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On the Siciak extremal function 
for real compact convex sets 

Len Bos, Jean-Paul Calvi and Norman Levenberg 

1. I n t r o d u c t i o n  

Let E be a bounded Borel set in C N. Define 

(1.1) VE(Z) : = s u p { u ( z ) : u C L ,  u<O on E}, 

where 

L := {u plurisubharmonic in C N : u(z) <_ log + [zl+C for some C} 

is the class of plurisubharmonic functions of logarithmic growth (here we have 
IzI=(~-~;_l Izjl2) x/2 and log + lzl=max{0,1oglz]}). Then the upper semieontinu- 
ous regularization V~(z):=lim sup~_.z VE(~) is called the (Siciak) extremal function 
of E. If K is a compact set in C N, then the extremal function in (1.1) can be gotten 
via the formula 
(1.2) 

{ { 1 } }  
Vg(z) :=max  0, sup d-~gp log Ip(z)l :p holomorphic polynomial, Ilpllg < 1 

(Theorem 5.1.7 in [K1]). Here, IIPHK:=SUpzcK Ip(z)l denotes the uniform norm 
on K.  We say that  K is regular if and only if V~ =VK. Note that  if we let 

:= {z E C N : IP(Zl, ..., ZN)[ <_ [[P[IK for all polynomials p} 

denote the polynomial hull of K,  then 
1. ~:={zcCN:V~:(z)=O}; 
2. V~:=VK. 
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For future use, we say that  K is polynomially convex if K = h ' .  
In one complex variable ( N = I ) ,  the function VK (or, in general, V/~), is the 

classical Green function of the planar compact set K with logarithmic pole at in- 
finity. The theory of conformal mapping can be used to find explicit formulas for 
VK in many cases. We recall the case of an interval: since h ( ( ) : = ~ + v / ~ - I  is 
a conformal map of the complement of the interval [-1, 1] onto the complement 
of the closed unit disk, we have V[_l.1](~)=log[h(~)]. In C N for N > I ,  examples 
of explicit (or even semi-explicit!) formulas for VK are severely lacking. The first 
interesting formulas, due to Siciak, dealt with product sets and circled sets (cf., [S]). 
In ILl, [B1] and [e2], Lnndin and Baran have given simplifications of formula (1.2) 
in the case where K is a convex set in RN---considered as a subset of CN--which 
is symmetric with respect to the origin, i.e., x E K  implies - x E K .  For example, if 
EN is the closed unit ball in R N, i.e., 

EN : = { z E C  N : Imzl  . . . . .  ImZN =0,  (ReZl)2+...+(ReZN) 2 <_ 1}, 

then VEN(z)=llogh(]z[2+]z2--1]), where z2=z~+...+Z2N (note E1=[ -1 ,  1]). A 
few more explicit examples can be obtained using the following result of Klimek. 

P r o p o s i t i o n  1.1. ([K1]) Let f = ( f l ,  ..., fN)  be a polynomial mapping of C N 

into C N with the properties that deg f l  . . . . .  deg fN : = d >  1 and f -1  (0)-- {0} (where 
f : = ( f l , - . .  , f  N) denotes the top degree (d) homogeneous piece o f f ) .  Then for any 
compact set K, 

VI-,(K)(Z ) = d VK(f(z) ). 

In C 2, if we set f (z l ,  z2):=(Zl 2, z2~), and if we take K--S2, where 

$2 : =  {(Xl ,X2)  e R  2 :Xl ,X2  k 0 ,  Xl-}-x2 ~_ 1} 

is the standard simplex, then f - 1  ($2)= E2 and we obtain 

VS2 (Zl, Z2) = log h(IZl 1+ [z2[+ ]Zl +z2 - 1[). 

We will use this fact later in the paper. 
In the examples of EN and $2, the extremal functions were gotten from one- 

variable functions. More generally, the following statement is a consequence of the 
results of Baran and Lundin. 

P r o p o s i t i o n  1.2. ([Sl], [B2], [B3], ILl) Let K c R  g be a convex body (i.e., 
a compact, convex set with non-empty interior in R N) which is symmetric with 
respect to the origin. Then for all z c C  N, 

(1.3) VK(Z) = k'(z) :=sup{ Vt(g)(l(z) ) : l C RN*}. 
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Here R N* is the set of all non-zero linear functionals l on R N, i.e., lER N* is a 
real-linear mapping from R N to R.  We can consider each IER N* as an element in 
C N* the (complex) vector space of complex-linear functionals on C N via l(x+iy)= 
l(x)+il(y). 

Our original goal was to determine whether (1.3) is valid if the symmetry  
hypothesis is omitted. Using the example of the s tandard simplex S 2 c C  2, it is 

not too hard to see that  the answer is no. However, equality in (1.3) does remain 
valid for real convex compact  sets, symmetric  or not, at every real point, i.e., for 
each z : x E R N c C  N. Indeed, more is true, see Corollary 3.2. The key idea is a 
geometric property of convex sets due to Kroo and Schmidt [KR]; we s tudy this 
property in detail in the next section. This suggests a more general question: Let 
N > I  and suppose K c C  N is compact.  Let 

(1.4) V(z) := sup{VI(K)(I(z)): l E C N*, 1 r 0}, 

i.e., l is permit ted to vary over all non-zero complex-linear functionals on C g.  
When do we get equality in (1.3) if V is replaced by V? In Section 4, we discuss 

more general situations when the computat ion of VK can be reduced to one-variable 
calculations; in particular, we show that  if K is polynomially convex (K=~[) and 
V(z)=VK(Z) in C N, then K must be lineally convex, i.e. the complement of K 

is the union of complex hyperplanes. In Section 5 we show that  for the simplex 
S 2 c C  2, V*~V82 (here, V*(z)=limsupr V({)). This involves a detailed s tudy of 
the Robin functions associated to V and Vs2 ; these objects play a vital role in the 
study of functions in the class L if N > I .  We conclude the paper  in Section 6 by 
showing tha t  among the regular, polynomially convex and lineally convex compact  
sets K in C 2, the ones for which V* r form a "large" class. 

Remark. Note that  if we replace l by a scalar multiple tl, then Vtt(g)otl= 
Vz(K)ol. Thus considering upper  envelopes over all linear functionals or simply, 
e.g., over all linear functionals normalized to have norm 1, yield the same functions 
V and V. Similarly, if I E C  N* and aEC is constant,  then V(l+a)(g)((lTa)(z))= 

2. A g e o m e t r i c  p r o p e r t y  o f  c o n v e x  se t s  

In this section, K will be a convex body in RNcRNTiRN:C N, i.e., K c R N  
is compact,  convex, and has non-empty interior. Recall that  a real hyperplane 
H a c R  N is a support hyperplane for K at aEOK if a E H a  and K lies entirely in one 
of the two half-spaces determined by Ha, i.e., if Ha is given by 

Ha = { x E R  g :l(x)=l(a), I E R N * } ,  
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then l ( x -a )  is of constant sign for xEK.  
The geometric property of interest for us is given in the following theorem of 

Kroo and Schmidt. 

T h e o r e m  2.1. ([KS]) Let K be a convex body in R N. Then for each xE 
R N \ K ,  there exist two points a, bEOK with distinct support hyperplanes Ha and 
Hb such that 

(i) a, b and x are collinear; 
(ii) Ha and Hb are parallel. 

We write (a, b, Ha, Hb) for a 4-tuplet satisfying (i) and (ii). Note that  for a 
given point x the points a and b are not, in general, unique (e.g., take K to be a 
square in R2). Even if the points a and b are unique, the support  hyperplanes Ha 
and Hb need not be. We will obtain uniqueness if K is strictly convex (Corollary 2.2 
below). 

Analyticaliy, Theorem 2.1 means tha t  given a point x E R N \ K ,  there exist 
points a, bEOK, collinear with x, and a linear f u n c t i o n a l / E R  N* with 

(2.1) l(K) = [l(a), l(b)]. 

We briefly indicate the idea of the proof. Without  loss of generality, we may assume 

x = 0  and consider the Minkowski-like functional f defined on the cone c(K):= {ax: 
a > 0 ,  x E K }  by f (y ) :=inf{a>O:y/aEK}.  Clearly f is homogeneous of order 1, 

i.e., f ( t y )=t f (y ) .  Kroo and Schmidt show that ,  in addition, f is convex on c(K). 
We discuss the function f in a bit more detail and show tha t  f is continuous on 
the cone c(K). Given yEc(K), the line determined by y and the origin 0 intersects 

K in a segment [a(y),b(y)]; we may assume ]a(y)l<_ib(y)]. Then f(y)=iYi/Ib(y)]. 
To show tha t  f is continuous on c(K) it suffices to verify continuity of the function 

y~-+b(y). But clearly if Y--+Yo then the area of the triangle A(0, y, y0) tends to 
0 and hence the area of the quadrilateral Q(a(y), b(y), b(y0), a(yo)) also tends to 

0 since Q(a(y), b(y), b(y0), a(yo))CA(O, y, Y0) (here we can assume lYl > Ib(y) I and 
[Yoi>ib(yo)t). Thus a(y)--~a(yo) and b(y)-+b(yo). In particular, f is continuous on 
K and at tains a positive minimum on K at a point x0 E OK. This is used to show 

that  there exist parallel support  hyperplanes for K at a=xo and b=xo/f(xo) and 
these points lie on a line through the origin 0. 

Now suppose K is a strictly convex body, i.e., for every point aEOK there 
exists a unique support  hyperplane Ha containing a and KNHa={a} .  This means 

that  each boundary point of K is an extreme point of K.  

C o r o l l a r y  2.2. Let K be a strictly convex body in R N. Then for each x E R N \  
K,  there exists a unique 4-tuple ( a, b, Ha, Hb ) satisfying (i) and (ii) of Theorem 2.1. 
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Proof. I t  remains to prove the uniqueness. Fix x E R N \ K  and suppose there 
are two 4-tuples (a,b, Ha,Hb) and (a' ,b ' ,Ha,,Hb,)  satisfying (i) and (ii). We may 
assume that  a lies between b and x, and a ~ lies between b ~ and x. We show that  

a=a ~ and b~-b t, for then the strict convexity implies that  Ha=Ha, and Hb=Hb,. 
Suppose, for the sake of obtaining a contradiction, that  a r  ~. It  follows tha t  b~b', 
or else the distinct points a, a ~, bEOK would be collinear, contradicting the strict 
convexity of K (the intermediate point would not be an extreme point). 

Since the lines determined by the points a and b, and by the points a' and b ~ 
intersect at x, the four points a, b, a ~, b ~ lie in a two-dimensional plane P.  We may 
assume, for simplicity, that ,  e.g., a---(0, - 1 )  and b=(O, 1) (in P = R  2) and that  the 

parallel lines la and Ib are given by y = - 1  and y= 1. The points a' and b' must  lie in 
the strip - l < y < l  (as indeed must  all points of K other than a and b). Now clearly 
both of a ~ and b ~ cannot lie on the same side of the y-axis, for the strip defined by 
Ia, and Ib, could not then contain both a and b. Hence one of a ~ or b ~ is to the left of 

the y-axis and the other to the right. I t  follows that  a, a ~, b, b ~ form the vertices of 
a convex quadrilateral Q. The diagonals joining a to b and a ~ to b I intersect inside 
Q and hence in K.  However, the lines determined by a and b, and by a ~ and b ~ 
intersect outside K,  namely, at x. This implies that  these lines coincide, i.e., the 
three distinct points a, a ~, bEOK are collinear, yielding a contradiction (as before) 
to strict convexity of K.  [] 

In case K is a polytope in R g we can say somewhat  more. Suppose first that  
K c R  2 is a (non-degenerate) polygon. In this case we are dealing with supporting 
lines. 

C o r o l l a r y  2.3. Let K c R  ~ be a non-degenerate polygon. Then for each xE 
R 2 \ K ,  at least one of the two parallel lines Ha and Hb in (ii) of Theorem 2.1 can 
be taken to contain an edge of K .  

Proof. Fix x E R 2 \ K  and a 4-tuple (a, b, Ha, Hb) satisfying (i) and (ii) of The- 
orem 2.1. If  at least one of a and b, say a, is in the interior of an edge, the support  
line Ha contains this edge. Otherwise, if both  a and b are vertices of K,  we can 
rotate Ha and Hb, keeping them parallel, until one of them contains an edge. [] 

Note that  the linear map  l:=lx in this situation is simply projection onto the 
normal to these edges, i.e., the support  lines have equations l(x) =l(a) and l (x)=l(b).  
In general, if K is a polytope in R N the situation is somewhat  more complicated. 
I t  no longer suffices to take hyperplanes parallel to the (N-1) -d imens iona l  faces. 
For example, in R 3, suppose that  A and B lie in the interiors of two non-parallel 
(1-dimensional) edges. The directions of these two edges completely determine the 
normal to the corresponding supporting hyperplanes, which clearly need not be 
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parallel to any face. 
However, the same ideas as in the two-dimensional case can be used here. Let 

K be a polytope in R N and let F1 and F2 be two faces of K of dimensions kl and k2 
belonging to the parallel hyperplanes H1 and/-/2. Let v(F1) and v(F2) denote the 
kl- and k2-dimensional vector spaces associated to the affine subspaces generated 
by F1 and F2. Since these lie in parallel hyperplanes, dim[v(F1)•v(F2)]<_N-1. 
We call the faces F1 and F2 complementary if dim[v(F1)Ov(F2)]=N-1. 

C o r o l l a r y  2.4. Let K C R  g be a polytope. Then for each x E R N \ K ,  there ex- 
ist complementary faces F1 and F2 in K such that a 4-tuple (a, b, Ha, Hb ) satisfying 
(i) and (ii) of Theorem 2.1 can be chosen with FICHa and F2CHb. 

Proof. Fix x E R N \ K  and a 4-tuple (a, b, Ha, Hb) satisfying (i) and (ii) of The- 
orem 2.1. Then Ha intersects K in a kl-dimensional face F1 containing a and Hb 
intersects K in a k2-dimensional face F2 containing b. If F1 and F2 are comple- 
mentary, we are done. If not, the subspace W:=v(F1)~v(F2) has dimension at 
most N - 2 .  By rotating the hyperplanes Ha and Hb until at least one of them 
hits a higher-dimensional face, we obtain two faces F~ and F~ in the new parallel 
support hyperplanes H~ and H~ with dim[v(F[)~v(F~)]>dim[v(F1)Ov(F2)]. We 
continue this process until this dimension reaches N - 1 .  [] 

3. T h e  real  r e s t r i c t i o n  o f  V K 

Convex bodies are natural sets to study in pluripotential theory; for if K c R  N 
is a convex body, then 

1. K is non-pluripolar as a subset of C N (i.e., V ~ + c ~ ) ;  
2. K is regular. 

The first statement follows since K has non-empty interior in R N and hence contains 
a real ball. The second statement follows from the arc accessibility criterion of 
Ple~niak (cf. [P]). Indeed, the Siciak extremal function of a convex body is of H61der 

1 (cf., [B2]). class 5 
Our main result concerning these sets is the following. 

T h e o r e m  3.1. Let K c R  g be a convex body. Fix z o E C g \ K .  Suppose there 
exists l=Izo: R N - + R  a real linear map such that, if we let I( K)  :=[A, B], then there 
exist a, bEK with l (a)=A and l(b)=B and such that the points a, b and Zo lie on a 
complex line, i.e., zo=ta+(1- t )b  for some tE C\ [0 ,  1]. Then VK(zo)<Vt(K)(l(zo)). 

Proof. We use the following observation, which is essentially Lemma 1.1 of [B1]: 
Let K c C  g be a regular compact set and fix zo~K. If  there exists a holomo~phic 
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map f: C\U--~(3 N (V is the unit disk) which is continuous up to OU satisfying 
1. f(~o)=zo; 
2. f (OU)CK; 
3. VK(f(())--log[~[=O(1), I~1~+00, 

then VK(zo)<log I~ol. This follows from the extended maximum principle applied 
to the subharmonic function Vn( f (~ ) ) - l og  I~[ on ( 3 \ 0 .  

To prove the lemma, if we let h[a.B]: C\[A,  B]----~(3\U denote the conformal 
map of C \ [A, B] onto C \  U with h[z,B] (CO)= CX~, and if J ( r  h~Jl,l] (~)= 1(~+ 1/~), 

then upon setting ~0 :=h[A,U] (l(Zo)) and taking f (~ ) :=  �89 (b-  a)J(~) + �89 (b+a), a com- 
putation shows that  1-3 are satisfied for the convex body K.  

C o r o l l a r y  3.2. Let K c R N  be a convex body. If  l=lx corresponds to the 1 
in Theorem 3.1 associated to the point x E R N \ K ,  then VK(Z)=VI(K)(I(z)) for all 

z = t a + ( 1 - t ) b  with tEC\ [0 ,  1]. In particular, V(x)=VK(X) for x in R N. 

Proof. This follows from Theorems 2.1 and 3.1 using (2.1). [] 

For example, if K C R2C C 2, we obtain a 3-real-dimensional set of points z C C 2 
at which V(z)=VK(z) .  From Corollary 2.3 and Theorem 3.1, we obtain a partic- 
ularly simple geometric construction of the extremal function for a non-degenerate 
polygon in R 2. 

C o r o l l a r y  3.3. Let K c R  2 be a non-degenerate polygon with n vertices. Then 
for x in R 2, 

VK(X) = max{Vl~(K)(lj(x)) : lj(x) = 0 is parallel to the j-th edge of K, j = 1, ..., n}. 

An analogous statement can be made concerning polytopes in R N, N > 3 .  

4. Computing VK using one-variable methods  

Let K c C  N be compact. Recall that  K is non-pluripolar as a subset of (3 N 

if and only if V ~ L  (equivalently, V ~ + c o )  and that  K is regular if and only 
if V~=0  on K (equivalently, V~=VK, i.e., VK is continuous on c N ) .  We relate 
these notions in one and several variables for K and p(K) when p is a non-constant 
polynomial. 

Lemma 4.1. Suppose that K C C  N is compact and that p: (3N-+C is a non- 
constant polynomial. Then (a) if K is non-pluripolar, p(K) is non-polar, and (b) 
if K is regular then p(K) is regular. 

Proof. (a) Suppose that  p(K) is polar. Then there exists a subharmonic u: C--> 
R U { - o c } ,  such that  u is not identically - c o  but u restricted to p(K) is identically 
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-c~ .  Then U:=uop is plurisubharmonic on C N, not identically -oo ,  but U [ ~ =  
U[p(K)----~, so that  K is pluripolar, a contradiction. Note this proof is valid for 

any pluripolar Borel set K.  
(b) We begin by noting that  by Corollary 5.25 of Klimek [K1], V~uz -V  ~ for 

any bounded Borel E c C  N, and Z C C  N, pluripolar. Now suppose that  p(K) is not 

regular. Then there is a ~0 �9 such that  

v/*(,~) (~o) > o. 

Let 

Z := {z �9 K :  V~(K)(p(z)) > 0} = p - l { ~  �9 p ( g ) :  V~*~K)(~) > 0}. 

By the argument of (a) (for bounded Borel sets), Z is pluripolar. Let zo � 9  (~o)C 
Z. Then 

1 
Vk(zo) = Vk\z(Zo) >_ (m(p(zo)) 

(since the rightmost function is a competitor of the extremal function for K\Z). 
But 

1 1 
* * > 0  deg(p) V;(K)(p(zo)) -- deg(p) Vp(K) (~o) 

by assumption, and so we also have that  

vk (z0) > 0 

implying that  K is not regular, a contradiction. [] 

Now suppose K is regular and let Pd be a polynomial of degree d>  1. Then 
pd(K) is a regular compact set in C. The function Vp~(g) (pd(Z)) is plurisubharmonic 
in C g with 

1. Vpa(K)(Pd(Z))=dlog]z[+O(1), [z[-++ec; 
2. if zEK, then pd(z)Epd(K) so that  Vpd(K)(Pd(Z))=O. 

Thus 

d Vp,(~)(pd(z) ) <_ V~:(z). 

Conversely, if l[pdllK<_l, then pd(K)CU, U being the unit disk in C, so that  
Vpd(K) (W) >_ VU (W)-----log + [w[ for all w E C. In particular, Vpd(K ) (pd(z)) >_ log + [pd(z)[, 
from which it follows that  

1 VK(z) < ~p ~vp,(K)(v~(z)) 
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and thus, in fact, we have 

(4.1) VK (z) = sup d Vp,(K)(pal(Z)). 
Pa 

For example, if d=  1, this implies that  for any non-constant complex affine function 
l(z), we have 

V~(K)(l(z)) _< YK(z). 

When are the functions of the form Vz(K)(l(z)) sufficient to determine IrK? More 
precisely, define 

(1.4) V(z) :=sup{Vl(K)(l(z) ) : I E C N*, I # 0 }  

as in the introduction. It is natural to ask for the most general situation under 
which we have the equality V=VK. 

We first show that  should it be the case that  V=VK then necessarily K must 
be lineally convex, i.e. the complement of K is the union of complex hyperplanes. 

P r o p o s i t i o n  4.2. Let N > I .  Suppose K C C  N is compact, regular, and poly- 
nomially convex ( K = K ) .  Define V(z) using (1.4). If V(z)=VK(z) in C N, then 
K is lineally convex. 

Proof. It suffices to show that  K=Ntl-I(I(K)) .  For any K,  the inclusion 
KCNt l - l ( l (K) )  is trivial. We prove the reverse inclusion by contradiction: if 

there exists zoENt l-l(l(K)) hut zo~K=K, then, on the one hand, VK(zo)>O; on 
the other hand, for each l we have Vl(K)(l(zo))=O so that V(z0)=0, contradicting 
V = VK. [] 

Remarks. 1. For each positive integer n, we can define 

v(n)(z) :=suP{ d--~gpVp(K)(p(z)) : l ~_degp~_n }. 

The same proof shows that  if K C C N is compact, regular, and polynomiaUy convex, 
and if V(n)(z)=VK(z) in C N, then K is "convex with respect to polynomials of 
degree n ' ,  i.e., the complement of K is the union of algebraic hypersurfaces of the 
form {p=0} with l < d e g p < n .  

2. Suppose K c R N c R N q - i R N = c N  is compact (then K is automatically 

polynomially convex (cf., [K1], Lemma 5.4.1)) and connected. Let V(z) be defined 
as in (1.3), i.e., 

V(z) := sup{ Vl(K)(l(z)) : I e R N* }. 
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Then clearly V(z)_< V(z); the same proof as above gives a partial converse to Corol- 

lary 3.2: if V(x)=VK(x) for x in R N, then K is convex. For V(x)=Vg(x) for x in 
R g implies that  R N \ K  is the union of real hyperplanes; K being connected then 
yields that  K is convex. 

3. If K is non-pluripolar, then V (1)* :=V* (and hence V ('0. for each n = l ,  2 .... ) 
is in the class 

L + := {u E L : log  + [zl-t-C 1 _~ u(z)  __~ log + Izl+C2 for some C1 and C2}. 

Indeed, it is well known that  V~EL + if K is non-pluripolar; letting I j (Z) :Z j ,  j= 
1, ..., N, we have 

V;dz) >_ u~:(z) >_ v(1)(z) >_jm~N vt~(~)(b(z)). 

But  m a x j = l  ..... N VI~(K)(lj(z))=VII(K)x...XIN(K)(Z) and  VI*I(K)x...XIN(K)EL+ since 
each lj(K) is non-polar by Lemma 4.1. 

4. Note that  if N = I ,  then V=V=VK for all compact sets K. 

5. T h e  s i m p l e x  $2 E C 2 

The considerations of Section 3 might lead one to suspect that  for a convex 
body K,  one always has V----VK in all of c N ;  or at least V=VK in C N. We next 
give an example to show that  this is not the case. 

Take K =  $2 = {(Xl, x2) E R  2 :Xl, x2 ~ 0, Xl +x2 _~ 1 }, the standard simplex; then, 
as mentioned previously, 

VS2(Zl,Z2) =-log h([Zl[-t-lz2lt-izl + z2-1[). 

We show that  {zECZ:V*(z)<VK(Z)}r We first recall the notion of the 
Robin function associated to a function uEL. First of all, suppose that  K C C  N is 
compact and regular. The Robin function of K is OK: CN--4RU{ -cx)} defined by 

OK (Z) :-- lim sup[VK (Az) - l o g  I~Xl]. 
I~l~c 

More generally, for V: cN- - -~R  in L we may define the Robin function of V to 
be, by abuse of notation, 

Qv (z) := lim sup[V(Az) - l o g  [A[] 
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( h e n c e  ~OK=LOVK ). Note that  for AEC, ev(,kz)=log I~l+~v(z)  (logarithmic homo- 
geneity). 

Consider for a E C  N with I~1--1, 

l(z) = l,~(z) := ~ c, kzk, 
k = l  

the projection with normal vector a. From the remark at the end of the introduc- 
tion, we need only cons ide r /EC N* with II/ll=l in constructing the function V(z) 
defined in (1.4), i.e., 

N* V(z) :=sup{Vl(K)(l(z) ) : l E C N', 150} =sup{Vt(K)(l(z) ) : l E C , Iltll = 1}. 

For simplicity in notation, we write 

V(z) := sup Vt(K)(l(z) ) 
l 

where we (implicitly) restrict the supremum to those I E C  N* with It/11=1. 
We note that  l(K) is regular by Lemma 4.1, and that  also, for l(z)r we may 

compute, by a change of variables, 

a(K)  (t(Z)) = tog It(z)t + a(K)- 

Here el(K)=-- log cap(/(K))  is the Robin constant for l (K)cC;  cap(/(K))  being the 
logarithmic capacity of l(K). 

We want to relate the functions ~l(K)(l(z)) to ~)y(z); we are able to do this 
only for K which satisfy an additional geometric regularity condition (Theorem 5.2 
below). 

Definition. We say that  K c C  N is C-regular if there exists b0E(0, 1) and R>  1 
such that  for all IT/I>R, 

sup Vt(K)(b~/) < il~f Vt(K)(r/) 
I 

for all 0<Ibl<b 0. 

Note that,  for example, the real standard simplex is C-regular since each l(K) 
contains a line segment of a fixed minimal length having the origin as one endpoint, 
and also l(K) is contained in the unit disk. Other examples include any compact 
set K containing a neighborhood of the origin. 

For C-regular sets we may compare the extremal functions for different projec- 
tions in the following manner. 
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L e m m a  5.1. Suppose that K c C  N is compact, regular, and C-regular. Then 
there is an aC(0,�89 and R '>I  such that for all I)~I>_R ~ and H = I ,  i f l l ,12cC N*, 
with 111111=11/211=1, satisfy Ill(z)l<a and 112(z)l> l - a ,  then 

Vh (K)(M1 (z)) < Vt2(K)(M2 (z)). 

Proof. Let a:=bo/(bo+l) and R' :=R/ (1-a) ,  where bo and R are as in the 
definition of C-regularity. Further, let y=M2(z). Then 

171 = I-~1112(z)l ___ R'll2(z)l >_ R'(1 - a )  = R. 

Also, 

and 

l l ( Z ) . /  [Z ~ 

ll(z) < a =bo. 
Ibl : =  12(z) - 1-------d 

Consequently, from the definition of C-regularity, 

V;I(K)(All(z)) = V~,(KI(b~) < V;~(m(O) = V;~(U)(al2(z)). [] 

Theo rem 5.2. Suppose that K is compact, regular and C-regular. Then for 
all zEC g 

Ov (z) = sup Or(K)(l(z)). 
l 

Proof. By logarithmic homogeneity of each side, it suffices to verify the equality 
for points z with Izl=l. We wish to show that 

(5.1) limsup[sl.Xl~cc upVt(K)(Al(z))-loglA[] 

equals 

(5.2) sup [log If(z) [ +lim sup{Vt(K) (A) - log [A[}] �9 
[.Xl--,cc 

First of all (5.1) _> (5.2) since for each l, V(z)>Vt(l,:)(l(z)) and hence, for all l, 

lim sup[V(Az)-log IAI] -limsup[Vt(K)(Al(z))-log IA[]; 
I~l-+oc I;~1~ 



On the Siciak extremal function for real compact convex sets 257 

the r ight-hand side is (5.2) (in disguised form) wi thout  the sup. 
To show the reverse inequality, note  tha t  by Lemma  5.1, 

( 5 . 1 ) = l i m s u p [  sup Vz(K)(Al(z))--loglAI], 
I,Xl-~or LII(z)[_>a 

i.e., we may  take the supremum over this restr ic ted class. 
Now we claim tha t  given a>O, there  exists R>O such tha t  for I~I_>R, 

(5.3) I (V/<K)(7/) - l o g  It/I) - Ot(K) l < 

for all 1 satisfying II(z)l >_a. Supposing for the t ime tha t  this is indeed the  case, then  
given e > 0  choose such an R. Then  for I,~l>R/a we have, for each l with II(z)l>a, 

IA/(z)l > IAla > R. 

Hence, 

Vt(K)(M(z))--log IX] = (Vt(K)(M(z))-log IXl(z)l)+log It(z)l 

which implies tha t  

and thus tha t  

Consequently,  

I (Vl(K)(M(z)) - l og  I~Xl)- (aeK) +log IZ(z)I)1 < 

Vl(K)(Al(Z))--log I)q <__ (Ol(K) +log II(z)l)+a. 

sup (Vt(K)(M(z))--log IAl) <_ sup(o t (K)+log  ]l(z)l)+r 
It(z)l>a t 

for all I)qkR/a. It follows then  tha t  (5.1) <_ (5.2). 
W h a t  remains is to  prove our claim (5.3). To see this, let #Z(K) be the equilib- 

r ium measure for l(K). Then  

and hence 

f/( log Iz -El d#l(K)(~) = Vt(K)(Z) -- Ol(K) P,,(K~(Z) := K) 
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and the result follows since l(K) is contained in a disk of fixed radius for all I (since 
K is bounded). [] 

Returning to the case K=S2, an easy calculation reveals that  

(5.4) OK (Zl, Z2) = Iog(2(IZl [ + [Z~[ + tZl +Z2 [)). 

Moreover, for the simplex, 

(5.5) sup II(zl' z2)] _ eOv. (~1,~) for all (zl, z2) E C 2. 
z c a p q ( g ) )  

To verify (5.5), it suffices to show that  u(zl, z2):=supt [l(zl, z2)l/cap(l(K)) is con- 
tinuous in C2\{(0,  0)} for then e or" and u are plurisubharmonic functions which 
agree q.e. in C 2 and hence e o"" - u .  A further simplification follows by noting that  
u is homogeneous of order one: u(tzl, tz2)=tu(zl, z2) for tEC; hence we need only 
verify continuity of u on the unit sphere in C 2. We make the following observations: 

(i) U(Zl,Z2)=max[itll= 1 [l(Zl,Z2)[/cap(l(K)), for clearly for fixed (zl, z2), the 
mapping l~-~ [l(Zl, z2)[/cap(/(K)) is continuous; 

(ii) if l(zl, z2)=azl +bz2 with [al2+ [bI2= 1 ([[/[[ = 1), then I(0, 0)=0, /(1, 0) =a, 
l(0, 1)=b so cap(/(K))_> �88 max{la[, [blI>_l/4v/'2=:l/c>O. 

Fix z :=(zl ,  z2) and z':=(z~, z~) with Izl=lzq=l and take l~ and Iz, with I[l~lt= 
H/z,H=I such that  

u(z)-  l/~(z)l and u ( z ' ) =  It~,(z')l 
cap(/~ (K)) cap(/~,(K))" 

Then 

Hence 

and 

II~,(z)l and u(z ' )~ I/z(z')l 
u(z) >_ cap(/z, (K))  cap(Iz (K))" 

u(z ) -u ( z ' )<  l/z(z)l I/z(z')l < 
- cap(/~(K)) cap( / . (K))  - 

Iz (z -z ' )  
cap(lz(K))l 

u ( z ' ) - u ( z ) <  IZ~,(z')l IZ~,(z)l < l~,(z',-z) 
- cap(Iz,(K)) cap(/z,(K)) - c ~ - - ) )  " 

Thus 
fl Zz(z-z')  z~,(z'-z) 

Since Hlz[[=lllz, H=l, we have [lz(z-z')l<[z-z'[ and [Iz,(Z'-Z)[<_[z-z'[, and so 

lu( z ) - u( z') l <_ c lz -  z'l. 
Thus u is (uniformly) continuous on the unit sphere and (5.5) follows. 

Our claim that  0u- r  and hence that V* CVK, now follows from (5.4), (5.5) 
and the following result. 
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T h e o r e m  5.3. 

II(zl,z2)l (5.6) sup 
z cap(/(K)) 

Let K=S2. There is a point p~(zl, z2) in C 2 such that 

< 2(IZll+lz21-t-lzl+z21). 

Proof. Take p=(1,  i). We will show that  

(5.7) sup I/(1' i ) ~  < 2(1+1+11+i1) = 2 ( 2 + v ~ ) .  
I cap(/(K)) 

To this end, write l(zl, z2)=(~zl+~z2. Since the left-hand side of our inequality is 
homogeneous in a we may divide by c~ or, in other words; assume that l(zl, z2)= 
zl+Az2. Hence we need only show that  

(5.7) sup I1+s < 2 ( 2 + V ~ ) .  
~ c  cap(/(K)) 

We shall bound the left-hand side by using three different lower estimates of 
the capacity of l(K). Note that  l(K) is the (possibly degenerate) triangle in C with 
vertices 0, 1 and ),. Our first estimate is that  the capacity of this triangle is at least 
the capacity of the edge [0, 1], i.e. cap( / (K))> �88 Hence 

]l+ail <4jl+ail=41a-il 
cap(/(K)) - 

and our claim is true for all )~EC inside the circle centered at i with radius r=a< 
2 ( 2 + V ~ ) / 4 = 1  ( 2 + v ~ ) .  

Next consider the edge [0, ~]. It follows that also cap(l(K))> }IAI, an estimate 
that  is valid even if the triangle is degenerate. Hence, 

II+Ail < 4 - - = 4  . 
cap(/(K)) - IAI 

Since 4(A- i ) /A is a MSbius transformation that  maps c c ~ 4 < 2 ( 2 + v ~ ) ,  it follows 
that  for a > l ,  

{,~ : 4 1 ~  I _<4a} 

is the exterior of a circle whose centre and radius may easily be computed to be 
- i / (a  ~-  1) and r=a/(a 2-1), respectively. 

1 (2 + ~ ), the interior of the first circle and the exterior of the Now, for a near 
second do not cover all of C (see the figure). Hence we require one further estimate 
on the capacity of a triangle (the third side does not suffice). 
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- 2  ~ I ~ 2 

- 2 i  

- 4 i  

Figure 1. From top to bottom, circles 1, 2 and 3 with a=�89 

From [R, p. 146], the capacity of a triangle of area A is at least v/A-/~r. Since 
the first two circle conditions do cover all of the upper half-plane, we consider 
A=AI+iA2 with A2<0. Then in our case, we have cap ( / (K ) )2  ~ - 2 / 2 7 r ,  so that  

I I + x i l  I x - i l  
< 

c a p ( / ( K ) ) -  ~ - L - ~ 2 ~  

The set 
{A: IA-i[ < 4 a }  - 

is again the interior of a circle, this time with centre i(1-4a2)/Tr and radius r= 
[ (4a2/ : r -  1) 2 - 111/2. 

From the figure it is clear that  the interiors of the first and third circle together 
with the exterior of the second cover all of C, for a near 1 (2 +  v ~ ) .  Hence, for 

1(2+v/-2) we see that.  for all AEC, a <  1 ( 2+  v ~ ) ,  but  sufficiently close to ~ 

Ii+Ail 
< 4a < 2 ( 2 + v ~ ) ,  

cap(/(K))  - 

and we have verified (5.7). [] 
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6. F i n a l  r e m a r k s  

A natural  question to ask is whether the example of the simplex, where V r  
is the "generic" case of a convex body in R N which is not symmetric.  To this end, 

we recall the definition of the Klimek metric F [K2]. Let T~ denote the set of all 
regular, polynomially convex compact  sets K C C N. The set function F: 7~ x ~ - + R  + 
defined by 

F(E, F):= m ~ {  IIVEIIF, IIVFIIE } = IIVE-- VFIIE~F = II VE-- VFIIcN 

is easily seen to be a metric on 7~ (indeed, Klimek showed that  (TE, F) is a com- 

plete metric space). We can restrict F to the subset K:cT~ of lineally convex sets 
in T~; thus we obtain the metric space (/C, F). We modify the metric to suit our 
purposes. First we recall from Remark  3 in Section 4 that  if KET~, then the func- 

tion V*~-V(1)*=V(K 1)* from (1.4) is a function in the class L +. Thus for E,  FETe, 

[IV O)*-V(1)*[IcN is finite (although this is not necessarily the same as either of 

max{[[V(1)*[[F, IIVF(1)*I]E} o r  [[V(E1)*--V(F1)*[[EUF). It  follows easily that  

~(E, F):= ma~{ II VE--VF II c,,, liVE (w -V~ 1)* IIc" ) 

defines a metric on ~ .  Restrict this new metric to K:; we work in C 2. 

P r o p o s i t i o n  6.1. The set (.9 := { K E IC : VK # V (1) * } is a non-empty open set in 
(~ ,F) .  

Proof. From Theorem 5.3, (.9r Fix KE(_9. Then there exists p E C  2 with 

Vg(p)-VO)*(p)=a>O.  A simple calculation shows that  for any 5 with 0 < 5 <  1 ~a, 

B(K,  5) :={K '  e I C : F ( K ' , K )  <5}  C O .  

Hence O is open. [] 

Let/CR denote the set of all convex bodies K c R 2 c C  2. 

C o r o l l a r y  6.2. The set O R : = { K e I C R : V K r  0)*}  is a non-empty open set 
in (zcR,~). 

We conjecture tha t  OR is dense in K:R. 
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