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Reverse hypercontractivity over manifolds 

Fernando  Galaz-Fontes(1),  Leonard Gross and  Stephen Bruce Sontz(~) 

Abstract .  Suppose that X is a vector field on a manifold M whose flow, exptX, exists for 
all time. If p is a measure on M for which the induced measures Pt--(exptX)*P are absolutely 
continuous with respect to p, it is of interest to establish bounds on the Lp(p) norm of the Radon- 
Nikodym derivative dpt/dp. We establish such bounds in terms of the divergence of the vector 
field X. We then specialize M to be a complex manifold and derive reverse hypercontractivity 
bounds and reverse logarithmic Sobolev inequalities in some holomorphic function spaces. We give 
examples on C TM and on the Riemann surface for z 1/'. 

1. I n t r o d u c t i o n  

E. Carlen,  [C], has shown tha t  the Orns t e in -Uh lenbeck  semigroup has some sur- 

prising reverse hypercont rac t iv i ty  propert ies  when restr icted to holomorphic func- 

t ion spaces. Denote  by ~/the Gauss  measure  on C m with densi ty  const,  e x p ( - � 8 9  Ixl2), 

and  by A the nonnega t ive  selfoadjoint Dirichlet form operator  on L2('~) de te rmined  

by (Af, g)L2(.y)=fcm Vf.VOd"/. It  is well known tha t  if l < p 0 < p l < c ~  then  the 

hypercont rac t iv i ty  inequal i ty  

(1.1) Ile-Tnf[lLpl('y) < IlfllLpo(w), f ELP~ 

holds if T is sufficiently large. But  Car len showed tha t  if f is holomorphic and  T > 0  

is sufficiently small t hen  

(1.2) Ile-Ta fllLpx (.~) >_ CIIfllLoo(-~) 

for some cons tan t  C depending  on P0, Pl ,  T and  m. One  can even allow 0 < p 0 <  

p~ <oo.  

In  a recent paper,  [S1], the thi rd  au thor  showed tha t  reverse logari thmic 

Sobolev inequali t ies  hold in the holomorphic category for Gauss  measure  on C m. 
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This was discussed further in the papers [$2] and [GS]. In view of the known connec- 
tion between hypercontractivi ty inequalities such as (1.1) and logarithmic Sobolev 

inequalities, [G1], [G2], it is reasonable to expect that  Carlen's reverse hypercon- 
tractive inequalities (1.2) are linked to these new reverse logarithmic Sobolev in- 
equalities. It  is the purpose of this paper  to explore this connection and to do so in 
a quite general context. 

We will actually show that  both  reverse hypercontractivity and reverse loga- 
rithmic Sobolev inequalities over certain complex manifolds are simply consequences 
of the fact that  a Dirichlet form operator  reduces to a first order differential op- 
erator when applied to holomorphic functions. Our method of proof of reverse 
hypercontractivity for complex manifolds extends the method first introduced for 
Gauss measure in [GS]. In order to carry out this extension it is necessary to esti- 

mate  the L p norms of the Radon-Nikodym derivative dpt/d#, where # is a given 
probabili ty measure on a (not necessarily complex) manifold M and #t is the meas- 
ure induced from it by a smooth flow, exp( tX) ,  on M. Est imates  of this sort 

seem to have been first studied in the ground breaking work of Ana Bela Cruzeiro, 
[Crl], [Cr2]. Her estimates have been further exploited in the work of B. Driver, 
[D], Bogachev and Mayer-Wolf, [BM], and Cipriano and Cruzeiro, [CC]. These pa- 
pers are concerned primarily with the problem of global existence and uniqueness 
of the flow for a not necessarily smooth vector field X,  in both  finite and infinite 
dimensions and in the quasi-invariance of the flow. Our concern here is in obtaining 
good estimates for IId#t/dlZllLp(~) for p >  1. We will make a refinement of Cruzeiro's 
estimates using a variant of the infinitesimal technique that  underlies the method 
of [G1]. To this end we consider a smooth function r: [0, T]-+[1,p] and est imate 
the derivative dl l foexp(- tX  ) IIr(o/dt from below, using a kind of reverse coercivity 

inequality. The resulting est imate is a functional of the function r. We are able 
to solve the Euler equation for this functional in the Gaussian case, yielding the 
exact value of IId#t/d#llLp(t 0 in that  case. Our estimates are sensitive enough to 
distinguish between X and - X .  

We then apply this real manifold theorem to certain Dirichlet form operators 
over complex manifolds to obtain reverse hypercontractivi ty in the sense of (1.2). 

By way of examples we will give Gaussian and non-Gaussian measures on C m. 
(Sections 2 and 5.) We will also show that  our method applies to the Riemann 
surface for z 1/'~ with a natural  measure on it. (Section 6.) In Section 7 we will show 

tha t  reverse hypercontractivity fails for the weighted Bergman spaces. Moreover in 
the case of the unweighted Bergman space exactly one of our hypotheses breaks 

down, showing the key role of this hypothesis. 

Reverse hypercontractive inequalities of the form Ile-tAfllq >>_ Ilfllp for f > 0  (and 
therefore non-holomorphic) have been explored by C. Borell and S. Janson, [B1], 
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[B2], [BJ]. In their work the indices p and q are typically related by - e c  < q < p <  1. 

In a sense this range of indices complements ours. Yet the subject mat te r  of their 
work is quite different from ours in that  the generator A is a genuinely second order 
elliptic operator in their work while it degenerates into a first order operator  in our 
holomorphic context. 

2. T h e  L p n o r m  o f  t h e  d e n s i t y  i n d u c e d  b y  a s m o o t h  f low 

Notation 2.1. Denote by M a finite dimensional manifold and let # be a prob- 
ability measure on M with a smooth, strictly positive density in each coordinate 
chart. Denote by X a smooth vector field on M whose flow, exp(tX)-e t i ,  exists 
for all real t. Let 

(2.1) Pt = (exp( tX)) .# .  

Since #t also has a strictly positive density in each coordinate chart the Radon-  
Nikodym derivative 

dut 
(2.2) Jt - 

d# 

exists for all real t. 

Of course one has IIJtllLl(,)=l. In this section we will derive estimates for 

IIJtllLp(~) for p > l .  

Notation 2.2. Let 0 < x < o c  and 0 < T < o c .  Let exT<p<oc. A continuously 

differentiable function r: [0, T]--+[1,p] will be called x-dominant for T and p if 

(2.3) r ( 0 ) = l ,  r(T)=p 

and 

(2.4) r'(t) > xr(t) for 0 < t < T. 

If the values of T and p are clear from the context we will simply say that  r is 

x-dominant .  Here and in the following r '  denotes the derivative of the function r. 

Example 2.3. ( x > 0 )  Define for x > 0 ,  

(2.5) rx(t)=aeXt-b, 0 < t < T ,  



2 8 6  F e r n a n d o  G a l a z - F o n t e s ,  L e o n a r d  G r o s s  a n d  S t e p h e n  B r u c e  S o n t z  

where 
p - 1  

(2.6) a -  e~,T-------~ 

and 

p - -  e ~ T  

(2.7) b = eX T _  1" 

Then r~(t)=a~e:~t=xrx(t)+xb. Since p>e xT we see that b>0 and therefore (2.4) 

holds. One verifies easily that  (2.3) also holds. 

Example 2.4. ( x = 0 )  Define 

(2.8) ro(t) = 1+ ( p -  1)t 
T 

Then it is immediate that  (2.3) and (2.4) hold for x = 0 .  Writing 

e xt - 1 

r~(t) = l +(p--1)exT_ 1 

one sees that  r~ converges uniformly on [0, T] to r0 as x$0.  

Notation 2.5. Let x_>0 and let B: (~, ~c)-+[0, oc) be continuous. For T > 0  and 
e~T <p< e~ define 

A ( r ) = [  T 1 / r ' ( t ) \  (2.9) 
, ] o  

for any x-dominant  function r for T and p. Since r ' / r>x  on [0, T] and r(t)_>l the 
integrand is continuous in t on [0, T]. Hence the integral exists. 

For the particular functions in Examples 2.3 and 2.4 we write 

(2.10) A~(T,p)=A(rx) f o r x > 0 .  T > 0 .  eXT<p<oc. 

Remark 2.6. It will be useful to express Ax in a more explicit form. For x > 0  we 
may make the change of variables y(t)=~b/r(t), where r=rx. Then y '=-~br ' / r  2. 
Also, since r '=~r+xb we have r ' / r=x+y.  But y(O)=xb and y(T)=~b/p and 
r(t) -1 dt=(-xbr ' / r ) - l ( -xbr ' / r  ~) dt=(-xb(x+y))  -1 dy. Hence 

1 ~,r B(x+y) dy, x >  
(2.11) l~(T,p) = - ~  b/p x+y  O. 

For ~ = 0  the substitution y=(p-1)/Tro(t) gives, similarly, 

T /(p--1)/T B(y) 
(2.12) A0(T,p) = ~ J(p-1)/Tp Y dy. 

In the following we write CI(Ill)+={hECJ(M):h>_O}. By p' we denote the 
conjugate index to p. 
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T h e o r e m  2.7. Let ~>_0. The following statements are equivalent: 
(a) fA~ Xhdl~<-s fA, h(z)log(h(z)/llhllt ) d~(z)+B(s)llhlh for all h~C~(M)* 

and s > ~:; 
(b) Ilhoe-TX[]p>_llh]lle-A(r) for all T>O, p>e ~'T, hEC~(~I) + and for all z -  

dominant functions r; 
(c) Ilhoe-TX[[p>lthll]e-;~,~(T.p) for all T>O, p>e ~T and h~C~(M)*; 
(d) IIJTHp, <e A&) for all T>O, p>e ~T, and for all x-dominant functions r; 
(e) IIJTl[p, <_e A~(T'p) for all T > 0  and p>e ~T. 

We will prove Theorem 2.7 after establishing the following three lemmas. 

L e m m a  2.8. Let T>O and l<p<c)c .  Let 0 < C < o c .  Then 

(~.13) //Jrll~, < c 

if and only if 

(2.14) CIIh~ for all hEC~(M) +. 

Proof. Since hoe TX is in C~(M) + if and only if hEC~(M) + the inequality in 
(2.14) may be replaced by the inequality 

(2.~5) Ctlhll~ _ 41ho~ v x  tl~- 

But if (2.13) holds then 

IIh~ [l~ = ~ I  h(z)JT(Z) dlz(z) < Ilhllp]lJTllp' <_ Cllhllp. 

Thus (2.15) and hence (2.14) holds. For the converse we just need to know that  

CI(M) + is dense in (LP) +, because the validity of f M f J v d ~ C ] ] f ] ] p  for all f E  
(LP) + implies (2.13). Now if fECc(M) + then also fl/2EC~(M)+. By using a 
partit ion of unity one sees that there exists a sequence h ,  ECc 1 (M) such that  hn-+ 
fU2 uniformly o h M .  Then also h2~-+f uniformly. Therefore, since C~(M) + is 
dense in (LP) +, so is CI(M) +. Now assume (2.14) holds. If fE(LP) + and fn is a 
sequence in CI(M) + that  converges to f in L p norm and pointwise a.e. then fnoe TX 
converges to foe vX a.e. and is Cauchy in L 1 norm by (2.15). Thus (2.15) follows 

f o r f .  [] 
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L e m r n a  2.9. Let hEC~(ltl) + and suppose that r: [0, T]--+[1,p] is continuously 
differentiable. Let 

(2.16) 

Then 

(2.17) 

ht(z) = h(exp(-tX)z) for z �9 M and t >_ O. 

d llhtllr(t) = h t ~(~) 1-r(t) 1 r_~) ( r' _ ~ t  h[ log( ,, h~r(o ) d#_ fM Xht(t) dlz ) 
r \ II I~t IIr(t) 

for 0 < t < T .  

Proof. If h is supported in a compact set K then ht is supported in the com- 
pact set exp(tX)K. For any real number a_> 1 the derivative dh~(z)/dt=-Xh~(z) 
and is also continuous in t and z and has compact support on M. The following 
computation, a variant of that  in [G1, Lemma 1.1], is therefore easily justified. Let 
v(t)=fM ht(z) r(t) d#(z). Then we have 

Hence 

dv f , r 
--~ = ]At r ht log ht d # - ~ l  Xh~ d# �9 

_ r s d llht[[~(t) dv Ur(t) _ lv(~- t_l)  dV __vUrlog v 
--~ r clt r 2 

= lv(r-l-D ( ~ ( L h[ log h[ d# -v  log v) - jfM X h[ d# ) .  

(2.18) 

and 

(2.19) 

For x = 0  we have 

(2.20) 

[] 

L e m m a  2.10. Let s>x_>0. Then, for g > 0 ,  

lim A~(T, e sT) = 0 
T t 0  

~I~A~(T, e~T) T=o+= B(s) �9 

lira ~o (T, 1 + sT) = 0 
T40 
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and 

(2.21) 0 I 0-~ Ao(T, l + s T )  = B(s). 
T = O  + 

Proof. For ~ > 0  we have, upon expanding the following exponentials, b(T) -  
b= (e sT - e'r)l(exr - 1) = ((s- ~) + O(T)) / (x+ O(T)). So b(T) -+ (s - x ) / x ,  as T$O, 
and x b - 4 s - ~ - Y o  >0. Moreover b(T) has a real analytic extension to a neighbor- 
hood of T=0.  Therefore, writing p=p(T)=e sT, we have 

l (O(xb) 1 l ob+-  F asT,O. 
~b \ tOT OT ,] = -b pOT 

The derivative of the factor (xb) -1 in front of the integral in (2.11) does not con- 
tribute in the limit as T$0, because the upper and lower limits both converge to Y0- 
Since B(x+y)  is continuous at Yo the lemma follows. The proof for ~ = 0  is similar 
and a little bit simpler. [] 

Remark 2.11. Any C 2 function p: [0, 5)-4 [1, co) such that  p(0)= 1, p(T) >e XT 
and p~(0)=s would work in this lemma in place of e sT. 

Proof of Theorem 2.7. By Lemma 2.8 the statements (b) and (d) are equivalent 
and the statements (c) and (e) are equivalent. So it suffices to show that  (a), (b) 
and (c) are equivalent. We will show that  (a) ~ (b) ~ (c) ~ (a). 

Assume that  (a) holds. Let hEC~(M) + and define ht by (2.16). Let r be a 
x-dominant function for T and p. Fix tE[0. T] and put s=r~(t)/r(t) in (a) with h 

replaced by ht (t). Inserting the resulting inequality into the identity (2.17) yields 

Hence 

d _ _llhtlllr_~llht ~ r' 

1 /Wt\ 
ddt l~ [lhtllr(t) > - - ~  B (  r )" 

Integration of this inequality from 0 to T gives 

(2.22) IlhTllp >_ [[hlile -A(r) for all h e CI(M) +, 

which is (b). Now (c) is just a special case of (b), with r chosen as in Example 2.3 
or 2.4. It remains to show that (c) implies (a). 

Assume that  (c) holds and that  h~C~(M) +. Suppose first that  x > 0 .  Let 
s > x  and put p=p(T)=e ~T into (c). By (2.18) the right-hand side of (c) converges 
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to Ilhlll, as T$0. Clearly the l e •hand  side converges to Hhlll also. So we may 
differentiate (c) at T = 0 .  By (2.19) one obtains for the derivative on the right-hand 
side -IlhlllB(s). To compute the derivative of the left-hand side we may apply 
(2.17) with r(t)=e st. We find, at T = 0 ,  

d o -TX 

which is therefore >-HhH1B(s). The resulting inequality is exactly (a). The proof 

for x = 0  is similar. One puts p = l + s T  into (c). [] 

Definition 2.12. The p-divergence of X is the function W defined by 

(2.23) JtJh/iX~pdP=ftcpWd# for all p~Ca~(M). 

If  one writes equation (2.23) in a local coordinate chart (U, x) with support  
~ c U  one sees immediately that  W exists and is a C ~ function on U. By using 
a smooth parti t ion of unity it follows that  there is a unique function W on M 
satisfying (2.23). Clearly W is real and in L~or tt). All of our results on reverse 
hypercontractivity and reverse logarithmic Sobolev inequalities will depend on W. 
In regard to the terminology in Definition 2.12 note that  if X is a smooth vector 

field on R n and d # = ~ ( x ) d x  then W = - d i v X - X  log Q. 

Notation 2.13. Let 

(2.24) B(s) -- log e W(z)/~ d#(x) , 0 < s < co. 
! 

Define 

(2.25) x = inf{s > 0 : B(s) < ~ } .  

We will assume throughout that  B(s)< oc for some s E (0, oc) and therefore 

(2.26) z < co. 

This imposes a strong restriction on the positive part  of W but no restriction on 
the negative part.  We will assume throughout that  

(2.27) W ELI (# ) .  

In this case (2.23) also holds for ~p=l, as will be shown in Lemma 4.4. Therefore 
fM W d#=O. Jensen's inequality now shows that  f e W/s d#>_exp(f  W dtt/s)--1. 
Thus B(s)>_0, which is consistent with our assumption in Notation 2.5. 
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(L p bound) Let x>O and T > 0  and assume 

e xT < p <  (X:). 

Let r be a x-dominant  function for T and p. Define B by (2.24) and A by (2.9). 
Then 

(2.29) IIJTInp, ~ e A(r). 

In particular 

(2.30) [[JT[lp' ~-- eA"(T'P). 

Note that, in view of (2.11) and (2.12), the inequality (2.30) can be written 

log e W/(x+y) dl~ dy for x > 0 (2.31) [[JT[[p' < e x p  ~ b/p t 

and 

(2.32) HJTHP' ~ e X p ( p  --T1 J(p-1)/Tpf(p-1)/T(klOg JM / e W / Y d P ) d y )  for x = 0 .  

The proof of Theorem 2.14 depends on the following lemma. 

L e m m a  2.15. Suppose that W is a real valued function in LP(#) for some 
pC [1, oc). Suppose that h is a nonnegative function in L p' (#). Define x by (2.25). 
I f  s > x then 

(2.33) fM hw dF. <s ( fM h log h d.-IIh,I1 log Ilhlll) + tl hll, B(s) 

Proof. This proof is a slight variation of that given in [G1, Theorem 7]. Let 
a > 0  and apply Young's inequality, x y < x  l o g x - x + e  y, which is valid for x > 0  and 
y e R ,  to the numbers x = s h ( z ) / a  and y = W ( z ) / s  to find 

~, h(z) W(z) d,(z) 
a 

= [ sh(z) W(z) 
dp(z) 

JA I a 8 

a 1 Jhl 
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Note that  all terms are well defined since h log h is integrable. Multiplying by a we 
get 

(2.34) ~ h(z)W(z)d#(z)<_~ sh(z)log(~)d#(z)-s,lh,,l+ae s(s)/8. 

Put  a=s[[hllle -s(8)/~ in (2.34) to conclude that  

) dtt(z)-sHhHl-~-sllhH1 \ Ilhlll / 

= s ( f  M h(z) l~ logllh'l,)+llhlllB(S). [] 

Pro4 4 Theorem 2.14 For  any function heC~(M)* we h a v e  fMXhdp= 
fM hWd~ by (2.23). Lemma 2.15 now shows that  condition (a) of Theorem 2.7 
holds�9 But (2.29) and (2.30) are just restatements of conditions (d) and (e) of 
Theorem 2.7. [] 

Example 2.16. (Gauss measure on Rn.) Let 

e-lxl~/2c 
(2.35) d%(x)- (27rc)./~ dx 

denote the Gauss measure on R n. We will be especially interested in the dilation 
vector field 

(2.36) X = l x - V .  
C 

This vector field arises naturally in the context of Dirichlet forms in holomorphic 
function spaces, [G3, Section 5]. We may compute W as follows. Let ~ECJ(Rn) .  
Then 

s f. C j = l  \ 3 

:/. o),,.(x> 
Hence 

(2.37) W ( x )  = 1 - n  
C 
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A straightforward Gaussian integration now shows that 

(2.38) 
R / 2 \-n/2 

o e  W(x)/s , s c >  2 

The integral is infinite if sc~_2. Hence 

2 
e 

and 

K ), (2.40) B(s) = - 2  

Thus (2.26) holds. Since W is quadratic (2.27) also holds. Hence Theorem 2.14 is 
applicable. 

For fixed T > 0  and p>e ~T we may seek the optimal K-dominant function r 
for the inequality ]]JTllp'_<e n(r), cf. Theorem 2.7(d). This is the function r which 
minimizes A(r) when B is defined by (2.24). A straightforward but lengthy compu- 
tation of the Euler equation for this minimization problem gives r"-Kr'=O. The 
general solution is r(t)=ae ~t-b and the solution that matches the boundary con- 
ditions (2.3) is exactly that given by (2.5)-(2.7). Rather than show directly that 
this solution, r~, gives a minimum of A(r) we will compute e A ( r ' )  and IIJTIIp, and 
show that they are equal. In view of Theorem 2.7(d) this will show that r~ mini- 
mizes A(r). To this end we will evaluate the integral (2.11). Equation (2.40) gives 
B(s) / s=-  �89 - K/s)). Hence 

(2.41) B(K+y) n (  K+y K ) 
K+y - -~  log Y ~ T y  " 

An indefinite integral of (2.41) is �89 log((x+y)/y), as one can verify by differen- 
tiation. Substituting the limits from (2.11) and simplifying we find 

n ( b+l  1 b+p~ 
Ax(T,p)---~ log b p l o g - ~ ) ,  

where b is given by (2.7). To simplify this further put 

p-1  
O g = - -  p_exT ' 
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which is greater than one. From (2.7) we see that  b+l=(p--1)/(e"T--1) and b+p= 
exT(p--1)/(eXT--1). So (b+l)/b=c~ and (b+p)/b=ae "T. Hence 

(2.42) 

Thus 

(2.43) e.X,,(T-P) = (Ol (1-P-~)e- -xT/p)n /2 .  

By Theorem 2.7 we therefore have 

(2.44) d(eTX)* 'Yc  , < (Ot(1-P-1)e--~T/P)  n/2,  

if p>e ~T. Now the measure #T~(eTX).% is also Gaussian and the left-hand side 
of (2.44) is computable. We have, from (2.36), 

(2.45) eTXx = eT/cx for all T E R. 

Therefore, substituting x-~e-T/cy in the following equations, we have 

where 

(2.46) JT(Y) = e(1--e- "T )lYl2 / (2c) e--(n/2)xT 

with x=2/e as in (2.39). A straightforward Gaussian computation now gives 

( / r  p - 1  ~l-p- '  ,,-t2 
e -xT/p) , l<e~T<p<oc .  (2.47) IFJTIILp' (-~) = \ \ - f S - j ~  ] 

Comparing with (2.43) we see that  

(2.48) II J r  [[., = e ~(T'p). 

Hence the function r,, minimizes h(r)  in the Gaussian case. 
Notice that if we change X to its negative then W changes to - W .  But - W  is 

bounded above. Hence x = 0  for - X  instead of 2/c. Thus our bounds are sensitive 
to a change in the sign of the vector field X. 
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3. R e v e r s e  h y p e r c o n t r a c t i v i t y  o v e r  c o m p l e x  m a n i f o l d s  

Notation 3.1. Let M be a finite dimensional manifold with Riemannian met- 
ric g. Denote by # a probability measure on M. We will always assume that  # has 
a strictly positive smooth density in each coordinate patch. Associated to the triple 
(M,g,#) is the Dirichlet form operator V*V on C ~ ( M ) ,  which is defined by 

(3.1) (V*Vf,~)L2(~)=~ g(Vf(z),V~(z))dp(z),  f EC='C(2~l), ~EC~(2~I) .  

We wish to allow f and p to be complex valued. So in (3.1), g should be extended 
complex bilinearly to the complexified tangent spaces T, (M) |  C. In addition to the 
differential operator V*V we want to make use of the following self-adjoint version. 
Let Q be the closed quadratic form in L2(M, #) with core C~(M), which is given 
by 

(3.2) Q(f) = f~x g(Vf, V f )  d# for f E C ~  (M). 

There is a unique nonnegative self-adjoint operator A in L2(#) such that  :D(Q)-  
domain Q= domain A1/2=_I)(A1/2) and 

(3.3) Q(f) : [[A1/2fi[ 2, f E/)(A1/2). 

We want to study the action of the semigroup e -tA in subspaces of LP(#) consisting 
of holomorphic functions. To this end we will take M henceforth to be a complex 
manifold of complex dimension m and the Riemannian metric g to be Hermitian. 
Let us recall briefly that  this means that  M can be coordinatized in local coordinate 
patches by complex valued functions Zx,..., Zm and the transition functions from 
one coordinate system to another one are holomorphic on the overlap. Moreover if 
zj =xj +iyj then g is Hermitian if and only if 

0 =g , , j = l  . . . . .  m, 
g ' Oxj Oyj 

just as in the complex plane. 

Definition 3.2. The operator V*V is holomorphic if, for any function f E  
C~ V * V f  is holomorphic in any open set in which f is holomorphic. We 
also call the triple (M, g, #) holomorphic in this case. 

In particular if f is holomorphic then so is V*Vf .  

Let 7-/=7-/(M) be the space of all holomorphic functions on M. Then 7-/ is 
invariant under V*V when V*V is holomorphic. This will reflect itself in similar 
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invariance properties for the self-adjoint version A in holomorphic function spaces 
such as 7-/AL2(#). 

Now if fEC~(M) and is holomorphic in some coordinate patch U then the 
Cauchy-Riemann equations, Of/OSj=O, can easily be used to show that  the sec- 
ond order terms in V * V f  are zero in U and that  one simply has V * V f ( z ) =  

m Y~j=I ~j(z)Of/Ozj for some functions ~jEC~(U). Moreover the coefficients ~j  

are holomorphic in U if and only if V*V is holomorphic (over U). In more invariant 
terminology this may be stated as: there exists a unique complex vector field Z of 

type (1, 0) such that  for any function fEC~(M) 

(3.4) V*Vf = Zf  

in any open set in which f is holomorphic. It is not hard to see that  V*V is 
holomorphic if and only if Z is holomorphic. 

Any complex vector field Z on M can be writ ten in the form 

(3.5) Z = �89 

for some unique real vector fields X and Y. The vector fields Z, X and Y are 
clearly determined by the triple (M, g, p). The properties of X and Y will play a 
fundamental  role. 

Standing Assumptions 3.3. We will assume throughout that  V*V is holomor- 
phic and tha t  the flow of the vector field Y exists for all time, i.e., that  Y is 
complete. We will assume further that  Y is Killing. Tha t  is; the flow of Y preserves 
the metric g. 

Under these assumptions there are some holomorphic function spaces that  are 
invariant under the semigroup e - t A  . These are the spaces we are interested in. Let 

7-/2 = L2(#) closure of 7-/MT)(Q), 

7-/p = 7-/2 V~LP(/t) 

NP =closure  of 7-I 2 in LP(#) 

for 2 < p <  oc, 

for O < p < 2 .  

The previous discussion is a summary  of the structures introduced in [G3], where the 
invariance of these holomorphic function spaces under the contraction semigroup 
e -tA is shown. 

When (M, g) is complete then one simply has 7-lP=7-lNLV(#) for p>2 .  See [G3, 
Theorem 2.14] for a proof. If  (M,g)  is not complete then 7-/2 could be a proper 
subspace of 7-LNL2(~). This occurs in the interesting case of the Riemann surface 



Reverse  hypercon t rac t iv i ty  over mani fo lds  297 

for z 1/n. Our theorems are applicable to this case, which will be discussed in 
Section 6. 

It is shown in IG3, Corollary 2.12] that  the semigroup e -tA relates to the vector 
field X by the identity 

(3.6) e- tA f  = foexp( - tX)  for t > 0 and f E 7/p 

for any p>0  when the one-sided flow exp ( - tX)  exists for all t>0.  This is the key 
identity that  we will use to relate the present section to Section 2. 

Unlike the L p spaces it can happen that  ~q is not dense in ~/P for some q>p. 
An example is given in [G3, Section 5]. But we will rule out these uninteresting 
cases by assuming henceforth that  

(3.7) 7-/q is dense in 7-/p i f 0 < p < q < c ~ .  

For the vector field X we may define its # divergence as in Definition 2.12. 

T h e o r e m  3.4. (Reverse hypercontractivity.) Suppose that the Standing As- 
sumptions 3.3 hold, that the flow exp tX  exists for all time and that (2.26) and 
(2.27) hold. Let T>0.  Suppose that po>O and pl>poe xT. Let p=pl/po. Let r be a 
x-dominant function for T and p. Then 

(3.8) Ile-:rAfll,,, >-Ilfllpo exp( -A( r )~ )  for f ET-I "t. 
\ Po / 

Proof. Let fET-/pl and write h=e-TAf .  By (3.6) we have h=foe -TX. Hence 
f=hoe TX. Thus 

[[f[[po = fM [hoeTX [Po d# : f~l [h[PO dpr = fM ,h[PO JT d# 

h po <-HlhlP~ ' = II lip111JTII~' 

The inequality (2.29) now yields Ilfllpo---Ilhll~,e A(r>/~~ which is (3.8). [] 

The following corollary was first derived in [GS]. 

C o r o l l a r y  3.5. (Gauss measure.) Take it=To (cf. (2.35)) on C m and let g be 
the standard metric on C m. Suppose that T>O, po>0 and Pl >poe 2r/c. Then 

(3.9) He-TAfllp~ > Hfllpo(e_~T/p,( PI--Po ~I/p~ -rn ' 
- \Pl  --exTpo ] f E ~.~Pl 

where x =  2/c. 
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Proof. Choose r=rx  in (3.8). Then e A(r) =e ~'(T'p), which is given, e.g., by the 

right-hand side of (2.47). Put  P=Pl/Po and n=2m to get (3.9). [] 

Remark 3.6. For Gauss measure one has in the limiting case Pl =Po e2T/c a 
hypercontractive inequality which goes the other way from (3.9), namely, ([C], [G3], 
[J1], [J21, [Z]), 

(3.10) Ile-ZA fllp, < Ilfllpo. 

Remark 3.7. E. Carlen was the first to derive a reverse hypercontractive in- 
equality in the holomorphic category. [C, Theorem 4]. He obtained an inequality 
for Gauss measure similar to (3.9) but with a smaller coefficient of Ilfllpo" His co- 
efficient, in the present notation, is ((Pl--e2T/cp0)/pl)m/P~ The comparison of his 
methods with ours is especially interesting in that  he used a logarithmic Sobolev 
inequality in a key step in his proof. Such an inequality is usually used to prove 
forward hypercontractive inequalities such as (3.10). Our method does not use a 
logarithmic Sobolev inequality, but rather, is based on a simple use of Hhlder's in- 
equality, in the manner first introduced for Gauss measure in [GS]. In fact in the 
next section we will prove a reverse logarithmic Sobolev inequality. 

It should be noted that  although the proof of (3.9) is based on the exact value 
(2.47), nevertheless equality in (3.9) does not hold for any nonzero holomorphic 
function. This is shown in [GS]. The best constant in (3.9) is not at present known. 

4. C a r l e n ' s  i d e n t i t y  and reverse logarithmic Sobo lev  inequalit ies  

in this section we will continue the assumptions of Sections 2 and 3, specifically 
the assumptions on M, g, # and X stated in Theorem 3.4. In addition we will 
assume that  

(4.1) W E  N LP(#)" 
l<p<:=~c 

The following identity reduces, in the Gaussian case, to an integral identity first 
discovered by E. Carlen, [C, equation (I.7)]. Note that  the semigroup e -tA is a 
contraction semigroup in LP(#) for 1 < p <  cx~ because A is a Dirichlet form operator. 
By the L p domain of A we mean the domain of the infinitesimal generator, Ap, of 
this semigroup as a semigroup in LP(p). 

T h e o r e m  4.1. (Carlen's identity.) Suppose that fET-/(M). If p>_2 and f E  
Lq(#) for some q>p and f is in the L p domain of A then 

(4.2) 4 ~ lVIf]P/2] 2 d#= fM ]flPW d•. 
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If 0 < p < 2  and f is in the L 2 domain of A then 

(4.3) 4 ..flVIfI'/'I ' dp <_ .Jr IflPW dp. 

Remark 4.2. It seems likely that  (4.3) is also an equality. But we have run into 
technical problems concerning the behavior of f near its zeros. In the simple case 
in which M = C  and f is a polynomial it is not hard to show that equality holds 
in (4.3). For a version of (4.2) which holds for all pE(0. co) and which avoids the 
singularities at f = 0  see Equation (4.13). 

C o r o l l a r y  4.3. (Reverse logarithmic Sobolev inequality.) Let p > 0  and as- 
sume f is holomorphic on M. If p>_2 assume that f ELq(tt)n(L p domain of A) for 
some q>p. If 0 < p < 2  assume that f is in the L 2 domain of A. Then 

f ,,,. , , , . . .  )+ (4.4) 4 

if s~.~. 

The theorem and corollary will be proved in the following lemmas. 

L e m m a  4.4. If  hEC1(l~l)MLq(p) for some qE(1,cx)] and XhELl(t t )  then 

(4.5) ~ X h d p = ~ t h W d p .  

In order for (4.5) to hold it suffices that WELq' (p) in place of (4.1). 

Proof. Choose a sequence g,  in CJ(]lI) such that 0<gn_~l and such that  
g,~ converges to one on M uniformly on compact sets. Let 0~UECc~(R)  satisfy 
f _ ~  u( t)dt=l  and u ( t )=0  if t t l ) l .  For z E M  define 

/ /  A (z) = g,, (e 'Xz)~(t )  dr. 
~ C  

Then fn is in C I (M)  and O_<fn_<l. Moreover f ,  has compact support because the 
map (t, z)--*e-tXz is jointly continuous, so that if gn is supported in a compact 
set K and H={e-tXz:ltl<_l, zEK}  then f ,  is supported in the compact set H. 
Now fn(z)--+l for each z E M  because g,(etXz)-~l  uniformly on the compact set 
{etXz:Itl<l}. Using Xfn(z)=df.(e~Xz)/dsl~=o one sees that 

~_ DC 

X A ( z )  = - g ~ ( e ' X z ) u ' ( t )  dt ,  
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Hence IXA(z)l~f~ lu'(t)l dt. Thus the functions X f ,  are uniformly bounded. 
Moreover limn--,~o X f n ( z ) = -  f ~  u'(t) dt=O. If h satisfies the hypotheses of the 
lemma then fn(z)h(z) is in CI(M). Hence by (2.23), 

/M fnhWd#= fMX(fnh)  dp= fM ((Xf€ 

Since Xfn-+O boundedly, the dominated convergence theorem applies to all the 
terms in the last equality and yields (4.5) in the limit, as n-+oc. [] 

L e m m a  4.5. Let fET-l(M). Suppose that 0 < p < 2  and that S is in the L 2 
domain of A or that 2 < p < o c  and f is in the L p domain of A. In the latter case 
assume also that fELq(#) for some q>p. Let e>0 and put 

(4.6) k(z) = lf(z)[2+e. 

Then 

(4.7) p ~1(Af)]kp/2-t  dp= ~xkp/2W d# 

and both integrands are in LI(#). 

Proof. Note first that  kEC~(M) and is bounded away from zero. For p > 2  
we have fe?-lC~Z)(Ap)cT-lNl~(A2)c?-I 2. For 0 < p < 2  we clearly also have leT-/2. 
Hence A f = Z f = ( Z + Z ) f = X f .  Since X is a real vector field we have 

XkP/2 = �89 k = �89 f ) f  + fX- f )= �89 + fAf ) .  

Hence 

(4.8) Xk p/2 (z) = p Re((AS) (z) f--~k p/2-1 (z)). 

Now the left-hand side of (4.7) is real by [G3, Proposition 4.2 l. So 

(4.9) P/M (A f)fkp/2-1 dl~: ~ ,  Xk  "/2 d#. 

If p_>2 and r=q/p then (kp/2)r=kq/2=(lfl2Te)o/2 which is in LI(#). Moreover the 
right-hand side of (4.8) is in L 1 (#) by [G3, Lemma 4.1]. Hence XkP/2E L 1 (p). Thus 
by (4.5) we have 

(4.10) ~ l X k p / 2 d # = ~ k p / 2 W d # .  

If p<2  then (kP/2)2/p=kEL 1 (#). So the same argument again yields (4.10). Equa- 
tion (4.7) now follows from (4.9) and (4.10). [] 
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C o r o l l a r y  4.6. Under the hypotheses of Lemma 4.5 we have 
(4.11) 

p(Af, fkP/2-1)<<_s ( f M  kp/2 log k p/2 d~-II  k 1/2 liP log Ilk 1/2 [[pP-)+ II k 1/2 I]~S(s) 
for s > x and p >O. Moreover, if p> l then 

(4.12) P(Af, flflP-2)<_s Iflv log d.+llfll•B(s) f o r s > x .  

Here ( . , . )  refers to the L2(/z) inner product. 

Proof. The inequality (4.11) follows from (4.7) by applying Lemma 2.15 to 
the function h=kP/2=([f[2+~)P/2. Now if p>2  then f k  p/2-1 converges to f[f[p-2 
in LP'(#) by dominated convergence as ~$0 because [[f]f]v-2[]v,=]]f]lp<C~. Since 
AfcLP(p) the left-hand side of (4.11) converges to the left-hand side of (4.12), 
as ~$0. Also by dominated convergence, and for all p>0,  the right-hand side of 
(4.11) converges to the right-hand side of (4.12). This proves (4.12) for p_>2. If 
1<p<2  then f and A f  are in L~(#), by assumption. In this case one verifies that  
fkp/2-x-+f]f] p-2 in L2(#), which proves (4.12) in this interval also. 

Note. The inequalities (4.11) and (4.12) are reverse coercivity inequalities b ~  
cause A is a second order differential operator. We will see that  the reverse loga- 
rithmic Sobolev inequality (4.4) is, informally, just another form of these inequal- 
ities, given the integration by parts identity (4.14) for holomorphic functions. Al- 
though (4.12) is more perspicuous than (4.11) it seems to be less useful because of 
the technical problems associated with the zeros of f .  

The inequality (4.12) was conjectured in [S1] for the case of Gauss measure on 
C n for p~2.  For p=2  and Gauss measure a variant of (4.12) was proved in [S1] 
with a different coefficient in the norm term. 

L e m m a  4.7. Under the hypotheses of Lemma 4.5 we have 

and all integrands are integrable. 

Proof. Combining equations (4.27) and (4.6) of [G3] we get 

(4.14) ~l,Vkp/4[2 d#+ 4 jlxkP/2-2lVf[2 d#=P(Af ,  fkp/2-l). 

Apply (4.7) to the last term to find (4.13). [] 
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Remark 4.8. Integration by parts identities such as (4.14) would be difficult to 
verify for If(z)[p/2 rather than (If(z)12 +~)p/4 because of the singularity of If(z)I p/2 
at the zeros of f .  Although Equation (4.2) is exactly (4.13) with s = 0  it was nec- 
essary to prove (4.13) for s > 0  because of difficulty at the zeros of f (cf. [G3. Sec- 
tion 4]). In order to prove Theorem 4.1 it will be necessary now to show that  the 
second term on the left-hand side of (4.13) goes to zero. as s$0. We have only been 
able to do this for p_>2. But this seems likely to be correct for all p>0 .  The next 
two lemmas and corollary are devoted to showing that one may let z$0 in the terms 
on the left-hand side of (4.13). 

L e m m a  4.9. Let 0 < p < o c  and let f be in 7-l(21I). If 0 < p < 2  assume that f 
is in the L 2 domain of A. If  p>2 assume that f is in the L p domain of A. Let 
(f>0. Then 

(4.15) l ims f (]fl2+s)P/2-21Vfl2dlt=O, 0 < p < c c .  
~o Ji/12~,~ 

Proof. Let k(z)=lf(z)12+s. For any real number x>(f we have (x+s) /x= 
l+~ /x<l+s / ,L  So Ifl2<_k<lfl2(l+s/,~) if Ifl2_>5. Suppose first that  0 < p < 4 .  
Then l p _  2 < 0. Hence 

( ;y' (Ill2) p/2-2 > k p/2-2 _> (IfI2F/2-2 1+ 

wherever If12>_6. By [G3, Lemma 4.1 and Proposition 4.2] the right-hand side of 

(4.14) is finite under the hypotheses of the present lemma. Therefore both terms 

on the left-hand side of (4.14) are also finite, and in particular the second term on 

the left-hand side. Therefore 

So 

kp/2-21V ft  2 dp < oc. 

./,,,._>. k'J'-21vfI' d, tfI'-'IV fi' d, 

which goes to zero, as e$0. 
Suppose now that  p>4.  Then l p - 2 > 0 .  

which is integrable over M. Hence 
So (Ifl2)p/2-2lV fl2<_kp/2-2lV fl 2 

f [ ~ \p/2--2 f l=>_~ kP/2-21Vfl2 d# _< ~{1+ ~)  ]ifl2>_(lfl2)p/2-~Ivfl2 dp 

which goes to zero, as r [] 



Reverse hypercontractivity over manifolds 303 

Corollary 4.10. 
then 

(4.16) 

Let p>>2 and let fET-l(M). If f is in the Lp domain of A 

lim~$0 c fM(lfl2 +e)P/2-2lV f[2 dp = O. 

Proof. By Lemma 4.9 it suffices to prove that,  for fixed 6>0, 

(4.17) l ime j ( f e $ 0  1~<5 ( ] f ] 2 + c ) P / 2 - 2 ] V f [ 2 d p = O "  

We may assume that  f is not identically zero. Now p({zEAl:f(z)=O})=O because 
f is holomorphic. Moreover v(If(z)12+c)p/2-21Vf(z)12 converges to zero at any 
point where f(z)#O. Furthermore, for any fixed e>0,  ([f(z)[2+~) p/2-2 is bounded 
away from zero on {z:[ f(z)[2< 6}. By the argument given in the proof of Lemma 4.9 
we have 

flS (If[2 +~)P/2-2lV f[ 2 dp < oc. 
12<5 

Hence flfl~<~lVf[2d#<oo. But c(]f]2+c)P/2-2<_([f[2+~_)P/2-1<<(6+c)v/2-1 if 

[f(z)[2 <6 because l p _  1 >0. We may therefore apply the dominated convergence 
theorem to conclude the validity of (4.17). [] 

L e m m a  4.11. Let 0<p<cx~. Suppose that f ET-I(M) and that 

~ [V([f[2-bE)P/4[2dl.t<oo for c > 0 .  some 
1 

Then 

(4.18) l im/~ IV(IfI2+:)P/412d#= ~ IvIf)p/212d .. 0<p<oo. 
~$0 1 I 

Proof. We may assume that  f is not identically zero. The integrand on the 
right-hand side of (4.18) should be interpreted as undefined on {zEM:f(z)=O}. 
Since this is a set of # measure zero the integral is well defined. At a point z such 
that  f(z)#O we have V([f[2+r 2. So 

(4.19) I~([ f l2-[-E)P/4]  2 = (~p)2(If]2A-~)P/2-2[V]f]212, ~ > O. 

If �89  the right-hand side decreases to IV[f [P/212. By the dominated conver- 
gence theorem, (4.18) holds because p({z:f(z)=O})=O. If �89  the right-hand 

side of (4.19) increases to [~[f[P/2[ 2. So the monotone convergence theorem ap- 
plies. [] 
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Proof of Theorem 4.1. Consider first the case p>2.  The identity (4.13) holds 
under the hypothesis of Theorem 4.1. By Lemma 4.11 the first term on the left-hand 

side of (4.13) converges to fMIVIflP/212 dp, as ~$0. By Corollary 4.10 the second 
term on the left-hand side converges to zero. The right-hand side of (4.13) converges 
to �88 fM IflPWd# by dominated convergence since (If]2+r is integrable for 
some ~>0. This proves (4.2). The proof of the inequality (4.3) is similar. One need 
only drop the positive second term in (4.13), obtaining an inequality which persists 
in the limit ~$0. [] 

Proof of Corollary 4.3. This follows from Theorem 4.1 by applying Lemma 2.15 
to (4.2) for p > 2  and to (4.3) for 0 < p < 2 .  [] 

Remark 4.12. The reverse hypercontractivity and reverse logarithmic Sobolev 
inequalities that  we have proven are valid specifically for holomorphic functions. But 
other surprising "reversals" of long established inequalities relating to logarithmic 
Sobolev inequalities have recently been found in nonholomorphic categories. See, 
for example, the exposition of M. Ledoux, [L, Section 7], concerning reversed Herbst 
inequalities and the paper of F. Y. Wang, [W]. 

5. O t h e r  m e a s u r e s  o n  C m 

It is essential that  the Dirichlet form operator V*V associated to a triple 
(M, g, #) leaves invariant the space of holomorphic functions on .AI. Otherwise the 
semigroup e -tA does not even leave any reasonable holomorphic function spaces 
invariant. In order for V*V to leave 7-/(_AI) invariant the metric g and measure 
# must be properly related. We will describe a class of measures # on C m and 
corresponding metrics g for which V*V leaves 7-/(C m) invariant. For these we will 
compute the function W defined in (2.23) and thereby show the existence of a large 
class of measures on C m for which reverse hypercontractivity holds. This class of 
measures has already been studied in [G3. Example 5.1]. We will use the notation 
from that  example. 

Let ~ be a strictly positive function in C~([0,  cx~)). Assume that  its derivative 
~ ( s ) < 0  for 0~_s<cx~. Define w(z)=~(Izl 2) for z E C  'n and Q(z)=-b~P(Izl 2) for 
some constant b>0. Let a(z)=w(z)/Q(z). Choose b so that  the measure 

dp(x) = Q(x) dx 

is normalized. Let g be the metric on C m - R  2" given by gU(x)=~ij/a(x). Then 
(C m, g, #) is a holomorphic triple satisfying our Standing Assumptions 3.3. (See 
[G3, Section 5].) 
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It  is shown in [G3, Section 5] t h a t  

which we will wri te  as X=(2/b)x .V.  If  q 2 E C ~ ( C  'n) then  

Soo dv= iom(x )o(x) dx = So,,,(x v+)o(x) dx 
2So 2it = --~ r dx = --~ ~(x)(2m~o(x)+x.VLo) dx 

m m 

= - ~  ., ~b(x) 2 m +  x.V~o ~o(x)dx. 

So W(x)=-(2/b)(2m+Lo(x)-lx.V~o). Now V.o=-b~"(Ixl2)Vlxl2=-2b~"(Ixl2)x. 
Therefore  x.VLo=-2blxi2~"(ixl2). Thus  

1 21x12~"(Ixl 2) 
~(x) x v 0 =  ~,(Ixl 2) 

Hence 

4 (5.1) W(x) = -~ (m~ Ixl2~"(Ixl2) ~ 
~o,(Ixl ~) ) 

For example ,  if we take  ~(s)=(27rc)-me -sl2c and b=2c then  Q(x) is Gauss ian  

and ~o dx = d%. Moreover  ~ "  (s) = - (2c) - 1 ~, (s). T h e  ident i ty  (5.1) therefore  reduces 

to  W(x)=c-2ixl2-2m/c,  in agreement  wi th  (2.37). 
Since 

exp( ~-~)-) = icm eW(x)/a(-b~' (Ixl2) ) dx 
it is clear f rom (5.1) and the Gauss ian  case tha t ,  if p(s)=e -'(8) then  B(a) will 

be  finite for some a if v(s) devia tes  jus t  a little f rom linear (e.g. on a compac t  set, 
provided v'(s)>0 on [0, c~)). Clear ly (2.27) and (4.1) also hold if v(s) differs slightly 

f rom linear. The  vector  field X is two-sided comple te  because it is the  same  as in 
the  Gauss ian  case. 

Thus  we have a large class of non-Gauss ian  measures  on C m for which re- 
verse hypercontract iv i ty ,  (3.8), holds, Car len ' s  identity, (4.2), holds and the  reverse 
logar i thmic  Sobolev inequalities, (4.4), hold. 

6. T h e  R i e m a n n  s u r f a c e  for  z l l n  

Choose an integer n > 2 .  Denote  by J ln  the  n sheeted R iemann  surface associ- 
a ted  to z 1/n. Let C * = C \ { 0 } .  Then  Mn is a covering space of C* with  n leaves. 
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Let a: M~--+C* be the covering map  and let g be the s tandard Riemannian metric 

on MR. This is the metric that  makes a .  an isometry at each point. Tha t  is, 
g=dxU§ 2 in the obvious local coordinates x and y lifted from C*. We take p 
to be the measure on M,, whose density with respect to the Riemann area element 
dx dy is (1/n)pc(a(z)) where pc(w)=(27rc)-Xe -Iwl2/~c for we(3*.  In other words we 

divide the Gaussian density pc equally among the n sheets. Then p is a probabili ty 

measure on Mn. This example was extensively discussed in [G4]. 
It  was shown in [G4, Section 6] that  the triple (M, ,  g, #) is holomorphic and 

that  the Standing Assumptions 3.3 hold. This example differs from those in the pre- 
ceding section, not only because of the different topology of the underlying manifold, 
but  also because 7-I 2 is of codimension n - 1  in 7-lNL2(p). From [G4, Theorem 6.1] 
we will use the form of the vector field X.  It  is 

c 0 O (6.1) x = l (x-~x + Y-~y ) 

in the obvious local coordinates x and y. 

All of our results are applicable to this example. 

T h e o r e m  6.1. The ~t divergence, W, of X satisfies (2.26) and (4.1). The 
reverse hypercontractive inequality (3.9) holds. 

Proof. If r and is supported in one leaf over a disk in C* then, in 
local coordinates x and y, we may compute 

(Xr e ((XOx+yOv)~(x , y. ( y) dxdy 
TI 

-- cnl fo* ~b(x,y)(2pc+(xO~+yOy)pc(x,y))dxdy 

1 /  r "[Iz{2-2) lpc(x,y)dxdy. 

So 

(6.2) 
c 

where z is a local coordinate on one sheet. Clearly W takes the same value at all 
points in Mn which project to the same point in (3*. The function W has the same 
appearance as in the Gaussian case on (3, (2.37), but is defined on ]tin rather  than  
on (3. Since W is invariant under change of leaf the integral fM, eW(z)/s dp can be 
evaluated by integrating over C*. The function B(s) is therefore the same as in the 
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Gaussian case and is given by (2.40). So (2.26) holds. Since IIWllLp is the same as 
in the Gaussian case, (4.1) also holds. Since B(s) is the same as in the Gaussian 
case the computations leading to (3.9) are the same as in Example 2.16. The flow 
of X is again given by (2.45), which should now be interpreted on Mn. Thus all 
the results of Sections 2, 3 and 4 are applicable to this example. 

7. T h e  w e i g h t e d  B e r g m a n  sp ace s  

The weighted Bergman spaces give another example of spaces for which our 
Standing Assumptions 3.3 hold. But the vector field X is not two-sided complete. 
We will show that  reverse hypercontractivity fails. 

Let M={zEC:IzI<I  } and take the metric g to be g=(1-izi2)-l(dx2+dy2). 
For any A > - I  define dp~(z)=a~,(1-[zl2) x dx dy, where aa is a normalization con- 
stant. The weighted Bergman spaces are the holomorphic function spaces 7-/A 
L2(M, p;,). It was shown in [G4, Section 5] that V*V is holomorphic, that  our 
Standing Assumptions 3.3 hold and that  

0 
(7.1) X = 2 ( A + l ) r ~ r  r 

in polar coordinates. Moreover, for all pE(0, co), 7-lP=7-lNLP(#:~) if A_>0. (For A<0 
one must use non-Dirichlet boundary conditions to obtain this equality. See [G4, 
Section 5].) If ~ E C ~  (M) then a straightforward computation in polar coordinates 
shows that 

where 

(7.2) W)~(z)=4(A+I) l_ lz l2  (~+1) . 

It follows from (7.2) that  (2.26) fails if A>0, while (2.27) fails if A<0. The as- 
sumption (4.1) fails whenever At:0. If A=0 then (2.26) and (4.1) hold. But in 
all cases X is not two-sided complete because exp(tX) is a dilation if t>0 ,  as one 
sees from (7.1). The case A=0 is of principal interest to us here because all of 
the hypotheses of Theorem 3.4 hold in this case except that X is not two-sided 
complete. 

If T > 0  and Pl >P0 >0 then a reverse hypercontractive inequality 

(7.3) Ile-ZAfllm >_ Cllfllpo, C > O, f E 74NL m (#~,) 
cannot hold for any A > - i  and in particular for A=0. To see this pick an integer 
k > 1 such that  

fA I l - z l  - k ' ~  d t ~ ( z )  = 
I 



308 Fernando Galaz-Fontes, Leonard Gross and Stephen Bruce Sontz 

For each number b > l  let fb(z )=(b--z)  -k .  Then fbET-I(M)ML~(p~) while [[fbllpo-+ 
c~, as b$1. But,  writing c~=2(A+l) ,  equation (7.1) suggests tha t  (e-TAfb)(Z)-~ 
fb(e-Taz)  for z E M .  A complete proof of this identity is given in [G4, Section 5] 
for all A. (For A<0 one must choose appropriate  boundary conditions for A.) 
So [fb(e-Taz)[<(b--e--Tc~)-k~(1--e--Ta)--k for all b > l  and for all z E M .  Hence 
]]e-TAfb]]pl ~_(1- -e -Ta)- -k<~ for all b > l .  Therefore the inequality (7.3) cannot 

hold. 
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