Closures of finitely generated ideals in Hardy spaces

Artur Nicolau and Jordi $Pau(^1)$

Abstract. Let H^{∞} be the algebra of bounded analytic functions in the unit disk **D**. Let $I=I(f_1,\ldots,f_N)$ be the ideal generated by $f_1,\ldots,f_N \in H^{\infty}$ and $J=J(f_1,\ldots,f_N)$ the ideal of the functions $f \in H^{\infty}$ for which there exists a constant C=C(f) such that $|f(z)| \leq C(|f_1(z)|+\ldots+|f_N(z)|), z \in \mathbf{D}$. It is clear that $I \subseteq J$, but an example due to J. Bourgain shows that J is not, in general, in the norm closure of I. Our first result asserts that J is included in the norm closure of I if I contains a Carleson–Newman Blaschke product, or equivalently, if there exists s > 0 such that

$$\inf_{z \in \mathbf{D}} \sum_{k=0}^{s} (1 - |z|)^k \sum_{j=1}^{N} |f_j^{(k)}(z)| > 0.$$

Our second result says that there is no analogue of Bourgain's example in any Hardy space H^p , $1 \le p < \infty$. More concretely, if $g \in H^p$ and the nontangential maximal function of $|g(z)| / \sum_{j=1}^{N} |f_j(z)|$ belongs to $L^p(\mathbf{T})$, then g is in the H^p -closure of the ideal I.

1. Introduction

Let H^{∞} be the algebra of bounded analytic functions in the unit disc **D**. Given functions f_1, \ldots, f_N in H^{∞} , let $I = I(f_1, \ldots, f_N)$ denote the ideal generated by $\{f_1, \ldots, f_N\}$, that is,

$$I = I(f_1, \dots, f_N) = \left\{ \sum_{j=1}^N f_j g_j : g_j \in H^\infty \right\}.$$

The celebrated Corona theorem of L. Carleson [3] asserts that the ideal I is the whole algebra H^{∞} if

$$\inf\left\{\sum_{j=1}^N |f_j(z)| : z \in \mathbf{D}\right\} > 0.$$

 $^(^1)$ Both authors are supported in part by DGICYT grant PB98-0872 and CIRIT grant 1998SRG00052.

Let $J = J(f_1, ..., f_N)$ denote the ideal of the functions $f \in H^{\infty}$ for which there exists a constant C = C(f) > 0 such that

(1)
$$|f(z)| \le C \sum_{j=1}^{N} |f_j(z)|, \quad z \in \mathbf{D}.$$

It is clear that I is contained in J. However, an example of Rao shows that, in general, the two ideals are different. Actually, one may take $f=B_1B_2$, $f_1=B_1^2$, $f_2=B_2^2$, where B_1 and B_2 are two Blaschke products with disjoint zero sets satisfying

$$\inf\{|B_1(z)| + |B_2(z)| : z \in \mathbf{D}\} = 0.$$

Then (1) holds but an easy factorization argument shows that f does not belong to $I(f_1, f_2)$. In fact, it has been proved in [8] that $I(f_1, f_2)=J(f_1, f_2)$ if and only if

$$\inf\{|f_1(z)|+|f_2(z)|+(1-|z|)(|f_1'(z)|+|f_2'(z)|):z\in\mathbf{D}\}>0.$$

It is worth mentioning that condition (1) implies that f^3 belongs to the ideal I, while for f^2 the question is open (see [6]).

J. Bourgain [2] has shown that one can construct the Blaschke products B_1 and B_2 in Rao's example such that B_1B_2 does not belong to the (norm) closure of $I(B_1^2, B_2^2)$. So condition (1) is not even sufficient to assure that the function f is in the (norm) closure of the ideal I. On the other hand, he also showed that if instead of (1) one requires

$$|f(z)| \le \alpha (|f_1(z)| + \dots + |f_N(z)|), \quad z \in \mathbf{D},$$

where α is a positive function satisfying

$$\lim_{t \to 0} \frac{\alpha(t)}{t} = 0,$$

one can conclude that f belongs to the norm closure of the ideal I.

Our first result states that condition (1) is sufficient if the ideal I contains a Carleson–Newman Blaschke product.

A Blaschke product with zero set $\{z_n\}_{n=1}^\infty$ is called a Carleson–Newman Blaschke product if the measure

$$\sum_{n=1}^{\infty} (1 - |z_n|) \delta_n$$

is a Carleson measure. Here δ_n denotes the Dirac mass at the point z_n . Equivalently, the Blaschke product B with zero set $\{z_n\}_{n=1}^{\infty}$ is a Carleson–Newman Blaschke product if and only if for any $\varepsilon > 0$, there exists $\eta = \eta(\varepsilon) > 0$ such that $|B(z)| > \eta$ for any z such that $\inf_{n\geq 1} |(z-z_n)/(1-\bar{z}_n z)| > \varepsilon$.

Theorem 1.1. Let $f_1, ..., f_N$ be functions in H^∞ . Assume that $I(f_1, ..., f_N)$ contains a Carleson–Newman Blaschke product. Then, the ideal $J(f_1, ..., f_N)$ is contained in the norm closure of the ideal $I(f_1, ..., f_N)$.

This result has been proved previously by P. Gorkin and R. Mortini (see [7]). However, the methods are completely different. Their approach is based on subtle properties of the maximal ideal space, while we use a variation due to J. Bourgain of the $\bar{\partial}$ -techniques in the proof of the classical Corona theorem.

The assumption on the ideal $I(f_1, \ldots, f_N)$ may not look very natural. However it is really a condition on the structure of the ideal. To explain it, let $M(H^{\infty})$ denote the maximal ideal space of H^{∞} , that is, the space of multiplicative linear functionals on H^{∞} , endowed with the weak-star topology. If $x, m \in M(H^{\infty})$, then the pseudohyperbolic distance from x to m is defined as

$$\varrho(x,m) = \sup\{|m(f)|: f \in H^{\infty}, \ \|f\|_{\infty} \leq 1, \ x(f) = 0\}.$$

By Schwarz's lemma this is the extension of the function

$$\varrho(z,w) = \left| \frac{z - w}{1 - \overline{w}z} \right|$$

for $z, w \in \mathbf{D}$. It is well known that $M(H^{\infty})$ can be partitioned into equivalence classes defined through the relation $x \sim m$ if and only if $\varrho(x, m) < 1$. The equivalence classes are called Gleason parts.

Given a function $f \in H^{\infty}$, its zero set Z(f) is defined as

$$Z(f) = \{ m \in M(H^{\infty}) : m(f) = 0 \}.$$

The hull or zero set Z(I) of an ideal I in H^{∞} is

$$Z(I) = \bigcap_{f \in I} Z(f)$$

The following result was proved by V. Tolokonnikov [12].

Theorem A. Let f_1, \ldots, f_N be functions in H^{∞} . Then, the following properties are equivalent:

(a) The ideal $I = I(f_1, ..., f_N)$ contains a Carleson-Newman Blaschke product.

(b) The zero set Z(I) is contained in the set G of points in $M(H^{\infty})$ whose Gleason part contains more than one point.

(c) There exists a natural number $s \ge 0$ such that

$$\inf_{z \in \mathbf{D}} \sum_{k=0}^{s} (1 - |z|)^k \sum_{j=1}^{N} |f_j^{(k)}(z)| > 0.$$

Let $0 and let <math>H^p$ be the space of analytic functions f in the unit disk such that

$$\sup_{r<1} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta = \|f\|_p^p < \infty.$$

It is well known that an analytic function f belongs to H^p if and only if the nontangential maximal function

$$Mf(e^{i\theta}) = \sup\{|f(z)| : z \in \Gamma(\theta)\}$$

belongs to the usual Lebesgue space $L^p(\mathbf{T})$, $\Gamma(\theta)$ being the Stolz angle with vertex at $e^{i\theta}$. Here **T** denotes the unit circle. Recently, several H^p versions of the Corona theorem have been considered. Given $f_1, \ldots, f_N \in H^\infty$, one wants to study the Bezout equation

(2)
$$1 = f_1 g_1 + \ldots + f_N g_N,$$

where g_1, \ldots, g_N are functions in H^p . Concretely, one is interested in conditions on f_1, \ldots, f_N so that solutions g_1, \ldots, g_N in H^p exist. If $|f|^2 = |f_1|^2 + \ldots + |f_N|^2$ and $|g|^2 = |g_1|^2 + \ldots + |g_N|^2$, it follows from (2) that $1 \le |f| |g|$ and hence

$$(3) M(|f|^{-1}) \in L^p(\mathbf{T})$$

is a necessary condition. Observe that when $p=\infty$, this is the usual Corona condition. However, for $p<\infty$, this condition is far from being sufficient. Actually, it is shown in [1] that for any $\varepsilon > 0$, the stronger condition

$$M(|f|^{-2+\varepsilon}) \in L^p(\mathbf{T})$$

is not sufficient. Our next result says that condition (3) is sufficient to conclude that 1 is in the H^p -closure of the ideal $I(f_1, \ldots, f_N)$. So, in this H^p -context there is no analogue of Bourgain's example.

Theorem 1.2. Let f_1, \ldots, f_N be functions in H^{∞} . Let $1 \le p < \infty$. Let $g \in H^p$ such that

$$M(g/|f|) \in L^p(\mathbf{T}).$$

Then, given any $\gamma > 0$, there exist functions $g_1, \ldots, g_N \in H^p$ such that

$$||g - (f_1g_1 + \dots + f_Ng_N)||_p < \gamma.$$

It is worth mentioning that for $\varepsilon > 0$, the condition

$$M(|f|^{-2} \left| \log |f| \right|^{2+\varepsilon}) \in L^p(\mathbf{T})$$

is sufficient to solve the Bezout equation (see [1]). This result can be slightly improved (replacing the second 2 by $\frac{3}{2}$) but the question if

$$M(|f|^{-2}) \in L^p(\mathbf{T})$$

is sufficient to solve the Bezout equation in H^p , remains open.

140

2. Preliminaries

Recall that a positive Borel measure μ on **D** is called a *Carleson measure* if there exists a constant C so that

$$\int_{\mathbf{D}} \|f\| \, d\mu \le C \|f\|_1$$

for every function f in the Hardy space H^1 . It is well known that Carleson measures are those positive measures μ for which there exists a constant K such that

$$\mu(Q) \le K l(Q)$$

for every Carleson square Q defined by

$$Q = \{ re^{i\theta} \in \mathbf{D} : 1 - r < l(Q), \ |\theta - \theta_0| < l(Q) \}$$

Another equivalent condition is that

$$\sup_{z \in \mathbf{D}} \int_{\mathbf{D}} \frac{1 - |z|^2}{|1 - \bar{z}w|^2} \, d\mu(w) < +\infty.$$

Let

$$N(\mu) = \sup \left\{ \frac{\mu(Q)}{l(Q)} : Q \text{ is a Carleson square} \right\}$$

denote the *Carleson norm* of μ . We will use two results, the first due to Carleson on the existence of bounded solutions of $\bar{\partial}$ -equations (see, for example, [6]) and the second is a result on approximation due to Garnett (in a weaker form) and Dahlberg (see [4]).

Proposition 2.1. Let G be a bounded and continuous function in **D**. Assume that |G| dx dy is a Carleson measure on **D**. Then, the $\bar{\partial}$ -equation $\bar{\partial}h=G$ admits a solution $h \in \mathcal{C}(\bar{\mathbf{D}}) \cap \mathcal{C}^{1}(\mathbf{D})$ with $||h||_{L^{\infty}(\partial \mathbf{D})} \leq C_{1}N(|G| dx dy)$, where C_{1} is an absolute constant.

Proposition 2.2. Let u be a bounded harmonic function on **D**. For each $\varepsilon > 0$, there exists a C^{∞} -function φ on **D** satisfying $|\varphi(z)-u(z)| < \varepsilon$, $z \in \mathbf{D}$, and such that $\nu = |\nabla \varphi| dx dy$ is a Carleson measure with norm $N(\nu) < C_2/\varepsilon$, where C_2 is an absolute constant.

The level curve of a bounded analytic function is, in general, not rectifiable. However, given a bounded analytic function f, L. Carleson constructed a system of rectifiable curves which act as level sets, in the sense that they separate the sets where |f| is small from those where it is big. We will use a refinement of the Carleson construction due to J. Bourgain [2]. **Proposition 2.3.** Let B be a Blaschke product. Given $\varepsilon > 0$ there exists an open set R on **D** such that ∂R is a union of rectifiable curves and

(i) $|B(z)| < \varepsilon$, if $z \in R$;

(ii) $|B(z)| > \delta(\varepsilon)$, if $z \in \mathbf{D} \setminus R$;

(iii) $N(\lambda_{\partial R}) < C$, where $\delta(\varepsilon)$ only depends on ε (not on B), $\lambda_{\partial R}$ is the linear measure on the boundary of R and C denotes a universal constant.

We use this proposition to prove Theorem 1.2.

3. Proof of Theorem 1.1

We can assume that the ideal $I = I(f_1, ..., f_N)$ is generated by N+1 Carleson–Newman Blaschke products. Actually, if $B \in I$ is a Carleson–Newman Blaschke product and $\varepsilon > 0$ is sufficiently small, one has $B - \varepsilon f_j = B_j h_j$, j = 1, ..., N, where B_j is also a Carleson–Newman Blaschke product and $h_j^{-1} \in H^\infty$. So, $B, B_1, ..., B_N$ generate the ideal I.

So, assume that $f, B_1, \ldots, B_{N+1} \in H^{\infty}$ satisfy

$$|f(z)| \le C \sum_{j=1}^{N+1} |B_j(z)|, \quad z \in \mathbf{D}.$$

Fix $\gamma > 0$. Let $D_H(z, r) = \{w: \varrho(z, w) < r\}$. Since B_1, \ldots, B_{N+1} are Carleson–Newman Blaschke products, for $j=1,\ldots,N+1$ one has

(4)
$$|B_j(z)| \ge \eta_j, \text{ if } z \notin \bigcup_{n=1}^{\infty} D_H(z_{n,j},\gamma) =: R_j,$$

(5)
$$|B_j(z)| < \gamma, \quad \text{if } z \in R_j$$

Here $\{z_{n,j}\}_{n=1}^{\infty}$ is the zero sequence of B_j . Let $\delta = \min_{1 \le j \le N+1} \eta_j$, and define $R = \bigcap_{j=1}^{N+1} R_j$. Then by (4) and (5) one has

(6)
$$\sum_{j=1}^{N+1} |B_j(z)| \ge \delta \quad \text{for } z \in \mathbf{D} \setminus R,$$

(7)
$$\sum_{j=1}^{N+1} |B_j(z)| < (N+1)\gamma \quad \text{for } z \in R.$$

Let $\tau > 0$, to be defined later, and apply Proposition 2.2 to each of the functions B_j . We obtain \mathcal{C}^{∞} -functions v_j on **D** such that for any $j=1,\ldots,N+1$, one has

(8)
$$|B_j(z) - v_j(z)| < \tau, \quad z \in \mathbf{D},$$

Closures of finitely generated ideals in Hardy spaces

$$N(|\nabla v_j|\,dx\,dy) < \frac{C}{\tau}.$$

For $1 \le j \le N+1$ we define

$$g_j = \frac{\bar{v}_j}{\sum_{j=1}^{N+1} B_j \bar{v}_j} \chi_{\mathbf{D} \setminus R},$$

where χ_E denotes the characteristic function of the set E. Then

(9)
$$1 - \sum_{j=1}^{N+1} g_j B_j = \chi_R \quad \text{and} \quad \sum_{j=1}^{N+1} B_j \bar{\partial} g_j = -\bar{\partial} \chi_R.$$

Consider solutions $a_{j,k}$, j, k=1, ..., N+1, of the respective $\bar{\partial}$ -equations

(10)
$$\bar{\partial}a_{j,k} = fg_j\bar{\partial}g_k$$

and solutions b_j , $j=1,\ldots,N+1$, of the $\bar{\partial}$ -equations

(11)
$$\bar{\partial}b_j = \frac{f\bar{v}_j}{\sum_{k=1}^{N+1} B_k \bar{v}_k} \bar{\partial}\chi_R$$

and assume, momentarily, that $\sum_{j,k=1}^{N+1} \|a_{j,k}\|_{L^{\infty}} \leq C$ and $\sum_{j=1}^{N+1} \|b_j\|_{L^{\infty}}$ is small. Put, for $j=1,\ldots,N+1$,

(12)
$$h_j = fg_j + \sum_{k=1}^{N+1} (a_{j,k} - a_{k,j})B_k + b_j.$$

By construction

$$f - \sum_{j=1}^{N+1} h_j B_j = f \chi_R - \sum_{j=1}^{N+1} b_j B_j$$

and then

(13)
$$\left\| f - \sum_{j=1}^{N+1} h_j B_j \right\|_{L^{\infty}} \le C(N+1)\gamma + \sum_{j=1}^{N+1} \|b_j\|_{L^{\infty}}$$

Next, we verify that the functions h_j are analytic. By (9), (10), (11) and (12), we have

$$\begin{split} \bar{\partial}h_j &= f\bar{\partial}g_j + f\sum_{k=1}^{N+1} (g_j\bar{\partial}g_k - g_k\bar{\partial}g_j)B_k + \bar{\partial}b_j \\ &= f\bar{\partial}g_j\chi_R + fg_j\sum_{k=1}^{N+1} B_k\bar{\partial}g_k + \bar{\partial}b_j = -fg_j\bar{\partial}\chi_R + \bar{\partial}b_j = 0. \end{split}$$

Choose $\tau \leq \delta^2/2(N+1)^2$. Next, we will find solutions of (10) and (11) with convenient L^{∞} -norms. Since by (8), one has

$$|fg_j| \le C \frac{(|B_j| + \tau) \sum_{k=1}^{N+1} |B_k|}{\sum_{k=1}^{N+1} |B_k|^2 - (N+1)\tau} \chi_{\mathbf{D} \backslash R}$$

and because $\delta \leq \sum_{k=1}^{N+1} |B_k|$ outside the region R, it follows that

$$||fg_j||_{L^{\infty}} \le C, \quad 1 \le j \le N+1.$$

Since

$$\bar{\partial}g_j \doteq \frac{\bar{\partial}v_j}{\sum_{k=1}^{N+1} B_k v_k} \chi_{\mathbf{D}\backslash R} - \frac{\bar{v}_j \sum_{k=1}^{N+1} B_k \bar{\partial}v_k}{\left(\sum_{k=1}^{N+1} B_k \bar{v}_k\right)^2} \chi_{\mathbf{D}\backslash R} - \frac{\bar{v}_j}{\sum_{k=1}^{N+1} B_k \bar{v}_k} \bar{\partial}\chi_R,$$

it follows that $|fg_i \bar{\partial}g_k| dx dy$ is a Carleson measure and

$$N(|fg_j\bar{\partial}g_k|\,dx\,dy) \le \frac{1}{\delta^2} N\left(\sum_{k=1}^{N+1} |\nabla v_k|\,dx\,dy\right) + \frac{1}{\delta} N(\lambda_{\partial R}).$$

From (4), and the fact that the measures $\mu_j = \sum_{n=1}^{\infty} (1 - |z_{n,j}|^2) \delta_n$ are Carleson measures, we obtain that

$$N(\lambda_{\partial R}) \leq C(N, \gamma).$$

Now, from Proposition 2.1, we may conclude the existence of solutions $a_{j,k}$ to (10) satisfying

$$\|a_{j,k}\|_{L^{\infty}(\partial \mathbf{D})} \leq \frac{C}{\tau \delta^2}.$$

It remains to analyze the right member of equations (11). Since $\bar{\partial}\chi_R$ is supported in ∂R and on ∂R it holds that $|f\bar{v}_j(\sum_{k=1}^{N+1} B_k\bar{v}_k)^{-1}| \leq C$, one has

$$N\left(\frac{f\bar{v}_j}{\sum_{k=1}^{N+1}B_k\bar{v}_k}\bar{\partial}\chi_R\right) \le CN(\lambda_{\partial R}) \le C(N,\gamma)$$

and $C(N,\gamma)$ tends to zero when γ tends to zero. Again by Proposition 2.1, this allows us to obtain b_j satisfying (11) with $||b_j||_{L^{\infty}(\partial \mathbf{D})}$ as small as desired. In particular, we have

$$h_j \in H^{\infty}$$
 and $||h_j||_{\infty} \le \frac{C(N)}{\delta^4}$.

As a consequence of (13), $||f-h_1f_1-h_2f_2||_{\infty}$ can be arbitrarily small. Hence $\operatorname{dist}_{H^{\infty}}(f, I)=0$, completing the proof.

4. Proof of Theorem 1.2, preliminary results

In this section we consider the H^p analogous of Bourgain's theorem on closures of ideals in H^{∞} . In contrast with the H^{∞} case, the condition

$$M(g/|f|) \in L^p$$

is sufficient. First, we need some previous results.

Lemma 4.1. Let ψ and φ be continuous functions defined on **D**. Assume that $\sigma = |\psi| dx dy$ is a Carleson measure. Then

$$\sigma(\{z \in \mathbf{D} : |\varphi(z)| > \lambda\}) \le N(\sigma)|\{e^{i\theta} \in A : M\varphi(e^{i\theta}) > \lambda\}|,$$

where $A = \{e^{i\theta} : \psi(z) \neq 0 \text{ for some } z \in \Gamma(\theta)\}.$

Proof. We follow the standard proof in the upper halfplane **H**. Let

$$R = \{z \in \mathbf{H} : |\varphi(z)| > \lambda\} \cap \{z : \psi(z) \neq 0\}$$

and

$$S = \{t : M\varphi(t) > \lambda\} \cap \{t : \psi(z) \neq 0 \text{ for some } z \in \Gamma(t)\}.$$

Let z be such that $\psi(z) \neq 0$ and $|\varphi(z)| > \lambda$. Then $M\varphi(t) > \lambda$ in the interval $I_z = \{t \in \mathbf{R} : |t - \operatorname{Re} z| < \operatorname{Im} z\}$. From this it follows that

$$\bigcup_{z \in R} I_z \subset S$$

Since S is an open set, it is a union of a sequence of pairwise disjoint intervals $\{I_j\}$ whose centers are denoted by $c(I_j)$. Consider the sets T_j defined by

$$T_j = \left\{ z = x + iy \in \mathbf{H} : |x - c(I_j)| + y < \frac{1}{2}|I_j| \right\}.$$

It is clear that $R \subset \bigcup_j T_j$, and since σ is a Carleson measure, one deduces

$$\sigma(R) \leq \sum_{j} \sigma(T_{j}) \leq N(\sigma) \sum_{j} |I_{j}| = N(\sigma)|S|. \quad \Box$$

The next lemma is the version for H^p -spaces of the Carleson criterion on existence of solutions of the equation $\bar{\partial}b=g$.

Lemma 4.2. Let $1 \le p < \infty$. Let G be a continuous function in \mathbf{D} such that $G = \varphi \psi$, where $M \varphi \in L^p(\mathbf{T})$ and $d\sigma = |\psi| dx dy$ is a Carleson measure. Then there exists a function $b \in C^1(\mathbf{D}) \cap C(\overline{\mathbf{D}})$ such that $\overline{\partial}b = G$ and

$$\int_0^{2\pi} |b(e^{i\theta})|^p \, d\theta \le N(\sigma) \int_A (M\varphi(e^{i\theta}))^p \, d\theta,$$

where $A = \{e^{i\theta} : \psi(z) \neq 0 \text{ for some } z \in \Gamma(\theta)\}.$

Proof. Let q be the conjugate exponent of p, that is $1 < q \le \infty$ and 1/p + 1/q = 1. By duality,

$$\inf\{\|b\|_p : \bar{\partial}b = G\} = \sup\left\{ \left| \frac{1}{2\pi} \int_0^{2\pi} Fk \, d\theta \right| : k \in H_0^q \text{ and } \|k\|_q \le 1 \right\},\$$

where F is an a priori solution of $\bar{\partial}F = G$ and H_0^q denotes the subspace of functions $f \in H^q$ such that f(0)=0. By Green's formula, we obtain

$$\frac{1}{2\pi} \int_0^{2\pi} Fk \, d\theta = -\frac{1}{2\pi i} \int_{|z| \le 1} G(z) \frac{k(z)}{z} \, dz \wedge d\bar{z}.$$

Then

$$\inf\{\|b\|_{p}: \bar{\partial}b = G\} \le \sup\left\{\frac{1}{\pi} \int_{\mathbf{D}} |G(z)| \, |k(z)| \, dx \, dy: k \in H^{q} \text{ and } \|k\|_{q} \le 1\right\}.$$

Since $G = \varphi \psi$, Hölder's inequality yields

$$\int_{\mathbf{D}} |\varphi(z)| |k(z)| |\psi(z)| \, dx \, dy \leq \left(\int_{\mathbf{D}} |\varphi(z)|^p \, d\sigma \right)^{1/p} \left(\int_{\mathbf{D}} |k(z)|^q \, d\sigma \right)^{1/q}$$
$$\leq C ||k||_q N(\sigma)^{1/q} \left(\int_{\mathbf{D}} |\varphi(z)|^p \, d\sigma \right)^{1/p}$$

because σ is a Carleson measure. Now, the previous lemma finishes the proof. \Box

The following well-known lemma (see [5]) shows that is sufficient to prove the theorem when f_1 and f_2 are finite Blaschke products with simple zeros.

Lemma 4.3. Let f be an analytic function in \mathbf{D} which is continuous in $\overline{\mathbf{D}}$. Suppose that $0 < |f(z)| \le 1$ if |z|=1. Let $E = \{z \in \mathbf{T}: |f(z)| < 1\}$. If E is non-empty, then there exists a sequence $\{B_n\}_{n=1}^{\infty}$ of finite Blaschke products with simple zeros such that $|B_n(z)| \rightarrow |f(z)|$ uniformly on compact subsets of $\overline{\mathbf{D}} \setminus \overline{E}$, and $B_n(z) \rightarrow f(z)$ uniformly on compact subsets of \mathbf{D} .

5. Completion of the proof of Theorem 1.2

By a standard normal families argument, we can assume that the functions g, f_1 and f_2 are analytic in a neighbourhood of the closed unit disk. For simplicity, we will assume that N=2 and that $||f_j||_{\infty} \leq 1$, j=1, 2. Since we can write $f_j \in H^{\infty}$ as a product $f_j = B_j F_j$ where B_j is a Blaschke product and F_j is an invertible function with $|F_j| \leq 1$, the approximation result of Lemma 4.3 permits us to obtain Proposition 2.3 for functions in the unit ball of H^{∞} . By Proposition 2.3, given $\varepsilon > 0$ we obtain regions R_1 and R_2 and numbers $\delta_1(\varepsilon), \delta_2(\varepsilon) > 0$, such that $|f_j(z)| < \varepsilon$ if $z \in R_j, |f_j(z)| > \delta_j(\varepsilon)$ if $z \in \overline{\mathbf{D}} \setminus R_j$ and $N(\lambda_{\partial R_j}) < C_j$ for j=1, 2.

Let $\delta := \min(\delta_1(\varepsilon), \delta_2(\varepsilon))$ and $R = R_1 \cap R_2$, then

- (14) $|f_1(z)| + |f_2(z)| < 2\varepsilon, \quad \text{if } z \in R,$
- (15) $|f_1(z)| + |f_2(z)| > \delta, \quad \text{if } z \in \overline{\mathbf{D}} \setminus R,$
- (16) $N(\lambda_{\partial R}) < C.$

By Proposition 2.2 there exist functions $v_1, v_2 \in \mathcal{C}^{\infty}(\mathbf{D})$ such that

(17)
$$|v_j(z) - f_j(z)| < \frac{1}{10}\delta^2, \quad z \in \mathbf{D}$$

(18)
$$N(|\nabla v_j| \, dx \, dy) < \frac{c_0}{\delta^2}.$$

For j=1, 2, define

$$h_j = \frac{v_j}{f_1 \bar{v}_1 + f_2 \bar{v}_2} \chi_{\bar{\mathbf{D}} \backslash R},$$

then $1-(h_1f_1+h_2f_2)=\chi_R$ and $f_1\bar{\partial}h_1+f_2\bar{\partial}h_2=-\bar{\partial}\chi_R$. We will consider functions a_{12}, a_{21}, b_1 and b_2 satisfying

(19)
$$\bar{\partial}a_{jk} = gh_j\bar{\partial}h_k$$
 and $\bar{\partial}b_k = \frac{g\bar{v}_k}{f_1\bar{v}_1 + f_2\bar{v}_2}\bar{\partial}\chi_R$, $j,k=1, 2$.

Then, the functions

$$\left\{ \begin{array}{l} g_1 = g h_1 + (a_{12} - a_{21}) f_2 + b_1, \\ g_2 = g h_2 + (a_{21} - a_{12}) f_1 + b_2 \end{array} \right. \label{eq:g1}$$

are analytic. Thus $F = g - (f_1g_1 + f_2g_2)$ is analytic and $F = g\chi_R - b_1f_1 - b_2f_2$. Also

$$||M(g\chi_R)||_{L^p(\mathbf{T})} \to 0 \quad \text{when } \varepsilon \to 0$$

because $|g|\chi_R \leq (2\varepsilon g/|f|)\chi_R$ and $M(g/|f|) \in L^p(\mathbf{T})$. Then

$$||F||_{L^p} \le ||M(g\chi_R)||_{L^p} + ||b_1||_{L^p} + ||b_2||_{L^p}.$$

So it only remains to show that there exist solutions a_{jk} and b_k to the equations (19) with $||a_{jk}||_{L^p(\mathbf{T})}$ bounded and $||b_k||_{L^p(\mathbf{T})}$ as small as desired.

To show that solutions a_{jk} exist, we put $gh_j\bar{\partial}h_k=\Phi\Psi$, where $\Phi=g/|f|$ and $\Psi=|f|h_j\bar{\partial}h_k$. Now, applying Lemma 4.2, we can deduce the existence of these solutions, because by hypothesis $M\Phi\in L^p$, and to show that $|\Psi| dx dy$ is a Carleson measure, we can repeat the argument given in the proof of Theorem 1.1. Fix j=1, 2 and consider

$$G = \frac{gv_j}{f_1\bar{v}_1 + f_2\bar{v}_2}\bar{\partial}\chi_R.$$

We have $G = \varphi \psi$, where

$$\varphi = \frac{g}{|f|}$$
 and $\psi = \frac{|f|\bar{v}_j}{f_1\bar{v}_1 + f_2\bar{v}_2}\bar{\partial}\chi_R := \psi_1\bar{\partial}\chi_R.$

Since $\bar{\partial}\chi_R$ is supported on ∂R , on ∂R one has

$$|\psi_1| \le |f|(|f_j| + c_1\delta^2)|f|^{-2} \le 1 + c_1\delta.$$

Hence $N(|\psi| \, dx \, dy) \leq C_1 N(\lambda_{\partial R}) \leq C_2$. By Lemma 4.2 there exists a solution b_j to the equation $\bar{\partial} b_j = G$ such that

$$\int_0^{2\pi} |b_j(e^{i\theta})|^p \, d\theta \le C \int_A (M\varphi)^p \, d\theta,$$

where $A = \{e^{i\theta}: \Gamma(\theta) \cap \partial R \neq \emptyset\}$. Then, choosing $\varepsilon = c_2 \gamma$, we have that, when $\gamma \to 0$, the set A tends to the set $Z(f_1) \cap Z(f_2) \cap \mathbf{T}$, which has Lebesgue measure zero. Then, by the absolute continuity of the integral, we have that $\|b_j\|_p \to 0$ when $\gamma \to 0$ and this finishes the proof.

References

- AMAR, É., BRUNA, J. and NICOLAU, A., On H^p-solutions of the Bezout equation, Pacific J. Math. 171 (1995), 297–307.
- 2. BOURGAIN, J., On finitely generated closed ideals in $H^{\infty}(\mathbf{D})$, Ann. Inst. Fourier (Grenoble) **35**:4 (1985), 163–174.
- CARLESON, L., Interpolation by bounded analytic functions and the corona problem, Ann. of Math. 76 (1962), 547–559.
- DAHLBERG, B., Approximation by harmonic functions, Ann. Inst. Fourier (Grenoble) 30:2 (1980), 97–101.
- 5. DUREN, P., Theory of H^p -spaces, Academic Press, New York, 1970.
- 6. GARNETT, J. B., Bounded Analytic Functions, Academic Press, Orlando, Fla., 1981.

- 7. GORKIN, P., IZUCHI, K. and MORTINI, R., Higher order hulls in H^{∞} , II, J. Funct. Anal. 177 (2000), 107–129.
- 8. GORKIN, P., MORTINI, R. and NICOLAU, A., The generalized corona theorem, *Math.* Ann. **301** (1995), 135–154.
- 9. MORTINI, R., Ideals generated by interpolating Blaschke products, Analysis 14 (1994), 67–73.
- MORTINI, R., On an example of J. Bourgain on closures of finitely generated ideals, Math. Z. 224 (1997), 655–663.
- TOLOKONNIKOV, V., Interpolating Blaschke products and ideals of the algebra H[∞], Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) 126 (1983), 196-201 (Russian). English transl.: J. Soviet Math. 27 (1984), 2549-2553.
- TOLOKONNIKOV, V., Blaschke products satisfying the Carleson-Newman condition and ideals of the algebra H[∞], Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) 149 (1986), Issled. Linein. Teor. Funktsii. 15, 93-102, 188 (Russian). English transl.: J. Soviet Math. 42 (1988), 1603-1610.

Received July 23, 1999

Artur Nicolau Departament de Matemàtiques Universitat Autònoma de Barcelona ES-08193 Bellaterra Spain

Jordi Pau Departament de Matemàtiques Universitat Autònoma de Barcelona ES-08193 Bellaterra Spain