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Linear resolvent growth test for similarity 
of a weak contraction to a normal operator 

S t a n i s l a v  K u p i n  

A b s t r a c t .  It is proved in Benarnara-Nikolski [1] that if the spectrum ~(T) of a contrac- 
tion T with finite defects (rank(I -T*T)=rank(I -TT*)<ec)  does not coincide with D, then the 
contraction is similar to a normM operator if and only if 

Cl(Z)= sup II(T- h ) - I  [[ dist(A, or(T)) < ec. 
ACC\tT(T) 

T h e  examples  of Kup i n -T re i l  [9] show t h a t  the  resul t  is no longer t rue  if we replace the  condi t ion  

r a n k ( I - - T * T ) < o o  by its weakened version [ T*TEG1,  where  61 denotes  t he  class of nuclear  

opera tors .  

We prove in this paper that, however, the following theorem holds. 

T h e o r e m .  Let T be a contraction acting on a separable Hilbert space H, cr(T)TkK). If 

(LRG) C1 (T) : sup II(T-A) -1 II dist(A, or(T)) < 0% 
AeCk~r(T) 

(UTB) C2 (T) = sup t r ( I -b t ,  (T)* b. (T)) < co, 
;~ED 

*vhere b ~ ( T ) : ( I - t x T ) - I ( T - # ) ,  t*CD, then the contraction f is similar to a normal operator. 

This result answers a question put in [1] and gives a proof of a conjecture from [9]. 

1. Resu l t s  and out l ine  of  the  proof  

Le t  T be  a c o n t r a c t i o n  a c t i n g  on  a s e p a r a b l e  H i l b e r t  space  H.  Throughout the 

paper we suppose that ~ ( T ) r  even i f  we do not emphasize this eccplicitly. W e  say 

t h a t  a c o n t r a c t i o n  has  t h e  ( L R G )  p r o p e r t y  if  

( L R C )  C I ( T )  --  sup  IIR~ (T) ]1 dist (A, (r(T)) <oo, 
~6C\~(T) 

( L R G )  s t a n d s  for the linear growth of  the resolvent. T h e  resu l t s  in [1] show,  t h a t  t h e  

( L R G )  c o n d i t i o n  i t se l f  is n o t  a t  al l  suff ic ient  for s im i l a r i t y  of  a g iven  c o n t r a c t i o n  to  
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a normal operator.  This suggests tha t  we should require more than just  the (LRG) 

condition for' the operator  T to get an efficient resolvent test for similarity to a 
normal operator.  For instance, we can consider small per turbat ions of a unitary 
operator.  To this end, it may be reasonable to look at the defect operators  I - T * T  

and I -  TT*. 

Let us turn to the (LRG) property. First, we observe that  the condition is 
invariant with respect to the M6bius transformations of the unit disk D. To be 

precise, let b• (T) = ( 1 -  # T ) -  1 ( T -  #), > E D, be the MSbius transform of T. 

L e m m a  1.1. Let T be a completely nonunitary contraction on a Hilbert space 

H.  Then 

alCl(T)  < Cl(bl~(T)) < A1CI(T) 

for every # E D .  The numbers al and A1 are absolute constants. 

We prove the lemma in Subsection 3.2. The reasoning is essentially based on 

the delicate "Y. Domar lemma" type result (see Subsection 3.1). 
It  is clear tha t  both  T and bu(T) are similar to a normal operator  sinmltane- 

ously. Hence, it seems natural  to require that  any addition to the (LRG) condition 
participating in a similarity test should also be M6bius invariant. On the other 
hand, the condition t r ( I  T ' T )  <oc  is not conformally invariant with respect to the 
linear-fractional t ransformations of D, so we should modify it in an appropriate  
way (see (UTB) below). 

The assumptions of the main theorem now look quite natural.  

T h e o r e m  1.1. Let T be a contraction acting on a separable Hilbert space H,  

~ ( T ) ~ D .  Then T is similar to a no~vnal operator as long as 

(LRG) CI(T) = sup IIRx(T)I I dist(A, or(T)) < oc, 
~C\~(T)  

(UTB) C2(T) = sup t r ( I - b , ( T ) * b , ( T ) )  < oo, 
t tcD 

We call the second condition of the theorem the (UTB) property ((UTB) stands 
for uniform trace boundedness). Sometimes we write TE  (LRG) or TE (UTB) to say 
tha t  T possesses one or the other property. 

Now, we explain some ideas underlying the proof of the theorem. Due to the 
canonical decomposition of a contraction on the orthogonal sum of a unitary op- 
erator and a completely nonunitary contraction (see [11, Chapter  1]), it sumces to 
consider the latter component.  Next, given a completely nonunitary contraction 
satisfying the (LRG) and the (UTB) properties, we proceed in two steps. Assume 
first, tha t  the contraction is complete, i.e. it has a complete family of eigenvectors. 
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In this case the (LRG) and the (UTB) properties imply that  the set a(T) is sparse 
enough and a certain embedding theorem holds. By a result of [12] the embed- 
ding yields the unconditional basis property of the family of eigenvectors of the 
contraction. The latter is equivalent to the similarity we seek for. 

Secondly, we join the "outer spectrum" to the point spectrum and we prove 
absence of the "singular" spectrum. This enables one to derive the theorem for 
general completely nonunitary contraction (and not only for complete ones). The 
tools used at this stage of the proof are adapted from [1]. 

We conclude the introduction with recalling some well-known definitions and 
the standard notation. Let E and E .  be separable Hilbert spaces. We denote by 
L(E, E.) the space of bounded linear operators mapping E into E . .  We put L ( E ) =  
L(E, E). Further, we write H~(L(E, E.)) for the space of L(E, E.)-valued bounded 
analytic functions on the unit disk D = { z E  C:lzt < 1}. We put BH ~ (L(E, E.)) to 
be the unit ball of the space. Similarly, we denote by L~(L(E, E.)) the space of the 
L(E, E.)-valued bounded measurable functions on the unit circle T = {z E C: t z I = 1}. 
As usual, we put  L2(E)=L2(T, E) to be the Hilbert space of measurable functions 
f on T,  taking values in E such that  

1 ~0 27r 
Ilfll2 = ~-~ I l f ( eg r  dO < oc  , 

and H 2 (E) stands for the Hilbert space of E-valued analytic functions in D with 

1 fo 2~ sup II f ( reir dr  < oo. 
0_<r<l ~ 

We say that a function OEH~(L(E, E.)) is inner (*-inner), if 0(t)*0(t)=l a.e. on T 
(tg(t)0(t)*----I a.e. o11 T). The function/~ is said to be outer (*-outer), if 0H2(E)= 
H2(E,) (the function is outer). 

The operators AIEL(HI) and A2EL(H2) are called similar if there exists a 
boundedly invertible operator WEL(H2, HI) such that A2=W-IAIW. 

2. P r e l i m i n a r i e s  

The material presented in this section is of common knowledge and is cited 
here only for the reader's convenience. 

2.1. S o m e  facts  on  t h e  S z . - N a g y - F o i a w  m o d e l  

A wide panorama of the subject we discuss in this subsection can be found in 
the monographs [11], [10]. 
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We introduce some notat ion to define the function model. Let us fix a function 
O e B H ~ ( L ( E , E . ) ) .  We put  A( t )=( I -O( t )*O( t ) ) l /2eL~(L(E) ) ,  0<A( t )_<I  a.e. 

o n  W. 
Further, we consider the so-called model space 

(2.1) Ko = [ H2(E*) 

We denote by Po the orthogonal projection onto Ko, 

Pe: L AL2(E) j > Ke, 

and by Me the operator  acting on the space Ke by means of the formula 

Mex = Pezx, x �9 Ke. 

The operator  is a contraction, IIMo II _< 1, and it is called the model operator.  
Now we recall some facts about  contractions acting on a separable Hilbert 

space H.  As was already mentioned, any contraction T can be represented in the 

form T=U| where U is a uni tary operator and To is a completely nonunitary 
contraction, i.e. none of the restrictions of the latter to its reducing subspaces is 
unitary. 

The defect operators and defect subspaces of a contraction T are defined by 

DT : ( I -T 'T)1~2:  H > H, ~T  : DTH, 

D T * : ( I - T T * ) I / 2 : H  >H, ~ T * : D T * H .  

We define an operator-valued function OT(A) by the formula 

OT ( )0 = - - T  + ADT* (I-- AT*)- 1DTI~ T 

for ) , � 9  and it is called the characteristic function of T. I t  can be shown tha t  
OTCBH~ ) and that  0 T is pure, that  is the only subspace EC~T where 
OT(t)IE is a unitary constant a.e. on T,  is E={0} .  

The following theorem links the two series of definitions given above. 

T h e o r e m  2.1. ([11], Chapter  6, the model theorem) 
(i) Any completely nonunitary contraction T defined on a Hilbert space H is 

unitarily equivalent to Tev, where 0 T �9 B H  ~176 (~T,  ~T* ) is the characteristic function 
of the contraction. 

(ii) Let 0 be a pure contractive function from H~176  Then the con- 
traction Me is completely nonunitary and its characteristic function coincides with 
the initial function 0. 
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We say that  two functions 01EH~176 and 02EH~176 E2.)), El, 
El . ,  E2 and E2. being Hilbert spaces, coincide, if there exist unitary operators 
U: E1--+E2 and U.: E1.--+E2. such that  02=U.O1U*. 

Given a Mbbius transformation b , ( ) 0 = ( A - # ) / ( 1 - # ) 0 ,  A , # e D ,  of the unit 
disk D, consider the operator bt,(T ) = ( I - # T ) - I ( T - # ) .  The functions Ob, cr)(b,(A)) 
and OT()O coincide in the sense of the above definition (see [11, Section 6.1]): 

(2.2) U.OD,(T) (bu(A))U* = 0T(A), 

where AcD.  The following two-sided inequality [11, Section 6.4] relates the resol- 
vent Rx(T)=(T-A)  -1 and the inverse of 0T(A), 

(2.3) (1-IN)[IRa(T)II < IlOT()O-1ll <_ 1 + 2 ( 1 -  I,kl) HRa(T) H 

for all ) , e D \ o ( T ) .  
As follows from [6] and [11, Chapter  9], a contraction T, a ( T ) C T ,  is similar 

to a unitary operator if and only if 

C 
(2.4) IIRa(T)H < Ii_lAi I 

for all A E C \ T .  Equivalently, llOT(A)-~ll<C<oo, AcD.  

2.2. Angles  between  invariant subspaces and Bezout  equations 

In this subsection we mainly follow [1, Section 1.6]. Information on regular 
factorizations can be found in [11]. 

It is well known that  every invariant subspace L of the model operator M0 
(2vIeLCL) defines a certain regular factorization 0=0201 [11, Chapter 7]. The 
converse is also true, i.e. every regular factorization of the characteristic function 
0 T--0201 of a contraction T makes it possible to construct a T-invariant subspace 
Lel,e2. We refer to [11, Chapter 7] for the definition of regular factorizations, as 
well as for their basic properties. In particular, it is shown there that  factorizations 
0=0201, where 02 is inner or 01 is *-inner, are regular. 

Let L and L ~ be two invariant subspaces of a completely nonunitary contraction 
T defined on  a Hilbert space H and let 0=0201 and 0=0~0[ be the corresponding 
regular factorizations. Assume that  L+L I is dense in H.  We are interested in 
conditions for the angle between these subspaces to be positive (or, in other words, 
when LALI={0} and the sum L+L ~ is closed). This means that  

cos(L,L')  = sup I(l'l')l IL ll Ill'l  < 1. 
I~ E L  ~ 
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This is equivalent to saying that  the skew projection ~LllL': L+L'--+L defined by 
the relation P(l+l ' )=l ,  IEL, I'EL', is bounded. 

It is proved in [14] that  L+L'  is a direct decomposition of H if and only if the 
Bezout equation 

(2.5) F1 (~)01 ()~)-4-F i (/~)0~ (/~) = I 

is solvable with F I E H ~ ( L ( F , E ) ) ,  r l e H ~ ( L ( F ' , E ) )  and AED, F and F' being 
some intermediate Hilbert spaces, and an additional equation of the same type is 
solvable in certain L ~ spaces as well. It is known (see references in [14]) that  
if the space E is of finite dimension, the sole equation (2.5) is sufficient to have 
H=LJcLq There are some other special cases, where the solvability of the equation 
(2.5) implies the conclusion. The following theorem, for instance, is a corollary of 
the general considerations from [1]. 

T h e o r e m  2.2. ([1], Section 1.6) Let L and L' be invariant subspaces, defined 
by regular factorizations 0=0201 and 0=0'20'1, and let the sum L+ L' be dense in H. 
The sum L+L '  is a direct sum (and hence H = L + L ' )  whenever O' 1 is a .-inner 
function. 

We will need to apply the theorem to a quite particular situation. Namely, we 
put  the first factorization to be the canonical factorization of 0, 0----0in0out, and we 
put the second factorization to be the *-canonical one, 0=0out.0in.. This means 
that  the function 0in (0in*) is inner (*-inner), and the function 0o,,t (0o,,t.) is outer 
(*-outer), respectively. Note that  these factorizations always exist [11, Chapter 5] 
and are regular. We denote the corresponding invariant subspaces by Lo.t and 
Lin., respectively. Theorem 2.2 shows that  the sum Lout-I-Lin. is direct whenever 
equation (2.5) is solvable. 

2.3. S p a r s e  a n d  C a r l e s o n  s u b s e t s  in t h e  u n i t  d i sk  D 

Detailed information about these subjects can be found in [10], [4] and [8]. 
Let us set Q(A,#)=ib,(),)I, A, pED,  and, further, B~(~)----{AED:Ib.(A)I<5}, 

0 < 5 < 1 ,  #ED.  The disk Bs(#) is called a pseudo-hyperbolic neighborhood of the 
point # with radius 5. We say that  the set cr={Ak}~_-i is sparse, if there exists a 
number 5 > 0 such that  

(2.6) B~ (~1) n B~ (~2) = 0, 

where )~1, )~2Ea and )~1~A2. The set a is called Carleson if 

inf I I  Ib.(A)l _> 50 > 0. ttE~ 
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There is another characterization of Carleson sets, and it is sometimes more conve- 
nient than the original one. 

T h e o r e m  2.3. ([10], Chapter 6, the embedding theorem) Let a c D .  The 

following assertions are equivalent: 
(i) (7 is a Carleson set; 
(ii) a is sparse and 

sup ) < oo. 

~ED AE(7 

We say that  a set a is N-Carleson (N-sparse) if it is a union of N Carleson 
sets (N sparse sequences). 

The following lemma is proved in [1] under somewhat weaker assumptions. 

L e m m a  2.1. ([1], Section 1.4) Let ~ be an N-Carleson set. Then there exists 

a number c>O such that 

[ ( 1 - 6 ) ~ , r  # 0 

for all ~ E T  and 6if(O, 1]. Here ~ 2 , = { z C D : d i s t ( z , a ) k c ( 1 - i z ] ) } .  In an equivalent 
way, for any ~ C T there always exists a sequence {z~ }n~__l C [0, ~) such that ]z~ [--+ 1 
and 

(2.7) dist(z,~, or) > c(1-]zn]) .  

Here and below, dist(z, c~)=infAer tz-A[.  

2.4.  S o m e  p r o p e r t i e s  o f  t h e  t race  class  o p e r a t o r s  

A good reference on the subject of this subsection is [5]. 
We start  with standard definitions. Let H be a Hilbert space and 6oo denote 

the ideal of compact operators. The Schatten-von Neumann ideals | 0 < p < o o ,  
are defined in the usual way, 

O p =  AEOo~:  sk (A)P<c~ , 
k = l  

. sk (A)=tk(A*A)  1/2, where Ik(A) are the eigenvalues of the operator A and sk(A) 
is called the k-th singular number of A. 

e cx~ Let ACO1 and { k}k=l be an arbitrary orthonormal basis of H.  It is known 
oo 

that  the sum tr A = ~ a = l ( A e k  , ek) converges and does not depend on the choice of 
the orthonormal basis. 
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It is clear that  if A--A* >_0 and AEG1, then 

O ~  O 0  

trA:  j(A):Zss(A). 
j = l  j 1 

This relation implies that  t r P A P < t r A  for any orthogonal projection P and any 
operator A with the properties stated above. In particular, if k=rank  P < e c ,  then 

k 

(2.8) tr A _> tr P A P  = ~ sj (PAP) >_ k rain Aj (PAP). l<j<_k 
j = l  

The determinant of the operator I - A ,  AE| can be defined as d e t ( I - A ) =  
[Ik~_l(1--Ak(A)). We conclude the subsection with the following criterion. 

T h e o r e m  2.4. ([5], Chapter 5) Let T be a complete nonunitary contraction 
on a Hilbert space H, I -  T*TE| and a (T ) r  If the system of the root subspaces 
of T is complete in H, then 

(2.9) d e t T * T =  H I ~12, 

where the product is computed counting the Riesz multiplicities of the eigenvalues 
Aeo-p(T). 

3. P r o o f  o f  T h e o r e m  1.1 for c o m p l e t e  c o n t r a c t i o n s  

3.1.  L e m m a  o n  s u b h a r m o n i c  f u n c t i o n s  

In what follows, we rely on a very delicate result on majorization of subhar- 
monic functions. Apparently, the first result of this type was obtained in [2]. We 
cite here its refinement proved in [7]. 

L e m m a  3.1. ([7], Section 23) Let ~ be a closed set of the disk D and let u be 
a subharmonie function on C\~  satisfying the inequality 

Then 

u(A) _<max dis t (~ ,a) '  I1-1 11 " 

A0 ~(~) _< 
dist(A, c 0 

for all 1~1> �89 AcC\(T, and where A0=447. 
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3.2. (LRG) property is invariant with respect to MSbius transformations 

Let T be a complete completely nonunitary contraction on a Hilbert space H. 
We assume that  (y(T)~D and, by virtue of the model theorem, we may suppose 
that  the contraction T coincides with a model operator M3 defined by a certain 
function OEBH~176  E being a Hilbert space. 

The purpose of the subsection is to prove Lemma 1.1. The main idea of the 
proof is to express the (LRG) property in terms of the characteristic function. It is 
convenient to put 

(3.1) Ca(T)= sup II0(~) *lli~f Ibu(A)I- 
AcD\~ 

We note that  C I ( T ) > I  and Ca(T)>1 (see the (LRG) property for the definition 
of CI(T)). The first inequality follows from the faet that  I I /~(T)/ /dis t (A,~)21,  
AEC\~,  and the proof of the second one is presented in Subsection 3.3. The proof 
of Lemma 1.1 is based on the mutual estimates between these constants. 

Lemma 3.2. Let T be a completely nonunitary contraction on a Hilbert space 
H and 0 be its characteristic function. Then there exist two absolute constants a2 
and A2 such that 

(3.2) a2C3(T) <CI(T)  <A2C3(T). 

Pro@ The proof is essentially based on inequality (2.3). We proceed with the 
left part of inequality (3.2). We have 

[[0(/~)--111 < 1~-2C1(T ) sup 1--[/~J < lq_2Cl(~/. ) sup I1-/*A] 

1 
< (lq-2CI(T)) sup 

because l b. (A)I_< 1, ~ E D. The bound, together with C~ (T) _> 1, implies 

Ca(T) = sup ]10(A)-lll inf lb~(A)l _< 3Cz(T), 
AcD\rr /~C~r 

1 and we can take a2=5.  
We continue with the right part of inequality (3.2). The reasoning is more 

complicated; it uses the nontrivial Lemma 3.1. We have for [A] < 1 

(3.3) IlR~(T)ll_< - -  
IIe(A)<II 

1-1~l 
Ca(T) sup [1-/zAI < 4C3(T)sup 1 4Ca(T) 

<- ~ pc~ IA-#[ - ~c~ IA-#I - dist(A, cr)' 
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s i n c e  1 -  I~I ~ �89 
1 Let IAI > ~ now. We consider the cases {A: �89 < fAI < 1 } and {A: IAI > 1} separately. 

l < l A l < l ,  We get for 

IIR~(~)II< I I0(A)- l l [  <C3(T) sup II-~AI 
- l - l a l  - . c ~ ( e - l A I ) l a - . l '  

Using the obvious inequalities I1 -HAl < 1 - lap + Ial IA -~1 -< 2(1- IAI) + IA-~l, we 
continue 

(3 .4 )  C a ( T )  s u p  _ . , e , l . ~ + l _ ~  < 2 c 3 ( r ) m a x  dist(A,G)' 1-1AI 

The computation for IAI >1 is much more simple 

(3.5) IIRa(T)N < ~ _ < m a x  dist(A,a) '  [k l -1  " 

Summing up (3.5), (3.4) and the inequality C3(T)>_1, we obtain 

- dist(A, ~) '  t l - lA l l  

for all IAl>�89 A ~ c \ ~ .  Since the norm IlR~,(T)II is ~ subharmonic function of A, 
Lemma 3.1 yields 

2Aoga(T) 
(3 .6)  ItR~(T)II _< dist(A, or)' 

for all AEC\G and where A0=447. It gives us the conclusion of the lemma with 
A2 =894. [] 

Proof of Lemma 1.1. By virtue of relation (2.2) we have 

II%(~)(bAA)) ill-II0(A)-lll 

for all A E D \ ~  and, consequently, 

Ca(bi,(T))= sup IlOb.}r)(b.(A))ll inf Ibc(b.(A))I 

= sup II0~l(A)ll ~ f  Ib~(A)l =G(:r) ,  
AED\~r 

where ~=b~(~r)  stands for the spectrum of b~(T). The calculation shows that 
the constant C3(T) is invariant with respect to MSbius transformations, and the 
conclusion of the lemma easily follows from the two-sided estimate (3.2). [] 
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3.3.  S o m e  m o r e  n o t a t i o n  and  c o r o l l a r i e s  o f  t h e  m o d e l  t h e o r e m  

Let T be a complete completely nonunitary contraction on a Hilbert space H. 
We denote by crp its point spectrum %~(T). We assume that cr(T)~D, I-T*T~G1 
and the eigenvalues AE%) of the operator are algebraically simple, Ker (T-AI )=  
Ker (T-M)  2. We put X to be the family of the eigenspaees {X~}~e~, where 
X~=Ker(T-AI), of the operator. Note that the completeness of the contraction 
means, under these restrictions, that 

H =  V X~, 
ACO~p 

where V stands for the closed linear span. 
For an arbitrary subset co of ap we define a subspace X~ and an operator T~ 

by the formulas 

X ~ =  V Xx and T~=TIx ~. 
AGco 

The just defined operator is a contraction, and r We put, for brevity, 
b.(co) =co.. The equality crp(b.(T))=~p, is just a consequence of the spectral map- 
ping theorem [3]. Similarly, we have b.(T~)=b.(T)o,. , and thus Crp(b.(T~))=co.. 
We mention also that 

(3.7) 

and this fact will be often used in the sequel. 
Suppose now that T=M~ tbr some OEBH~176 The kernel spaces Xa= 

Ker(Mb*-AI), 1C~v, have the form Xx=qoaEacH2(E), where Ea=Ker0(),)*r 
{0}, Ex CE, and Pa (z) = (1-  I AI2) 1/2/( 1_ Az) is the reproducing kernel of the Hardy 
space H 2. The left factor in the corresponding regular factorization 0=0a0 x has 
the form 0x (z) =ba (z)Pz~ + ( I -  Pzx), PE~ being the orthogonal projection from E 
to Ex. In particular, we have 

- -  -II0 (z) 111 < II0(z) - l l l  

for any ~Cap and zED. Hence, C3(T)>_I (see (3.1) for the definition of the con- 
stant). 

We set and & =  " {Xa}a6~... The above men- 
tioned description of Xa and relation (2.2) yield, for instance, that dimX~ (a)= 
dim Xa, A Corp. 

We conclude this subsection with a lemma from [1]. 
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L e m m a  3.3. ([1], Section 1.3) Let T be a contraction with the (LRG) property 
and 2( be its family of eigenspaces. Then 

(i) every ;~Eap is algebraically simple; 
(ii) the system 2( is uniformly minimal. 

3.4. Loca l  proper t i e s  o f  t h e  s p e c t r u m  of  a c o n t r a c t i o n  T E (LRG)M ( U T B )  

We need the following MSbius invariant constant 

(3.8) C2(T) = sup tr(I-b~(T)*b~(T)): 
ttED 

Further, given a number 5>0 and a point / tED,  we set a~,5=apNB5(#). For brevity, 
we put c0=cr~,6, T~=T~,,~ and X~=X~,,~. 

It turns out that  the contractions Tc(LRG)A(UTB) have sufficiently sparse 
spectra (even if one counts the Riesz multiplicities of the eigenvalues). 

L e m m a  3.4. Let T be a complete completely nonunitary contraction on a 
Hilbert space H and 0<5<1 .  If  TE(LRG)A(UTB),  then 

(3.9) dim Xu < C2 (T), # r crp; 

(3.10) rain 5dimX~,,~,  3v~ B5CI(T) 1 <_C2(T), 

for every #ED, where B=2A1/al ,  and al and A1 are the absolute constants from 
Lemma 1.1. 

Proof. Let #E~p. Due to a remark from Subsection 3.3, we have d imX~, ( , )=  
dim Ker b~(T) =dim X, .  It tbllows from relation (2.8) that  

C2(T) >_ (1-Ilb,(Tt,})II) dimX~ = dim X, ,  

and relation (3.9) is proved. 
To prove (3.10), consider the operator b,(T~). It is convenient to put X , , ~ =  

Vxe~ x 2 .  We see that  ~p(b.(T~))=w. =b.(a.,5)=crp.ABs(O) C {z: Izl _<5}, by defi- 
nition. 

We are going to estimate the norm of the operator b.(T~) with the help of the 
Riesz Dunford calculus. To this end, we surround every point AEcz. by a circle 
~/~={zEC:iz AI=e}, 0<e_<5, with e small enough. Then we set 7=U~e~ ,  7~ and 
apply the calculus formula to estimate the norm of the operator b,(T~). We get 

1 ~ (b~(T~))dz IIb,(T~)H < ~ zRz <_--suplzlsupllRz(b,(T~))ll .  
zE~ zGq' 
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Now, we use relation (3.7) and the equality dist(z, co,)=e, 

( 3 . 1 1 )  I]b#(rw) 11 ~ 2(~Cl (bu(r) )~z~odt~ ~ ]~Cl (T)~o2, 

where the sign # means the cardinality of a set. To get the last inequality we apply 
Lemma 1.1, and the absolute constant B equals 2A1/al. 

We pick an arbitrary invariant subspace XCX~,~ of the contraction bu(T~,). 
We set Tx=bu(T~)]x, crx=a(Tx) and k = d i m X ,  0 < k < d i m X , , ~ .  It is evident 
that 

IlTx l[ <- B~CI(T)#~x. 
Then, applying inequality (2.8), we get 

C2(T) >_ (1-IITx ll2)k > (1-(B(~Cl (T)#crx)2)k >_ (1-(B(~CI (T)k)2)k =: f(k), 

since #o-x<k, and this is true for all O<k<dimX~,~, kEN. 
It is easy to see that  the maximum value of the function f(k), k>O, equals 

fm~=2/3x/~Bagl(T) and it is attained at the point km~x=l/v~BSgl(T). 
We keep in mind two possibilities, dim X,,~ _<km~x or dim X,,~ >km~• If the 

first case occurs, we put k =dim X,,~, and, consequently, 

2 dim X ,  ~. C2(T) > (1-(B(~CI(T)dim X,,~) 2) dirn X~,~ _> 5 

Further, we see that  f([k~x])>_f(km~x)-i by the Lagrange formula and the in- 
equality if(k)<_ 1; the square brackets [. ] stand for the entire part of a number. So, 
we get in the second case 

2 1 
U2(T) >_mi~f(k ) >_ 3x/-3 B~Cl(T) 1, 

which completes the proof. [] 

C o r o l l a r y  3.1. The inequality 

dimX .  < (a.12) 

holds true whenever 

(3.13) 
2 1 

3 ~  BCl(T)(C2(T)~-I)" 

Proof. Indeed, inequality (3.13) means that  2/3v~BSCI(T)-I>C2(T), and, 
by virtue of (3.10) we get 

2 2 1 
min ~ dim X~,,z, 3x/~ B(~C1 (T) 

It is convenient to put 

2 
1 = s d i m X ~ , , ~  <_C2(T). [] 

(3.14) X ( T )  = 
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C o r o l l a r y  3.2. We have 

(3.15) nBa(t,)  ) = <_ Y ( T )  

for every # e D  and 6 from (3.13). 

This corollary means that  the point spectrum crp(T) of a contraction TE 
(LRG) n(UTB) is a union of at most Jr(T) sparse sequences (see (2.6)). 

Remark 3.1. Note that  the proof of (3.9) uses the (UTB) property only. 
It is worth mentioning that  in order to prove estimate (3.10), we were forced 

to drop some subspaces from the family of subspaces A2,. This is a manifestation 
of the so-called "round-off-error" phenomenon, pointed out in [13, Lemma 12.2]. 

For the next lemma, we need some more notation. Let T be as in Lemma 3.4. 
We fix ~0 =00(6)=6/4(A/'(T)+ 1) and surround every point A Cap by a disk Boo (I),  
here 6 and A/(T) are values from (3.13) and (3.14). Then we consider an open set 
G=Uxr ~ B~o (t)  and denote by {Gn}n~_l a collection of its connected components. 
Further, we se t  Crn:dpNG n and crn=~v\cr~. 

The following lemma states that  the subsets just defined satisfy, modulo MSbius 
transformations, the conditions of Lemma 3.6. 

L e m m a  3.5. ([10], [14]) The following relations hold true 

(3.16) #a,,~ _< J~(T); 

(3.17) diamph Gn <__ 6; 

(3.18) >_ > o. 

The expression diamph stands .for the pseudo-hyperbolic diameter of a set. 

Proof. Observe that  (3.17) follows immediately from the definition of the sets 
G,~ and relation (3.16). 

We start with the proof of (3.16). Suppose that  (3.16) is false, and hence 
that  it is possible to find a set an such that  ~a~_>AF(T)+I. We renumber the 

fA ~Ar(T)+l _ set t kik=l LCr,, in such a way that  Boo(Ak)ABoo(Ak+l)#~). Since ]br 
[br (.<2)1+ Ibr (43)1 for arbitrary points 41, .(2 and 43 in D, we have [bak (Ak+l)[_<2@o, 
and Ibx~(a~)l_<2keo, I<k<H(T)+I. Consequently, we get #B5(A~)na~,_>JV(T)+ 
1, which contradicts (3.15). Therefore, (3.16) is proved. 

The proof of (3.18) is also simple. We suppose that  p(~r~,, a~')< 2g0. This yields 
that  there exist points ACa~ and #C~ n such that  O(A, #)<2g0 and hence, by the 
construction of G~, the point # has to lie in an- The contradiction completes the 
proof. [] 
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3.5. Loca l  p r o p e r t i e s  o f  t h e  r e so lven t  o f  a c o n t r a c t i o n  T E  ( L R G )  M ( U T B )  

Here we obtain some additional information on the behavior of the norm 
I]Ra(T)II for a contraction possessing the properties (LRG) and (UTB). The tech- 
nique we use here is similar to that  from [10, Section 9.5]. In fact, it relies on the 
subharmonicity of the function [[Ra(T)[[ only. 

Firstly, we prove the following "spreading of estimates" lemma for subharmonic 
functions of a very special type. 

L e m m a  3.6. Let a=oh Ucr2 be disjoint subsets of the unit disk D. Let u and 
Ul be subharmonic functions defined on C\cr and C\~l ,  respectively. Assume that 

c3 ' dist(cr2, oh) = 5 > 0, (3.19) u~ (A) < u(A) < dist(A, or)' 

for all AEC\~ .  Then 

( 3 . 2 0 )  

for all AEC\Crl. 

Proof. Let IAI>2. 
j = l ~  2. So, we get 

18c3 1 
5 dist(A, a l )  

As c r j cD,  we have IAl-l<_dist(A,T)<dist(A,~j)<_lA[+l, 

c3 c3 3c3 
Ul(A) _< dist(A, a) -< ~ -< dist(A, al)  

for all lal_>2 since ( l a l+ l ) / ( l a l -1 )_<3  for these A. 
Now, let 151<2. Let G={A~D2:dist(A,  ~ )<d i s t (A ,  ~ ) } ,  where D2={a:lSI < 

2}. Evidently, G is an open set containing a2. We consider the cases AED2\G and 
A E G separately. 

Let AED2\G.  We have, by definition of G, dist(A,~2)_>l/3dist(A, al) ,  and, 
consequently, 

dist(A, a) : min{dist(A, a2), dist(A, al)} >_ 1/3 dist(A, r 

This implies 
3c3 _< - -  

dist(A, Ol) 

for all AED2\G.  
Let now AEOG. It follows that dist(),, crj)<_3dist(X, or), and we have 

5 _< dist(~2, o-1) < dist(A, or2)+dist (A, crl) _< 6 dist (A, o-). 
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Hence 
653 

~1(~) ~ ( ~ )  ~ -  

for all AEOG, and the maximumprinciple  provides 

u~(A) ~ - -  18e3 1 

5 dist(A, 0"1) 

for all )~EG. The proof is finished. [] 

We note that,  due to Corollary 3.1, we may assume that  6 is as small as we 
want, 6<�89 for example. Now, we use Lemmas 3.5 and 3.6 to prove the following 
fact. 

Lemma 3.7. Let T be a contraction possessing the (UTB) and the (LRG) 
properties. Then 

e4 
dist(A, ~r~) 

for all ;~ E C\0.~ and for all n and # E D such that 0(p, G~) <_ ~o. Here c4 is a constant 
that depends only on 5, Cz(T), and .M(T). 

Proof. Since an C G.,~ C B5 (it), we can easily see that  diamph 0.n <_ diamph G,~ < 5. 
Further, we obtain from (3.16)-(3.18) that  

(3.22) 

(3.23) 

~ , .  = b.(0.,d c a n , . ,  

an, .  c B~(0) = {~: I~1 <- ~}, 

~(0.~,., ~ )  _> ~0- 

Gn,p,  = b,(G~), 

Since celA-#IGibx(#)l<e6l)~-pl ,  whenever ~,#CB1/2(0),  relation (3.23) im- 
plies that  dist(0.,~,~,0.~'~)_>e7~0. Moreover, the functions u(A)=UR),(bt~(T))ll and 
ul (A)= l lR;~(b,(~,  ))ti are defined on C\crp, and C\0.~, respectively, and, obviously, 
IlR~(b,(%~))[[ < IIR~(b,(T))II. Condition (3.19) is true since the (LRG) property is 
invariant with respect to Mebius transformations (see Lemma 1.1). The application 
of Lemma 3.6 leads to the claimed result. [] 

3.6. Global properties  of  the spectrum of a contraction wi th  (LRG) and 
(UTB)  

We start this subsection with a lemma characterizing the "individual" proper- 
ties of a complete contraction T. 
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L e m m a  3.8. Let T be a complete nonunitarT contraction, cr(T)r  and 2C= 
{Xx}ac~, be the system of its eigenspaces. If 

I - T * T  E ~51; 

T �9 (LRG); 
1 there exists a number 0 < 5 < ~ such that Bs(O)ncrp = O, (a.24) 

then we have 

(3.25) E (1 -[AI 2) dim Xa _< e8 ((~) t r ( I - T * T ) ,  
AC~rp 

where cs(~)=C1(T)2/~ 3 log(1/~- 1). 
Proof. Condition (3.24) yields that the operator T is invertible, and, by The- 

orem 2.4, 
de tT*T=  I I  IAIZ 

AE~p 

We denote by fly the eigenvalues of the operator T ' T ,  so the eigenvalues of the 
operator I - T * T  are equal to aj =1-/3j ,  0<_c~j,/~j <1. We rewrite the previous 
relation as 

1 1 
log ILc~p Lal 2 -log I ] j~"  

We estimate the left-hand side of the equality from below 
1 ( ( ~ ) )  5 log(l / , --  1) 

log rI~p  Ix12-2 ~ lot 1+ -1 > 1-~ ~ (1-1a?), 
AEcrp ),Cap 

we have used here that log(1 +x) >5 log( l /5 -1)x / (1-5)  whenever 1 < x <  1/5. Sim- 
ilarly, we have for the other side of the equality 

1 ( ( ~ j )  ) 
l o g i ] j / 3 j - - E l o g  --1 +1 < ~ 1 - - / 3 j  

j ~ 3j 

We observe that, if A=0, the condition (LRG) means that 

CI(T)  
II T-1 II -< dist(0, ~ '  

or, which is the same, infj I),yl2<CI(T) 2 infj ]/3jl. Taking into account (3.24), we 
obtain 1t3j [ 2 _> 5 2/C1 (T)2. Hence, 

Cx(T) 2 C I ( T )  2 . . . . . . .  
E .  1-/3j/~j < 52 E ( 1 - / ~ j )  _< ~ ~ I ' ( . - i  I ) ,  

5 j 
and the proof is completed, [] 

The results of Subsection 3.5 allow us to remove the supplementary restric- 
tion (3.24). 
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L e m m a  3.9. Let T be a completely nonunitary contraction and TE(LRG)N 
(UTB). Then 

(3.26) ~ (1-IA] 2) _< e9 
AGO-p/, 

for all # e D ,  where e9 depends on a, CI(T), C2(T), and Af(T) only. 

Proof. Take #ED.  At first, we suppose that  ~p, ABeo(0)=0. We may apply 
Lemma 3.8, which gives us immediately 

E (1-IAI 2) < c8 (t)o) tr(I-b.(T)*b~(T)) <_ cs(po)C2(T). 
ACo-pt, 

Now, assume that  031 =O'p#~B0o (0 ) r  We observe that  there exists some ano,, 
such that  021 CO-no,/~ , and, in particular, we have ~4wl <Af(T). We apply Lemma 3.7 
to the contraction b~(T~o), 

JJRA(b.(TO-,~o))II _< C4 

dist (A, ~o)  for all A @ C\~r~ ~ . 

Further, we note that  a(b~(To-~o))N13oo (0)=0. Hence, by Lemma 3.8 

(1 -  IA[ 2) ~ es@o) tr(I-b,(To-~o)*b,(To-~o)) 
AEO-~ ~ 

_< c8 (t)o) t r ( I -b . (T)*b . (T)  ) < cs(po)C2(T). 

This gives us 

E (1-IAI 2) _< cs(po)C2(T)+H(T), 
AEap~ 

and the lemma is proved. [] 

C o r o l l a r y  3.3. If  T is a contraction flora Lemma 3.9, then a~,(T) is A/'(T)- 
Carleson. 

Pwof. We have, by Lemma 3.9, 

(1 - lb .  (a)12) < ~9 
ACo-p 

for every /tED. Now the statement follows from the embedding theorem, Theo- 
rem 2.3, and Corollary 3.2. [] 
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3.7. Basis  propert ies  of  the  family of  e igenspaces  

0 We introduce some notation to formulate a theorem. Let { n}n=l be a family of 
L(E)-valued two-sided inner functions, E be a Hilbert space. We consider subspaces 
Ko~ (see (2.1)) and we define L(E)-valued inner functions 0 and 0 ~ via the model 
spaces 

1420= V KO~, and Ko',,= V KOk. 
n = l  k r  

The spaces Ko.~ and Ko~ are invariant with respect to the model operator M~, and, 
as was mentioned in Subsection 2.2, they define regular factorizations 0=0~0 ~, 
0=0@~ of the function 0. 

The following theorem states that  the property of being an unconditional basis 
is equivalent to the uniform minimality and two embedding theorems. 

T h eorem 3.1. ([12]) Let {0n}~_l be a family of L(E)-valued two-sided inner 
functions, and dim K0,~ << M for some M > 0 .  

The family is a Riesz basis in its linear span if and only if it is uniformly 
minimal and the two following embedding theorems hold true 

oo 

(3.27) ~'(1 -IlOn(,x)*~ll ~) _< c < ~ ;  
n = l  

(:x:) 

(3.28) ~ ( 1  -II0~(~)*~112) _< c < o~, 
n--1 

for every ~cE,  Hell=l, and every AED. 

We put our situation in the frame of the theorem by setting 

and X={Xa}xe~  . 

Ko = V Xx 
)~CO-p 

The regular factorizations of 0 

0 = 0 ~ 0  ~ and 0=0~0~ 

for h e a p  are defined by the corresponding invariant subspaces 

= X x  and K~ = V Kox X, .  

Proof of Theorem 1.1 for complete contractions.. The family 2( of eigenspaces of 
T is uniformly minimal by virtue of Lemma 3.3. The same lemma implies that  all the 
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eigenvalues of T are algebraically simple. The inequality dim K0x =d im Xa <Af(T) 
is guaranteed by (3.9). So, we should verify only embeddings (3.27) and (3.28). We 
have 

l[0~(#)*elf >_ [det0~(#)f and ff0~(#)*elf > I det0x(#)l, 

where Ilell=l, and Idet ox(~)l>_lb~(~)Vv(r), a~p. Hence, (3.27) and (3.28) follow 
from already proved relation (3.26), 

E (1--1b;~ (#)12Cr ) _< 2N'(T) ~ (1-[b;~(#)D _< 2N'(T) ~ (1-1AI)< 2N'(T)eg. 
~E~p ~EO-p ~CO-pt ~ 

Theorem 1.1 for complete contractions is proved. [] 

4. P r o o f  of  T h e o r e m  1.1 for general contractions 

The main lines of the reasoning of this section follow [1]. 

4.1. Some inequalities for trace-class operators 

The first important step is separating the point spectrum of a contraction 
from the unitary one. We obtain some infinite dimensiona] counterparts of the 
inequalities 

IdetA1-1 ~ IIA-111 n and IIA-111 ~ IIAIIn-lldetAl-~ 

valid in finite dimensional spaces (A is an n • n matrix here). 

Lemma 4.1. Let 0 be an operator on a separable Hilbert space E, II011<l, and 

let I-O*O be a trace-class operator. Then 

1 1 
(4.1) II (0"0) -1 II ~ - 

det 0"0 I det 012' 
1 

(4.2) [det 01 ~ -< exp([[0-1112 t r ( I -0"0) ) .  

Pro@ The assumptions of the lemma imply that  the operator 0"0 admits a 
spectral decomposition of the form 

O*eX=~pk(x, ek)ek, 
k=l  
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c~ k ec where {ek}k: 1 is a n  orthonormM system, and {# }k: l  is the sequence of eigenvalues 
of 0"0, 0_<pk _< 1. Inequality (4.1) is almost obvious 

1 1 1 
I1[~ n' ,  II ilk * ) - 1 l [  ~ infk_>~ IPkl <- YIk~_-~ Ipk] - det 0"0" 

The proof of (4.2) is also relatively simple 

log - -  1 <log[i 1 - Z l ~  ]+ -1 d e t 0 * 0 -  k=~Pk k=~ 

) 1 1 E ( l _ p k  ) 
<- --1 -< in---fk>l I~1 

- -  - -  k = l  

: II(0*0)-l]l tr(I-O*O). 

Taking into account the inequality N(0*0) ill _< II0 -1 II 2, we get the lemma. [] 

4.2. The (LRG) and (UTB) properties yield the triviality of  the unitary 
spectrum of a contraction 

Let T be a completely nonunitary contraction (we do not require its com- 
pleteness now), possessing the (LRG) and the (UTB) properties. We denote by 
0 its characteristic function. Further, we define its regular factorization 0=0201 
(see Subsection 2.2) and the corresponding invariant subspace L1 by the relation 
L1 =V~e~p x~.  We put T1 =T[L1. Evidently, T1 is a complete contraction. 

Lemma 4.2. Let T be a completely nonunitary contraction. If TE(LRG)A 
(UTB), then Tx C (LRG) N (UTB). 

Proof. It is clear that 

C2(T1) = sup tr(I-b.(Tx)*b.(T1)) <_ sup tr(I-b.(T)*b.(T)) =C2(T), 
# c D  tzED 

and T1 E (UTB). 
It remains to get the second property. Note that  ap(T1)=ap. We consider two 

1 and IX]> 1 If I~l< 1, we get immediately cases, [AI < 5 - 5- 

//R~(r~)//_< IJn~(T)]l _< 

where AEC\ap.  If [Al>�89 we obtain 

{ IIR~(Ta)[[ < IIRx(T)II_<Cl( ) m a x  ~s t (A ,~p) '  

4C1(T) 
dist(A, Gp)' 

1} 
[1-1~l] ~ 

AoCx(T) 
dist (A, Gp)' 
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by virtue of Lemma 3.1, and so C1 (T1)_<A0Cl(T). The proof is finished. [] 

Hence, the results of Section 3 can be applied to the operator T1, and ap(T1) 
is JV(T1)-Carleson (see Corollary 3.3). 

The following lemma characterizes the (UTB) property in terms of the charac- 
teristic function of a contraction. 

L e m m a  4.3. Let T be a completely nonunitary contraction satisfying (UTB). 
Then 

tr(I-O(#)*O(#)) =tr([ -b . (T)*b. (T))  <_C2(T). 

Proof. Recall that  (see (2.2)) 

U.~Ob~(T)(ba(#))U2 = OT(#) 

for aED.  Here U.a: ~ba(T)*---}~DT and Ua: ~[~ba(T)---}~T are some unitary mappings. 
This implies the equality 

[ -- 0 T (It)* 0 T (It) = g a ( I  - Oba (T) (ba (#))* Ob~ (T) (ha (#))) U~. 

We take a = #  and, since OT(O)=--T[~T, it gives us 

I--OT(#)* OT(#) = U.( I - b . ( T )  *b.(T) )Us 

We conclude the computation with 

tr(1-O(#)* O(# ) ) = tr U. ( I - b . (  T) * b.( T) )U~ = tr( I - b .  ( T)* b. ( T) ) <_ C~( T). 

The proof is finished. [] 

L e m m a  4.4. Let T be a completely nonunitary contraction, 0(;~) be its char- 
acteristic function, and T E (LRG) N (UTB). Then 

(i) the .function det 0 contains no singular inner .factor in its canonical factor- 
ization; 

(ii) the outer part of the function O(A) is boundedly invertible: 

(4.3) sup II0out( )-lll C < 
AED 
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Proof. By virtue of Lemmas 4.1 and 4.3, 

1 
(4.4) [det 0(A)[ 2 -< exp([[0(A)-x 112 tr(I-O(A)*O(A))) <_ exp(C2 (T)[[0(A) -1112). 

To get (i) we just repeat a part of the reasoning from [1, Theorem 1.5.2]. Indeed, if 
det 0(A) contains a nontrivial singular factor, we have 

lira Idet 0(r~)-ll  = +oc, 
t-+l--0 

where 4 T. The relation (4.4) gives us limT +1-o ll0( 4) II=+oo. Inequality (2.3) 
implies that limr_+1_o(l-r)[[R~4(T)[l=+oo. Lemma 2.1 provides us with a se- 

quence {z,~}~~ z n = r ~ ,  r,~--+l, such that  dist(zn,~p)>_g(1-Izn[). We conclude 
that 

lim [[R~(T)[[ dist(z~, crp) = +oo, 
r - -~ l - -0  

which contradicts the (LRG) property. 
We pass to a sketch of the proof of (4.3) now. It is not difficult to see that  

supaeD II0o,t(A)-l[[<oc if and only if the function det 0out(A) is boundedly invert- 
ible. This fact follows from the relations 

a.e. on T and 
1 

I det 0o~tl 2 

tl(Oo d )*Oout(t))-lll = l l (o ( t )*o( t ) ) - l l l  

_< exp ([[0~ult [[2 tr(i_Oo,tOout) ) <_ exp(l]0o~t II 2 tr(I-O*O)) 

-< exp ([[ 0oult [I 2 tr ( I -  b, (T)* b, (T))) _< exp (C2 (T) II oolt l I), 
* ~ * because 0out0o,t_0 0 by the definition of an outer function [11, Chapter 5], and, 

consequently, tr ( I -  0o*ut 0out) >_ tr ( l -  0* 0). 
To get the desirable conclusion for the outer part of 0(A), we apply arguments 

similar to those used while considering the inner part of the function, see [1, Theo- 
rem 1.5.2] for the details. 

The proof is finished. [] 

4.3. Separat ing the  spectra  and comple t ing  the  proof  of  T h e o r e m  1.1 

We write down the canonical and ,-canonical factorizations of the characteristic 
function 0 of the contraction T. The factorizations are regular, and we consider the 
corresponding invariant subspaces L=Lout  and L '=Lin . .  It is obvious that  the sum 
L+L' is dense in H=Ko, and Theorem 2.2 states that  the sum is direct if and only 
if the corresponding Bezout equation is solvable. 

The following lemma yields the solvability of the equation. 
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L e m m a  4.5. Let 01,0 i E H~176 ( L( E) ) be analytic functions possessing the scalar 
multiples c~1 and J1, respectively. Let, further, ]wl(z) l+lc~(z) l>s ,  z E D .  Then 
there ezist functions F1, F~I E H ~  ( L( E) ) that solve the Bezout equation (2.5). 

Proof. The definition of a scalar multiple implies that  there exist operator- 
valued functions ~1~ ~ C H ~ 1 7 6  ( L ( ~ ) )  w i th  the properties 

/ / / / , gt~01 =01fh =WlI and f~101 = 0 , f t  1 = c A I  , 

and COl,CO~EH ~176 Since Iwl(z)l+lW'l(Z)l>_e, zED, we find "~1 and "~ in H ~176 solving 
the scalar Bezout equation 2r We note that  the functions P l=Tl f t1  
and F~ =7[f~[ satisfy the equations 

r i O  1 ~-V~O~ = ,~1~'~101Av,'~ ~'~] O~ = (~1~1 ~-'~02~)I = I ,  

and the proof is finished. [] 

Remark 4.1. We have 01=0out and 0~ =0in.. Lemma 4.4 states that ,  under the 
assumptions mentioned there, ]det 0out(~)]_>a>0, so the lemma is valid, and the 
conclusion of Theorem 2.2 follows. 

Proof of Theorem 1.1. Lemma 4.4 affirms that  0olt EH~(L(E))  and det 0o~ t E 
H ~ Lemma 4.5 and the remark after it imply that  the sum H = L + L '  is direct. 
The first part  of Lemma 4.4 gives tha t  det 0in. is a Blaschke product and, hence, 
Tin.=T1 is a complete contraction (see Lemma 4.2). Since T IE(LRG)A(UTB) ,  it 
is similar to a normal operator by the particular case of Theorem 1.1, proved in 
Section 3. The similarity of the operator  Tizo, ~ to a unitary operator  follows at 
once from relation (2.4). To complete the proof, we use the positivity of the angle 

between Lin. and Lou t. 
The proof is finished. [] 
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