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Closures of finitely generated
ideals in Hardy spaces

Artur Nicolau and Jordi Pau(")

Abstract. Let H* be the algebra of bounded analytic functions in the unit disk D. Let
I=I(f1,..., f~) be the ideal generated by fi,..., fNEH*™ and J=J(f1,..., fn) the ideal of the
functions f€H® for which there exists a constant C'=C(f) such that |f(z)|<C(|f1(z)|+...+
[fn(2)]), z€D. It is clear that ICJ, but an example due to J. Bourgain shows that .J is not, in
general, in the norm closure of I. Our first result asserts that J is included in the norm closure
of I if I contains a Carleson—Newman Blaschke product, or equivalently, if there exists s>0 such
that

1

N
nf Yo" Y157 @) >o0.
k=0 j=1

Our second result says that there is no analogue of Bourgain’s example in any Hardy space HP,
1<p<oco. More concretely, if g€ HP and the nontangential maximal function of |g(z)|/ Zé\;l |f5 (=)
belongs to LP(T), then g is in the HP-closure of the ideal I.

1. Introduction

Let H* be the algebra of bounded analytic functions in the unit disc D.
Given functions fi, ..., fa in H*®, let I=I(f1,..., fiv) denote the ideal generated by

{f1, .-, fn}, that is,

N
I:I(flam)fN):{ijgjingHoo}.

Jj=1

The celebrated Corona theorem of I.. Carleson [3] asserts that the ideal I is the
whole algebra H*> if

inf{i 115 (2)] :zeD} >0.
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Let J=J(f1,..., fiv) denote the ideal of the functions f& H> for which there exists
a constant C=C(f)>0 such that

(1) If(Z)lSCZIfj(Z)L zeD.

It is clear that I is contained in J. However, an example of Rao shows that,
in general, the two ideals are different. Actually, one may take f=B;Bs, fi=B%,
fo=DB3, where By and B> are two Blaschke products with disjoint zero sets satisfying

inf{|B1(2)|+1{Ba(z)| : z€ D} =0.

Then (1) holds but an easy factorization argument shows that f does not belong to
I(f1, f2). In fact, it has been proved in [8] that I(f1, f2)=J(f1, f2) if and only if

inf{] f1(2)|+1f2(2)|+ (=12 (| f1(2)1+1f3(2)]) : 2 € D} > 0.

It is worth mentioning that condition (1) implies that f3 belongs to the ideal I,
while for f2 the question is open (see [6]).

J. Bourgain [2] has shown that one can construct the Blaschke products By
and Bj in Rao’s example such that By By does not belong to the (norm) closure of
I(B?,B3). So condition (1) is not even sufficient to assure that the function f is in
the (norm) closure of the ideal I. On the other hand, he also showed that if instead
of (1) one requires

@I <a(f)+.+Ifn(2)), z€D,

where « is a positive function satisfying

t—0 t

one can conclude that f belongs to the norm closure of the ideal 1.

Our first result states that condition (1) is sufficient if the ideal I contains a
Carleson—Newman Blaschke product.

A Blaschke product with zero set {2, }72; is called a Carleson-Newman Blasch-

ke product if the measure
o0

> (1 lza))dn

n=1
is a Carleson measure. Here §,, denotes the Dirac mass at the point z,. Equivalently,
the Blaschke product B with zero set {z,}52, is a Carleson-Newman Blaschke
product if and only if for any >0, there exists n=n{¢)>0 such that |B(z)|>n for
any z such that inf,,>1 [(z—2,}/(1~2,2)|>¢.
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Theorem 1.1. Let fi,..., fx be functions in H*. Assume that I(f1,..., fn)
contains o Carleson-Newman Blaschke product. Then, the ideal J(fy,..., fn) is
contained in the norm closure of the ideal I(f1, ..., fn).

This result has been proved previously by P. Gorkin and R. Mortini (see [7]).
However, the methods are completely different. Their approach is based on subtle
properties of the maximal ideal space, while we use a variation due to J. Bourgain
of the d-techniques in the proof of the classical Corona theorem.

The assumption on the ideal I{f1, ..., fi) may not look very natural. However
it is really a condition on the structure of the ideal. To explain it, let M(H)
denote the maximal ideal space of H*, that is, the space of multiplicative linear
functionals on H*, endowed with the weak-star topology. If x,me M (H*>), then
the pseudohyperbolic distance from z to m is defined as

o(z,m) =sup{|m(f)|: f € H™, || flloo <1, x(f) =0}.

By Schwarz’s lemma this is the extension of the function

for z,weD. It is well known that M(H®) can be partitioned into equivalence
classes defined through the relation z~m if and only if p(x, m)<1. The equivalence
classes are called Gleason parts.

Given a function fe H™, its zero set Z(f) is defined as

2(f) = {me M(H>):m(f) = 0}.

The hull or zero set Z(I) of an ideal I in H™ is

fel
The following result was proved by V. Tolokonnikov [12].

Theorem A. Let f1,..., fv be functions in H>. Then, the following proper-
ties are equivalent:

(a) The ideal I=I(f1,..., fn) contains a Carleson-Newman Blaschke product.

(b) The zero set Z(I) is contained in the set G of points in M(H™) whose
Gleason part contains more than one point.

(c) There ezists a natural number s>0 such that

s N

: Y (k)
inf > (=1 157 @)>0.
k=0 7j=1
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Let 0<p<oc and let HP be the space of analytic functions f in the unit disk
such that

27 )
sup / Fre) P do = | 12 < oo.

r<1
It is well known that an analytic function f belongs to H? if and only if the non-
tangential maximal function

M () =sup{|(2)}: 2 € T(0)}
belongs to the usual Lebesgue space LP(T), I'(8) being the Stolz angle with ver-
tex at e’’. Here T denotes the unit circle. Recently, several H? versions of the
Corona theorem have been considered. Given fi1,..., fx € H?, one wants to study
the Bezout equation
(2) 1=figi+..+fngn,
where g1,...,gn are functions in H?. Concretely, one is interested in conditions
on fi,..., fa so that solutions gy, ..., gy in HP exist. If |f|?=|f1)?+...+|fn|? and
lg1?=]|g1|*+...+|gn]|?, it follows from (2) that 1<|f||g| and hence
(3) M(|f|7) € LX(T)

is a necessary condition. Observe that when p=o0, this is the usual Corona condi-
tion. However, for p<oo, this condition is far from being sufficient. Actually, it is
shown in [1] that for any €>0, the stronger condition

M(|f|7>*%) e LP(T)
is not sufficient. Our next result says that condition (3) is sufficient to conclude

that 1 is in the HP-closure of the ideal I(f1,..., fn). So, in this HP-context there
is no analogue of Bourgain’s example.

Theorem 1.2. Let fi, ..., fx be functions in H®. Let 1<p<oo. Let gc¢ HP
such that

M(g/1f1) € LP(T).
Then, given any >0, there exist functions g1, ..., gy €HP such that

lg—(figi+-.+fngm)llp <7-

It is worth mentioning that for £>0, the condition
_ 2+4¢

M(|f|?log|fI|™") € LP(T)

is sufficient to solve the Bezout equation (see [1]}). This result can be slightly
improved (replacing the second 2 by %) but the question if

M(|f|7%) e LP(T)

is sufficient to solve the Bezout equation in HP, remains open.
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2. Preliminaries

Recall that a positive Borel measure p on D is called a Carleson measure if
there exists a constant C so that

/ Fldu<Clflh
D

for every function f in the Hardy space H!. Tt is well known that Carleson measures
are those positive measures p for which there exists a constant K such that

Q) <KUQ)

for every Carleson square () defined by

Q={re? cD:1-r<l{(Q), |6—6,] <1{Q)}.

Another equivalent condition is that

/ el <l dp(w) <+
su T EE—— w o0,
seb Jo T-zwP

Let

N(,u) = sup{ % Q) is a Carleson square}

denote the Carleson norm of p. We will use two results, the first due to Carleson
on the existence of bounded solutions of d-equations (see, for example, [6]) and the

second is a result on approximation due to Garnett (in a weaker form) and Dahlberg
(see [4]).

Proposition 2.1. Let G be a bounded and continuous function in D. Assume
that |G|dz dy is a Carleson measure on D. Then, the 0-equation Oh=G admits a
solution he C(DYNCH(D) with ||h|| Lo (ap) <C1N (|G| da dy), where Cy is an absolute
constant.

Proposition 2.2, Let u be a bounded harmonic function on D. For each
€>0, there exists a C™-function ¢ on D satisfying lp(z) —u(z)|<e, z€D, and such
that v=|V|dz dy is a Carleson measure with norm N(v)<Cs/e, where Cs is an
absolute constant.

The level curve of a bounded analytic function is, in general, not rectifiable.
However, given a bounded analytic function f, L. Carleson constructed a system
of rectifiable curves which act as level sets, in the sense that they separate the
sets where |f| is small from those where it is big. We will use a refinement of the
Carleson construction due to J. Bourgain [2].
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Proposition 2.3. Let B be a Blaschke product. Given €>0 there exists an
open set R on D such that OR is a union of rectifiable curves and

(i) |1B(z)|<e, if z€R;

(i) |B(z)|>d(e), if z¢ D\ R;

(i) N(dor)<C, where 6(c) only depends on € (not on B), Apgr is the linear
measure on the boundary of R and C denotes a universal constant.

We use this proposition to prove Theorem 1.2.

3. Proof of Theorem 1.1

We can assume that the ideal I=1I(f1, ..., fn) is generated by N+1 Carleson—
Newman Blaschke products. Actually, if Bel is a Carleson—Newman Blaschke
product and £>0 is sufficiently small, one has B—ef;=Bjh;, j=1,..., N, where
Bj is also a Carleson-Newman Blaschke product and h,j_1 €H*>. So, B,By,...,Bxn
generate the ideal I.

So, assume that f, By, ..., Byy1 € H™> satisfy

R N+1
(z)|<C Z |B;(2)|, z€D.

Fix v>0. Let Dy (z,r)={w:0(z,w)<r}. Since By, ..., By41 are Carleson-Newman
Blaschke products, for j=1,..., N+1 one has

(4) 1Bj(2)| = n;, if 2¢ | Drlzniv) = Ry,
(5) |Bj(z)| <7y, ifze R;.

Here {z,;}72, is the zero sequence of B;. Let d=minj<j<nyy17;, and define
R= ﬂNH R;. Then by (4) and (5) one has

N+1

(6) Z |B;(2)| >4 for € D\R,
N+1

(7) Z|B )| <{N+1)y for z€R.

Let 7>0, to be defined later, and apply Proposition 2.2 to each of the functions B;.
We obtain C*°-functions v; on D such that for any j=1,..., N1, one has

(8) |Bj(z)—vj(z)|<T, z€D,
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N(|Vv;|dxdy) < g
For 1<j<N+1 we define
_ Y
9i = m?ﬁ)\m
where xp denotes the characteristic function of the set £. Then

N+1 N+1 _ B
) 1-3 g;Bj=xr and Y B;dg;=-0xz-
J=1

Jj=1

Consider solutions a; , j,k=1,..., N+1, of the respective d-equations

(10) 9a; = [9;09x

and solutions b;, j=1,..., N+1, of the 9-equations

, 5 Ju; 5

(11) Bb;= — A fyp
’ 1 Bt

and assume, momentarily, that E;V:;ll lla; kllLe <C and Z;N:“Lll 1bilires is small.
Put, for j=1,...,N+1,

N+1
(12) hi =g+ Y _(ajk~a;)Be+b;.
k=1
By construction
N+1 N+1

=Y hiBj=fxg—Y_ b;B;
=1 j=1

and then
N4+1 N+1

(13 - ma| <covenrey i
Jj=1 = j=1

Next, we verify that the functions h; are analytic. By (9), (10), (11) and (12), we
have
) B N+l
Oh; = f0g;+1 > _ (9;09: ~grDg;) Bi-+0b;
k=1
N+1

= f3g9ixr+19; Y BrOgr+0b; = fg;0xr+0b; =0.
k=1
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Choose 7<§%/2(N+1)2. Next, we will find solutions of (10) and (11) with conve-
nient L*-norms. Since by (8), one has
N
(1By1+7) S0y 1Bl
S 1B = (N+ 1)

|fg;l<C XD\R

and because § ngg’j | B;| outside the region R, it follows that

Ifgillpee <C, 1<j<N+1.

Since
5 5Uj ’Uj Z;CV; Bk(?vk @j 5)(
95 = N1 o  XD\R— —a XD\R™ “N+1 - R,
o1 Brug ( kN:ll Byy) k=1 BrUk

it follows that |fg; Ogx| dx dy is a Carleson measure and

N+1
_ 1 1
N(|f9;0gx| dz dy) < 5—2N<Z V| da dy) + 5N (o).

k=1

From (4), and the fact that the measures p;=> o (1—|z,,]?)d, are Carleson
measures, we obtain that
N(or) <C(N, 7).

Now, from Proposition 2.1, we may conclude the existence of solutions a; x to (10)

satisfying
C
@ k|l Lo (am) < oy

It remains to analyze the right member of equations (11). Since Jxr is supported
in @R and on OR it holds that |fv; (Z,ivjll Bkﬁk)_l |<C, one has

N (T{I‘i“—am) <CN(Xor) <C(N,7)

k=1 PkVk

and C{N,v) tends to zero when v tends to zero. Again by Proposition 2.1, this
allows us to obtain b; satisfying (11) with ||b;]|z~(sp) as small as desired. In
particular, we have
C(N)

5
As a consequence of (13), ||f—hifi—hafa|leo can be arbitrarily small. Hence
dist oo (f, I)=0, completing the proof.

hy;e H* and |hjlle <
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4. Proof of Theorem 1.2, preliminary results

In this section we counsider the H? analogous of Bourgain’s theorem on closures
of ideals in H*°. In contrast with the H*> case, the condition

M(g/|f) e L?

is sufficient. First, we need some previous results.

Lemma 4.1. Let v and ¢ be continuous functions defined on D. Assume that
o=|¥|dz dy is a Carleson measure. Then

o({z €D fp(2)| > A}) < N(@)[{e” € A: Mip(e) > A},
where A={e*:9)(2)#0 for some 2€T'(6)}.
Proof. We follow the standard proof in the upper halfplane H. Let
R={z€H:|p(z)| > A}N{z:1(2) £0}

and
S={t: M) > }n{t:¢¥(z)#0 for some z€T'(t)}.

Let z be such that ¥(2)#£0 and |p(2)]>X. Then Mp(t)>A in the interval
I.={teR:|t—Re z|<Im z}. From this it follows that

U I,CS.

zZER

Since S is an open set, it is a union of a sequence of pairwise disjoint intervals {I;}
whose centers are denoted by ¢(1;). Consider the sets T} defined by

T;={z=z+iy e H:|z—c(I;)|+y < 5|1;|}.

It is clear that RC| ; T5, and since o is a Carleson measure, one deduces

o(R) < ZO(T]') < N(o) Z Ll =N(a)ls]. O

The next lemma is the version for HP-spaces of the Carleson criterion on exis-
tence of solutions of the equation Ob=g.
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Lemma 4.2. Let 1<p<co. Let G be a continuous function in D such that
G=py, where MpeL?(T) and do=|y|dzdy is a Carleson measure. Then there
exists a function beC(D)NC(D) such that 0b=G and

/ " o(e?) P do < N(o) [ oty ao,
0 A

where A={e":4p(2)#0 for some z€T(0)}.

Proof. Let ¢ be the conjugate exponent of p, that is 1<¢g<oo and 1/p+1/g=1.
By duality,

_ 1 2m
i (o106 =G =supf | 1 [ Prao i g an i, <1 .
0

where F' is an a priori solution of 9F =G and H{ denotes the subspace of functions
f€H? such that f(0)=0. By Green’s formula, we obtain

2m
i/ Fhdf=——— c()F gan gz
27T 0

27 [z|<1 z

Then
inf{||b||p:5b:G}§Sup{;rl—/ |G(2)| |k(2)|dz dy : k€ H? and ||k, < 1}.
D

Since G=¢1, Hélder’s inequality yields

[ wenmenenias ([ wera) ([ woma)”
<cto N ([ eeras)

because o is a Carleson measure. Now, the previous lemma finishes the proof. O

The following well-known lemma (see [5]) shows that is sufficient to prove the
theorem when f1 and fo are finite Blaschke products with simple zeros.

Lemma 4.3. Let f be an analytic function in D which is continuous in D.
Suppose that 0<|f(2)|<1 if |z|=1. Let E={z€T:|f(z)|<1}. If E is non-empty,
then there exists a sequence {B,}>2 , of finite Blaschke products with simple zeros
such that | By (2)|—|f(2)| uniformly on compact subsets of D\ E, and B,(2)— f(2)
uniformly on compact subsets of D.
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5. Completion of the proof of Theorem 1.2

By a standard normal families argument, we can assume that the functions g,
f1 and f2 are analytic in a neighbourhood of the closed unit disk. For simplicity,
we will assume that N=2 and that || f;]|cc <1, =1, 2. Since we can write f; € H*
as a product f;=B;F; where B; is a Blaschke product and Fj is an invertible
function with |F;|<1, the approximation result of Lemma 4.3 permits us to obtain
Proposition 2.3 for functions in the unit ball of H*°. By Proposition 2.3, given £>0
we obtain regions Ry and Ry and numbers d1(¢),d2(€)>0, such that |f;(z)|<e if
z€R;, |fi(2)]>6;(e) if z6D\R; and N(Agg,)<Cj; for j=1, 2.

Let §:=min(d; (¢), 62(¢)) and R=R;NRy, then

(14) lf1(2)+|f2(2)| <2, ifz€R,
(15) [f1(2)|+]fo(2)| > 6, if ze D\R,
(16) N()\@R) <C.

By Proposition 2.2 there exist functions vy, v2€C* (D) such that

(17) v;(2) - fi(2)] < £50%, z€D,
C
(18) N(|Vuy| dz dy) < 5—3

For j=1, 2, define B
B == _ka
7T 01+ fatiy PV
then 1—(hyf1+hofs)=xr and f10hi+ f20ho=—0xr. We will consider functions
a12, az1, b1 and by satisfying
Uk

—2 5 Oxr, k=1, 2.
f1o1+ fao Xk

(19) daji, = gh;jOhy and Oby =

Then, the functions
{ g1 = ghy+(aiz—az1) fa+b1,

92 = gha+ (a1 —ai2) f1+be
are analytic. Thus F=g—(f191+ fage) is analytic and F=gyp—byf1—baf2. Also

1M (gxr)|lLp(Ty =0 whene—0
because |g|xr<(2¢9/|f)xr and M(g/|f|)€LP(T). Then

I Fll e <M (gxr)Ize + b1l e + b2l Lo -
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So it only remains to show that there exist solutions a;; and by to the equations
(19) with |la |l z»(T) bounded and [|b || z»(T) as small as desired.

To show that solutions aji exist, we put gh;0hy,=®V, where ®=g/|f| and
V=|f|h;Oh;. Now, applying Lemma 4.2, we can deduce the existence of these
solutions, because by hypothesis M®€ L, and to show that |¥|dz dy is a Carleson
measure, we can repeat the argument given in the proof of Theorem 1.1. Fix j=1, 2

and consider _
F101+ fotiz

We have G=¢1, where

I and @[J:MéXR::wléXI%

v |f] f1oi+ fav2

Since Jxr is supported on R, on OR one has
1] < TAIFi1Hed®) f172 < 1+erd.

Hence N(|¢|dx dy)<C1N(Aor)<Cs2. By Lemma 4.2 there exists a solution b; to
the equation a_bj:G such that

27
/ |b;(e)[P degC/ (M)? de,
0 A

where A={e?:T'(9)NOR#(}. Then, choosing e=cy7, we have that, when y—0, the
set A tends to the set Z(f1)NZ(f2)N'T, which has Lebesgue measure zero. Then,
by the absolute continuity of the integral, we have that ||b;]|,—0 when y—0 and
this finishes the proof.
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