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Closures of finitely generated 
ideals in Hardy spaces 

Artur  Nicolau and Jordi Pau(1) 

A b s t r a c t .  Let H ~ be the algebra of bounded analytic functions in the unit  disk D. Let 

I - - I ( f l , . . .  , fN)  be the ideal generated by f l , . . . , f N C H  ~176 and J J ( f l , . . . , f N )  the ideal of the 

functions f ~ H  ~ for which there exists a constant  C = C ( f )  such tha t  I f ( z ) l<C([ f l ( z ) l+ . . .+  
IfN(z)l),  z c D .  It is clear tha t  1C_J, but  an example due to J. Bourgain shows tha t  J is not, in 

general, in the norm closure of I .  Our  first result asserts tha t  J is included in the norm closure 

of I if I contains a C a r l e s o ~ N e w m a n  Blaschke product,  or equivalently, if there exists s > 0  such 

tha t  
s N 

inf E ( 1  Izl)k~-~.lf(k)(z)l>O. 
z E D  

k--O j i 

Our second result says tha t  there is no analogue of Bourgain 's  example in any Hardy space H p, 
1 < p  < oc. More concretely, if g ~ H p and the nontangential  maximal  function of Ig (z) l / ~ f - - i  I f j  (Z) I 
belongs to LP(T),  then g is in the HP-closure of the ideal [. 

1. I n t r o d u c t i o n  

Let H ~ be the algebra of bounded analytic functions in the unit disc D. 

Given functions fl,..., fN in H ~ ,  let I=I(fl,..., fN) denote the ideal generated by 

{fl ,  ..., fN}, that  is, 

N 

The celebrated Corona theorem of L. Carleson [31 asserts that  the ideal I is the 
whole algebra H ~ if 

N 

" j - - 1  

(1) Both authors  are suppor ted  in par t  by D G I C Y T  grant  PB98-0872 and CIRIT  grant  

1998SRG00052. 
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Let J =  J(fl,..., fN) denote the ideal of the functions f CH ~176 for which there exists 
a constant C ' = C ( f ) > 0  such that  

N 

(1) If(z)f<_C~-~.lfj(z)l, z~D.  
j = l  

It is clear that  I is contained in J.  However, an example of Rao shows that,  
in general, the two ideals are different. Actually, one may take f=B1B2, fl=B], 
f2 =B2,  where B1 and B2 are two Blasehke products with disjoint zero sets satisfying 

inf{ IB1 (z)[+ IB2 (z) l: z C D} = 0. 

Then (1) holds but an easy factorization argument shows that  f does not belong to 

I(fl, f2). In fact, it has been proved in [8] that  [(fi, f2)=J(fl, f2) if and only if 

inf{Ifl(z)l+lf2(z)l+(1-1zl)(lf~(z)l+lf~(z)l):z c D} > 0. 

It is worth mentioning that  condition (1) implies that  fa belongs to the ideal I,  
while for f2 the question is open (see [6]). 

J. Bourgain [2] has shown that  one can construct the Blaschke products B1 
and B2 in Rao's example such that  B1B2 does not belong to the (norm) closure of 
I(B~, B~). So condition (1) is not even sufficient to assure that  the function f is in 
the (norm) closure of the ideal I.  On the other hand, he also showed that  if instead 
of (1) one requires 

If(z)l<_oz(Ifl(z)l§ zED, 

where c~ is a positive function satisfying 

l i ra  c~(t) = 0, 
t--+0 

one can conclude that  f belongs to the norm closure of the ideal I. 
Our first result states that  condition (1) is sufficient if the ideal I contains a 

Carleson Newman Blaschke product. 
Z oo A Blaschke product with zero set { ,~}~=1 is called a Carleson Newman Blasch- 

ke product if the measure 
oo 

~ ( 1  lznl)a,~ 
r t = l  

is a Carleson measure. Here 5~ denotes the Dirac mass at the point zn. Equivalently, 
the Blaschke product B with zero set {zn}~__l is a Carleson-Newman Blaschke 
product if and only if for any e>0,  there exists r l=r;(e)>0 such that  IB(z)l>w for 
any z such that  inf,~>l I (~ -~d / (1 -~ ,~z ) l>~ .  
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T h e o r e m  1.1. Let f l ,  ..., fN be functions in H a .  Assume that I ( f l ,  ..., fN)  
contains a Carleson Newman Blaschke product. Then, the ideal J ( f l , . . . ,  fN)  is 
contained in the norm closure of the ideal I ( f l ,  ..., fN).  

This result has been proved previously by P. Gorkin and R. Mortini (see [7]). 
However, the methods are completely different. Their approach is based on subtle 
properties of the maximal ideal space, while we use a variation due to J. Bourgain 
of the 0-techniques in the proof of the classical Corona theorem. 

The assumption on the ideal I ( f l ,  ..., fN)  may not look very natural.  However 
it is really a condition on the structure of the ideal. To explain it, let M ( H  ~ 
denote the maximal  ideal space of H a ,  that  is, the space of multiplicative linear 
functionals on H a ,  endowed with the weak-star topology. If x, m E M ( H ~ ) ,  then 
the pseudohyperbolic distance fl'om x to m is defined as 

~)(x, r n ) = s u p { l m ( f ) l : f e H O C  I Ilflloo <_l, z ( f ) = o } .  

By Schwarz's lemma this is the extension of the function 

~(z ,w)= z - w  

for z, wED.  It  is well known that  M ( H  ~)  can be parti t ioned into equivalence 
classes defined through the relation x ~ r n  if and only if L)(x, m) < 1. The equivalence 
classes are called Gleason parts. 

Given a function f E H  ~ ,  its zero set Z ( f )  is defined as 

Z ( f )  = {rn C M ( H ~ 1 7 6  rn(f )  -- 0}. 

The hull or zero set Z(I)  of an ideal I in H ~176 is 

Z(I)  = 0 Z ( f ) .  
f c I  

The following result was proved by V. Tolokonnikov [12]. 

T h e o r e m  A. Let f l , . . .  , fN be .functions in H ~ .  Then, the following proper- 
ties are equivalent: 

(a) The ideal I = I ( f l , . . . ,  fN)  contains a Carleson Newman Blaschke product. 
(b) The zero set Z( I )  is contained in the set G of points in M ( H  ~ whose 

Gleason part contains more than one point. 
(c) There exists a natural number s>_O such that 

s N 

inf ~ ( 1 - 1 z l )  k ~-~, ]f~k)(z)] > O. 
zED 

k=0 j--1 



140 A r t u r  Nicolau and Jord i  Pau  

Let 0 < p < o c  and let H p be the space of analytic functions f in the unit disk 

such that  

sup --/2~ t f  (re~~ dO = I[fll~ < oc. 
r < l  JO 

It is well known that  an analytic flmction f belongs to H p if and only if the non- 
tangential maximal function 

M f ( e  "i~ = s u p { l f ( z ) t  : z C F(0)} 

belongs to the usual Lebesgue space LV(T), P(0) being the Stolz angle with ver- 
tex at e iO. Here T denotes the unit circle. Recently, several Hv versions of the 

Corona theorem have been considered. Given f l , - . . ,  fN E H ~176 one wants to study 
the Bezout equation 

(2) 1 = . / ig i  + . . .  + 

where 91, . . ' ,9N are functions in H p. Concretely, one is interested in conditions 

on f l , - . .  ,f:v so that  solutions 91, ... ,gN in H p exist. If }I I2=III I2+. . .+IIN[ 2 and 
[gI2=IglI~+...+IgNI 2, it follows from (2) that  1_<[/] Igl and hence 

(3) M(lf1-1)  �9 LP(T) 

is a necessary condition. Observe that  when p--oc,  this is the usual Corona condi- 
tion. However, for p<oc ,  this condition is far from being sufficient. Actually, it is 
shown in [1] that  for any s>0 ,  the stronger condition 

M(lf1-2+~)  �9 LP(T) 

is not sufficient. Our next result says that  condition (3) is sufficient to conclude 
that  1 is in the HP-closure of the ideal I ( f l ,  ..., fN) .  So, in this HP-context there 
is no analogue of Bourgain's example. 

T h e o r e m  1.2. Let f l , . . .  , f N  be funct ions in H ~ Let l < p < e c .  Let 9 � 9  p 
such that 

M ( g / l f l )  �9 LP(T). 

Then, given any "/>0, there exist funct ions 91, ... , gN �9 Hp such that 

IIg- (flg  + . . .+  f g )tl  < 
It is worth mentioning that  for s>0 ,  the condition 

M(l f l  -~ Ilog Ifl 12+~) �9 LP( T ) 

is sufficient to solve the Bezout equation (see [1]). This result can be slightly 
improved (replacing the second 2 by 3) but the question if 

M ( I I  [ 2) � 9  

is sufficient to solve the Bezout equation in H p, remains open. 
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2. P r e l i m i n a r i e s  

Recall that  a positive Borel measure /~ on D is called a Carleson measure if 
there exists a constant C so that  

D l f  Id#_< Cllflll 

for every function f in the Hardy space H 1 . It  is well known that  Carleson measures 

are those positive measures # for which there exists a constant K such tha t  

p(Q) _< Kl (Q)  

for every Carleson square (2 defined by 

Q { r e i ~  tO-Ool<l(Q)} .  

Another equivalent condition is tha t  

/~, 1 - ] z ]  2 
z oSuP ._ ii_xwl d (w) 

Let 

~ + o o .  

} N(#)  = s u p  / ~ : Q  is a Carleson square 

denote the Carleson norm of #. We will use two results, the first due to Carleson 
on the existence of bounded solutions of cS-equations (see, for example, [6]) and the 

second is a result on approximation due to Garnet t  (in a weaker form) and Dahlberg 
(see [4]). 

P r o p o s i t i o n  2.1. Let G be a bounded and continuous function in D.  Assume 

that IGI dx dy is a Carleson measure on D.  Then, the O-equation Oh=G admits a 

solution hEC(D)ACI (D)  with ]]h[[L~(OD) <C1N([G[ dx dy), where C1 is an absolute 
constant. 

P r o p o s i t i o n  2.2. Let u be a bounded harmonic function on D. For each 

c>0 ,  there exists a C~-funct ion ~ on D satisfying I ~ ( z ) - u ( z ) [ < c ,  z E D ,  and such 

that u=lV~[  dcc'dy is a Carleson measure with norm N ( u ) < C 2 / c ,  where C2 is an 
absolute constant. 

The level curve of a bounded analytic function is, in general, not rectifiable. 
However, given a bounded analytic function f ,  L. Carleson constructed a system 
of rectifiable curves which act as level sets, in the sense tha t  they separate the 
sets where Ifl is small from those where it is big. We will use a refinement of the 
Carleson construction due to J. Bourgain [2]. 
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P r o p o s i t i o n  2.3. Let B be a Blaschke prvduct. Given c>0  there exists an 
open set R on D such that OR is a union of rectifiable curves and 

(i) IB(z)l<e, if zeR;  
(ii) IB(zDl>5(c), i f z E D \ R ;  
(iii) N(;~oR)<C, where 5(e) only depends on e (not on B), ;~oR is the linear 

measure on the boundary of R and C denotes a universal constant. 

We use this proposition to prove Theorem 1.2. 

3. P r o o f  o f  T h e o r e m  1.1 

We can assume that  the ideal I = I ( f l ,  ..., fN) is generated by N + I  Car l e so~  
Newman Blaschke products. Actually, if B E I  is a Carleson Newman Blaschke 
product and c >0  is sufficiently small, one has B - c f j = B j h j ,  j = l , . . .  ,N,  where 
Bj is also a Carleson-Newman Blaschke product and h~ -1EH ~ So, B, B~, ..., BN 
generate the ideal I.  

So, assume that  f ,  B1, ..., BN+I c H  ~ satisfy 

N + I  

If(z)l<_C ~ IBj(z)l, zcD. 
j--1 

Fix 7>0 .  Let DH(Z, r)={w:o(z ,  w)<r} .  Since B1, ..., B x + l  are Carleson-Newman 
Blaschke products, tbr j = l ,  ..., N +  1 one has 

(4) IBj(z)l >_rb, i f z ~  0 OH(Zn'J'~)=:l~J' 
n = l  

(5) IBj(~)I <~, ifzERj. 

Here {z~,j},~__l is the zero sequence of By. Let c~=minl<j<N+lrlj, and define 
R_c3N+ 1 --, ,j=l Rj. Then by (4) and (5) one has 

N + I  

(6) E IBJ(z)] >a for z e D \ R ,  
j = l  

N + I  

(7) ~ IBj(z)I<(N+I)~ for ~ R .  
j = l  

Let r > 0 ,  to be defined later, and apply Proposition 2.2 to each of the functions Bj. 
We obtain U~176 vj on D such that  for any j = l ,  ..., N + I ,  one has 

(8) IBj (z ) -v j (zDl<r,  z E D ,  
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For I < j < N + I  we define 

C 
N ( I V v j l d ~  d~) < -- .  

T 

0j 
gJ -- ~'~X+l Sj~)j~3(~D\ R'  

/ -~ j=l  

where X~: denotes the characteristic function of the set E. Then 

N+I N+I  

(9) 1-  ~ gj~j = ~ a~d ~ B~0gj -=-s~. 
j = l  j 1 

Consider solutions aj,k, j, k= l ,  ..., N + I ,  of the respective c0-equations 

(lo) 3aj,~ = f g~3.qk 

and solutions bj, j = l ,  ..., N + I ,  of the 0-equations 

fOj 

v , N + I  that z-,j,k=l IlaJ,kllL ~ <_C and ~N+I  Ilbj]lL, ~ 

(Ii) 

and assume, molnentari]y, 
Put, for j = l ,  ... , N + I ,  

N+/  

02) hj =/gj+ ~ (~j,~-~,j)s~ +bj. 

By construction 

is small. 

and then 

(13) 

N+I  N+I 

5=l j=l 

N+~ hjBj  N+~ f -  ~ ~ _< C(N+1)7+  ~ IlbsllL~. 
_ L j = l  

Next, we verify that tile functions hj are analytic. By (9), (10), (11) and (12), we 
have 

N+I 

COhj = fcogj +f ~ (gj~g~-g~bg~)B~ +&j 
k=l 

N+I  

= f 3 g j x n  +fg j  ~ B~3gk +~)bj = zfgjcoXR +(Sbj = O. 
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Choose T<_62/2(N+l) 2. Next, we will find solutions of (10) and (11) with conve- 

nient L~-norms .  Since by (8), one has 

B N + I  B 

IfgjI_c <~Ti--~--- XD\R 

and because 6_<E N+I IBkl outside the region R, it follows that  

IlfgillL~<--C, I _ < j < N + I .  

Since 

v'N+I BkOv~ f~j OVj Vj L.,k 1 
Ogj "-- v ~ N +  1 (x_~N+I Bkgk)2  X D \ R  ~ N ~ - ~ k V k  OXR~ 

L ~ k = l  BkVk XD\R \ A ~ k = l  )-Jk 1 - 

it follows tha t  IfgoOgkl dxdy is a Carleson measure and 

N(IfgjOgkldzdy)<~N(Nk~llVvkldxdy) 1 _ + ~ X ( ~ o ~ ) .  

From (4), and the fact that  the measures ~j:Z,,,,~l(1-b,~,jp)<~ are Carleson 
measures, we obtain that  

N ( t a R )  <_ C(N,  ~). 

Now, from Proposition 2.1, we may conclude the existence of solutions aj,k to (10) 
satisfying 

C 
Ilaj,k IIL~(OD) --< ~T" 

It  remains to analyze the right member  of equations (11). Since 0XR is supported 

in OR and on OR it holds that  Ifvj {v 'N+I  ~ k  1 Bkvk)- l l  -<C, one has 

frY I N ~,N+~_ OXR <_ CN(,bR) < C(N,'y) 
\ Lk 1 DlcVk /I 

and C(N,@ tends to zero when ~/ tends to zero. Again by Proposition 2.1, this 

allows us to obtain bj satisfying (11) with IlbjllL~(On) as small as desired. In 
particular, we have 

C(N) 
h j c H  a and I lhjl l~ < ~ 

As a consequence of (13), IIf-hlfl-h2f211~ can be arbitrari ly small. Hence 
distH~ (f,  I ) = 0 ,  completing the proof. 
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4. P r o o f  o f  T h e o r e m  1.2, pre l iminary  resul ts  

In this section we consider the H p analogous of Bourgain ' s  theorem on closures 

of ideals in H ~ .  in contras t  with the H ~176 case, the condit ion 

M ( g / i f l )  �9 L v 

is sufficient. First,  we need some previous results. 

L e m m a  4.1.  Let r and ~ be continuous functions defined on D. Assume that 
cr--Ir I dxdy  is a Carleson measure. Then 

cr({z �9 D :  I~(~)l > ;~}) -< N(~)l{e ~~ �9 A :  M ~ ( e  i~ > k}l, 

where A={e iO:r162  .for some z e F ( 0 ) } .  

Pro@ We follow the s tandard  proof  in the upper  halfplane H.  Let 

R = {z  �9 H :  I~(z)l > a } n { z  : ',/,(z) r O} 

and 

S = i t :  M ~ ( t )  > ~ } N i t  : ~b(z) r 0 for some z E F(t)}.  

Let z be such tha t  %b(z)r and I~(z)l>~. Then  M ~ ( t ) > ~  in the interv~tl 

Iz = { t c R :  I t - R e  z I < I r a  z}. From this it follows tha t  

U lzCS. 
z61g 

Since S is an open set, i t  is a union of a sequence of pairwise disjoint intervals { I j }  
whose centers are denoted by c(Ij). Consider the sets Tj defined by 

Tj = { ~ = ~ + i y c H :  I~ -c ( I j ) lmy < 1 ~l I j l } .  

I t  is clear t ha t  RcUj Tj, and since ~ is a Carleson measure, one deduces 

J J 

The next lemma is the version for HP-spaces of the Carleson criterion on exis- 

tence of solutions of the equat ion Ob=g. 
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L e m m a  4.2. Let l<_p<oe. Let G be a continuous function in D such that 
G=pO, where M~ELP(T)  and da=ir  is a Carleson measure. Then there 
exists a function bECI(D)AC(f}) such that Ob=G and 

/o Ib(e ~ dO < (M (e dO, 

where A={ei~162162 for some zEF(0)}.  

Pro@ Let q be the conjugate exponent of p, that  is l<q_<oc and 1/p+1/q=l .  
By duality, 

} inf{llbllp:cSb=G} = s u p  : k E H  q and Iikl[q <_ 1 , 

where F is an a priori solution of OF=G and H q denotes the subspace of functions 
f E H  q such that  f ( 0 )=0 .  By Green's formula, we obtain 

1 ffo2~ 1 /~  k(z) 
F k d O -  2~i [<i G(Z) Z dzA d2. 

Then 

{ 1 / D  'G(z)"k(z)'  dx dy : k E Hq and "k"q < l } inf{HbH,:Ob=G} <-sup ~ - �9 

Since G = ~ ,  H61der's inequality yields 

JD I99(Z) I Ik(z) I ll/)(z)l dx dy < ( JL  ]~(z)]P d~) 1/p (./D 'k(z)'q d~ 1/q 

~ CHkHqN(~)I/q (/D I~)(z)IP d~) lip 

because a is a Carleson measure. Now, the previous lemma finishes the proof. [] 

The following well-known lemma (see [5]) shows that  is sufficient to prove the 
theorem when f l  and f2 are finite Blaschke products with simple zeros. 

L e m m a  4.3. Let f be an analytic function in D which is continuous in D. 
Suppose that 0 < ] f ( z ) ] < l  if ]z]=l .  Let E={zET: i f ( z ) ]< l } .  I r E  is non-empty, 

B then there exists a sequence { ~}~=1 of finite Blaschke products with simple zeros 
such that ]Bn(z)]-+if(z)] uniformly on compact subsets of D \ E ,  and Bn(z)-+ f(z)  
uniformly on compact subsets of D. 



Closures of finitely generated ideals in Hardy spaces 147 

5. Comple t ion  of  the  proof  of  T h e o r e m  1.2 

By a standard normal families argument, we can assume that  the functions g, 
f l  and f2 are analytic in a neighbourhood of the closed unit disk. For simplicity, 
we will assume that  N = 2  and that  II.f211~_<1, j = l ,  2. Since we can write f j  E H  ~ 
as a product f j=BjFj  where Bj is a Blaschke product and Fj is an invertible 
function with IFj]_< 1, the approximation result of Lemma 4.3 permits us to obtain 
Proposition 2.3 for functions in the unit ball of H ~ By Proposition 2.3, given c > 0  
we obtain regions /r~l and i~2 and numbers (~1 (g), ~2 (c) > 0, such that  I fj (z)] < c if 
zcRj, Ifj(z)l>dj@) if zED\R j  and N(AoRj)<Cj for j = l ,  2. 

Let 5:=min(~l (e), 52(e)) and R=R1AR2, then 

(14) [f l(z)[§ <2c, if z ~  H, 

(15) If l(z) l+lf2(z)[>(~ , if z ~ D \ R ,  
(16) N(AoR) < C. 

By Proposition 2.2 there exist functions vl, v2 CC ~ (D) such that  

(17) Ivj(z)-fj(z)l < 1~2, zED, 

(18) N(IVVyl dx dy) < ~ .  

For j = l ,  2, define 
hj -- 9j 

f1~1 + f2v2 Xg)\R, 

then 1 -  (hi f l  +h2f2) =XR and flOhl +f20h2 =-OXR. We will consider functions 
a12, a21, bl and b2 satisfying 

(19) Oajk =ghjOhk and 0bk = 99k cSXR , j , k =  1, 2. 
f lv l  +f2�9 

Then, the functions 
g 1 = g h 1 + ( a 1 2 - a 2 1 ) f 2 + b l ,  

g2 = gh2 + (a21 - a l 2 ) f l  +b2 

are analytic. Thus F=g-(f191 +f292) is analytic and F=gxR-bl f l -b2f2 .  Also 

]]M(gxR)I]Lp(T ) -+0 when e--+0 

because Igl~R-< (2cg/l/I)~R and M(g/I/I) ~LP(T). Then 

IIFIIL" ~ IIM(g~R)llL'+llblllL~+llb211LP. 
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So it only remains to show that  there exist solutions ajk and bk to the equations 
(19) with Ilaj llL ( ) hounded and IIb ll  ( ) as sman as desired. 

To show that  solutions aj~ exist, we put ghjOhk=(~,  where O~=g/lfl and 
�9 =]f]hjOhk. Now, applying Lemma 4.2, we can deduce the existence of these 
solutions, because by hypothesis M ~ E L  p, and to show that  I~1 dx dy is a Carleson 

measure, we can repeat  the argument given in the proof of Theorem 1.1. Fix j = 1, 2 
and consider 

G - ,  gvjo OXR. 
flv1+]2~2 

We have G = ~ ,  where 

g I f lv j  a 
= ~  and ~ -  , ~ _  (J~R:=~lCOXR. 

I l l  f lY1 t J2V2  

Since 0XR is supported on OR, on 0R one has 

I~11 <-Ifl(Ifjl+c152)]f] -2 <- 1+c~5. 

Hence N(]~Idxdy)<_CIN(AoR)<_C2. By Lemma 4.2 there exists a solution by to 
the equation cSbj = G such that  

Ib (e dO <_ C ( M )P dO, 

where A =  {e i~ :P(0)AOR#O}. Then, choosing e=c27,  we have that ,  when 7--+0, the 
set A tends to the set Z ( f l ) n Z ( f 2 ) n T ,  which has Lebesgue measure zero. Then, 
by the absolute continuity of the integral, we have that  Ilbjllp~0 when 7--+0 and 
this finishes the proof. 
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