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Reverse hypercontractivity over manifolds

Fernando Galaz-Fontes(!), Leonard Gross and Stephen Bruce Sontz(?)

Abstract. Suppose that X is a vector field on a manifold A whose flow, exptX, exists for
all time. If p is a measure on M for which the induced measures py=(exptX).p are absolutely
continuous with respect to p, it is of interest to establish bounds on the L? () norm of the Radon—
Nikodym derivative du¢/dp. We establish such bounds in terms of the divergence of the vector
field X. We then specialize M to be a complex manifold and derive reverse hypercontractivity
bounds and reverse logarithmic Sobolev inequalities in some holomorphic function spaces. We give
examples on C™ and on the Riemann surface for z!/".

1. Introduction

E. Carlen, [C], has shown that the Ornstein—Uhlenbeck semigroup has some sur-
prising reverse hypercontractivity properties when restricted to holomorphic func-
tion spaces. Denote by y the Gauss measure on C™ with density const. exp(—3|z|?),
and by A the nonnegative self-adjoint Dirichlet form operator on L?(y) determined
by (Af,@)r2(y)=Jam Vf-Vgdy. It is well known that if 1<po<pi<oc then the
hypercontractivity inequality

(1.1) le™T2 flLos iy < N Flero@y-  FELP(Y).

holds if T is sufficiently large. But Carlen showed that if f is holomorphic and T'>0
is sufficiently small then

(1.2) lle™T2 fllLer vy = Cll fll Lro(qy)

for some constant C' depending on pg. p;. T and m. One can even allow 0<py<
P11 <00.

In a recent paper, [S1], the third author showed that reverse logarithmic
Sobolev inequalities hold in the holomorphic category for Gauss measure on C™.

(1) Research supported in part by CONACyT, Mexico, grant 32725-E.
(?) Research supported in part by CONACyT, Mexico, grant 32146-E.



284 Fernando Galaz-Fontes, Leonard Gross and Stephen Bruce Sontz

This was discussed further in the papers [S2] and [GS]. In view of the known connec-
tion between hypercontractivity inequalities such as (1.1) and logarithmic Sobolev
inequalities, (G1], [G2], it is reasonable to expect that Carlen’s reverse hypercon-
tractive inequalities (1.2) are linked to these new reverse logarithmic Sobolev in-
equalities. It is the purpose of this paper to explore this connection and to do so in
a quite general context.

We will actually show that both reverse hypercontractivity and reverse loga-
rithmic Sobolev inequalities over certain complex manifolds are simply consequences
of the fact that a Dirichlet form operator reduces to a first order differential op-
erator when applied to holomorphic functions. Qur method of proof of reverse
hypercontractivity for complex manifolds extends the method first introduced for
Gauss measure in [GS]. In order to carry out this extension it is necessary to esti-
mate the L” norms of the Radon-Nikodym derivative du;/dp, where p is a given
probability measure on a (not necessarily complex) manifold M and y; is the meas-
ure induced from it by a smooth flow, exp(tX), on M. Estimates of this sort
seem to have been first studied in the ground breaking work of Ana Bela Cruzeiro,
[Cr1], [Cr2]. Her estimates have been further exploited in the work of B. Driver,
[D], Bogachev and Mayer-Wolf, [BM], and Cipriano and Cruzeiro, [CC]. These pa-
pers are concerned primarily with the problem of global existence and uniqueness
of the flow for a not necessarily smooth vector field X, in both finite and infinite
dimensions and in the quasi-invariance of the flow. Our concern here is in obtaining
good estimates for ||du;/dplz»(,) for p>1. We will make a refinement of Cruzeiro’s
estimates using a variant of the infinitesimal technique that underlies the method
of [G1]). To this end we consider a smooth function r:[0,T]—[1,p| and estimate
the derivative d|| foexp(—tX)l|,«)/dt from below, using a kind of reverse coercivity
inequality. The resulting estimate is a functional of the function r. We are able
to solve the Euler equation for this functional in the Gaussian case, yielding the
exact value of ||du,/dpu||Lr(,) in that case. Our estimates are sensitive enough to
distinguish between X and —X.

We then apply this real manifold theorem to certain Dirichlet form operators
over complex manifolds to obtain reverse hypercontractivity in the sense of (1.2).

By way of examples we will give Gaussian and non-Gaussian measures on C™.
(Sections 2 and 5.) We will also show that our method applies to the Riemann
surface for z!/™ with a natural measure on it. (Section 6.) In Section 7 we will show
that reverse hypercontractivity fails for the weighted Bergman spaces. Moreover in
the case of the unweighted Bergman space exactly one of our hypotheses breaks
down, showing the key role of this hypothesis.

Reverse hypercontractive inequalities of the form ||e~t4 f||,>]| /||, for f>0 (and
therefore non-holomorphic) have been explored by C. Borell and S. Janson, [B1],
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[B2], [BJ]. In their work the indices p and q are typically related by —co<g<p<1.
In a sense this range of indices complements ours. Yet the subject matter of their
work is quite different from ours in that the generator A is a genuinely second order
elliptic operator in their work while it degenerates into a first order operator in our
holomorphic context.

2. The L?P norm of the density induced by a smooth flow

Notation 2.1. Denote by M a finite dimensional manifold and let y be a prob-
ability measure on M with a smooth, strictly positive density in each coordinate
chart. Denote by X a smooth vector field on M whose flow, exp(tX)=e*X, exists
for all real t. Let

(2.1) e = (exp(tX))«p.

Since p; also has a strictly positive density in each coordinate chart the Radon-
Nikodym derivative

(2.2) =3
dp
exists for all real ¢.

Of course one has ||J;||11(,)=1. In this section we will derive estimates for
| J¢|| oy for p>1.

Notation 2.2. Let 0<x<oco and 0<T<oo. Let e*T <p<oo. A continuously
differentiable function r: [0, T]—{1, p] will be called s»-dominant for T and p if

(2.3) r(0)=1, r(T)=p
and
(2.4) r'(t) > ser(t) for 0<t<T.

If the values of T and p are clear from the context we will simply say that r is
»-dominant. Here and in the following r’ denotes the derivative of the function r.

Example 2.3. (5r>0) Define for »#>0,

(2.5) r(t)=ae™—-b, 0<t<T,
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where
p—1
2.6 =_£ -
(2.6) a= T
and
»T
p—e
2.7 b="Fr—.
(2.7) e

Then 7 (t)=axe** =sr,(t)+ »b. Since p>e*T we see that b>0 and therefore (2.4)
holds. One verifies easily that (2.3) also holds.

Ezxample 2.4. (5=0) Define

1)t
(2.8) ro(t) = 14 P= 1t
T
Then it is immediate that (2.3) and (2.4) hold for »=0. Writing
ext ~1

Tx(t) = (-1
one sees that r,, converges uniformly on [0.T] to r¢ as »|0.

Notation 2.5. Let >0 and let B: (s, 00)—[0, oc) be continuous. For T'>0 and
e*T' <p<oo define

2.9) A(r)= /0 ! T—(lth( i'((tt)) ) dt

for any s--dominant function r for T and p. Since r’/r>3 on [0,T] and r(t)>1 the
integrand is continuous in ¢t on [0,T]. Hence the integral exists.
For the particular functions in Examples 2.3 and 2.4 we write

(2.10) Me(T,p) = A(ry) for 5>0. T>0. T <p<oo.

Remark 2.6. Tt will be useful to express A,, in a more explicit form. For »>0 we
may make the change of variables y(t)=2b/r(t), where r=r,. Then y'=—abr'/r2.
Also, since r’=sr+xb we have r'/r=sx+y. But y(0)=3b and y(T)=3b/p and
r(t) "L dt=(—sbr' /r) "1 (~sbr’ /7?) dt=(—3b(3c+y)) ! dy. Hence
1 »b

B(rxty) dy.

(211) /\x(T’p):ﬂ

x>0.
xb xb/p HTY

For »=0 the substitution y=(p—1)/Tre(t) gives, similarly,
T (=0T g
(2.12) Nl I
P=1Jp-1yrp ¥

In the following we write C}(M)*={heC}!(M):h>0}. By p’ we denote the
conjugate index to p.
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Theorem 2.7. Let 5c>0. The following statements are equivalent:

(8) oy Xhdu<s [, h(z)log(h(2)/IIkll1) du(z)+ B(s)lIAll, for all hECH(M)*
and s> ;

(b) |hoe=TX Y, > ||Rll1e~2) for all T>0, p>e*7, heCH{M)* and for all -
dominant functions r,

(€) hoe=TX||,> Rl 1e=*=TP) for all T>0, p>e*T and he C}(M)*:

(d) ||l <eM™ for all T>0, p>e*T, and for all s-dominant functions r;

(&) ||Jrlly <e*=TP for all T>0 and p>e*T.

We will prove Theorem 2.7 after establishing the following three lemmas.

Lemma 2.8. Let T>0 and 1<p<oo. Let 0<C<oo. Then
(2.13) lrlly <C
if and only if

(2.14) Cllhoe~TX|, > ||B]ly for all ke CH(M)*.

Proof. Since hoeTX is in C}(M)* if and only if h€ C}(M)* the inequality in
(2.14) may be replaced by the inequality

(2.15) Clibllp 2 o™ 1.

But if (2.13) holds then

Ihoe™ )y = / (22 () duz) < Il el < Clll

Thus (2.15) and hence (2.14) holds. For the converse we just need to know that
C(M)* is dense in (LP)*, because the validity of [, fJrdu<C|/f||, for all fe
(LP)* implies (2.13). Now if f€C.(M)* then also f1/2e€C.(M)*. By using a
partition of unity one sees that there exists a sequence h,, € C}(M) such that h, —
f1/? uniformly on M. Then also h2— f uniformly. Therefore, since C.(M)* is
dense in (LP)*, so is C}(M)*. Now assume (2.14) holds. If f€(L?)* and f, is a
sequence in C}(M)* that converges to f in LP norm and pointwise a.e. then f,oeT*
converges to foeX a.e. and is Cauchy in L! norm by (2.15). Thus (2.15) follows
for f. O
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Lemma 2.9. Let he C}(M)* and suppose that r:[0,T]—(1,p| is continuously
differentiable. Let

(2.16) hi(z) = h(exp(~tX)z) for ze M andt>0.
Then

d 1—7(8) 1 7"/ h: / ()
2.17) — =1h —1 = r — - § Xh,''d
( ) dt”kt”T(t) “ t“r(g) ’I‘(t) r Alflt lOg ”h’t”rg; dp‘ Ar t H
for 0<t<T.

Proof. If h is supported in a compact set K then h; is supported in the com-
pact set exp(tX)K. For any real number a>1 the derivative dh¢(z)/dt=—Xh$(z)
and is also continuous in ¢ and 2 and has compact support on M. The following
computation, a variant of that in [G1, Lemma 1.1], is therefore easily justified. Let
v(t)= [y, he(2)"® du(z). Then we have

d
2 / ' b5 log hy dp— / X dy.
dt  Jar M

Hence

dol/T®

d 1, .1 dv 7'
el — — ZrT-1) %Y i/r
dt“ht”r(t) o v

—
r dt r2

1 - !
= o ‘1)(1(/ h{logh{d,u—vlogv)— Xh{d/z). 0
r " \IMm M

Lemma 2.10. Let s>x>0. Then, for »x>0,

2. i sT) =
(2.18) ¥%AX(T76 )=0
and

d
2.19 — A\, (T, eT = B(s).
(2.19) o (The )T=0+ B(s)

For =0 we have

2.20 lim A =0
(2.20) Jim o(T, 1+sT)
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and

o)
(2.21) E)—Y,/\()(T7 14-sT) T=0+=B(s).

Proof. For »>0 we have, upon expanding the following exponentials, b(T")=
b=(e*T—e*T)/(e*T —1) =((s— ) +O(T))/ (3+O(T)). S0 b(T)—(s— )/, as T 10,
and »xb— s—ir=y,>0. Moreover b(T) has a real analytic extension to a neighbor-
hood of T'=0. Therefore, writing p=p(T)=e*T, we have

1 (9(xb) 8(xb/p) o 10b by
?b( o~ oT ) (ﬁ’;aT+ )"*3’ as T10.

The derivative of the factor (sb)~! in front of the integral in (2.11) does not con-
tribute in the limit as 70, because the upper and lower limits both converge to yo.
Since B(sr+y) is continuous at 3y the lemma follows. The proof for »=0 is similar
and a little bit simpler. O

Remark 2.11. Any C? function p: [0,6)— [1,00) such that p(0)=1, p(T)>e*T
and p’(0)=s would work in this lemma in place of 5T

Proof of Theorem 2.7. By Lemma 2.8 the statements (b) and (d) are equivalent
and the statements (c¢) and (e) are equivalent. So it suffices to show that (a), (b)
and (c) are equivalent. We will show that (a) = (b) = (c) = (a).

Assume that (a) holds. Let heC!(M)* and define h; by (2.16). Let r be a
»-dominant function for T and p. Fix t€[0.7] and put s=r'(¢)/r(t) in (a) with h
replaced by h:(t). Inserting the resulting inequality into the identity (2.17) yields

/

d 1 oo (T
S lhellecy = = IRl < iRz (X ).

Hence ,

108 Nhellrey = — (t) (r )

Integration of this inequality from 0 to T gives
(2.22) izl > [|Rll1e= ™) for all he CI(M)*,

which is (b). Now (c) is just a special case of (b). with r chosen as in Example 2.3
or 2.4. It remains to show that (c) implies {(a).

Assume that (c) holds and that heCl(M)*. Suppose first that »>0. Let
s> and put p=p(T)=e°T into (c). By (2.18) the right-hand side of (c) converges
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to ||hll1, as TJ0. Clearly the left-hand side converges to |[h|; also. So we may
differentiate (c) at T=0. By (2.19) one obtains for the derivative on the right-hand
side —||h||;B(s). To compute the derivative of the left-hand side we may apply
(2.17) with r(t)=e%. We find, at T=0,

=s/ hlog(—ﬁ—) du— | Xhdy,
T=q+ M fialla M

which is therefore >—||h||; B(s). The resulting inequality is exactly (a). The proof
for s=0 is similar. One puts p=1+sT into (c). O

Definition 2.12. The u-divergence of X is the function W defined by

2 Jhoe T e

(2.23) X(pd,u:/ eWdp for all p € C}(M).
M M

If one writes equation (2.23) in a local coordinate chart (U, x) with support
@CU one sees immediately that W exists and is a C'* function on U. By using
a smooth partition of unity it follows that there is a unique function W on M
satisfying (2.23). Clearly W is real and in L} (M, u). All of our results on reverse
hypercontractivity and reverse logarithmic Sobolev inequalities will depend on W.
In regard to the terminology in Definition 2.12 note that if X is a smooth vector

field on R™ and du=g(z)dx then W=—div X — X log o
Notation 2.13. Let

(2.24) B(s) =log ( f eW(@)/s du(x)) , 0<s<oc.
M

Define

(2.25) x=inf{s>0: B(s) < co}.

We will assume throughout that B(s)<oo for some s€(0,00) and therefore
(2.26) ¥ < 00

This imposes a strong restriction on the positive part of W but no restriction on
the negative part. We will assume throughout that

(2.27) We Ll (w).

In this case (2.23) also holds for ¢=1, as will be shown in Lemma 4.4. Therefore
Jas Wdp=0. Jensen’s inequality now shows that [e"/*du>exp(f W du/s)=1.
Thus B(s)>0, which is consistent with our assumption in Notation 2.5.
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Theorem 2.14. (L? bound) Let >0 and T>0 and assume
(2.28) T <p<oo.

Let v be a s-dominant function for T and p. Define B by (2.24) and A by (2.9).
Then

(2:29) 7]l < M.
In particular
(2.30) 7]l < X~ TP

Note that, in view of (2.11) and (2.12), the inequality (2.30) can be written

b
(2.31) I 7l <exp —1—/ log [ eVt gy ) dy) for x>0
b »xb/p AL
and
T (p—1)/T
(2.32) ||JT||p'SEXD(—1/ (log eW/ydu> dy) for s =0.
“HNp-1)/Tp Al

The proof of Theorem 2.14 depends on the following lemma.

Lemma 2.15. Suppose that W is a real valued function in LP{u) for some
pE[l,00). Suppose that h is a nonnegative function in L¥ (). Define 3 by (2.25).
If s> then

e thMSS( / hloghdu—llhlll10g||h||1)+||h||13(8)-
M M

Proof. This proof is a slight variation of that given in [G1, Theorem 7]. Let
a>0 and apply Young’s inequality, zy<zlogx—z+e¥, which is valid for £>0 and
y€R, to the numbers xr=sh(z)/a and y=W(z)/s to find

M) (2 dpz) = [ I g,
Al

M a a S

() 2

\ +/ eV du(z).
1 .94
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Note that all terms are well defined since hlog h is integrable. Multiplying by a we
get

@3t [ W) due) < [ shyion( L) dute) sl act

Put a=s||h|;e~B()/* in (2.34) to conclude that

z z z S w —
[ W dute) <5 [ nieytog(MEE ) dute) sl ikl

=s( /M h(z) log h(z) dp(2) ~ ||hll: log ||h”1>+||h||1B(s). O

Proof of Theorem 2.14. For any function he C1(M)* we have fM Xhdu=
Sy PW dp by (2.23). Lemma 2.15 now shows that condition (a) of Theorem 2.7
holds. But (2.29) and (2.30) are just restatements of conditions (d) and (e) of
Theorem 2.7. O

Erample 2.16. (Gauss measure on R".) Let

o-lal?/2¢

denote the Gauss measure on R". We will be especially interested in the dilation
vector field

1
(2.36) X=-zV.
This vector field arises naturally in the context of Dirichlet forms in holomorphic

function spaces, [G3, Section 5]. We may compute W as follows. Let p€C}(R").
Then

e—|1l2/2c

[ e~ [ xoan@=1 [ Z(}a%)wdz

- [ v () arga)

(2.37) W(z )_-<' c'2 n)

Hence
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A straightforward Gaussian integration now shows that

-n/2
(2.38) eV @3 dy (z) =e-"/“(1—3> . se>2.
Rn SC

The integral is infinite if sc<2. Hence

(2.39) »= %
and
(2.40) B(s)= —g (;H—slog(l—— ’;‘)) 5> .

Thus (2.26) holds. Since W is quadratic (2.27) also holds. Hence Theorem 2.14 is
applicable.

For fixed T>0 and p>e*T we may seek the optimal s-dominant function r
for the inequality ||Jr||,» <e*™, cf. Theorem 2.7(d). This is the function » which
minimizes A(r) when B is defined by (2.24). A straightforward but lengthy compu-
tation of the Euler equation for this minimization problem gives r” —sr’=0. The
general solution is r(t)=ae*' —b and the solution that matches the boundary con-
ditions (2.3) is exactly that given by (2.5)-(2.7). Rather than show directly that
this solution, 7., gives a minimum of A(r) we will compute e*("=) and || Jr||,» and
show that they are equal. In view of Theorem 2.7(d) this will show that r,, mini-
mizes A(r). To this end we will evaluate the integral (2.11). Equation (2.40) gives
B(s)/s=—4n(s¢/s+log(1~/s)). Hence

(2.41) Blcty) _n (log xty L)
x+y 2 Y x+y

An indefinite integral of (2.41) is snylog({(>¢+y)/y), as one can verify by differen-
tiation. Substituting the limits from (2.11) and simplifying we find

n b+1 1 b+
/\x(Tv p) = 5 (lOg T —; 10g Tp) ’

where b is given by (2.7). To simplify this further put

-1
oo P71
p_exT
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which is greater than one. From (2.7) we see that b+1=(p—1)/(e*T —1) and b+p=
e*T(p—1)/(e*T —1). So (b+1)/b=a and (b+p)/b=ae*T. Hence

1 1 »T
2.42 Me(Typ)==n{[1-=]lo a——).
(242 T.») 2 (( P) 5%
Thus
(243) e {(Tp) — (a(l—P-l)e—xT/p)n/Z.

By Theorem 2.7 we therefore have

d(eTX ) * Ve

< (a(l—P“)e—xT/p)n/Z’
dye -

(2.44) '

L?' ()

if p>e*T. Now the measure pur=(e7X),7. is also Gaussian and the left-hand side
of (2.44} is computable. We have, from (2.36),

(2.45) e™Xzr=eT/°x forall TER.

-T/c

Therefore, substituting r=e y in the following equations, we have

| 1@ dunte) = [ s D d@) = [ 1)) dew),
R» Rn Rr

where

(2.46) Jr(y) = e D/ (2e) g=(n/2)xT

with »=2/c as in (2.39). A straightforward Gaussian computation now gives

p—1 1-p~! n/2
(2.47) IIJT||L,,/(%)=((W) ) 1T <pe.

Comparing with (2.43) we see that
(2.48) |l Jrfly =e*=TP).

Hence the function r,, minimizes A(r) in the Gaussian case.

Notice that if we change X to its negative then W changes to —W. But —W is
bounded above. Hence =0 for — X instead of 2/c. Thus our bounds are sensitive
to a change in the sign of the vector field X.
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3. Reverse hypercontractivity over complex manifolds

Notation 3.1. Let M be a finite dimensional manifold with Riemannian met-
ric g. Denote by p a probability measure on M. We will always assume that g has
a strictly positive smooth density in each coordinate patch. Associated to the triple
(M, g, pt) is the Dirichlet form operator V*V on C>*(M), which is defined by

B1) (V'V @) = /A (9(VI), VR du(z), S ECH(M), peCT (M),

We wish to allow f and ¢ to be complex valued. So in (3.1), g should be extended
complex bilinearly to the complexified tangent spaces T, (M )®C. In addition to the
differential operator V*V we want to make use of the following self-adjoint version.
Let @ be the closed quadratic form in L?(M, ) with core C°(M), which is given
by

(32) Q) = / (VLI du for fECT(M).

There is a unique nonnegative self-adjoint operator A in L?(p) such that D(Q)=
domain Q= domain A/2=D(A/2) and

(3.3) Q) =IlAY2f|%,  feD(AY?).

We want to study the action of the semigroup e~*4 in subspaces of LP(p) consisting

of holomorphic functions. To this end we will take M henceforth to be a complex
manifold of complex dimension m and the Riemannian metric g to be Hermitian.
Let us recall briefly that this means that M can be coordinatized in local coordinate
patches by complex valued functions zi, ..., z,, and the transition functions from
one coordinate system to another one are holomorphic on the overlap. Moreover if
zj=x;-+1y; then g is Hermitian if and only if

<ii (2. 2Y joi.m
g sz’axj =9 Byj’ayj v IT e

just as in the complex plane.

Definition 3.2. The operator V*V is holomorphic if, for any function fe
C*°(M), V*V £ is holomorphic in any open set in which f is holomorphic. We
also call the triple (M, g, u) holomorphic in this case.

In particular if f is holomorphic then so is V*V f.

Let H=H(M) be the space of all holomorphic functions on M. Then H is
invariant under V*V when V*V is holomorphic. This will reflect itself in similar
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invariance properties for the self-adjoint version A in holomorphic function spaces
such as HNL2?(y).

Now if feC>(M) and is holomorphic in some coordinate patch U then the
Cauchy-Riemann equations, 8f/d%;=0, can easily be used to show that the sec-
ond order terms in V*Vf are zero in U and that one simply has V*Vf(z)=
Z;n:l ©;(2)0f/0z; for some functions ¢;€C>(U). Moreover the coefficients ¢;
are holomorphic in U if and only if V*V is holomorphic (over U). In more invariant
terminology this may be stated as: there exists a unique complex vector field Z of
type (1,0) such that for any function f€C>(Af)

(34) V*Vf=Zf

in any open set in which f is holomorphic. It is not hard to see that V*V is
holomorphic if and only if Z is holomorphic.
Any complex vector field Z on M can be written in the form

(3.5) Z=4X-iY)

for some unique real vector fields X and Y. The vector fields Z, X and Y are
clearly determined by the triple (M, g, u). The properties of X and Y will play a
fundamental role.

Standing Assumptions 3.3. We will assume throughout that V*V is holomor-
phic and that the flow of the vector field Y exists for all time, i.e., that Y is
complete. We will assume further that Y is Killing. That is, the flow of Y preserves
the metric g.

Under these assumptions there are some holomorphic function spaces that are
invariant under the semigroup e™t4. These are the spaces we are interested in. Let

H? = L?(u) closure of HND(Q),
HP =H2NLP(p) for 2<p< oo,
HP = closure of H2 in LP(u) for0<p<2.

The previous discussion is a summary of the structures introduced in [G3], where the
invariance of these holomorphic function spaces under the contraction semigroup

e~ t4 is shown.

When (M, g) is complete then one simply has HP=HNLP(u) for p>2. See [G3,
Theorem 2.14] for a proof. If (M,g) is not complete then H? could be a proper
subspace of HNL2(x). This occurs in the interesting case of the Riemann surface
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for z}/". Our theorems are applicable to this case, which will be discussed in
Section 6.

It is shown in [G3, Corollary 2.12] that the semigroup e~*4 relates to the vector
field X by the identity

(3.6) e A f = foexp(—tX) for t>0 and feHP

for any p>0 when the one-sided flow exp(—tX) exists for all £>0. This is the key
identity that we will use to relate the present section to Section 2.

Unlike the LP spaces it can happen that #? is not dense in H? for some g>p.
An example is given in [G3, Section 5]. But we will rule out these uninteresting
cases by assuming henceforth that

(3.7) H? is dense in HP if0<p<g<oo.

For the vector field X we may define its u divergence as in Definition 2.12.

Theorem 3.4. (Reverse hypercontractivity.) Suppose that the Standing As-
sumptions 3.3 hold, that the flow exptX exists for all time and that (2.26) and
(2.27) hold. Let T>0. Suppose that po>0 and p1 >poe*T. Let p=p1/po. Letr be a
»-dominant function for T and p. Then

(3.8) 1™ Fllpy > £l exp(—%f{)"l) for f EHP.

Proof. Let feHP* and write h=e~TAf. By (3.6) we have h=foe~TX. Hence
f=hoeTX. Thus
1053 = [ thoe™ e du= [ i dur = [ ihire s d
M M M
<[P l| 19zl = WRlIE 7l

The inequality (2.29) now yields || f|p, <k, €*(7/Po, which is (3.8). O
The following corollary was first derived in [GS}.

Corollary 3.5. (Gauss measure.) Take p=". (cf. (2.35)) on C™ and let g be
the standard metric on C™. Suppose that T>0, po>0 and p1 >pee?’/¢. Then

L \Upo—1/pry-m
(3.9) ne"“fumz||f||po(e-ﬂ‘/m(p”—”’°—) ) . fewm,

1—e*Tpg

where x=2/c.
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Proof. Choose r=r,, in (3.8). Then eM7) =e*~(T-P) which is given, e.g., by the
right-hand side of (2.47). Put p=p;/py and n=2m to get (3.9). O

Remark 3.6. For Gauss measure one has in the limiting case p, =poeT/c 3

hypercontractive inequality which goes the other way from (3.9), namely, ([C], [G3],
[91], [32], [Z]),

(3.10) e Fllpy < 1fllpo-

Remark 3.7. E. Carlen was the first to derive a reverse hypercontractive in-
equality in the holomorphic category, [C, Theorem 4]. He obtained an inequality
for Gauss measure similar to (3.9) but with a smaller coefficient of | fi},,. His co-
efficient, in the present notation, is ((p1 —e?7/°pg)/p1)™/P°. The comparison of his
methods with ours is especially interesting in that he used a logarithmic Sobolev
inequality in a key step in his proof. Such an inequality is usually used to prove
forward hypercontractive inequalities such as (3.10). Our method does not use a
logarithmic Sobolev inequality, but rather, is based on a simple use of Hélder’s in-
equality, in the manner first introduced for Gauss measure in [GS]. In fact in the
next section we will prove a reverse logarithmic Sobolev inequality.

It should be noted that although the proof of (3.9) is based on the exact value
(2.47), nevertheless equality in (3.9) does not hold for any nonzero holomorphic
function. This is shown in [GS]. The best constant in (3.9) is not at present known.

4. Carlen’s identity and reverse logarithmic Sobolev inequalities

In this section we will continue the assumptions of Sections 2 and 3, specifically
the assumptions on M, g, 1 and X stated in Theorem 3.4. In addition we will
assume that

(4.1) we [ LP(w).

1<p<x
The following identity reduces, in the Gaussian case, to an integral identity first
discovered by E. Carlen, [C, equation (I.7)]. Note that the semigroup e™*4 is a
contraction semigroup in L?(u) for 1<p<oo because A is a Dirichlet form operator.
By the L? domain of A we mean the domain of the infinitesimal generator, A,, of
this semigroup as a semigroup in LP(u).

Theorem 4.1. (Carlen’s identity.) Suppose that feH(M). If p>2 and f€
Li(p) for some q>p and f is in the LP domain of A then

(4.2) s [ (0P du= [ 1w d
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If 0<p<2 and f is in the L? domain of A then

43 4 p/2)? PW dp.
(4.3) /Mivm IduS/MIfI u

Remark 4.2. It seems likely that (4.3) is also an equality. But we have run into
technical problems concerning the behavior of f near its zeros. In the simple case
in which M=C and f is a polynomial it is not hard to show that equality holds
in (4.3). For a version of (4.2) which holds for all p€(0.00) and which avoids the
singularities at f=0 see Equation (4.13).

Corollary 4.3. (Reverse logarithmic Sobolev inequality.) Let p>0 and as-
sume f is holomorphic on M. If p>2 assume that f€LI(u)N(LP domain of A) for
some q>p. If 0<p<2 assume that f is in the L? domain of A. Then

@y af [[vmp/"’y"’duSs( [ 11 10g] 17 =11 10g IIfIIf.?) IFEB(s)

if s>
The theorem and corollary will be proved in the following lemmas.

Lemma 4.4. If he CY(M)NL(p) for some q€(1,00] and Xhe L (p) then

(4.5) Xhdp= [ hW dp.
Af Af

In order for (4.5) to hold it suffices that W e LY () in place of (4.1).

Proof. Choose a sequence g, in C!(Af) such that 0<g,<1 and such that
gn converges to one on M uniformly on compact sets. Let 0<ueC>(R) satisfy
[ u(t)dt=1 and u(t)=0if |t|>1. For z€ M define

fn(z)=/_x gn (e 2)u(t) dt.

Then f, is in C'(M) and 0< f, <1. Moreover f, has compact support because the
map (¢, z)—e~ %z is jointly continuous, so that if g, is supported in a compact
set K and H={e X z:|t|<1, z€ K} then f, is supported in the compact set H.
Now f.(z)—1 for each z€M because g, (e!Xz)—1 uniformly on the compact set
{eXz:|t|<1}. Using X fn(2)=dfn(e** z)/ds|s0 one sees that

o

Xfu(z) =~ / g€ X 2 (t) dt.

—2C
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Hence |X fn(2)|< [ |u'(t)|dt. Thus the functions X f, are uniformly bounded.
Moreover limp_,0o X fn(z)=— [2°_u'(t)dt=0. If h satisfies the hypotheses of the
lemma then f,(2)h(z) is in C!(M). Hence by (2.23),

| saWau= [ X(hydu= [ (XS04 X0) du
M M M

Since X f,, »0 boundedly, the dominated convergence theorem applies to all the
terms in the last equality and yields (4.5) in the limit, as n—oo. O

Lemma 4.5. Let feH(M). Suppose that 0<p<2 and that f is in the L?
domain of A or that 2<p<oo and f is in the L? domain of A. In the latter case
assume also that feL(u) for some q>p. Let >0 and put

(4.6) k(z) =1f(2)]*+e.
Then

F1p/2—1 — p/2
(4.7) p [ ANFt | ey

and both integrands are in L'(u).

Proof. Note first that ke C>(M) and is bounded away from zero. For p>2
we have feHND(A,)CHND(A2)CH2. For 0<p<2 we clearly also have feH?2.
Hence Af=Zf=(Z+Z)f=Xf. Since X is a real vector field we have

XKPI? = 3pkP/2 = Xk = 3pk?/ 2N (X ) f+ FXT) = §k?* 7 (AN F+FAT).
Hence
(4.8) Xk?/?(2) = pRe((Af)(2) f(2)k"* 71 (2)),
Now the left-hand side of (4.7) is real by [G3, Proposition 4.2]. So

(4.9) P /M (Af)FrP/2 N dp= /A ] XkP/2dp.

If p>2 and r=q/p then (kP/2)"=k%/2=(| f|?+£)9/2 which is in L'(g). Moreover the
right-hand side of (4.8) is in L'(1) by [G3, Lemma 4.1}. Hence XkP/2€ L!(p). Thus
by (4.5) we have

(4.10) XkP2du= | KP/°W dp.
il
M M

If p<2 then (kP/2)2/P=ke L'(k). So the same argument again yields (4.10). Equa-
tion (4.7) now follows from (4.9) and (4.10). O
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Corollary 4.6. Under the hypotheses of Lemma 4.5 we have
(4.11)

p(Af, fk?/21) 58( / kP/2 log kP/? du—||k1/2||510g||k1/2||;’3)+||k1/2||53(8)
A

I

for s>3¢ and p>0. Moreover, if p>1 then

£
11l

Here (-,-) refers to the L?(u) inner product.

P
(4.12) p(Af, fIfIP?) < S/M |f|plog( ) du+|fIIEB(s) for s> .

Proof. The inequality (4.11) follows from (4.7) by applying Lemma 2.15 to
the function h=kP/2=([f|2+¢)P/?. Now if p>2 then fkP/?>~1 converges to f|f[P~2
in L” (1) by dominated convergence as £/0 because ||f|f|p_2||p,=||f||p<oo. Since
AfeLP(u) the left-hand side of (4.11) converges to the left-hand side of (4.12),
as /0. Also by dominated convergence, and for all p>0, the right-hand side of
(4.11) converges to the right-hand side of (4.12). This proves (4.12) for p>2. If
1<p<2 then f and Af are in L?(i), by assumption. In this case one verifies that
fEP/2=1 f|£|P=2 in L2(u), which proves (4.12) in this interval also.

Note. The inequalities (4.11) and (4.12) are reverse coercivity inequalities be-
cause A is a second order differential operator. We will see that the reverse loga-
rithmic Sobolev inequality (4.4) is, informally, just another form of these inequal-
ities, given the integration by parts identity (4.14) for holomorphic functions. Al-
though (4.12) is more perspicuous than (4.11) it seems to be less useful because of
the technical problems associated with the zeros of f.

The inequality (4.12) was conjectured in [S1] for the case of Gauss measure on
C™ for p#2. For p=2 and Gauss measure a variant of (4.12) was proved in [S1]
with a different coefficient in the norm term.

Lemma 4.7. Under the hypotheses of Lemma 4.5 we have
(4.13) / kP42 dpu+ B / W2V P dp= / kPI2W dy
M 4 Jm 4 Jar

and all integrands are integrable.

Proof. Combining equations (4.27) and (4.6) of [G3] we get
(4.14) / VRP/ du B / kP22 f 2 ap =2 (A, fR27Y).
M 4 Ja 4

Apply (4.7) to the last term to find (4.13). O
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Remark 4.8. Integration by parts identities such as (4.14) would be difficult to
verify for | f(z)[P/2 rather than (|f(z)|2+¢<)P/* because of the singularity of | f(z){P/?
at the zeros of f. Although Equation (4.2) is exactly (4.13) with ¢=0 it was nec-
essary to prove (4.13) for £>0 because of difficulty at the zeros of f (cf. [G3, Sec-
tion 4]). In order to prove Theorem 4.1 it will be necessary now to show that the
second term on the left-hand side of (4.13) goes to zero. as £/0. We have only been
able to do this for p>2. But this seems likely to be correct for all p>0. The next
two lemmas and corollary are devoted to showing that one may let £/0 in the terms
on the left-hand side of (4.13).

Lemma 4.9. Let 0<p<oo and let f be in H(A[). If 0<p<2 assume that f
is in the L? domain of A. If p>2 assume that f is in the LP domain of A. Let
6>0. Then

(4.15) lims/ (fI2+e)P 22| Vf2du=0. 0<p<oc.
A0 Jif2xs

Proof. Let k(z)=|f(z)[*+¢. For any real number 2>J we have (z+¢)/z=
l+e/z<1+¢/8. So |f|?<k<|f|?>(1+¢/d) if |f|°>6. Suppose first that 0<p<4.
Then 1p—2<0. Hence

_ _ _ £\p/2-2
(FRy2=2 2 k22 > (| /22 (142

wherever |f|2>6. By [G3, Lemma 4.1 and Proposition 4.2] the right-hand side of
(4.14) is finite under the hypotheses of the present lemma. Therefore both terms

on the left-hand side of (4.14) are also finite. and in particular the second term on
the left-hand side. Therefore

e /2—2 _
(3] [ peestus [ R s,
[f12>6 [f12>4

So
ef wrmvspause [ i vsRds
[f12>08 1f|22>8
which goes to zero, as €/0.

Suppose now that p>4. Then 1p—2>0. So (|f]?)P/2-2|VfI><kr/?=2|Vf|?
which is integrable over Af. Hence

e\/2-2 _
o I 7 TR (S e O e N
|£1728 0

11226

which goes to zero, as €]0. [



Reverse hypercontractivity over manifolds 303

Corollary 4.10. Let p>2 and let feH(M). If f is in the LP? domain of A
then

(4.16) lime/ (f)2+e)P 22|V fI2du=0.
0 Jar
Proof. By Lemma 4.9 it suffices to prove that. for fixed >0,

(4.17) lims/ (If2+e)?/22|V f|2 dp=0.
0 Jif2<s

We may assume that f is not identically zero. Now u({z€AM{: f(2)=0})=0 because
f is holomorphic. Moreover &(|f(2)|?+¢)?/2~2|V f(z)|? converges to zero at any
point where f(z)#0. Furthermore, for any fixed €>0, (|f(2)|?+¢)?/2~2 is bounded
away from zero on {z:|f(2)|2<d}. By the argument given in the proof of Lemma 4.9
we have

/m P+ =2V P du< .
2«

Hence [ s|Vf2du<oo. But e(|fPP+e)P/2-2<(|fP+e)P/27 1 <(54+e)P/2 " if
|f(2)|?<é because % p—1>0. We may therefore apply the dominated convergence
theorem to conclude the validity of (4.17). O

Lemma 4.11. Let 0<p<oo. Suppose that f€H (M) and that
/ |V(|f|2+£)p/4|2du< oc for some g >0.
M
Then

(4.18) lim/ |V(|f|2+s)p/4|2du=/ |VIF1P2[*dp. 0<p<co.
ed0 Jag M

Proof. We may assume that f is not identically zero. The integrand on the
right-hand side of (4.18) should be interpreted as undefined on {z€M: f(z)=0}.
Since this is a set of x4 measure zero the integral is well defined. At a point z such
that f(2)#0 we have V(|f|2+£)1’/4=ip(|f|2+5)”/4‘1V|f|2. So

(4.19) IV(f 2 e = Ap) (1 FP+e)P/ 22| VIf )7, ex0.

If 3p—2>0 the right-hand side decreases to |V|f[P/ 2|2. By the dominated conver-
gence theorem, (4.18) holds because p({z:f(z)=0})=0. If ;p—2<0 the right-hand
side of (4.19) increases to |V| fIP/ 2|2. So the monotone convergence theorem ap-
plies. O



304 Fernando Galaz-Fontes, Leonard Gross and Stephen Bruce Sontz

Proof of Theorem 4.1. Consider first the case p>2. The identity (4.13) holds
under the hypothesis of Theorem 4.1. By Lemma 4.11 the first term on the left-hand
side of (4.13) converges to fM|V|f|”/2|2dp, as £/0. By Corollary 4.10 the second
term on the left-hand side converges to zero. The right-hand side of (4.13) converges
to 1 f,, If[PW du by dominated convergence since (|f|>+¢)?/2W is integrable for
some €>0. This proves (4.2). The proof of the inequality (4.3) is similar. One need
only drop the positive second term in (4.13), obtaining an inequality which persists
in the limit €/0. O

Proof of Corollary 4.3. This follows from Theorem 4.1 by applying Lemma 2.15
to (4.2) for p>2 and to (4.3) for 0<p<2. O

Remark 4.12. The reverse hypercontractivity and reverse logarithmic Sobolev
inequalities that we have proven are valid specifically for holomorphic functions. But
other surprising “reversals” of long established inequalities relating to logarithmic
Sobolev inequalities have recently been found in nonholomorphic categories. See,
for example, the exposition of M. Ledoux, [L, Section 7]. concerning reversed Herbst
inequalities and the paper of F. Y. Wang, [W].

5. Other measures on C™

It is essential that the Dirichlet form operator V*V associated to a triple
(M, g, 1) leaves invariant the space of holomorphic functions on Af. Otherwise the
semigroup e~*4 does not even leave any reasonable holomorphic function spaces
invariant. In order for V*V to leave H(A[) invariant the metric g and measure
4 must be properly related. We will describe a class of measures g on C™ and
corresponding metrics g for which V*V leaves H(C™) invariant. For these we will
compute the function W defined in (2.23) and thereby show the existence of a large
class of measures on C™ for which reverse hypercontractivity holds. This class of
measures has already been studied in [G3. Example 5.1]. We will use the notation
from that example.

Let ¢ be a strictly positive function in C>(]0.0c)). Assume that its derivative
¢'(s)<0 for 0<s<oo. Define w(z)=p(|z[?) for z€C™ and p(z)=—by'(|z|?) for
some constant b>0. Let o(z)=w(z)/p(z). Choose b so that the measure

du(z) = o(z) dx

is normalized. Let g be the metric on C™=R?™ given by g;;(z)=0;;/c(x). Then
(C™,g,p) is a holomorphic triple satisfying our Standing Assumptions 3.3. (See
[G3, Section 5].)
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It is shown in [G3, Section 5] that

2 & ) 0
SINCT e

which we will write as X=(2/b)z-V. If y€C>*(C™) then

/m(Xw)du=/C (X))o / (z-V¥)o(z)dx
:‘.5/(3771 w(x)V.(xg(a:))dx=—E /C ¥(z)(2mo(x)+z-Vo)dx
2

:~Z/m1/)(x)(2m+ o )x Vg) ofx) dz.

So W(z)=—(2/b)(2m+o(z)~'z-Vg). Now Vo=—bo"(|z|?)V|z|>=—2bp"(|z|*)z.
Therefore z-Vo=—2b|z|?¢"(|z|?). Thus
1 2Jz|*0" (Jz]*)
_x.VQZ LN LR N
o(x) ¢'(|=(?)

Hence

2,0 2
(5.1) W(z)= —% <m+———|ijzla§||§)| )>.

For example, if we take ¢(s)=(2mc)"™e~*/2¢ and b=2c then p(z) is Gaussian
and g dx=d~y,. Moreover ¢ (s)=—(2c)~1¢/(s). The identity (5.1) therefore reduces
to W(z)=c %|z|*-2m/c, in agreement with (2.37).

Since
xp<§(-—)) = [ ewee (b (o) da

it is clear from (5.1) and the Gaussian case that, if ¢(s)=e~"(®) then B(a) will
be finite for some a if v(s) deviates just a little from linear (e.g. on a compact set,
provided v’(s)>0 on [0, 00)). Clearly (2.27) and (4.1) also hold if v(s) differs slightly
from linear. The vector field X is two-sided complete because it is the same as in
the Gaussian case.

Thus we have a large class of non-Gaussian measures on C™ for which re-
verse hypercontractivity, (3.8), holds, Carlen’s identity, (4.2), holds and the reverse
logarithmic Sobolev inequalities, (4.4), hold.

6. The Riemann surface for z1/™

Choose an integer n>2. Denote by M, the n sheeted Riemann surface associ-
ated to z!/". Let C*=C\{0}. Then M,, is a covering space of C* with n leaves.
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Let o: M, — C* be the covering map and let g be the standard Riemannian metric
on M,. This is the metric that makes a, an isometry at each point. That is,
g=dz*+dy? in the obvious local coordinates x and y lifted from C*. We take p
to be the measure on Af,, whose density with respect to the Riemann area element
dx dy is (1/n)p.(a(z)) where pc(w)=(27rc)‘1e‘|“'l2/2C for weC*. In other words we
divide the Gaussian density p. equally among the n sheets. Then p is a probability
measure on M,. This example was extensively discussed in [G4].

It was shown in [G4, Section 6] that the triple (M. g, ) is holomorphic and
that the Standing Assumptions 3.3 hold. This example differs from those in the pre-
ceding section, not only because of the different topology of the underlying manifold,
but also because H? is of codimension n—1 in HNL2(u). From {G4, Theorem 6.1]
we will use the form of the vector field X. It is

1 7] 17}

in the obvious local coordinates = and y.
All of our results are applicable to this example.

Theorem 6.1. The u divergence. W. of X satisfies (2.26) and (4.1). The
reverse hypercontractive inequality (3.9) holds.

Proof. 1f 4v€C2*(M,) and is supported in one leaf over a disk in C* then, in
local coordinates r and y, we may compute

/ (X¢)du=1 / (202490, )0z 4)) ~pe(e. y) dz dy
Mn ¢Je- n

=X [ p(ey)(@pet (@0, +90,)pe(x,y)) da dy
Cn Ct

_1 |22 )}
= /o 1/’(%?/)(7— npc(ac.y)dxdy.

So
(6.2) W(z):%(@—2).

where z is a local coordinate on one sheet. Clearly W takes the same value at all
points in M,, which project to the same point in C*. The function W has the same
appearance as in the Gaussian case on C, (2.37), but is defined on Af,, rather than
on C. Since W is invariant under change of leaf the integral f,, €"(*/*dyu can be
evaluated by integrating over C*. The function B(s) is therefore the same as in the
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Gaussian case and is given by (2.40). So (2.26) holds. Since ||W || .- is the same as
in the Gaussian case, (4.1) also holds. Since B(s) is the same as in the Gaussian
case the computations leading to (3.9) are the same as in Example 2.16. The flow
of X is again given by (2.45), which should now be interpreted on A,. Thus all
the results of Sections 2, 3 and 4 are applicable to this example.

7. The weighted Bergman spaces

The weighted Bergman spaces give another example of spaces for which our
Standing Assumptions 3.3 hold. But the vector field X is not two-sided complete.
We will show that reverse hypercontractivity fails.

Let M={2€C:|z|<1} and take the metric g to be g=(1—|2|?)"!(dz?+dy?).
For any A>—1 define duyx(z)=ax(1-|z|?)* dr dy. where a, is a normalization con-
stant. The weighted Bergman spaces are the holomorphic function spaces HN
L2(M. p»). It was shown in [G4, Section 5] that V*V is holomorphic, that our
Standing Assumptions 3.3 hold and that

a
(7.1) X =2+
in polar coordinates. Moreover, for all p€(0.oc). HP=HNLP(uy) if A>0. (For A<0
one must use non-Dirichlet boundary conditions to obtain this equality. See [G4,

Section 5].) If p€C2°(M) then a straightforward computation in polar coordinates
shows that

| xoddin= [ W@ (o)
Al A

where
(7.2) W,\(z)=4(/\+1)(1—:%|—2—()\+1)).

It follows from (7.2) that (2.26) fails if A>0, while (2.27) fails if A<0. The as-
sumption (4.1) fails whenever A#0. If A=0 then (2.26) and (4.1) hold. But in
all cases X is not two-sided complete because exp(tX) is a dilation if £>0, as one
sees from (7.1). The case A=0 is of principal interest to us here because all of
the hypotheses of Theorem 3.4 hold in this case except that X is not two-sided
complete.

If T>0 and p; >pp>0 then a reverse hypercontractive inequality

(7.3) e fllpy 2 Cllfllpes  C>0. fEHNLP (1)

cannot hold for any A>—1 and in particular for A=0. To see this pick an integer
k>1 such that

[ el dus(2) =oc.
Al
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For each number b>1 let fy(2)=(b—z)~%. Then fo€ H(M)NL> (1) while || follp, =
oo, as bl1. But, writing a=2(A+1), equation (7.1) suggests that (e"T4f,)(z)=
Jo(e=To2) for zE M. A complete proof of this identity is given in [G4, Section 5]
for all A. (For A<0 one must choose appropriate boundary conditions for A.)
So |fy(e7Tez)|<(b—e To) k< (1~e~T*)=F for all b>1 and for all ze M. Hence
le=T4 fo|lp, <(1—e~T*)"F<oo for all b>1. Therefore the inequality (7.3) cannot
hold.
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