~ ' ~  fo2-- i 03pll d~.11 i(x. ~ 

ip11 .l" OSp11"~_ i 03p11 , . ip ~ [  03pll 
6uu~ d [  O~-p3 ) ,\c~ 6u-u~ O-p-~-owap/xw-- 6-6~ul]ul] a t  op-~OwwOw / AW 

~ Piled Aa) 1 . 

Finally, we verify the last equation in (2.4). Taking differential on the fifth 
equation of (2.4), q51 =0, we obtain 

d~ = 2i@ 1 Ar +r  L)W AoJ 1 + xcoAaJ 1 q-XAw. 

Taking differential on the sixth equation of (2.4): ~ l=Ll la /AWl,  we get x=O, and 

X= 2(Lll)w 1 

~ ~ - ~  ] 2  ( 0 L  11 0Pll , 0LllX~ 0L ll (2~1_ 4 1 0 p l l } 0 L  11 
= Ul ~ ~-z -~Pll tYlJ ~-P Ow-w / -F 2ivl -~--~ @ 2~t~ %10P Ou 
=- K1. 

Taking the exterior differentiation on the seventh equation in (2.4), we obtain 

= 2 ( d P l l ) ~  2iu] oP~ ~ 2i~u~u~ 0 P l l  
-- u 019 2iul -~ u Ou I -- H1. 

So the last equation in (2.4) holds. [] 
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L e m m a  3.2. Let h(z,p,u, ul) be any differentiable function on ~2. 
holds that 

Oh 1 ~ ( ~ 1  [iut Oh . 1  Oh iuaul Oh ] 

E( i%t~Vl Ulpl l )  cob ul 0h q-7/ '~  
+ u 2 uu} % ~u} Oz 

1 [ t 3July1 ul COPll 1 02pll "~ Oh ] 
~-Ul t 5  2~t 2 ~t% I Op ~ 4%t ~p 2 )~ullJ Od" 

Then it 

Pro@ First, from (2.3) we can easily derive 

az = ~ 1 _  ~_1 

d p i U l o d l ~  ( vl ulp11 ) ---- U ~- WI+ UV 1 UU 1 DO. 

Applying the formulas in Theorem 3.1, we then also see that  

d u = u ( _ r  iul 

[ 
~- 2 2U 2 UU 1 cOp ~4U cOp2 W . 

Now, to conclude the proof of the lemma, it suffices to substi tute the above to 

Oh Oh Oh . Oh 1 
dh= Oz dz + ----dP+ i)u l [] 

4. C a l c u l a t i o n  o f  invariant  f u n c t i o n s  

For any differentiable function h on the projective bundle ~,  there is a unique 
representation for its differential dh into the covariant differentials in terms of the 
connection forms in Theorem 3.1, 

dh = h~w + h~ 102 1 @ hwl DO 1 ~- hr162 h r r ~- hr r _~ he 1 r -~ hr ~). 
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Using the CR curvature functions L 11 and P n  defined in Theorem 3.1, we can 
get five more invariant holomorphic functions from their first and second covariant 
differentials, 

11 Lll  Pll,Wl Pll  and Pll,~ol. LW I ~ CO 1 W1 ~ 

Notice that  when r is Nash algebraic, all these holomorphic invariant functions 
become algebraic too, by the way they were constructed from the defining function�9 

L e m m a  4.1. Let M be defined as in Theorem 1.1. Then we have the following 
formulas for the above invariant functions: 

Lll = (~l)2al(z, <) 
u3e3~<(l+zs 7' 

&(z,0 
5 1 :  Zt(U~)2ez((l_Fz4)7, 

e l l :  (~)3B3(z,4)  ~l(~I)~A3(~,<) 
~o~ l t4e4zr F u4e3Zr 7 , 

e l i  : ~IB4(~, 4) v~(~l)~A~(~, <) 
~ e 3 < ( 1 + ~ 0 9  ~ . ~ P < ( l + z r  ' 

L~I ('~1)~C~(~,4) ~I(~I)~B~(~,r (~1)~(~I)~A~(~,4) 
W l I W  1 - -  U 5 e a z < ( l j _ z < ) l  1 --~- u5c4zr162 ~- uSeaz<(l+zr ' 

B6(z, r ulA6( z, 4) 
P~l'~ : ~{e~<(1+~r ~ ~2(~I)~ez<(1+~4) 7' 

B7(Z, r vlA7(z, 4) 

Here, Aj,  By and Cj are polynomials in (z,r with Ay(X,x)=Djx2+o(x  2) and 
Dj#O. 

Proof. When M is as in Theorem 1.1, then r (z ,w ,4 , 'q )=2i (e~r  A 
simple calculation shows that  

(4.1) P = 2i4 e~r Pll = 2i4 2ez~. 

In particular, we get pn(z ,  r162 ~); and for any integer k k l ,  we have 

OkPll . ok--lr okr 

- ~ o 7 ~  + P ~ 

Applying the differential operator 0/019 to (4.1), we find 

0r <2 
Oz l + z r  
0r 1 

�9 Z~ 019 2~e ( l + z 4 )  
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02< 2z+z2< 
0192 4e2Zr162 3 '  

03~ _ _  --9Z2--8Z3~--2Z4r 2 

~p3 8ie3Z<(1+zr ' 

04r 64z3+79z4r162162 3 

0194 : 16e4Z~ (1 + zr 7 

Hence 

0pl 1 0r 2 r 1 6 2  2 
Op =<+P~- 1+~r 

0Pll 2i<ae ~< 
Oz l + z r  ' 

02Pll _ 2 + 2 z < + z 2 r  2 

@2 2ieZr163 

02pl l  3 r162  4 

Oz@ ( ~ + ~r , 

02pll _ 2ie~r 3~4+2zr  5 
Oz 2 ( 1 + z r  3 , 

03pl l  _ 6Z +6z i~  +4z3r + Z4~ 3 

0 1 9 3  4 e 2 ~ ( 1 + z r  s ' 

0 3 p n  6r +6zr +4z2r + zar 4 

03pl l  _ 12r 3 +16z r  4 +9Z2{ 5 +2z3r  6 

OpOz 2 

c04pll 

(1+zr 

36z 2 + 4 0 z 3 < +  29z4< 2 + 12z5< 3 + 2z6~ 4 

Op 4 8ie3Z<(l + z~) 7 ' 

04pll  6-- 18Zr 18Z2~ 2 -- 14Z3~ 3 -- 6Z4~ 4 -- Z5r 5 

O3pOz 4 d z < ( l + z r  7 , 

04pl l  __ 3642 +40Z~ 3 +29Z2r 4 + 12Z3r 5 +2Z4r 6 

Op2 0z 2 2ieZr ( l + zr 7 

Now apply ing  T h e o r e m  3.1 and the  above data ,  we get 

L I I =  (u~)2Al(z ,r  
u%3<(l+zr 7' 

with  Al (z ,  4) = 36f f  + 4 0 z 3 ~ +  29z4~ 2 + 12z 5 ~3 + 2z6~4. 
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Notice that  pl l  depends only on (z, 4). Applying Theorem 3.1, we get 

i [ 10Pl l  03Pll 1 04pll Pll 04pll ~_~03pllOPli 
P n  - u(u~)2 6 0 p  Op20~ + 60p20z  ~ -t 3 0 p a O z  019 a Oz 

Hence, applying the data  we just obtained, we can get 

A2(z, 4) 

with A2(z, ~)=3642+l12z43+145z244+llOz3~5+55z4~6+16z5~7+2z6~S. 

ing the just obtained formulas for L n and P l l ,  we have 

p2 ] 11 04pll 
6 0194 " 

Apply- 

OL 11 _ (u~)2(72z--96z24--120z342--96z443--53z544--16z645--2z746) 

Oz 48u 3 e 3zr (1 + z4) 9 ' 

0 L l l  _ (%6~)2 ( _ 3 2 0 z  3 _ 4 1 0 ~ 4 _  3 1 6 z  542 _ 163z643 _ 48z744  _ 6 ~ s ; 5 )  

0t) 96iu 3 e 4z~ (l + z4) 9 ' 

OL 11 (u~)2(36z2+40z34+29z442-i-12z543+2z6~4) 

0%6 16u4e3~ (1 + z4) 7 ' 

OL ll _ ul (36z 2 +40z34+29z442 + 12z5~ 3 +2za~ 4) 

Ou~ 24u3 e3z( ( l + z4 ) 7 ' 

1 / O L  ii OL 11 
/ - - + P i l  ul \ Oz Op ] 

_ u~ ( 7 2 z -  96z2~ - 440z 342 - 506z4C 3 - 369z54 a - 179z 645 - 50z746 - 6z s 47) 
48u3e3Zr 

0 P l l  

Oz 
- 2 4 8 4 3 - 8 2 6 z 4 4 - 1 1 6 6 z  245-985z 346-  580z 447-233z 54 s -  56z a49-6z741~ 

0Pil 
0p 

12u(ul)%Zr 9 

724+120z~2-16z243-142z344-145z445-108z546-55z647-16z748-2z849  
z 

OPil 

24i~(%6~)~e~<(1+~4)  ~ 

3642+112z43+145z244+llOz345+55z446+16z547+2z648 

0%t 

OPll 

12u2(%6~)2eZr 7 

3642+112z~3+145z244+llOz345+55za46+16z547+2z648 

0%6~ 6%6(%6~)3~<(i+z4)7 , 
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1 ( 0 P l l  , 0 P l 1 ~  
- -  - f f P 1 1 ~ - - p  ) 

1 
=12u(n~)3e~C(1+zC)9(-176C3-706zCa-l182z~C 5 

--l127z3~6--725Z4~7--341zS~S--lllz6~9--22zT~10--2zS~11). 

We next use Lemma 3.2 to compute some covariant derivatives of L 1~ and P~l- 
We have 

L11 iu~ OL 11 OL 11 iulu~ OL 11 
- u ~ i n l G ~ - u ~  - 

DJI -- n ~ ~ 

1 ( 0 L  11 0Ll1~ 0L 11 ( ~  i 0P11) 0Ll1 
Ly ~I \G;-~ 

Lll inl oL~11 oL 11 inln~ 0L21 
~l~l- u 0p in1 0 u  ~ ~ u On~'  

Pl1,~1 -- in~ 0Pll inl~-u iulu~_ 0Pll 
u Op u Ou~' 

1 / 0 P l l  0Pl1~ . (9/)11 1//2ivl 1 0P11~0P11 P11'wl = uq L O~-z +P11-~-p ) ff-iv1--~-u -Ftt1L ~--~ tt~ Op ] Ou~ " 

From the above calculation and applying these formulas, it is clear that Aj, Bj 
and Cj are polynomials in (z, ~) with Aj (X, x)=Djx2§ 2) and Dj #0. Indeed, a 
tedious but routine calculation yields 

A3 = 5 i ( 3 6 z  2 +40z3~+29z4~ 2 + 12z 5~3 +2z6~4), 

B3 = ( -320z  3 - 410z4~- 316z5~ 2 - 163z6C 3 - 48z7C 4 - 6zS~5), 

A4 = ~s i(36z u -F40z3~-F29z4~ 2 -F 12z5~ 3 -F2z6~4), 

B4 = ~s (72z +48z2 ~ -  64z3~ 2 - 78z4~ 3 - 67z5~ 4 -  41z6~ 5 - 14z7~ 6 -  2zs~7), 

A5 = - 5 (36z 2 +40za~+29z4C2 + 12z5(3 +zaC4), 

B5 = - ~i(320z a +410zn~+316zS~ 2 + 163z6~ 3 +48z7~ 4 +6z8~6), 

C5 = 1@2 (3750z 4 + 5568z 5 + 4627z a ~2 + 2702ffC 3 + 1054z s ~a + 240z 9 ~5 + 24z lo ~6), 
1 2 3 2 4  3 5  4 6  5 7  A 6 = - ] ~ i ( 3 6 ~  +112z~ +145z ~ + l l 0 z  ~ +55z ~ +16z ~ +2z6~S), 

B6 = ~4 (72~+ 120z~ 2-16z2~ 3-142z3~ 4-145z4~ 5 

- 108z5 ~ 6 _ 55z6~ 7 - 1 6 z 7 (  s _ 2zS ~9), 

5 2 3 2 4  3 5  4 6  5 7 A 7 = - 1 ~ i ( 3 6 ~  +112z~ +145z ~ +110z ~ +55z ~ +16z ~ +2z6~S), 

B7 = - 1(320~3 + 1370z~4 + 2506z 2 ~5 + 2661za~6 + 1895z4~7 

+955z5~8+325z6~9+66zT~1~ [] 
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Remark 4.2. One of the main features of Lemma 4.1 is that  the invariant 
functions there depend only on z, p, u, ul ,  Ul and vl. Indeed, the same computat ion 
also shows tha t  even if M is a general rigid strongly pseudoconvex hypersurface, 
namely M = { ( z ,  w):Ira w =  L)(z, 2)}, the same property holds. 

5. P r o o f  o f  T h e o r e m  1.1 

We now give the proof" of Theorem 1.1. To proceed, we start  with a general 
fact. Let F(z )=( f l , . . . , f , ~ ) ( z )  be a holomorphic map from a domain D in C n 
into C "~. Assume that  the generic rank k of F is strictly smaller than  m. As- 
sume, tbr simplicity, that  {fi,~-k, ... ,f,,~} is generically functionally independent. 
Then there is a complex variety E such that  for each a E D \ E  and l < m - k  one 
can find a unique holomorphic function Aa,l in the variables (Y1,... ,Yk), defined 

near ( fm-k(a) , . . . , f i ,~(a) ) ,  such tha t  fz(z)=--Aa,z(fm_k(z),...,fir~(z)) for z~a .  In 
particular, when F is Nash algebraic, then so is A~,z. 

Proof of Theorem 1.1. Seeking a contradiction, suppose fbr some point aE 
M, that  (M,a )  is equivalent to the germ of a certain algebraic hypersurface. By 
Lemma 4.1, we have seven holomorphic invariant functions Lll~laj1, Lll, Lllcoi, Lcjl,11 

P n ,  P11,~1 and Pl1 ,~ .  Since ~ depends only on z and p, we see that  these seven 
invariant functions are only depending on the six variables z, p, u, u~, Ul and vl, 
by the formulas in Lemma 4.1. Let k be the generic rank of the map 

y ( y l , . . . , yT )=fL~ l  Ll l  11 11 l = ~ ~1o~' ' L ~  'L~~176 )' 

then k_< 6. 
Assmne without loss of generality that  {!/7 k,--., YT} is the maximally indepen- 

dent set. (Indeed, by a tedious calculation, it can be shown that  k = 6  and the last 

six invariant functions are generically independent.) Then, ibr a generic point A E y  
whose projection is sufficiently close to a, there is a unique holomorphic function 

A A such that  Y1-A~ (Y1, ..., Yk) near A. Notice that  A~ is also intrinsically defined. 
Since we assumed that  (M, a) is CR isomorphic to some real algebraic hyper- 

surface M c C  2, it implies that  A~ can also be derived in the same manner  from 

an algebraic hypersurface and thus nmst be algebraic as observed in the beginning 
of Section 4 and Section 5. Hence, there exists a non-constant polynomial R such 

that  

(5.1) D f r l l  r l l  r l l  f l l  P l l ,P l l ,w l  _P11,wl)~0" 
1 L~/JLOI ICdl ,"s , ~LJojI , LICJI , 

We next show that such an R is identically constant, obtaining a contradic- 

tion. It should be noticed that a priori, (5.1) is only known to hold on a certain 
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open subset. However, by the holomorphic continuation and using the formulas in 
Lemma 4.1, it is clear that (5.1) holds for any u, ul ,  ( l + z ~ ) # 0 .  

The formula (5.1) can be written as 

m+n+a+fl 
+ff+s+'r<N 

11 m Cmna/3,usT(Lwl ) (Pll,w ~ n Ii a /~ L l l  ) ( 

Suppose that il  is the biggest integer such that C',~na~w~- ~:0 for some rn+n=i l ,  
and non-negative integers c~, fl, #, s and m. 

We remark that the left-hand side of (5.2) is a polynomial  in ~t 1 and Vl, by the 
formulas in Lemma 4.1. Since the only terms containing Vl are L~{ and Pl1,~1, and 
by considering the highest vypower  terms in (5.2), we can conclude 

E 
(5.3) o~+~+#+.s-Pm<N--il 

rr~Wn:il 

7 \ (1 / 

x(L11~afp ~/3{Lll ~fLll~s , wl] \ 11,a~,) \ wlla,,) \ } (Pll) 7~0. 

Suppose that i2 is the biggest integer such that C , ~ n ~ , ~  y~0 for some m + n = i s ,  
c ~ + f l + p = i 2 ,  and non-negative integers s and T. And suppose that Po is the biggest 
possible integer such that C ...... ;~,o~ ~ 0  for some m + n = i l ,  (~+/~+Po =i2,  and non- 
negative integers s and m. 

Since the only terms containing u I are L 11 P I < ~  and L n ~1' wllwi, we similarly get, 
by considering the highest power ul-terms in (5.3), 

(5.4) E Cmnc~/31~~ vl(~t{)2A4 Yt ( viA7 7~ 

rn+n il 
a+/3+/~o=i2 

X ( ~U~I(u~)SA3 ",~o' ( ~lA6 ~ ,~,,3 ( (ul)S(,u~)SA5)P,O 
7 t 4 ~ )  7 )  tU2(TZl)2(73z~(1-i-Z~-) 7 ) \uSe3z<(I+zr  7 ( L l l ) S ( p l l )  ~--0" 

Using the formulas for L n and P n ,  we get from (5.4), 

(5.5) 

u4m+2n-}-4o~+2fl+5po§ 
S+T<N il--i2 

m + n  il 
a+fl+tLo =i2 

[ltl~2m--2n+2a 2f3§ s it. 
X \ 1] ~4 Z:L7d13 ~6 ~'5 AlAs _ O. 

C (3mH-n+3a+3~§162 (1 -FZ~) 7(il +i2 +.s+T) 
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Observe that  in the summation in (5.5), il, i2 and #o are fixed. Deleting the 
c o m m o n  f a c t o r s  1/(1JFZ<) 7(i1-Fi2), (%t~) - 2 /1 - 2 /u+41 .~  it  2 i l - -2 i2 - -3P0  e - ( h + 3 t t o ) ,  A~O 

etc., we can simplify it as follows: 

(~,l ]4m+4uT2s- -2r  A m A n  Ac~ a ~  A S  A ~- 
(5.6) E \ ~ 1 /  ~ '4 ~ ' 7 ~ 3  ~ ' 6 ~ 1 ~ 2  

,/g~+g=i I C~'~O~/~/itO 'ST u2m+2a+3S-re( 2m+as+r)zr (1 + zr ~ 0. 

a + ~ + / t o  =i2 

Rewrite 

( t t~)  4rn+4c~-L2s-2r (U~) ~1 

u>~+2~+3*+~e(2-~+a*+~)~r (1+zr u ~ e ~ < ( l + z ( ) ~ + ~  

with 

We have 

t I = 4m+4c~+2s - -2 r ,  

A2 = 2 m + 2 a + 3 s + r ,  

Aa = 2 m + 3 s + r .  

1 1 1 1 3 1 _ 1 ~ 3 .  (5.7) s = ~ A 2 - ~ k l - r ,  m = - - ~ r + ~ l a - - ~ s ,  c~=~A2 

Notice that  the basic property of the exponential function also indicates that  

E D {z "% <~i) k l k 2 k a t  ,%) uk~ekaZ< ~ 0  

if and only if Dklk2ka(Z,~)~__O :['or all kl, k2 and ka, where kj are running over a 
finite set of integer numbers and Dklk~k, (z, C) are rational functions. 

Hence by (5.6), we arrive at 

Am, A~A~a~A~ A ~ 4 7 3 ~ 6  1 2 (5.8) Z -0, 
~-<i3--s 

n = i l  --m 
/ 3 = - a  t*o+i2 

where m, u and s are determined in (5.7) and the summation is taken over r .  

Let ro be the smallest integer r in (5.8) such tha t  the corresponding coefficient 

C,~ono~o~o~o~ o is non-zero. Let z = ~ = X  in (5.8). Applying Lemma 4.1, we conclude 
tha t  (5.8) can be expressed as 

KtV ~. ~2(~1+i2-~o+~o+~o) + o(~2i1+i2-~o+~o+~o)) _ 0, 
~ 77~0 Tt~00~0/90 S0  T0 A~ 
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for some non-zero constant K. This is apparently a contradiction. The proof of 
Theorem 1.1 is complete. [] 

Remark 5.1. By Remark 4.2 and the discussion in this section, it is clear that 
a general rigid strongly pseudoconvex hypersurface M cannot be equivalent to any 
algebraic one if there is no non-zero polynomial  R such that 

R ( L l l  1 L l l  L l l  11 P l l  r l l w ~  PJ.l,o$1) ~ 0 -  1021 ' ~ tM 1, L W l ,  , , ' 

More generally, let M be a real analytic strongly pseudoconvex hypersurface. 

Let ~P be its structure bundle with E :={R~}~  being the complete set of its Car tan-  

Chern Moser curvature functions. VVMte {R1,..., Rx}  for a maximal subset whose 

elements are generically functionally independent. Then, when M is equivalent 

to an algebraic strongly pseudoconvex hypersurface, for any R c E  there is a non- 

constant polynomial PR in N +  1-variables such that P R ( R ,  R1, ..., RN)--0  along ~Y. 

It is not clear to us if the converse of this statement holds or not. (See Section 1.C 

in [H] for some related questions.) 
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