
Ark. Mat., 39 (2001), 181 200 
@ 2001 by Ins t i tu t  Mittag-Lefiler. All rights reserved 

Jensen measures and boundary 
values of plurisubharmonic functions 

Frank Wiks t rSm 

A b s t r a c t .  We s tudy different classes of Jensen measures  for plur isubharmonic  functions, in 

part icular  the relation between Jensen measures for continuous functions and Jensen measures for 

upper  bounded functions. We prove an approximat ion theorem for plur isubharmonic  functions 

in B-regular  domain. This theorem implies tha t  the two classes of Jensen measures coincide in 

B regular domains. Conversely we show tha t  if Jensen measures for continuous functions are the 

same as Jensen measures for upper  bounded functions and the domain is hyperconvex, the domain 

satisfies the same approximat ion theorem as above. 

The paper  also contains a characterisation in te rms of Jensen measures of those continuous 

functions tha t  are boundary  values of a continuous plur isubharmonic  function. 

1. I n t r o d u c t i o n  

If  ft is a bounded  domain in C ~, we will use 7957/c(ft) to  denote  the set of  

p lur isubharmonic  functions on ft which are continuous on ~ as functions into the 
extended real line [ -oo ,  co). 

Let u be a real-valued upper  bounded  function on the bounded  domain  f~. We 

define u*: ~ - -+R  as the upper  semi-continuous regularisation of u, i.e. if z E ~ ,  

u * ( z ) =  lim u(( ) .  
~ z  

If  u is p lur isubharmonic  on f~, then u*=u on ft, and it is reasonable to  call u*loa 
the bounda ry  values of u. 

Definition 1.1. Let  ft be a bounded  domain  in C ~, and let # be a positive, 

regular Borel measure on ~.  We say tha t  > is a Jensen measure with barycentre 
z ~  for continuous plur isubharmonic  functions, if 

u(z) _< s u dv 
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for every function uE'PS?-lc(Ft). We denote by j c  the set of Jensen measures for 

continuous plurisubharmonic functions having barycentre z. Similarly, if 

~*(z) _< fa u* dp 

for every upper bounded function uCT)S~(f t ) ,  we say tha t  # is a Jensen measure 
with barycentre z for upper bounded plurisubharmonic functions. We write ,:Tz for 

the set of all such measures. Clearly, ,Tz C,7~. 

This paper  is devoted to studying the relation between f f  and tic. In Section 4 
we prove tha t  on B-regular domains, upper  bounded plurisubharmonic functions can 
be approximated from above on the closure of the domain using functions in PS~ c. 
This implies that  for a B-regular domain ~t, J~= , 72  for all zC~ .  Conversely, if ft 

is a bounded hyperconvex domain such tha t  :Tz = J 2  for all z, ft satisfies the above 
mentioned approximation property. At this point, it is unknown to the author 
whether j = j c  holds for every hyperconvex domain, We give an example showing 

tha t  this equality is not valid for every pseudoeonvex domain. 

In Section 3 we give an exact eharacterisation of those continuous functions on 
0f~, ~ being a bounded domain, that  can be extended to a function in PSHc(Ft) .  
If  ft is hyperconvex, the necessary and sufficient condition on CEC(0ft )  for this to 

hold is that  

r = i n f ~ /  Cdp:pEJ:} 
kJO~ 

for every z E 0Ft. As an easy corollary of this, we show that  7),$7/c (Ft) loo is mfiformly 
closed if Ft is hyperconvex. 

The author would like to thank Magnus Carlehed and Ragnar  Sigur6sson for 
helpful suggestions. 

2. T h e  basic  dual i ty  t h e o r e m  

The main reason for introducing Jensen measures is that  upper  envelopes of 
plurisubharmonic functions can be expressed as lower envelopes of integrals with 
respect to Jensen measures. This section is devoted to a proof of this result, which 
goes back to Edwards [6]. The result is little more than a thinly disguised version 
of the Hahn Banach theorem, but for convenience we develop the necessary ideas 
here. This section closely follows the presentation in Chapter  II1 of the monograph 
by Cegrell [3]. 
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Let X be a compact  metr ic  space, and let 5 c be a cone of upper  bounded,  upper  

semicontinuous functions on X containing all the constants.  If  g is a real-valued 

function on X,  we define 

s g ( ~ )  = s u p { ~ ( z )  : ~ c ~=, u < g} .  

Let z E X and define a class of positive measures by 

M ~ =  {P:u(z)<_/xUd# for all uEJZ }. 

It  is not  difficult to  verify tha t  M~ J= is a convex, weak-* compact  set. If  g is a 

bounded  function on X,  we define Ig(z)=inf{fxgd#:#EM~J= }. Note tha t  every 

measure in Mf f  is a probabi l i ty  measure. 

T h e o r e m  2.1.  (Edwards '  theorem) With jr as above, and if g is a bounded 
Borel function on X, then Sg(z)<Ig(z). If g is lower semicontinuous, then Sg=Ig. 

Proof. For the inequality Sg<_Ig, just  note  t ha t  if u~J z, u<_g, and p E M ~  is 

a rb i t rary  then  

u(z) <-./x U d# < / x  g d#. 

Hence Sg(z)<Ig(z). For the second part ,  first assume tha t  g E C(X). Also, wi thout  
loss of generality, we may  assmne tha t  g < O. The  functional  S satisfies the following 
properties:  

(i) S(c~g)=c~Sg, c~>_0; 

(ii) S(91 +g2) >- S(91) + S(g2); 
(iii) if gl<_g2<O, then  S(91)<_S(g2). 

Take any zCX. By the Hahn--Banach theorem and Riesz'  representat ion theorem, 

we can find a (real) measure s on X,  such tha t  f x  9ds=Sg(z) and fx  4ds>-Sr 
for every OEC(X). 

Clearly, if qh_>0, f x  Cds>_Sr and hence .s is a positive measure. Now take 

any uE$  c. Since u is upper  semicontinuous and upper  bounded,  we can find a 

decreasing sequence uj E C(X) such tha t  uj ' -~u.  Then  

/x u d s =  lira fx  uj d s>  lira S~j(.~)>_Su(~)>_~(~). 

Hence s e M ~  and thus Ig(z)=Sg(z ). 



184 Frank Wiks t rSm 

If g is lower semicontinuous, take a sequence gj EC(X),  such that  gj/~g. Then, 
for every c>0, for every j we can find #j, such that  for every fixed k, 

(2.1) 
Sg(z)-J~> lim Sgj(z)= j~oolim Igj(z ) - j ~ o c  > lim / x  

> lim gk #~ ~ gkdp-s ,  
j ~ o o  J X  

gj dpj - c 

where # is a weak-* limit of #j. Letting k--+ co, we get Sg(z)> f x  g d#-e ,  and hence 
Sg(z)>_Ig(z)-s. But e>0  was arbitrary, and it follows that  Sg(z)>_Ig(z). [] 

It is straightforward to verify that  79S7/ and PST-/~ are cones satisfying the 
conditions in Theorem 2.1, hence we obtain the following corollary. 

C o r o l l a r y  2.2. Let f~ be a bounded domain in C ~, and let r be a real-valued 
lower semicontinuous function on ~. Then, for every zCf~, 

sup{u*(z):uEP$Tt(~),  u*'<r = i n f { f ~  C d p : p E J z } ,  

and 

sup{u(z) : u E T ' S ~ c ( ~ ) ,  u _ < r  C d t t : p E  J ~ } .  

Remark. Poletsky has in a series of papers studied similar methods of con- 
strueting plurisubharmonic functions as lower envelopes of "disc functionals" [10], 
[11]. His methods have recently been expanded and generalised by Lgrusson and 
Sigurdsson [9]. Their approach shows that  if r is upper semicontinuous on ft, then 

sup{u(z) :u E:P$?{(f~), u < ~ b } = i n f { f ~  r  

In fact, Poletsky showed that  it is enough to take the infimum over Jensen measures 
that  are push-forwards of the Lebesgue measure on the circle under closed analytic 
discs. His approach, however, does not allow for boundary values in the same way 
as Edwards' theorem does. 

Note that  we cannot in general expect Edwards' theorem to hold for upper 
semicontinuous functions r For example, if 9 c only contains continuous functions, 
and q5 is a discontinuous function which is the pointwise limit of a decreasing se- 
quence {r of functions in 5 c, then clearly I r 1 6 2  for all n, and hence Iq5=r 
On the other hand, 8r  is a supremum of a family of continuous functions, so Sr 
is lower semicontinuous. Hence, we cannot expect that  S r 1 6 2  if 5 c only contains 
continuous functions and r is not lower semicontinuous. 
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3. Boundary  values of  p lur i subharmonic  funct ions  

Often in pluripotential theory, hyperconvex domains is the natural class of 
domains to study. 

Definition 3.1. Let f~ be a domain in C ~. We say that  ft is hyperconvex if 
there exists a negative plurisubharmonic function hEOOST-/(ft), such that  for every 
c>0,  the set ( z E f t : h ( z ) < - c }  is relatively compact in f~. Such a function is called 
a bounded plurisubharmonic exhaustion function for f~. 

If ft is hyperconvex, it is always possible to find a bounded plurisubharmonic 
exhaustion function h for f~, which is continuous on ~. In fact, it is even possible 
to take hET)ST-l(f t)NC~(ft) .  (See Btocki [1] for details.) Clearly, every hyper- 
convex domain is pseudoconvex, and every pseudoconvex domain with Lipschitz 
boundary [5] is hyperconvex. 

Even if f~ is a hyperconvex domain, it can happen that  some continuous func- 
tions on Oft are not the boundary values of any plurisubharmonic function. Take 
for example the (unit) bidise in C 2 and let r be a continuous function on cgA ~, such 
that  r215 and r 1)=1. The maximum principle shows that  r is not the 
boundary values of a plurisubharmonic function. Using Jensen measures and the 
duality results from Section 2, it is possible to give an exact characterisation of the 
functions on c9~ that  are boundary values of plurisubharmonic functions. 

L e m m a  3.2. Let f~ be a bounded domain in C "~. Let (z j}Cf~ be a sequence 
of points converging to z. For each j ,  let pjEffzj. Then there is a subsequence #jk 
and a measure #CJz  ~, such that #yk converges weak -~ to #. 

Proof. With the help of the Banach-Alaoglu theorem, by passing to a subse- 
quence, we may assume that  #j  converges to some probability measure # supported 
on ~. We claim that  # E J ~ ,  since if" uET)STi~(ft), then 

f u d # =  lim f u d p j  > lira U(Zj) ~ U ( Z ) .  
J v~ y-+oo ~ f~ y-+oo 

This shows that  # E J ~ .  [] 

Remark. In general, it is not true that  #EJ~ .  See Example 4.6. 

L e m m a  3.3. Let f~ be a bounded domain in C n and let CEC(cgQ). Then 
there exists a function u~7957-t~(ft) such that ulof~=r /f and only if there exists a 
continuous extension of r (also denoted r to f~ such that 

(3.1) r = i n f { / ~  C d # : #  E , : }  
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for every z C 0~. 

Proof. Assume that  r  for some uEPSTgc(~). Take zEO~ and let #E,Ty. 
Then 

P 

r = n(~) < ] u d,  
J~ 

which implies that  r  inf{f~ u d#: # E ~7~ }. Taking # = ~z shows that  this inequal- 
ity is in fact an equality. Hence u is a continuous extension of r to ~ satisfying (3.1). 

Conversely, extend r to a continuous function on ~, satisfying (3.1) and let 
Sr  u* <05}. Edwards' theorem implies that 

S05(z) = inf{ j(~ 05dp :# < J z } .  

Assume that  limr $05(~)<05(z) for some zE0f~. Then we can find e>0  and a 
sequence Cy --~z such that  S05((y) < 05(z) - e  for every j .  Hence, there is a measure #j E 
,7;j such that  f~ 05 d#j <05(z) - e .  By passing to a subsequence and using Lemma 3.2, 
we can assume that  try converges weak-* to some/*EJ~.  Hence 

L 0 5 d # =  lim L05dpj-<05(z)-c'j--+oo 

This contradicts the assumption that  05(z)=inf{f~ 05 d# :# �9 J~}.  Therefore, we have 
limr ). Clearly, since 05 is continuous, limr Hence 

($05). =(S05)*=05 on Oft. By a theorem of Walsh [13], (S'05)* is a continuous pluri- 
subharmonic function with boundary value 05. [] 

If we assume is addition that the domain is hyperconvex, then the situation is 
more satisfactory, since we do not require an extension of the boundary function. 
To prove this, we will require (a part of) a theorem from [2]. 

T h e o r e m  3.4. Let ~ be a bounded domain in C n. Then ~ is hyperconvex if 
and only if, for every z �9  every Jensen measure # � 9  is supported on 0~. 

Proof. Let h be a continuous bounded plurisubharmonic exhaustion function 
for ~. Let zEO~ and take any pEfl2. Then 

0 = h(~) -< s h du. 

But, h<0  on ~ and # is a positive measure, thus h=0  #-a.e. Since h<0  in ~, this 
implies that  /z is supported on Of/. For the converse, we refer to [2]. [] 
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T h e o r e m  3.5. Let f~ be a bounded hypereonvex domain in C n and let 6E 
C(Of~). Then there exists a function uEP$~t~(Q) such that ula ~ = r  if and only if 

(3.2) r fo C d p : p E J : }  

for every z C OfL 

Proof. If zC0f~ and # E J ~ ,  by Theorem 3.4, # is supported on Oft. Hence the 

integral f~ 6d# only depends on the values of r on Of~, and the theorem follows 
from Lemma 3.3. [] 

Example 3.6. As a straight-forward consequence of Theorem 3.5 we may con- 
clude tha t  C E C ( 0 A  2) extends to a continuous plurisubharmonic function on A 2 if 

and only if qb is subh~rmonic on each analytic disc in the boundary, tha t  is if and 
only if the functions C~-~r ~~ ~) and @-~r162 e ~~ are subharmonic in ~" for every 
real 0. 

I t  is easy to see that  the subharmonicity of the slice functions is a necessary 
condition. Assume that  uET)ST-/r 2) is an extension of 6. Then u,.=u(rzl, rz2) 
converges uniformly to u on the closed bidisc as r / ~ l ,  and each ur is subharmonic 
along each analytic disc in the boundary  of A 2. Hence, the same is true for r 

Conversely, let us first note that  if zEOA 2, say z = ( e  i~ ~) for some 0 E R  and 
CEA, every p E J ~  must be supported on {e i~  The reason for this is that  
the function v(z)=lzl+e~~ is in 7~8~~ v_<0, and {z:v(z)=O}={e i~ x A .  
Hence, if p E J z  c, we have that  

0 = v(z)  _< ~vd~ 
which implies that  p must put zero mass on the set where v<0 .  In a similar fashion, 
we can show tha t  if zEOAxOA and p E J 2 ,  it follows that  #=5~. 

Hence, any Jensen measure for a boundary point z can be viewed as a Jensen 
measure for subharmonic functions on A after a canonical projection, and con- 
versely, any Jensen measure on A can be lifted to a Jensen measure for a boundary 
point in A 2. Thus, if r is a continuous function on 0A 2 such that  every slice 
function is subharmonic, then condition (3.2) is satisfied. 

The class of domains admitt ing a strong plurisubharmonic barrier function at 

every boundary  point was introduced and studied by Sibony [12]. These domains, 
known as B-regular domains, are in some situations natural.  For example the 
Diriehlet problem for the complex Mong~Amp~re  operator is always solvable in 
B-regular domains. (With continuous data  and continuous solution.) We refer 
to Btocki [1] for details. We will use the following (equivalent) definition of B- 
regularity. 
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Definition 3.7. Let f~ be a bounded domain in C ~. If every real-valued function 
r E C (0ft) can be extended to a plurisubharmonic function u E / 9 $ ~  ~ ( f  t ) ,  we say that  
f~ is B-regular. 

In [2], hyperconvexity was characterised in terms of Jansen measures for bound- 
ary points. As a corollary to Theorem 3.5 we obtain a similar characterisation of 
B-regularity. (This fact was already proven by Sibony in [12].) 

C o r o l l a r y  3.8. A bounded domain f t c C  ~ is B-regular if and only if for every 
boundary point zCOft, flz~={5~}, where 5z denotes the Dirae measure at z. 

Pro@ Assume that  ~ is B-regular, take a boundary point zE0f t  and let #E,7~. 

Since ft is hyperconvex, supp #C0gt.  Construct  a continuous function r on Oft such 
that  r at tains a strict maximum at z. Since ft is B-regular,  we can extend r to a 
function in 7)$7-/r Hence 

max r 

Consequently, r 1 6 2  #-a.e., which implies tha t  s u p p p = { z } .  Hence #=~z.  Con- 
versely, assume that  J ]  = {hz} for every z E cqft. Theorem 3.5 then implies that, every 
continuous function on Oft is the boundary value of a function in :PST-/~(ft). [] 

It  is also possible to use Theorem 3.5 to show that  on hyperconvex domains, 
the set of boundary values of continuous plurisubharmonic functions is closed under 
uniform limits. 

C o r o l l a r y  3.9. Let f t c C  ~ be a bounded hyperconvex domain. Then the set 
E=~STtr is uniformly closed. 

Proof. Let Cj cC(0f~) be a sequence of functions in E converging uniformly to 
some CEC(0f~). Assume that  

r > inf { Jof r d# : P E Jz~ } 

for some zEOfL Then r  # for some p e J [  and consequently C j (z )>  
fo~ CJ dF~ for j sufficiently large. This contradicts the assumption that  Cj is the 
boundary value of a function in 7)$7-/c(ft). 

On the other hand, assume tha t  
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for some z C0ft. Then there is an e > 0 such that  r foa r d ~ - c  for every I~E J~.  
Choose j so large that  supoa I r  Cjl <5~-1~ Then 

for a l l / t E J ~ .  Using Theorem 3.5, this contradicts the assumption on Cj. Hence, 

r  C d # : # C ' :  } 

for all zEOft, which by Theorem 3.5 implies that  CEE. [] 

Remark. This corollary can also be proved by extending the boundary func- 
tions to maximal plurisubharmonic functions, and taking a limit of these. This 
argument requires some theory of solving the complex Monge-Amp~re equation on 
hyperconvex domains, whereas the approach taken here is more self-contained. 

4. Global  approx imat ion  of  p lur i subharmonic  
funct ions  on B-regular  domains  

In this section we will show that upper bounded plurisubharmonie functions 
can be approximated from above with plurisubharmonic functions continuous up to 
the boundary on B-regular domains. This generalises a result by Cegrell [4]. 

T h e o r e m  4.1. Let ~ c C  n be a bounded B-regular domain and let u be an 
upper bounded plurisubharmonic function on ~. Then there exists a decreasing 
sequence ujff~874c(~), such that uj ~u*  on ~. 

Remark. If we only assume that  ~ is pseudoconvex, then Theorem 4.1 is no 
longer valid. For an example, take Hartogs' triangle ~ = { (zl, z2) E C 2:1 zl I < I z21 < 1}, 
and let u(zl, z2)= Izl I/Iz21- Then uC Sn( ) and u< 1. Also, note that u*(0, 0)=1. 
Assume that  there is a sequence uj~7)87tr such that  ujX.ju * on ~. Let 
/-(----{0}xcOA1/2CQ. Note that  u is identically 0 on K,  and hence in particular, 
u is continuous on K.  Consequently, by Dini's theorem, uj converges to 0 uni- 
formly on K.  Choose J so large that  uj < �89 on K for every j_> J. By applying the 
maximum principle to uj on {0}xA1/2,  we must have that  uj(0,0)_<�89 for j > J .  
This contradicts the assumption that  uj (0, 0) '~u* (0, 0)=1.  

On the other hand, if Q is pseudoconvex and uffV)S']-/(~) (u not necessarily 
upper bounded), we can always find a sequence (see Forn~ess and Narasimhan [7] for 
a proof) ujEV)BV~(~)AC~(~), such that  ujX.~u on ~. But as the example above 
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shows, these functions can in general not be extended to continuous functions on ft 
such tha t  the extensions decrease to u* on Oft. 

Furthermore,  if we do not even assume tha t  ft is pseudoconvex, there are 
examples showing (see e.g. Fornmss and StensOnes [8]) that  there is a domain f~ and a 
function u E PST-/(ft) such tha t  there is no sequence of continuous plurisubharmonic 

functions u s such that  uj "Nu on ft. 
These examples show tha t  for Theorem 4.1 to hold, we must assume that  

the domain has some kind of "convexity", and that  pseudoconvexity itself is not 
sufficient. At this point it is unknown to the author whether Theorem 4.1 holds in 

every hyperconvex domain. 

Proof of Theorem 4.1. Since ft is hyperconvex, we can find a smooth plurisub- 
harmonic exhaustion function v for Q such that  v]oa=O. (See Btocki [1].) First 
note tha t  u* is upper  semicontinuous on the compact  set ~. Hence, we can find a 

sequence CjcC(Oft) such that  each Cj>u* and Cj'Nu* on 0ft. 
Because ft is B-regular, we may extend Cj to a maximal  plurisubharmonic 

function on ft, which is continuous on ~. (We will use the same notation, Cj, to 
denote this extension.) 

For each j ,  the function u * - r  is upper  semicontinuous on 0ft and thus 
at tains a maximum value. In other words, we can find ej>O, such that  u*-r 
- e j < 0  on Oft. By the maximali ty  of Cj, we must have 

(4.1) u*(z)<_Oj(z)-ej, z e s t .  

For each j ,  choose rj > 0 so small that  

({ *} ) rj < dj := dist z : v(z) < - 2j ~ , Oft , 

and so that  u~ _<@ on ft,.j. By shrinking rj  further, we may also assume that  {rj} 
is a decreasing sequence. Here uTj denotes the convolution of u with a s tandard 
regularising kernel ~ j  with support  in B(0, r j )  and ft~., ={zEgt :d is t (z ,  0 ~ ) > r j } .  
The second condition on rj  can be fulfilled because equation (4.1) implies tha t  

u, r  < = C j , r  _< r 

if 5 is sufl:iciently small. (We recall tha t  qSj*r converges uniformly to Cj as 5--+0.) 
Define 

(4.2) ~t,~(z)=max{uT,~(z) 1 )}  
m 
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and let Uj(Z)=SUpmkj(~tm(Z)}. In (4.2), note that Ur.~ is not defined if z is close 
to Oft. The definition of 5,~ should be taken as rav(z)+r for such z. 

We claim that  ujEP$Ttc(~). First, note that  if z is a point in ft such that  
dist(z, Of~)<d,~, then v(z)>_-l/2m 2 and hence mv(z)>_-l/2m. By the construc- 
tion of r,~ in the previous paragraph,  we also have that  u,-(z)_<~bm(Z). Hence, for 

such a z, we see that  

u~.m ( z )_  1 1 
- < -< 
m 

This implies that  each ~,~ is plurisubharmonic on O, continuous on ~ and equal to 
r on Of~. Thus uj, being the upper  bound of a family of continuous functions, is 
lower semicontinuous. To prove the claim that  uj is a continuous plurisubharmonic 

function, all that  remains is to show that  uj is upper  semicontinuous. 
Rewriting uj, we obtain for any K> j, 

rn > j  I. I. fr~ 

(4.3) "~->J (" ( 

<_ max max max  u,. z , m v  z + - - + r  z) - - -  , 
K>_m>j ~ 

{...(.) 
The inequality in (4.3) follows from the estimate: 

(4.4) max  u ..... mv+~+r - - -  u~K'KV+ K +r ' m>_K. 

To prove (4.4), just  note that  max{u,.K, Kv+I/K+r is decreasing in K.  (Each 
te rm is decreasing.) 

To finish off, we observe that  

m a x {  ~nax>j{max{u~. (z),mv(z)+l+r - 1 } ,  

max{u,'K(Z),Kv(z)+I+C)K(Z)}} 

is a sequence of continuous functions, decreasing to uj as K--+oc. Hence uj is upper  
semicontinuous. This completes the proof. [] 

To make the following discussion clearer, let us introduce a piece of terminology. 
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Definition 4.2. Let f~ be a bounded domain in C n. If every upper bounded 
plurisubharmonic function on f~ can be approximated from above on ~ by functions 
in ~S7-/c(0) as in Theorem 4.1, we say that  f~ has the approximation property. 

C o r o l l a r y  4.3. Let f ~ c C  ~ be a domain having the approximation pTvper~y, 
and let zC~. Then J c = J  z. 

Proof. Clearly Jz  C J~.  Conversely, let # E J [  be arbitrary and take any up- 
per bounded plurisubharmonic function u on f~. Since f~ has the approximation 
property, there is a sequence uyE~S~c(f~), such that  uj~Nu *. Hence, using the 
monotone convergence theorem 

[ u* d/z= .lira [ uj d/~ ~ .lim uj(z)=u*(z). 
J a  ?--+ oo ~f} j--+ oo 

This means that  # is in fact a Jensen measure for every upper bounded plurisub- 
harmonic function on f}. [] 

In particular, the two classes of Jensen measures coincide for B-regular do- 
mains. Conversely, if J z = J [  for every zEf~ and if f} is hypereonvex, then f~ has 
the approximation property. 

T h e o r e m  4.4. Let f~ be a bounded hyperconvex domain in C ~ and assume 
that J~=J~ for every zc~ .  Let u be an upper bounded plurisubharmonic function 
on f}, with u*lo~= 0. Then there exists a sequence r such that Cjx r 
and r EP8~t~(f})loo. 

Proof. Since r is upper semicontinuous on Of}, we can find a sequence of contin- 
uous functions Cj c C(Of~), such that  Cj 'Nr For each j ,  extend Cj to a continuous 
function on ~ in such a way that  the extensions still form a decreasing sequence of 
functions. For each j ,  define 

(z) = sup{v(z)  S~r 

(z) = s u p e r ( z )  sCj 
[ 

/ 
: V E ~ S ' ] - ~ c ( ~ ) ,  V ~ (~j on ~ [ ,  

Using Edward's theorem and the assumption that  J z = J 2 ,  we have that  

ScCj(z) = inf { / ~  Cj d# : p E , c  } = inf { f~ Cj dp : # E , z  } = SCj(z) 

for every zE~ .  Hence S~r  On the other hand sCj <@ and Cj is continuous. 
This implies that  (SCj)* <r and since (SCj)* is plurisubharmonic, it follows that  
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(S~j)* ~-S(~j. In particular, S~j is upper semicontinuous on fL However, S@ =SC~j 
and S~r is lower semicontinuous, being the supremum of continuous functions. 
Consequently, S~j =S~r CT)$7-l~(f~). 

Define r Clearly, g,j <qSj. Fm'thermore, if zEOf~, and I~,Yz=,YZ, 
then 

r f u* dl~= ~r  

since f~ is hyperconvex, and thus # must be supported on 0f~ by Theorem 3.4. 
Hence, 

~ inf{3~ ~ ~bJd[Z:lzEJc}=scej(z)=r 

for every zC0fL It is clear that  g)y decreases, and from the calculation above, it 
follows that  ey converges to u * = r  on 0fL [] 

C o r o l l a r y  4.5. Let f~ be a bounded hyperconvex domain in C '~ such that ,7~ = 
J~ for all zC~. Then f~ has the approximation property. 

Proof. Let u denote an arbitrary upper bounded plurisubharmonic ihnction 
on fL 

Examining the proof of Theorem 4.1, we see that  the only thing that  is required 
for the proof to go through in hyperconvex domains, is the existence of a decreasing 
sequence ~j of continuous functions on 0f~ tending to u* such that  each @ can be 
extended to a maximal plurisubharmonic function. 

Theorem 4.4 provides us with a sequence ejE~oS~c(t~)lo~ decreasing to u*. 
Since (t is hypereonvex these functions can always be extended to maximal pluri- 
subharmonic functions on 12 (see Btocki I1]). [] 

In general ,Y~ G ffc as shown by the following example. 

Example 4.6. Define h: C 2 \ { z : z l = 0 } ~ N  by h(z)=lzll~~ Then h is 
plurisubharmonic where it is defined, because logh(z)=( log  Izll)2+log Iz21 which 
shows that  log h is plurisubharmonic on zl ~0.  Hence the same is true for h. Let 
Q={zEC2:h(z)<l, 0 < ] z l l < l ,  Iz21<1}. It is easy to verify that f~ is pseudocon- 
vex, but since f~ is Reinhardt and 0E0f~, f~ is not hyperconvex (see [2]) and h is 
plurisubharrnonic and upper bounded on fL 

Let u(z)--max{h(z), Izll, Iz21}-1. Then u*=0  on 0f~. Hence, if' z~(gf~ and 
#ffJ~,  then 

o=u*(z)<s u* dl.t , 
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which implies that  u* =0  #-a.e. Hence # must be supported on Oft. On the other 
hand, since f~ is not hyperconvex, there exists a measure # E J ~  which is not sup- 
ported on 0~.  (See [2].) This is, of course, another example which shows that  
Theorem 4.1 is not valid in every bounded pseudoconvex domain. 

Inspired by the above example, we introduce the following definition. 

Definition 4.7. Let ~ be a bounded domain in C n. If  there is a function 
uET)S~(f t ) ,  u~0 ,  such that  u*loo--0 , we say tha t  ft is ahnost hyperconvex. 

As in the example, it follows that  if ~ is almost hyperconvex, then for every 

zcOft  and every #E`Tz, s u p p # c 0 f L  We also note that  the notion of almost hyper- 
convexity is not biholomorphically invariant. The reason is that  a biholomorphism 

r f t l -+f t2  does not necessarily extend to a homeomorphism between the closures. 
As an example, take f t l = A 2 \ { z : z 2  0}. Clearly, if u is plurisubharmonic on ft l  
and upper  bounded, we can extend u to be plurisubharmonie on A 2. Hence, if 

u* Io~h--0, the max imum principle forces u to vanish identically, which means tha t  
ftl  is not almost hyperconvex. However, f ( z l ,  z2)=(zlz2, z2) is a biholomorphism 
between ftl  and Hartogs '  triangle, which is almost hyperconvex. 

Recall that  Hartogs '  triangle is defined by T = { (zl, z2) E C 2 : I Zl  I < I z2 1 < 1 }. TO 
see that  T is almost hyperconvex, note that  the function v(z) = m a x {  IZl f/Iz2 l, Iz2 l} - 
1 is plurisubharmonic and satisfies v * - 0  on OT. 

Let p denote the normalised Lebesgue measure on {(Zl,Z2):zl=O, Iz2 t= l} .  
Note that  p E ff~, but # ~,70. The reason for this is that  if u E P S T / i s  upper  bounded 
on Hartogs '  triangle, the value u*(0) is not determined by the restriction of u to 
the disc {0} x A, in which s u p p p  is contained. This allows for the existence of 
a function u in PST/(f t ) ,  such that  u*(0)>Uls.pp ~. The function v above is an 
example of such a function. 

It  is possible to strengthen some of the previous results to a wider class of 
domains than B-regular ones. In particular, it is possible to show that  the bidisc 
has the approximation property. We begin by stating some preliminary lemmas. 

L e m m a  4.8. If  { j}j  1 is a sequence of positive measures such that #j con- 
verges weak-* to # and if ~ is art upper" semieontinuous function with compact 
support, then 

lim ~ ?zdpj < ~ ~d#. 
j -+  o c  

The lemma follows easily from the monotone convergence theorem. For the 
details, see Lemma I:l  in Cegrell [3]. 

L e m m a  4.9. Let ~ be a bounded domain in C ~ and let #E,7~:, where zeta. 
Assume that, for every sequence {zj}, zj cf t  converging to z, there exists a eorre- 



Jensen measures and boundary values of plurisubharmonic functions 195 

sponding sequence of measures #jEJ~5, such that #j converge to # in the weak -~ 
topology. Then #EJ~. 

Proof. Let u be an upper bounded plurisubharmonic function and let {zj} be 
any sequence in O converging to z. Take  {/tj} aS in the statement of the lemma. 
Since each #j C J~j, we have that  

u *(zj) < ~ u* d,uj. 

Letting j ~ o o ,  and using Lemma 4.8, we see that  

lira u* (z j )<  lim ~ u *  j~oc j-~oo d#j <_ u* d#. 

The sequence {zj} was arbitrary and hence u*(z)<f~t u* d#. Thus #EJ~ .  [] 

For star-shaped domains, we can show that  the equality J [  = J ~  holds for every 
interior point z. Recall that  a domain f~ is said to be star-shaped (with respect to 0) 
if for any zErO, the (real) line segment connecting 0 with z is a subset of fL 

T h e o r e m  4.10. Let f~O be a bounded star-shaped domain in C n. Then, for 
every zErO, J~=J~.  

Proof. Let u be any upper bounded plurisubharmonic function on f~ and take 
any zEfL Let # e J ]  and define u~(()=u(r(1,... ,r(~). Then for any 0 < r < l ,  u.,. 
is plurisubharmonic on a neighbourhood of Q. Hence uT can be approximated 
monotonically from above on ~ by functions in 7957-/~(f~), and consequently 

~,-(~) <_ ~ u~.(O d~(r 

by the monotone convergence theorem. Letting r / ~ l ,  and using Fatou's lemma, we 
obtain 

lira u.,.(z)< l i~  ~U . r  d # <  [ ]=~mu~d#< j'fiu* d..  

But, since a (real) line segment as a subset of C ~' is not plurithin at its endpoints, 
we conclude that  

u* (z) = r u(~) = ~ u~.(z), 

and hence that u*(z)<ffiu*d#, i.e. that # E & .  [] 

Remark. Note that  this proof fails for z~OfL If zEO[~, we cannot assert that  
u* (z )=  lim u.,.(z). 

Using these results, we can prove that  a polydisc has the approximation prop- 
erty. 
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T h e o r e m  4.11. The unit bidisc A 2 c C n has the approximation property. 

Pro@ Since the bidisc is hyperconvex, by Corollary 4.5, it suffices to show 
that  J ~ = J ~  for every z~z~ 2. The bidisc is star-shaped, so from Theorem 4.10 we 
see that  the equality holds for every interior point. It  remains to show that  J [ = J ~  
for every zCOA 2. We may assume that  z E A  x 0A, the other case being completely 
similar. 

Let # E J [ .  From Example 3.6 we know that  the support  of # is contained in 
the analytic disc in eva 2 determined by z. (In the case where zEcqA x cqA, the disc 

is not uniquely determined, but  tha t  does not matter . )  Furthermore,  # is the lifting 
of a Jensen measure/2 on /X for subharmonic functions. 

Take any sequence { zj }, zj = (zJ 1) , z5 2)) in A 2 converging to z. For a 6 A, define 

( - a  
"<(0 = 1 - < '  

i.e. rn~ is the canonical M6bius t ransformation interchanging a and 0. For each j ,  
we define an analytic disc fy by 

The first component of f j  is a M6bius t ransformation interchanging z51) and z (~). 

Put  #d=(fd). /2.  Then # . j C J ~  =J< j  (by Theorem 4.10), and since the first compo- 
nent of .fj converges uniformly to ida  as j -+oo ,  it follows tha t  #j converge weak-* 
to #=( id ,  z(2))./~. Invoking Lemrna 4.9, it follows that  # E J ~ .  Hence any measure 

in ~7~ is a Jensen measure ibr upper bounded plurisubharmonic functions. [] 

5. Different kinds of  b o u n d a r y  values for p lur i subharmonic  funct ions  

Given an (upper bounded) plurisubharmonic function u~TP$Ti(f~), there are 
several reasonable ways to define boundary values of u. In this paper, we have 
used the upper semicontinuous regularisation u* as a convenient way to extend tt 
to t2. The obvious advantage of" using u*loa as boundary values of u is that  u* is 
upper  senlicontimlous on the compact set t2 which simplifies some things. On the 
other hand, u * ~ t h e  unrestricted upper limit of u - - i s  the largest reasonable choice 
of boundary values for u. If we can use another, smaller, choice of boundary values, 
many results would (at least formally) be sharper than for u*. In this final section, 
we will look into other ways of introducing boundary values for u. To simplify sonle 
of the concepts, we will restrict the discussion to the case of the unit ball B in 
C 2, even though the concepts we will introduce can be adapted to more general 
situations. 

First we will introduce radial boundary values. 
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Definition 5.1. Let uET)87{(B) be an upper  bounded plurisubharmonic func- 
tion. If zCOB, we define the radial boundary value of u, denoted u R, by 

We extend the function u R to D by defining nR(z)=u(z) if z~OB. 

Remark. For a bounded domain ft with C 1 boundary, one could define radial 
boundary values by taking the upper  limit along the (real) normal to f~ at z. In 
general u R will not be upper semicontinuous on J~. 

Looking at boundary values of bounded holomorphic functions, the theory is 
most satisfactory when studying non-tangential  approach regions (in one variable) 
and the even larger Korgnyi-Stein approach regions (in several variables). With  
this in mind it is natural  to look at boundary values of plurisubharmonic functions 

in a similar fashion. We recall the definition of a Korfinyi-Stein region. 

Definition 5.2. Let (~>1 and let (EOB. We put 

Remark. Note that  D~ is non-tangentiM in complex tangential  directions, but 
parabolic in the complex normal direction. In more general domains, one can define 
the Kor~nyi Stein regions using the Kobayashi metric. In strictly pseudoeonvex 
domains, the shape of D~ is roughly as in the ball. 

Using these approach regions, we define a non-tangential  boundary value for 
plurisubharmonic functions. 

Definition 5.3. Let uEPST-t(B) be an upper  bounded plurisubharmonic func- 
tion. If  zEOB, we define the c~-admissible boundary value of u, denoted u ~, by 

lim u(0. 
D~(~)~(~z 

We extend the function u ~ to B by defining uC~(z)=u(z) if zr 

Even though u • and u ~ are not in general upper  semicontinuous on ~, they are 
Borel functions. Hence it is meaningful to introduce Jensen measures modelled on 

these boundary values. If  z C/~, we define J ~  as the set of regular Borel measures 
/, such that  

uR(z) <_ [ u R d~ 
J fi 
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for every upper  bounded plurisubharmonic function u on B. Similarly, for a >  1, we 
define o7~ in the same way, with u R replaced by u ~. 

Clearly ur~<_u~<_u * (for any a > l )  and u~<_u ~ if l<a_<fl .  Hence if z E B ,  
u* (z) = u  ~ (z) = u R (z) and consequently, 

J~cd~ c& 

for any c~ > 1 and 

sy cs~ 

for a<_fl. 
For z GOB it is less obvious if the same inclusions of Jensen measures hold, but 

for interior points, the inclusions above are actually equalities. 

P r o p o s i t i o n  5.4. Let zCB.  Then (Jot every a > l ) ,  

Jz = J 2  =~ 7R Z " 

Proof. Fix #E/Tz and let u be an upper bounded plurisubharmonic function 
on B. From the proof of Theorem 4.10, we see that  

uR(z) <_ ]~ uR @, 

and hence that  # C J z  R. It  follows that  Jz  c J ~ .  [] 

Since J z = J ~ = J ~ ,  it would be natural  to conjecture that  u * - u  R #-a.e. for 
every # ~ J ~ .  This conjecture fails dramatically, as shown by the following example. 

Example 5.5. Define 

I~.12 
v(~) --log 1-I~1 I - - ~  

Note that  on B, Iz212<l- lZl l  2, and hence tha t  V ( z ) < l o g l = 0  on B. Also, V is 
plurisubharmonic on B, since - l o g ( l - I ( I )  is minus the log of the distance from 
( C A  to 0A, and hence subharmonic. 

Clearly V R ( ( , 0 ) = - o o  for every (EOA, since V(zl,0)=---oo. On the other 
hand, it is easy to verify that  V*((,  0 )=0  for every (EOA.  

These observations show that  

Vr~(z) = { o, z2 # O, 
- - 0 0 ,  Z2 = 0 
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and 

V * ( z )  = o, z ~ OB.  

Hence V R and V* disagree on the set 0 A  • {0}, which is the suppor t  of some Jensen 

measure p E J 0 .  (Take # as the 1-dimensional Lebesgue measure on 0 A  • {0}.) 

A more careful calculation shows tha t  V~(~, 0 )=1og(1-1 /2c~)  for ~COA and 

hence tha t  each of the different b o u n d a r y  values differ on a set of full #-measure.  

Remark. Note tha t  this example of a function such tha t  u* r  R, is not  a several 

variable phenomenon.  In  fact, it is well known tha t  there even exists a bounded  

harmonic  funct ion h on the  unit  disc in C ,  such tha t  h* r  R on a large par t  of the 

circle. 
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