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Linear two-phase Venttsel problems 
Darya  E. Apushkinskaya and Aleksandr  I. Nazarov(1) 

Dedicated to the memory of A. D. Aleksandrov. 

Abstract .  A priori estimates are established for the two-phase boundary value problems 
with Venttsel interface conditions for linear nondivergent parabolic and elliptic equations. By 
these estimates, the existence and uniqueness theorems in Sobolev and HSlder spaces are proved. 

The  bounda ry  value problems with Venttsel type  condit ions describe various 
physical processes in media  containing a thin film of a material  having high per- 

meability. Some examples of  the physical background can be found in [CM], [K1], 

[K2] and IS]. 

I f  such a thin film covers a bounda ry  surface then we deal with the one-phase 

Venttsel problem which has been t rea ted  extensively during the last decade. For 

survey of  results on the  one-phase problem and a complete  bibl iography we refer 
to  [AN5]. 

In this paper  we s tar t  the s tudy  of  the two-phase Venttsel problem where a 

thin film separates a medium into two parts. The  condit ion on the interface in this 

case is specified by an equat ion of the second order  with the  principal t e rm being 

a parabolic (elliptic) opera tor  in tangential  variables and with the first order  term 

being a "jump" opera tor  across the separat ing film. 

The  purpose  of  this paper  is to establish the  solvability results in Sobolev and 
HSlder spaces for the linear two-phase Venttsel problems under  the condit ion tha t  

the separat ing film does not  intersect the exterior bounda ry  of a medium. 
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no. 99-01-00684 and the Grant Agency of Charles University in Prague, Czech Republic (GAUK 
170/1999/B MAT/MFF 303-10/203061). 
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Our arguments are based on a version of the Aleksandrov type maximum prin- 
ciple. The history of this excellent idea takes the beginning about forty years ago, 
and, over the last twenty years, it is used as a powerful tool for the study of bound- 
ary value problems for elliptic and parabolic equations. In the pioneering papers of 
A. D. Aleksandrov [A1], [A2], [A3], [A4] such a maximum principle was established 
for solutions of the elliptic Dirichlet problem. In the simplest case, a similar result 
is presented also in the paper of I. Ya. BakelJman [B]. Further, the estimates from 
[A1], [A2], [A3], [A4] were improved in [Ah] and [A6]. For solutions of the parabolic 
Dirichlet problem the Aleksandrov type maximum estimates were obtained by N. V. 
Krylov [Krl], [Kr2], [Kr3] via probabilistic-analytic methods. Developing the geo- 
metric approach due to Aleksandrov, A. I. Nazarov and N. N. Ural~tseva [NU] and 
K. Tso [T] generalized these parabolic estimates to the case where the lower-order 
coefficients of the equation under investigation have summable singularities as had 
been done for the elliptic problem. A local maximum principle for solutions of the 
linear elliptic oblique derivative problem was proved by N. S. Nadirashvili [Na] and 
was extended to the case of unbounded coefficients by A. I. Nazarov IN2]. A cor- 
responding estimate for solutions of the parabolic oblique derivative problem was 
announced in [N1] and proved in [N2]. For the one-phase elliptic Venttsel problem 
a local Aleksandrov type maximum principle was obtained by Y. Luo and N. S. 
Trudinger [LT] in two cases--in the nondegenerate case, i.e. when the boundary 
operator almost everywhere does not degenerate with respect to the second order 
terms, and in the degenerate one, i.e. when the second order terms in the boundary 
operator may vanish on some subsets of the separating film having nonzero surface 
measure. Later, these results were generalized by the authors [AN2], [AN3] to the 
case where the coefficients of the boundary equation may have summable singular- 
ities. Corresponding estimates for the one-phase parabolic Venttsel problem were 
established by D. E. Apushkinskaya [Ap]. Finally, the first section of this paper 
may be considered as a continuation of the results mentioned above to solutions of 
the two-phase Venttsel problems. 

This paper is organized as follows. The major part of our paper deals with the 
nonstationary problem since that  requires more special techniques. In Section 1, a 
local estimate of the maximum is established for solutions of the nondegenerate and 
degenerate linear parabolic problems. In Section 2 we concentrate our attention on 
the nondegenerate case only. Namely, we pose the linear two-phase problem in an 
arbitrary domain and obtain the global maximum estimate for solutions. Then, 
in the case of EA0gt----0, the coercive estimates are established and the existence 
and uniqueness theorems in Sobolev and H61der spaces are obtained. For reason of 
space we provide in Section 2 just formulations of the theorems. We refer the reader 
to the preprint [AN4], where full proofs are given, and to the paper [AN1], where 



Linear two-phase Venttsel problems 203 

similar statements are obtained for the one-phase Venttsel problem. Corresponding 
a priori estimates for solutions of the stationary linear problem are formulated in 
Section 3. 

N o t a t i o n  

By x=(x',Xu)=(Xl,...,xn_l,xn) we denote a vector in R n with Euclidean 
norm [x[; (x, t)  is a point in Rn+l;  (xl, t) is a point in R~. 

By 12 we denote a bounded domain in R n and 012 is its boundary; E is a 
sufficiently smooth hypersurface separating ~ into two subdomains: ~(in) and 12(~x); 
~T : ~ X]0, T[; n (x)  = (ni (x)) is the unit vector of the outward (with respect to ~(in)) 
normal to E at the point x. 

By Q we denote a cylinder in R n+l. For a cylinder Q=~)x]0,  T[ we denote by 
O'Q = 0~  • ]0, T[ its lateral surface and by O'Q = c9"Q u (~ x { 0 }) its parabolic bound- 
ary. We set Q(ex)=12(e• X]0, T[ and Q(in)=~(in) X]0, T[. Various letters with indices 

(ex) and (in) stand for the functions defined in Q(e• and in Q(in) respectively. We 
use the index (hh) if we would like to emphasize that  some assumptions hold both 
for a function with index (in) and for one with index (ex). 

We also use the following notation: Q(r) and Q(0 (~(r) and 12 (0) stand for the 
parts of Q (of gt) lying in the right halfspace xn >0 and in the left halfspace xn <0, 
respectively; F(Q) (F(fl)) denotes the part of Q (of fl) lying on the hyperplane 
xn=0.  To denote functions defined in Q(r) and in Q0) we use various letters with 
indices (r) and (1), respectively. We use the index (h) if some assumptions hold 
both for a function with index (r) and for one with index (1). We let 

BR={XERn:Ix[ < n } ,  

Qn.T = BR X]0, T[, 

FR.T = F(QR.T). 

The indices i and j always run from 1 to n, whereas the indices s and m run 
from 1 to n - 1 .  We use the convention that  repeated indices indicate summation. 

Below we use Di to denote the operator of differentiation with respect to xi; 
Du=(Diu)=(D'u, Dnu) is the gradient of u. 

Let di be the tangent differential operator on the manifold E. Then du=(diu) 
is the tangential gradient of u; in particular, du=(D'u, 0) on FR. T. Also ut=Ou/Ot. 

We denote by H" IIp,Q the norm in the space Lp(Q). We also introduce the 
following spaces: 

Wp2'l(Q) with the norm 

Ilullw~,~(q) = tlu~tl,.Q + ttD( Du)llp.Q + llullp,Q; 
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W2pa(ET) with the norm 

Ilull w~. 1 (~-r) = llut IIp,~r + lid(du) IIp,~r + Itullp,~r; 

Vv(Q ) =W2p,1 (Q(in)uQ(ex))nWp2.11 (ET) with the norm 

I lullv,(Q) = 

By C((~) we denote the space of continuous functions; II �9 IIQ is the norm on C(Q). 
By C 2'1 (~)) we denote the space of all functions continuous in Q together with their 
first derivatives with respect to (x, t) and second derivatives in x. 

By C~((~) and C2+~((~), 0< 'y<  1, we denote the Hhlder spaces with the norms 

II llc,( ) - -  IlullQ + [ul ,Q, 
IlUllc 2+~(C2) : IlUllQ + IID( Du) llq + Ilut IIQ + [D( Du)].~,Q + [ut].y,Q, 

respectively, where [-]~,Q stands for the Hhlder constant, with Hhlder exponent ~/ 
with respect to the parabolic distance 

dpar((Xl,tl), (x2, t2)) --Ix 1 -x21 + It ~ -t211/2. 

We set C 2+~ (Q) = C 2+~ (Q(in)) n C  2+~ (Q(~• 

We use the notation x ~  for the angle between the vectors x and y. We set g+-- 
max{g, 0}, while g_ = m a x { - g ,  0}, and denote by tr(a) the trace of the matrix (a). 
The exponent q satisfies n<q<oo. 

We use the letters M, N, C (with or without indices) to denote various con- 
stants. To indicate that,  say, N depends on some parameters, we list them in the 
parentheses: N(...). 

1. T h e  local  m a x i m u m  es t imates  

Let u be a function defined in QR,T, u[rR.r =u0, and suppose u < 0  on O'Qi{,T. 
We introduce two upper convex-monotone hulls: z for the function u+ in Q,R.T and 
z' for the function (u0)+ o n  FR, T. We recall that  the upper convex-monotone hull of 
u is the least function which is concave with respect to space variables, increases in 



Linear two-phase Venttsel problems 205 

t and majorizes u. 
hulls we refer to [NU]. We define the contact set of u to be the set 

Z -  ((x, t) E Qn,T : z(x, t) = u(x, t)}. 

In a similar manner, the contact set of u0 is determined as the set 

z '  = {(x, t) e rR, r :  z ' (x ,  t) = uo(~, t)}. 

It is evident that Z N F R , T C Z  ~. 
We consider the linear parabolic operators L (h), 

ij (x, t)D~Dju+blh)(X, t)Diu+c(h)(x, t)u, L(h)u = a(h  ) (x ,  t )u t  - - a (h  ) 

Suppose B is the linear parabolic interface operator 

B u  ~- v(x, t)ut -(~Sm(x, t)D~Dmu-t-Z~(x, t)Dsu+'y(x,  t)u, 
oLSm ~ (~rns, 

while J is the "jump" operator 

gu  = ~(1) (x', t) 

For detailed descriptions of the properties of convex-monotone 

(x, t) E Q(h) 

(x, t) e r(Q), 

lim Dnu(x ' , xn , t ) -~(r ) (X ' , t )  lim Dnu(x ' , x~ , t ) ,  (x ' , t ) e r (Q) .  
Xn--+O- xn-+O+ 

Let us write 

A(h) ---- (Or(h) det(alJh)))l/(n+l) g(h) : [(b~h) )] . 
A(h) ' 

= (7" det(c~m)) l/n, g' = ](~)]  A' 

T h e o r e m  1.1. Suppose that ~ c B n  and u is a function such that 

u E W~:~I (Q(r)uQ(~))Nw~,i (F(Q))NC(Q), 

(1.1) L(r)u ~_ f(r) in Q(r), 

(1.2) L(J)u ~_ fO) in Q 0 )  

(1.3) B u +  Ju  < ~ on  r(Q). 

Assume also that the coefficients in (1.1)-(1.3) satisfy the conditions 
i j  (I) a(h)~i~ j >0 for ~ e R  n and a(h) ~0, c (h) ~0, a(h)+tr(alJ  )) >0 a.e. in Q(h). 

(II) ~sm~s~m~O f o r ~ E R  n-1 and7>O, '7~O,  ~(r)~0, ~0)~0,  T+tr(asm)>o 
a.e. on F(Q). 
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If, in addition, u<_O on O'Q, then 

( Z . ,  

+ f~" n,znr(Q)' 
- 

--  \ l [  i ( r )  I ln+l .ZnQ(r)  2 " ~  

where 

C1 =Co(7},)(lT~n/(n+l}_[_ n(r)  n r .4_H9(I) IlnnT1.ZNQO, _[_llgtll:~z/~F~;))) n+ l.gnQ( 
C2=Co(n)(R(n-D/n + ,~(r) li(n2--t)/n + (1) (n2-1) , /n nt" i n - 1  \ 

IIn+l.ZNq(r) IIg I1.+1 ZnQ l) Iig lln.znr(Q)) 

and we set o =0 if such an indeterminacy arises. 

Remark 1.1. Without loss of generality we may assume that  L (r), L 0) and B 
are uniformly parabolic operators, u E C 2"1 (Q(r)) NC2n (Q0)) and u[a,Q <0. All these 
restrictions could be removed by using the same argument as in [NUI, Section 4. 

In addition, we extend the function u+ by zero to the set QR.T\Q and preserve 
the notation u for the extended function. 

Proof. Let M=supQR. r Z=supQR. r U=U(X ~ tO). 
Next, consider some modification of the (n+l)-dimensional  Legendre transfor- 

mation (I) used in [T]. We define (I): Z--+R '*+1 by 

a2(x, t) = (Du, u -  Du. (x ' - (x~  ', x~)), 

where u=u(x, t). The determinant of the Jacobian of �9 is equal to ut det(DDu). 
In the same way, we define the n-dimensional Legendre transformation (I)': Z ' -+R~ 
by 

(I)'(x', t) = (D'u, u-D'u"  ( x ' -  (x~ 

where u=u(x', 0, t). 
Let 

K = { ( p , q ) : p E R " ,  q E R  1, 2R[p[<q<M}. 

For every (p, q)EK we introduce a hyperplane IY that  is the graph of the function 
zd(x)=pt.(x~-(x~ Since 7r'(x)>O>u(x,O) for all xEBn,  whereas zr'(x~ 
u(x ~ t ~ =M, the hyperplane IY will touch the graph of u ( . ,  t) tangentially for some 
t<t ~ Below we will denote by (x*, t*) the point where YI' and the graph of u touch 
the first time. It is obvious that  (x*. t*) E Z and (p', 0, q)-- #(x*, t*). 

Consider the sets 

Kid = {(p, q) E K :  (p', O, q) E ~b(ZnQ(~)T). and p,, < 0}; 

K[~] = {(p, q) E K :  (p', 0, q) E ~(ZMQ(~)T). and pn > 0}; 

K[r] = {(p, q) E K :  (p', 0, q) E ~ ( z n r n . r ) } .  



Linear two-phase Venttsel problems 207 

By definition, if (p, q)EK[r] then the point (x*, t*) described above belongs to 
ZAFR,T and at this point we have 

(1.5) lim Dnu<O and lim D~u>O. 
Xn-"r Xn "-'>O- 

Denote by Z the collection of all points belonging to ZNFR,T where the in- 
equalities (1.5) are valid. Then, from (1.3), (1.5) and the assumptions on f~(h) it 
follows that 

(1.6) Bu<~ o n Z .  

We are now in a position to define a special subset ~ of K with properties to 
be investigated in the following. Let 

/C = Kid UK[~] UK[rl. 

L e m m a  1.2. We have 

(1.7) 
M 

Proof. For arbitrary (p, q)�9 we introduce the second hyperplane II that  is the 
graph of the function 7r(x)=p. (x'-(x~ ', xn)+q=zrt(x)+pnxn. Next, our reasoning 
falls naturally into three parts. 

1. Let (p, q) c g  M. By definition, p~ < 0 and (x*, t*) �9 ZMQ~! T. Hence, 7r(x*) < 
7r'(x*)=u(x*,t*). On the other hand, 7r(x)>O>_u(x,O) for all xEBR. Therefore, 
the support hyperplane H will touch the graph of u for some t<t*. Denote by (~:, t )  
the point where H and the graph of u touch the first time. 

We are going to show that (2, t ) � 9  ZMQ~!T. If this would not be the case, then 

> > 

Therefore, the only possible case is the case with equalities throughout. But  the 
relation 771(~)=u(2, t) contradicts our assumption that t* is the first time where W 
and the graph of u touch. Hence, (2, t )  �9 ZMQ(~!T and, consequently, (p, q)=(I)(~:, t) .  
Therefore 

(1.8) K[r] C r 
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2. Precisely as in part  1, we conclude 

(1.9) KItl C ~(ZcIQ(R!T). 

3. Consider now an arbitrary (p, q) EK[r]. By definition (x*,t*)EZMFR,T. 
Consequently, it follows that  ~r(x*)=r'(x*)=u(x*,t*), while 7r (x)>0>u(x ,0)  for 
all XEBR. But this means, that  there exists (~, {), {<t* where H and the graph of 
u touch the first time. It should be emphasized that  the last inequality is a nonstrict 
one in contrast to above. 

There are only three possibilities: 
(1) 
(2) 
(3) (~,~)eznr.,v. 

It is evident that  (p, q)E~(ZnQ(~)T), in the case (1) and (p, q)Er in the 
case (2). In the case (3), we note that  the support hyperplane W also would touch 
u ( - , t )  at the point &. Therefore, t=t* and (&, t )E2 .  Further, it is obvious that  

- M/2R <Pn < M/2R and an observation shows that  (p', q) E 4' (2). 
Hence we get 

2R' 

Now, combining (1.8)-(1.10) we obtain (1.7). [3 

We continue the proof of Theorem 1.1, and introduce the weight function 

~b(p ) = ( ( [pl)~ )2 + h 2) -("+1) /~ 

with some positive constants A and A to be specified later. We know from (1.7) 
that  

.lie f g)(p) dp dq<_ J*f(znQg)) ~(p) dp dq+ JcP(ZnQR/ (l)) ~(p) dp dq 
(1.11) f 

+ ]~'(2) x [- M/2R.M/2R] ~(p) dp dq. 

First, we are going to obtain the lower bound for the integral on the left-hand 
side of (1.11). For this purpose we view the cone K as a union of perpendiculars to 
F(K)={pEK:p,~=O}. For every such perpendicular, as is easily seen, at least one 
half of it is contained in the set/C. By the radial symmetry of the function ~ in the 
p variables, it follows that  

1 
(1.12) /Ic ~b(p) dpdq > ~ /K g,(p) dpdq. 
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By an argument completely analogous to that  given in IN2], it follows that  the 
inequality AM/2RA>I implies 

(1.1a) ~(p) dpdq >_ Nl (n) A"A" 

We pass to estimate the integrals on the right-hand side of (1.11). Similarly 
to [N2], we obtain that  

~(ZnQ(~)T) g,(p) dpdq+ f ~b(p) dpdq 
, J~(ZnQ(~).r) 

(1.14) <N2(n)  f ((g(r),~n+l+(f(r) ,~n+l~ 
- JznQ(,, \ \ A ] \-~(r)] ] dx dt 

/ /  ( l ) \ n + l  / e(l) \ n + l \  
9 + J4 

To estimate the third term 

f 
M/2R 

J~I'(2)x[-M/2R,M/2R] r dpdq= fj~,t,,2) J-M/2R ~(p) dpn dp' dq, 

we introduce the new variable 

Then 

Apn 

Q= ((Ip, IA)~+A~)I/2" 

M /2R 1 r+ ~ 
~(p) dpn < -~( (Ip'IA)2 + A2) -~/2 J_~ (02+1) -(n+1)/2 do 

M/2R 

< N3(n) ((Ip, lA)2+A2)_./2. 
- A 

Thus, taking into account relation (1.6) and arguing in the same way as in [Ap], we 
find 

]~ ~(p) dpdq< N3(n__....~) ~ ((ip,[A)2+A2)_n/2 dp, dq 
(1.15) ' (Z)x[-M/2R,AI/2R] -- /~ '(2) 

- A -~ + - ~  dx' dr. 

It is evident that  the right-hand side of (1.15) will increase if we extend the 
integration to the set ZnF(QR,T). 
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Combining (1.11)-(1.15), we obtain that  the estimate 

: < ]o+, ::.> .+1 
- -  A ~ . . .Y  I I n + l , z n o ( . ) - F  - -  - -  

\ A/  t[ i(r) [[n+I,ZAQ(r) 

n+i "v ()~n+li[ f+(l)-- n-~-l 

(1.16) +llg(1)lln+i,znQ~ ,+ \-~,] ii ~-~0) ,,n+i.znQ(, ) 

t n  + A n  ~+ n 

+llg iln,znr(Q) ( X  I ~-7 n.znr(Q) ) 

holds if M > 2AR/A. 
We now take 

A:~I/(n_FI,(f+(r) + f+(1) ~+  ~ n_FI,ZOF(Q)+C 
kll i(r) Iln+l.ZnQ(') A(]) n+l.ZnQ(o/  

for an arbitrary ~>0. Then from (1.16) it follows that the inequality 

(n , n  
M _< N6 )A (R+A,~+ilg(r) ll:+l,znQ(r , +llg(1 ) ii:+l,znQ(,> + Ilg lin,znr(Q)) 

is true in all cases. Hence, choosing 

A=max{R1/n, llg(r) (n+,)/n ,~0) (nT1)/n lig'il,,.znr(Q)} n_Fl.ZnQ(r), ,'t n+l.ZnQ( )' 

and letting c-+0, we arrive at (1.4). [] 

When the interface operator B can totally degenerate, we assume that the 
jump operator J does not degenerate. In this case we have the following theorem. 

T h e o r e m  1.3. Let ~ c B R  and let uEW~I(Q(r)UQ(D)NW~I(F(Q))NC(Q,) 
satisfy inequalities (1.1)-(1.3). Suppose that the coe~icients in (1.1) and (1.2) sat- 
isfy conditions (I) of Theorem 1.1. 

Assume also that the coe~icients in (1.3) satisfy the conditions 
(II') OlSm~s~rn~O for ~ E R  n-1 and r>O, "7:>0, ~(r)_~0, ~(l)_~0, ~(r)'~-~(1)_~X 

a.e. on F(Q), X=cons t>0 .  
IS, in addition, u<O on O~Q, then 

/Ill f+(r)[I f(l> I' )'~ me:+ , 
(1.17) u~-C3~ -~(r) n+i,znQ(~) -{- ~ -J-C4 (1) n+l.ZnQO)., X IIor 



Linear two-phase Venttsel problems 211 

where 

n - 1  " l [ R n / ( n + l ) . a _  (r) n C3=C(n)(1T[]g o or - I lg  ll~+l.ZnQ(,)+llg(Oll~,+l.znQ(l)), 

C4 = C(n)(l+llgo n - ~  Ii~.znr(Q))(R+ _(~),,,,+~ + ,.~(l) n+l 
Y [ [ n + I . Z N Q ( r )  :t n T 1 . Z N Q  ) l  ~ 

go=l(/38)l/X and we set ~  if such an indeterminacy arises. 

Proof. For the beginning we note that we can suppose that  all assumptions 
from Remark 1.1 hold, except the uniform parabolicity of the operator B. Also we 
extend the function u+ to the whole set QR.T. 

Let M=SUpQn. r z=supQn, r u=u(x~ ~ and 5 = ( 1 +  9o 2znr(Q)) -1/2. 
It should be noted that  the notation we are going to use to the end of this 

section is the same as in the proof of Theorem 1.1 unless otherwise specified. 

1. Suppose initially that  ~ < 0  on ZMF(Q). 
As a preliminary, we intend to define a set K~r ] c KIt] which satisfies 

(1.18) K(r ] C (I)(Z oQ~! T )uep(Z o Q(~!T ). 

Let us fix (p', 0, q) belonging to K[r]. As is known from the proof of Lemma 1.2, 
for all possible values of ion such that  (pl,pn,q)E(~(ZfqFn.T), the support hyper- 
planes II corresponding to (p, q) would touch the graph of u the first time at one 
and the same point (2, [) E Z. 

Since /3(r)+~(1)_>X, it follows that  at least one of these functions has to be 
greater than or equal to 1X2 �9 If fl(r) (JT, ~)_> 1X then we consider the set 

{ (p', pn, q ) EK[r] :p ,  < 0  and Itg(p--(ff, ) l < �89 

(in the case fl(0(k, [ ) >  �89 it is necessary only to change the sign of Pn) and define 
K~r ] as a union of such sets for all (p~, 0, q)EK[rl. 

Assume /3(r)(2, [ ) >  �89 for definiteness. If (p, q)Eeb(ZCII'R.T) then, taking into 
account (1.5), we get at the point (~, t ) ,  

Dtu=p ~, lim D,~u<pn<O, lim D,~u>O. 
x n  --40+ - -  Xn ---~0- - -  

Thus, we obtain at the point (~, t )  the estimate 

(1.19) 
/38D~u+Ju> /3~Dsu-~(r) lim Dnu 

Xn ---).O+ 

>_ - �89 I(~)1 Ip'l > �89162 > o. 
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On the other hand, (D'D'u)<O, ut >0 on Z' and, consequently 

~SDsu+Ju<_Bu+Ju<qo<O o n Z '  

which contradicts (1.19). This implies K~r ]Nr and, hence, the con- 

satisfies (1.18). structed set K[r ] 
Now let us define 

K:~ = g~r ] U { (p, q) �9 Kid U g[t]: [tg (p"~)[ < �89 }. 

From (1.8), (1.9) and (1.18) it follows that 

which guarantees the inequality 

(1.20) /lc ~(p) dpdq < ~(znp~)) ~,(p) dpdq+ f~(zno.~,) g,(p) dpd q. 

Applying the same reasoning as in the proof of Theorem 1.1, we obtain 

(1.21) /~: ~(p) dpdq > ~ /K ~b(p) dpdq >_ NT(n)~n-1/K ~(p) dpdq. 

Here g~ denotes the set { (p, q)�9 [tg(p~-,p)[ < �89 
Now, choosing A in the function ~ as 

A =  f( ')  + J+r +~ 
A(r) n+l,ZnQ(o A(I) n+l.ZNQO) 

for an arbitrary E>0, and combining (1.13), (1.14), (1.20) and (1.21), we get that 
the estimate 

N s ( n ) A  f llg(r) n + l  r ( A ~ + I  fir) n + l  

M_< ~n_l A ~,, ,+l ,znp(  ~ + -- - -  \ A /  It A(r) IIn+l,znp(r~ 

o+, :+,l> ,,+, ) 
+llg ~ .+,,ZnQ + \ X /  IIK~O~,,,+I.Z~Q,,> 

< Ng(n)AtA~+I + ,,(r) ~+1 + ,,(1) ~+1 
-- (~n--1---~ k Ih~ IIn+l,ZnQ(r) I1.~ IIn+I.ZNQ(I)] 

holds if M > 2AR/A. Therefore, the inequality 

~ n  1 N I ~  ( ~ n ) A  ( / ~ n -  1 "1- )n+1.4_ [[ ~(r) ,In+l n+l  
<-- - A ---" - - , ,9  lln+l.ZnQ(,)-i-[Ig (1) n+l,ZnQ( )/ M 
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is true in all cases and we see that  the estimate 

sup ' a=  M < N i l ( n )  . (R"i(n+')+ IIg(r)llT'+',Z~Q <" +llg(')llT<+"znQ (')) 
QR, ' r  - -  ~ ( n - 1 ) l ( n + l )  - ~ ( n - 1 ) n l ( n + l )  

: : r )  :(l) 
(1.22) x ( A(r'-"~lln+l,ZnQ(, ) -I- A(l~' l ln+ 1 ZnQ (l)l 

follows if E-+0 and 

A = m a x { ( R S n - i )  1/(n+'), Ila (r) IIn+l,ZnQ(,), IIg (') I I .+, ,znQ(,)} .  

2. Now we remove the assumption about nonpositivity of ~ on ZNF(Q) and 
consider the general case. 

Let us introduce the auxiliary function 

v ( x )  = (R-ix.I) 
7 ) c , Z n F ( Q )  " 

For the function w = u - v  an elementary computation shows that  

-- -X- cr /'l(h) (1.23) L(h)w < f(h)-}-ib~h)i ~+ in "~gR,T, 

B w +  J w  <_ 0 on ZNF(Q). 

Therefore, applying inequality (1.22) to w, taking into account the value of 5, 
and using (1.23), we immediately get 

( f+( r )  s(i) 

sup w < C3 - -  + , - , - -  AM n+I,ZNQ(I) / QR,T - -  \11 A(r) IIn+l,znQ(r) 

(1.24) +N12(n)(l+llgoll~.~nr(Q))(R"l(n+')+llg(r)ll:+,,znQ(,+llg(')ll:+l,znQ(,)) 
• (llg (r) II n + l , Z n Q ( ' )  Jr IIg (') II.+l.ZnQ(,) ) 

o o , Z n P ( Q )  

Since 

v _< R ~+ sup 
QR,T X 

by applying Young's inequality to the terms containing g(r) and g(1) on the right- 
hand side of (1.24), we arrive at (1.17). [] 

Remark 1.2. Since u > 0  on Z, the statements of Theorems 1.1 and 1.3 remain 
true if the intersections of all sets with Z are replaced by their intersections with 
( ( x , t ) : u ( x , t ) > O } .  
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2. The solvability of  the two-phase Venttsel problem 

Suppose ~(hh) are the linear parabolic operators 

s ut--a(hh)(X,iJ t)DiDju+blhh)(x,t)Diu+c(hh)(x.t)u, (x,t) EQ(hh) 

ai~h) = a~hh), 
ij 

Viii 2_<a(hh)~i~ j_<u-l l~]  2 f o r ~ E R ' ,  u = c o n s t > 0 .  

Suppose/3 is the linear parabolic interface operator 

/3u-ut-aiJ(x,t)didju+13i(x,t)diu+~/(x,t)u, (x,t) EET, 
Oj j ~ oLJi 

ul~l 2 5c~iJ~i~j <_ u-ll~l 2 for ~ E R  n such that ~_l_n(x). 

Suppose, finally, that f f  is the jump operator 

Ou Ou lim -~n (x +En(x),t), f lu  ~ 13(in)(x, t) ~-~0-1im ~nn (x+en(x) ,  t) -/3(ex)(X, t) ~-~0+ 

where/3(in) (x, t)_>0 and/3(e• t)>_0 for (x, t)EET. (Here Ou/On denotes the nor- 
mal derivative of u). 

We consider solutions of the problem 

(2.1) /~(in)u----f(in) in Q(in), 

(2.2) s215 u =  f(ex) in Q(~X) 

(2.3) Bu+ffu = ~  on Er ,  

satisfying the initial-boundary condition 

(2.4) ulo,Q =0.  

Remark 2.1. The null initial-boundary condition (2.4) is used for simplicity 
only. Obviously, it can be replaced by ulo,,Q=01, u[t=o=02 in ~, where 01 and 0 2 

belong to the appropriate functional spaces dictated by the embedding theorems. 
In addition, some "smooth pasting" conditions at the points of O~ x {0} should be 
fulfilled in this case. 

Remark 2.2. Once either of the two coefficients of the jump operator f f  van- 
ishes, we can solve, at first, the one-phase Venttsel problem in the corresponding 
subdomain, and then study the Dirichlet problem in the rest part of the medium. 
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T h e o r e m  2.1. Let 2 E�9 1. Assume that a function u�9 is 
a solution of the problem (2.1)-(2.3). Suppose, in addition, that 

f+(hh), ib(hh)l, e(-hh) �9 Ln+l (Q(hh)) and ~+, 1/31,'7-, ~(in),/3(~,:) �9 Ln(ET), 

(we set b(hh)(X, t)=(b~hh)(X, t)) and ~(x, t)=(Bi(x, t))). 
Then u satisfies the estimate 

(2.5) supu+ < C5(supu+ + Ilf+(in)Iln+l,Q(i=)-I-IIf+(r162 I1~+ IIn,~.~), 
Q "O'Q 

where C5 depends only on n, u, T, diamfl ,  the characteristics of E, the numbers 
IIb~hh)lln+l,Q(hh), Iflitfn.~r, and on the moduli of absolute continuity of b~hh)(X,t), 

e (hh)(x, t) in the space Ln+a (Q(hh)) and of ~i(x, t), ?_ (x, t), fl(hh)(X, t) in the space 
L~(ET). 

Proof. This statement is proved along the same lines as Theorem 2.1 in [AN1]. 
The differences are only that  Theorem 1.1 is used instead of Theorem 1 in [Ap] and 

/-)(in) g-)(ex) Theorem 4 in [NU] is applied twice in the cylinders w[1] and "~[11 , respectively. 
The full proof can be found in [AN4], Theorem 3.1. We should also say that  the 
formulation, as well as the proof, of Theorem 2.1 in JAN1] contains several misprints. 
Namely, the functions u and v were used instead of u+ and v+, and sometimes the 
signs of plus and minus were confused. These misprints are avoided in [AN4]. [] 

Remark 2.3. It is evident that  the estimate 

(2.5') sup U_ < C~ (sup u_ -I-IIf_ (in) IIn+LQ"~)-4-Ilf? x) ]ln+LQ(~' + I1~-II~,~T) 
Q \O'Q 

could be obtained in the same way as (2.5). Here C~ is determined by almost the 
same quantities as C5. The only difference is that c(_ in) (x, t), c(_ ex) (x, t) and ~,_ (x, t) 
are replaced by c(~ n) (x, t), e (ex) (x, t) and ~'+ (x, t), respectively. 

T h e o r e m  2.2. Let E and 012 belong to Wq2+2, EA0f t=0 .  Assume that a 
function uEVq+2(Q) is a solution of the problem (2.1)-(2.4). 

If, in addition, 

~j a(hh) E C(Q(hh)), f (hh)  ib(hh)l,c(hh) E Lq+2(Q(hh)); 

ol 'J @C(ET), 99, ]ill, 3', fl(in), ~(ex) ELq+I(ET), 

then 

Ilutlv + (o) ~ C6([If(in)]lq+=,Qr IIf 



216 Darya E. Apushkinskaya and Aleksandr I. Nazarov 

where C6 depends only on n, v, q, T. diam fl, the characteristics of E and Off, 
b i dis t (E,0~) ,  the numbers [[ (hh)[[q-i-2,Q(hh), [[c(hh)]]q+2,Q(hh), [[~ [[q+l,~r, [['~[[q+l,]Er, 

ij ][f~(hh)liq+l,Zr, and on the moduli of continuity of a(hh)(X, t) and of aiJ(x, t). 

Proof. For the detailed proof the reader is referred to [AN4], Theorem 3.1, 
where we have refined our arguments from the proof of Theorem 2.2 in [AN1]. [] 

T h e o r e m  2.3. Let E and 012 belong to C 2+~, (IE]0, 1[, EMO~=O. Assume 
that a function uEC~+~(Q) is a solution of the problem (2.1)-(2.4). 

Let the coefficients and the functions on the right-hand sides of equations (2.1), 
(2.2) and (2.3) belong to Ca(Q(in)), Ca(Q(~x)) and Ca(ETT), respectively. 

If, in addition, 

f(hh)=sO on E• {O}, 

f(ex) = 0 on On • {0} 

then 

IIulic~+~ (c~) _< C7( Iif (in) I i c ~ ( ~ )  q- Iif (ex) ttC6(Q(eX)) + II~Iic~ (~TT)), 

where C7 depends only on n, v, 6, T ,  diaml2, the characteristics of E and On, and 
on the norms of the coefficients of the operators/:(in), /:(ex) and B+ f f  in the spaces 
Ca(Q(in)), Ca(Q(ex)), and Ca(ZT),  respectively. 

Proof. This statement is proved in the same way as Theorem 2.2. [] 

Corollary 2.4. (1) I f  Z, On, the coefficients and the functions on the right- 
hand sides of (2.1)-(2.3) satisfy the assumptions of Theorem 2.2, then the initial- 
boundary value problem (2.1)-(2.4) has a unique solution u E Vq + 2 ( Q ) . 

(2) I f  E, 012, the coefficients and the functions on the right-hand sides of (2.1)- 
(2.3) satisfy the assumptions of Theorem 2.3, then the initial-boundary value prob- 
lem (2.1)-(2.4) has a unique solution ueC~+a(Q).  

Proof. This corollary can be proved via the standard method of extending by 
continuity with respect to the parameter (see, for example, Theorem 2.3 in [AN1] 
where it was made for the one-phase Venttsel problem). [] 

3. Appendix.  The stationary case 

In this section we formulate results for elliptic equations corresponding to the 
statements from Sections 1 and 2. 

Throughout this section we will assume that all coefficients of the operators J 
and ,7 as well as the function u do not depend on the variable t. 
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Theorem 1.1". Suppose that ~ c B R  and u is a function such that 

u E W2(fl(in) u~(ex))nW2_l(F(~))F1C(~),  
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(3.1) -ai~)(x)DiDju+blr)(x)Diu+c(r)(x)u ~_ f(r)(x) in ~(r), 

(3.2) -ai~)(x)DiDju+bi l ) (x)niuTc( l ) (x)u  ~_ f(l)(x) in ~(1), 

(3.3) - a ~ m ( x ) D ~ D m u + ~ ( x ) D ~ u + ~ ( x ) u +  Ju <_ ~(x) on F(gt). 

Assume also that the coefficients in (3.1)-(3.3) satisfy the conditions 
ij ji ij ~j (I) a(h )---a(h), a(h)~i~ j_>O for ~ E R  n and c (h) >0, tr(a(h)) >0 a.e. in f~(h); 

(II) a*m=am% a~m~m>_O f o r ~ E R  ~-1 and "y>_O, 13(r)_>O,/3(0_>0, tr(a~m)> 
0 a.e. on r(gt). 

If, in addition, u<O on 012, then 

u-<C~R\IIA(r ) n'zn~(~) + AO ) n'Zn~~ + ~-7 n-Lznr(~)) '  

where 

! (1 ..~ln-1 ) 

A(h) =det(ai~))l/n, g(h)= ](b~h))] A,=det(c~m)W(n-]) g ,_  6(~)] 
A(h) ' , AI  ' 

and we set o =0 if such an indeterminacy arises. 

Remark 3.1. In the simplest case, this theorem was established by I. V. Deni- 
sova in a diploma thesis written at the St. Petersburg State University in 1999. 

Theorem 1.3". Let ~ C B R  and let uEW2(12(r)Ufl(O)MW~ (F(~) )MC(~) sat- 
isfy inequalities (3.1)-(3.3). Suppose that the coefficients in (3.1) and (3.2) satisfy 
conditions (I). 

Assume also that the coefficients in (3.3) satisfy the conditions 
(II') a~'~=a m~, aSm~s~m~_O for ~ E R  '~-1 and "y>_O, 3(r)_~O, 3(,)_~0, 3 ( r ) +  

/3(I)_>X a.e. on F(~), x=eonst>0. 
If, in addition, u~O on 0~,  then 

< C R(f r) ,(,) 
n,Zn (r> +C'4R ' u _  + ~ X :r 
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where 

( ) C~ = C'(n) exp 1+ Ilgo or (llg(r)117,.z~a(~, + Ilg ~ II,~.zna(,)) , 
n 

c'~ = c~ ( tlg (r) Iln,Zo~(r, + IIg ~ IIn,zn~,,) ), 

go=i(/~s)i/x and we set ~  such an indeterminacy arises. 

By analogy with the parabolic case we define the Sobolev space 

Vq(~)  = Wq2 (~'~ (in) u~(ex))C~Wq2_ 1 (~) 

with the norm 

Ilullvq(o) = Ilullw~(~.o,)+llullw~r 
T h e o r e m  2.2*. Let Z and 0~2 belong to W~, ZnOS2=O, and u~_Vq(S2) be a 

function such that 

(3.4) -ai{n (x)DiDju+blin)(x)Diu+c(in)(x)u= f(i~)(x) in f~(i,), ( ' )  

(3.5) -alJe•215 f(~• ) in f~(~x), 

(3.6) -a iJ (x )d id ju+j3 i (x )d iu+7(x)u+f fu  = ~(x) on E. 

Assume also that 

(3.7) /~(i,)(x) > 0 and ~(~• > O, x E E, 
ij while (a(hh)), (0~ i j) are symmetric matrices satisfying the ellipticity condition, i.e. 

ij 1]- 1 (3.8) viii 2 < a(hh)~i~ j < ]~]2 v ---- const > 0, 

for any ~ E R  ~ and  xE~'~(hh); 

(3.9) vi~i2<_aiJ~i~j<_v-l]~l~ f o r x E E  a n d ~ E R  '~ such that~_kn(x) .  

If, in addition, 

ij a(hh) E C(l)(hh)), f(hh), [b(hh)[, C (hh) E Lq(12(hh)); 

OJ j E C(Y]T) , ~P, I~[,"/, ~(in), ~(ex) E L q - l ( ~ ) ,  

then 
(3.10) 

Ilullvq+~(~) --- C~(llf (in) IIq,~(,o)+ IIf (ex) IIq.~(o~) + II:llq-~.~ + Ilullq.~ + Ilullq-i,r.), 

where C~ depends only on n, t,, q, diamf2, the characteristics of Z and Of L 
dist(~,Of2), the numbers Ilblhh)ll~,~(~), Ilc(h~)llq.~r 113illq_ay., II'~llq-~y. and 

[[~(hh) IIq-~.~, and on the moduli of continuity of the coefficients a( hh)ij (X), oliJ(x).  
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T h e o r e m  2.3*. Let E and O~ belong to C 2+~, 5E]0, 1[, EN0 ~ = 0 .  Assume 
that a function uEC~+~(-~) is a solution of the problem (3.4)-(3.6) and that the 
inequalities (3.7)-(3.9) hold. 

If the coefficients and the function involved on the right-hand side of equations 
(3.4), (3.5) and (3.6) belong to C~(f~(in)), C6(ft(e• and C~(E), respectively, then 

- -  t ( i n )  ( e x )  (3.11) Ilullc~+~(~)<CT(llf IIc~(~-z)+llf Ilc~(~)+ll~llc~(~)+tlullcr 

where C~ depends only on n, v, 5, diam 12, the characteristics of E and 0~, and 
on the norms of the coefficients of the equations (3.4), (3.5) and (3.6) in the spaces 
CS(gt(in)), C~(~t(ex)), and C~(E), respectively. 

If the right-hand sides of the inequalities (3.10) and (3.11) will be without the 
last terms, then the existence and uniqueness theorems in Sobolev and HSlder spaces 
follow by a standard argument from Theorem 2.2* and Theorem 2.3*, respectively. 

To remove the above-mentioned terms from the right-hand sides of (3.10) and 
(3.11), the global maximum estimate is required. But, unlike the parabolic case, 
the global maximum principle does not hold for solutions of the two-phase ellip- 
tic Venttsel problem without additional assumptions. As an illustration of this 
statement, let us consider the following example. 

Example. Consider the problem 

(3.12) 

- A u = 0 ,  in B1, _ 

- A u  = 0, in B2\B1, 

-A~u+Ju=O,  on0B1,  

uloB~ = 0 

(here A' stands for the Laplace-Beltrami operator). Suppose also that  /~(in)(X))0 
and 13(ex)(x)-0 on 0B1. Then the problem (3.12) has a solution identically equal 
to 1 in B1, and thus, in spite of the homogeneity of all the equations in (3.12), the 
global maximum estimate for the solutions does not exist. 

Moreover, if we add cu with some positive c to the left-hand side of the equation 
in B2\/~1, and, in the case of ~(in)(X)~---0 on  OB1, add a similar term to the left-hand 
side of the equation in B1 as well, things will not improve. 

There are various types of additional requirements on the coefficients of the 
equations (3.4)-(3.6) providing the existence of the global maximum principle for 
solutions. For instance, the following statement holds true. 
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T h e o r e m  3.1. Let E E C  2, let uEC2(~'~(in))NC2(~'~ (ex)) be a solution of the 

problem (3.4)-(3.6), and assume that the inequalities (3.7) and (3.8) hold. Suppose 

that 

f(hh), ib(hh)l E L~(ft(hh)) and ~+, I~/],~(in),~(e• Lot(E).  

If, in addition, 

C (hh) _~ 0 in ~(hh) and 7(x) >_ 70 on E, 70 = const > 0, 

then u satisfies the estimate 

sup u+ ~ sup u+ -~ 
012 

II~+ I[oc,E q_ C8 (i I f+(in)II n,f~' in) "~- Ill (ex) ]ln,f~(ex) ), 
70 

where Cs depends only on n, ~,, 70, diamft ,  the numbers IIblhh)iin,~(hh), ]lflii]~,~ 

and lt3(hh) II~,z. 
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