Continuity and differentiability of Nemytskii operators on the Hardy space $\mathcal{H}^{1,1}(\mathbf{T}^1)$

John F. Toland

Abstract. Let $\mathcal{H}^{1,1}(\mathbf{T}^1)$ denote the Hardy space of real-valued functions on the unit circle with weak derivatives in the usual real Hardy space $\mathcal{H}^1(\mathbf{T}^1)$. It is shown that when the weak derivative of a locally Lipschitz continuous function f has bounded variation on compact sets the Nemytskii operator F, defined by $F(u)=f\circ u$, maps $\mathcal{H}^{1,1}(\mathbf{T}^1)$ continuously into itself. A further condition sufficient for the continuous Fréchet differentiability of F is then added.

Introductory remarks

Let $L^1(\mathbf{T}^1)$ denote the Banach space of real-valued Lebesgue integrable 'functions' on the unit circle $\mathbf{T}^1 = \mathbf{R}/2\pi\mathbf{Z}$ and let $L\log^+L$ be the linear space of functions v for which $|v|\log(1+|v|)\in L^1(\mathbf{T}^1)$. For $v\in L^1(\mathbf{T}^1)$, let $\mathcal{C}v$ denote the Hilbert transform of v, also known as the function conjugate to v, whose value at $x\in \mathbf{T}^1$ is given almost everywhere by the Cauchy principle value integral

$$Cv(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{v(y)}{\tan(\frac{1}{2}(x-y))} dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{v(x-y)}{\tan(\frac{1}{2}y)} dy.$$

A function $v \in L^1(\mathbf{T}^1)$ is said to be in the real Hardy space $\mathcal{H}^1(\mathbf{T}^1)$ if $\mathcal{C}v \in L^1(\mathbf{T}^1)$ and, for $v \in L^1(\mathbf{T}^1)$, Zygmund's lemma implies that $|v| \in \mathcal{H}^1(\mathbf{T}^1)$ if and only if $v \in L \log^+ L$. (Zygmund's lemma [6, Vol. I, VII, (2.8) and (2.10)] states that if $u \ge \alpha > -\infty$ and $u \in \mathcal{H}^1(\mathbf{T}^1)$ then $u \in L \log^+ L$.) The Hardy space $\mathcal{H}^1(\mathbf{T}^1)$ is a Banach space with the norm $\|u\|_{\mathcal{H}^1(\mathbf{T}^1)} = \|u\|_{L^1(\mathbf{T}^1)} + \|\mathcal{C}u\|_{L^1(\mathbf{T}^1)}$.

Let $f: \mathbf{R} \to \mathbf{R}$ be a function and define a Nemytskii operator [4] F on spaces of functions u by $F(u) = f \circ u$. (Nemytskii operators are sometimes called superposition operators [1], [3].) The mapping $v \mapsto |v|$ is a Nemytskii operator which maps $L^1(\mathbf{T}^1)$ to itself but does not map $\mathcal{H}^1(\mathbf{T}^1)$ to itself.

Let $\mathcal{H}^{1,1}(\mathbf{T}^1)$ denote the Banach space of all real-valued absolutely continuous functions u on \mathbf{T}^1 for which $u' \in \mathcal{H}^1(\mathbf{T}^1)$, where the norm is $||u||_{\mathcal{H}^{1,1}(\mathbf{T}^1)} =$

 $||u||_{\mathcal{H}^1(\mathbf{T}^1)} + ||u'||_{\mathcal{H}^1(\mathbf{T}^1)}$. In [2, Remark 1, p. 200] Janson used $IH(\mathbf{T}^1)$ to denote our space $\mathcal{H}^{1,1}(\mathbf{T}^1)$ and observed that a Nemytskii operator F maps $IH(\mathbf{T}^1)$ into itself if and only if f is locally Lipschitz continuous. (In fact Janson's proof yields the stronger result that a Nemytskii operator maps $\mathcal{H}^{1,1}(\mathbf{T}^1)$ into the space $W^{1,1}(\mathbf{T}^1)$ of absolutely continuous functions on \mathbf{T}^1 if and only if f is locally Lipschitz continuous, in which case it maps $\mathcal{H}^{1,1}(\mathbf{T}^1)$ into itself.)

Here we are concerned with sufficient conditions for continuity and differentiability of F on $\mathcal{H}^{1,1}(\mathbf{T}^1)$. Marcus and Mizel [3] have shown that any Nemytskii operator from $W^{1,1}(\mathbf{T}^1)$ to itself is continuous. While it is not clear whether such a result holds for $\mathcal{H}^{1,1}(\mathbf{T}^1)$, we will see that f' being locally of bounded variation ensures that F maps $\mathcal{H}^{1,1}(\mathbf{T}^1)$ continuously into itself. (In particular, $u \mapsto |u|$ maps $\mathcal{H}^{1,1}(\mathbf{T}^1)$ continuously into itself.) We also show that if f'' is locally Lipschitz continuous then F is continuously Fréchet differentiable on $\mathcal{H}^{1,1}(\mathbf{T}^1)$.

The present remarks arose as a natural extension of observations, motivated by questions about functions on the unit disc, in the case $f(t) = \frac{1}{2}t^2$ [5]. Recall that for $v \in \mathcal{H}^1(\mathbf{T}^1)$ the complex-valued function $v + i\mathcal{C}v$ can be interpreted as the boundary values of a holomorphic function V on the unit disc \mathcal{D} in the complex plane. It is well known [6] that the image of \mathcal{D} under V is a connected set, the boundary of which has bounded variation $(v+i\mathcal{C}v)$ has bounded variation on \mathbf{T}^1) if and only if $v+i\mathcal{C}v$ is absolutely continuous. This in turn is equivalent to the fact that v', the weak derivative of v, is in $\mathcal{H}^1(\mathbf{T}^1)$ in which case $(v+i\mathcal{C}v)'=v'+i\mathcal{C}(v')$.

The treatment here, which is independent of [2] and [3], is self-contained and elementary.

Continuity

Suppose that f is a real-valued function on \mathbf{R} which is locally Lipschitz (Lipschitz continuous on every compact interval) and u is an absolutely continuous function on \mathbf{T}^1 . It follows from first principles that the composition $f \circ u$ is absolutely continuous on \mathbf{T}^1 . Therefore, for almost all $x \in \mathbf{T}^1$, the classical derivative of $f \circ u$ at x exists. Note also that f is differentiable at t for almost all $t \in \mathbf{R}$. Suppose now that $t \in \mathbf{R}$ is a point at which f is not differentiable and suppose that u(x) = t. Then if u is differentiable with non-zero derivative at x it is easily verified that $f \circ u$ is not differentiable at x. From these observations it follows that, no matter what finite value is assigned to f'(t) at points t where f is not differentiable, the formula

(1)
$$(f \circ u)'(x) = f'(u(x))u'(x)$$

holds for almost all $x \in \mathbf{T}^1$, where ' denotes the classical derivative at points where it

exists. This formula also gives the weak derivative of $f \circ u$ almost everywhere on \mathbf{T}^1 . (The example f(t) = |t| and $u \equiv 0$ illustrates the point discussed in this paragraph.)

Now consider the case when f is convex. At each point $t \in \mathbf{R}$, let $f'_+(t)$ represent the right derivative of f at t. The right derivative always exists and is finite because of convexity, and coincides with the classical derivative almost everywhere. Moreover, at points where the classical derivative f' exists, $t \mapsto f'_+(t)$ is continuous.

If, more generally, f' has bounded variation on every compact interval I, or equivalently if f is the difference of two convex functions on I, the right derivative $f'_+(t)$ is well-defined for all $t \in \mathbb{R}$. In this case we write $f \in DC$ and put $f' = f'_+$ in (1). If u is absolutely continuous and $f \in DC$ we see from the above discussion that, for almost all $x \in \mathbb{T}^1$, the function $G(u): \mathbb{T}^1 \times \mathbb{T}^1 \to \mathbb{R}$ defined by

(2)
$$G(u)(x,y) = f(u(y)) - f(u(x)) - f'_{+}(u(x))(u(y) - u(x))$$

is differentiable with respect to y at y=x, and $(\partial/\partial y)G(u)(x,y)|_{y=x}$ is zero for almost all values of x. The following slight variant of the dominated convergence theorem will be useful.

Lemma 1. Suppose for a sequence $\{(g_n,h_n)\}_{n=1}^{\infty}$ in $L^1(\mathbf{T}^1)\times L^1(\mathbf{T}^1)$, that $|g_n|\leq h_n$ almost everywhere. Suppose also that there exists $(g,h)\in L^1(\mathbf{T}^1)\times L^1(\mathbf{T}^1)$ such that every subsequence $\{(g_{n_k},h_{n_k})\}_{k=1}^{\infty}$ of $\{(g_n,h_n)\}_{n=1}^{\infty}$ has a subsequence (also denoted by $\{(g_{n_k},h_{n_k})\}_{k=1}^{\infty}$) with $(g_{n_k},h_{n_k})\to (g,h)$ pointwise almost everywhere and $\int_{-\pi}^{\pi}h_{n_k}dx\to \int_{-\pi}^{\pi}h\,dx$, as $k\to\infty$. Then $g_n\to g$ in $L^1(\mathbf{T}^1)$. In particular, if the hypotheses are satisfied with $g_n=h_n$, then $h_n\to h$ in $L^1(\mathbf{T}^1)$.

Proof. Suppose that $g_n \not\to g$ in $L^1(\mathbf{T}^1)$, as $n \to \infty$. Then there is a number α and a subsequence with $\|g_{n_k} - g\|_{L^1(\mathbf{T}^1)} \ge \alpha > 0$ for all k. From the hypothesis we may assume that $(g_{n_k}, h_{n_k}) \to (g, h)$ pointwise almost everywhere. Hence, by Fatou's lemma,

$$\begin{split} \int_{-\pi}^{\pi} 2h \, dx &\leq \liminf_{k \to \infty} \int_{-\pi}^{\pi} (h + h_{n_k} - |g_{n_k} - g|) \, dx \\ &= \int_{-\pi}^{\pi} 2h \, dx + \liminf_{k \to \infty} - \int_{-\pi}^{\pi} |g_{n_k} - g| \, dx. \end{split}$$

It follows that $0 \le -\limsup_{k \to \infty} \|g_{n_k} - g\|_{L^1(\mathbf{T}^1)} \le -\alpha < 0$, which contradiction proves the claim. \square

Recall the properties of \mathcal{C} and of integrability-B, which is defined in Zygmund [6].

(i) That $v_n \to v$ in $L^1(\mathbf{T}^1)$ implies that a subsequence $Cv_{n_k} \to Cv$ pointwise almost everywhere.

- (ii) For $v \in L^1(\mathbf{T}^1)$, $|\mathcal{C}v|^{[p]} \in L^1(\mathbf{T}^1)$ for all $p \in (0,1)$, where $t^{[p]} = \min\{t, t^p\}$ for $t \ge 0$.
- (iii) If $u \in L^1(\mathbf{T}^1)$ then u is integrable-B and the two integrals coincide. (We write this as $\int_{-\pi}^{\pi} u \, dx = (B) \int_{-\pi}^{\pi} u \, dx$.)
 - (iv) If $u \in L^1(\mathbf{T}^1)$ then Cu is integrable-B and $(B) \int_{-\pi}^{\pi} Cu \, dx = 0$.
 - (v) If u and v are integrable-B, then u+v is integrable-B and

$$(B) \int_{-\pi}^{\pi} u \, dx + (B) \int_{-\pi}^{\pi} v \, dx = (B) \int_{-\pi}^{\pi} (u + v) \, dx.$$

The key is the following observation.

Proposition 2. For $v \in L^1(\mathbf{T}^1)$, $v \in \mathcal{H}^1(\mathbf{T}^1)$ if and only if the positive part of Cv is in $L^1(\mathbf{T}^1)$.

Proof. The 'only if' part is clear from the definition of $\mathcal{H}^1(\mathbf{T}^1)$. Suppose that $v \in L^1(\mathbf{T}^1)$ and that $u = (\mathcal{C}v)^+ \in L^1(\mathbf{T}^1)$, where $w^+(x) \equiv \max\{w(x), 0\}$ for any function w. Then $u - \mathcal{C}v \geq 0$ almost everywhere. Therefore, for all $p \in (0, 1)$, (ii)–(v) give that

$$\int_{-\pi}^{\pi} (u - Cv)^{[p]} dx = (B) \int_{-\pi}^{\pi} (u - Cv)^{[p]} dx$$

$$\leq (B) \int_{-\pi}^{\pi} (u - Cv) dx = (B) \int_{-\pi}^{\pi} u dx = \int_{-\pi}^{\pi} u dx.$$

When $p\nearrow 1$ we learn from Fatou's lemma that $u-\mathcal{C}v\in L^1(\mathbf{T}^1)$. Since $u\in L^1(\mathbf{T}^1)$, the result follows. \square

Remark. A trivial consequence of this observation and Zygmund's lemma is that if $u \in L^1(\mathbf{T}^1)$ and $Cu \ge \alpha$ for some $\alpha \in \mathbf{R}$, then $Cu \in L \log^+ L$. \square

For any absolutely continuous function u and $f \in DC$, let $\mathcal{F}(u)$ be defined for almost all $x \in \mathbf{T}^1$ by

(3)
$$\mathcal{F}(u)(x) \equiv f'_{+}(u(x))\mathcal{C}u'(x) - \mathcal{C}(f'_{+}(u)u')(x).$$

Proposition 3. Suppose that f is convex on \mathbf{R} and u is absolutely continuous on \mathbf{T}^1 . Then $\mathcal{F}(u)(x) \geq 0$ for almost all $x \in \mathbf{T}^1$.

Proof. Let x be a point at which the partial derivative of G(u)(x,y) with respect to y at y=x exists and is zero. From (2) and the convexity of f, $G(u)(x,y) \ge 0$ for

all $y \in \mathbf{R}$. Therefore, by definition,

$$\begin{split} f'_{+}(u(x))\mathcal{C}u'(x) - \mathcal{C}(f'_{+}(u)u')(x) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(f'_{+}(u(x)) - f'_{+}(u(y)))u'(y)}{\tan(\frac{1}{2}(x-y))} \, dy \\ &= -\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(\partial/\partial y)G(u)(x,y)}{\tan(\frac{1}{2}(x-y))} \, dy \\ &= \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{G(u)(x,y)}{\sin^{2}(\frac{1}{2}(x-y))} \, dy \geq 0. \quad \Box \end{split}$$

Proposition 4. Suppose $f \in DC$. Then $f \circ u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$ for all $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$.

Proof. Suppose that $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$. Then there is a compact interval I such that $u(x) \in I$ for all $x \in \mathbf{T}^1$. Since $f \in DC$ it suffices to restrict attention to the case when f is convex on \mathbf{R} . Since $u' \in \mathcal{H}^1(\mathbf{T}^1)$ and

$$\mathcal{C}(f'_{+}(u)u') = f'_{+}(u)\mathcal{C}u' - \mathcal{F}(u),$$

we find, from Proposition 3, that $(\mathcal{C}(f'_+(u)u'))^+ \in L^1(\mathbf{T}^1)$. Hence $f'_+(u)u' \in \mathcal{H}^1(\mathbf{T}^1)$, by Proposition 2. However $f'_+(u)u'$ is the weak derivative of f(u). Hence $f(u) \in \mathcal{H}^{1,1}(\mathbf{T}^1)$. \square

Remark. Suppose that $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$. Then it follows from elementary calculus that

(4)
$$|u(x) - \frac{1}{2\pi} \int_{-\pi}^{\pi} u(x) \, dx | \leq \frac{1}{2} \int_{-\pi}^{\pi} |u'(x)| \, dx,$$

and therefore

$$\int_{-\pi}^{\pi} u \mathcal{C} u' \, dx \le \frac{1}{2} \|u\|_{\mathcal{H}^{1,1}(\mathbf{T}^1)}^2, \quad u \in \mathcal{H}^{1,1}(\mathbf{T}^1). \quad \Box$$

Corollary 5. For $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$

(5)
$$0 \le \frac{1}{8\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left(\frac{u(x) - u(y)}{\sin(\frac{1}{2}(x - y))} \right)^2 dy \, dx = \int_{-\pi}^{\pi} u \mathcal{C}u' \, dx \le \frac{1}{2} \|u\|_{\mathcal{H}^{1.1}(\mathbf{T}^1)}^2.$$

Proof. This follows from taking $f(t) = \frac{1}{2}t^2$ in the proof of Proposition 3 and integrating over $[-\pi, \pi]$, using Proposition 4 and the preceding remark. \square

Next we have the following result.

Corollary 6. $\mathcal{H}^{1,1}(\mathbf{T}^1)$ is an algebra in which multiplication is continuous.

Proof. Let $f(t) = \frac{1}{2}t^2$, $t \in \mathbb{R}$, in Proposition 3. For $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$ let

$$0 \leq \mathcal{Q}u(x) = u(x)\mathcal{C}u'(x) - \mathcal{C}(uu')(x), \quad x \in \mathbf{T}^1.$$

Hence $(\mathcal{C}(uu'))^+ \leq |u\mathcal{C}u'|$ and that $\|(\mathcal{C}(uu'))^+\|_{L^1(\mathbf{T}^1)} \leq \frac{1}{2}\|u\|_{\mathcal{H}^{1,1}(\mathbf{T}^1)}^2$ follows. Since $\int_{-\pi}^{\pi} \mathcal{C}(uu') dx = 0$ it follows that $\|\mathcal{C}((u^2)')\|_{L^1(\mathbf{T}^1)} \leq 2\|u\|_{\mathcal{H}^{1,1}(\mathbf{T}^1)}^2$. The result follows. \square

Let $W^{1,1}(\mathbf{T}^1)$ denote the Banach space of real-valued absolutely continuous functions on \mathbf{T}^1 with norm $\|u\|_{W^{1,1}(\mathbf{T}^1)} = \|u\|_{L^1(\mathbf{T}^1)} + \|u'\|_{L^1(\mathbf{T}^1)}$.

Remark. When f is locally Lipschitz, the Nemytskii operator F maps $W^{1,1}(\mathbf{T}^1)$ continuously into itself [3], but a simpler result is sufficient here; for completeness we include the proof.

Lemma 7. Suppose that $f \in DC$. Then $F: W^{1,1}(\mathbf{T}^1) \to W^{1,1}(\mathbf{T}^1)$ is continuous.

Proof. Since $f \in DC$ it suffices to consider the case when f is convex on \mathbf{R} . In this case, by our earlier discussion, $(F(u))' = f'_+(u)u'$ almost everywhere. Let $u_n \to u$ in $W^{1,1}(\mathbf{T}^1)$. It suffices to show that $f'_+(u_n)u'_n \to f'_+(u)u'$ in $L^1(\mathbf{T}^1)$. Since $u'_n \to u'$ in $L^1(\mathbf{T}^1)$ and f'_+ is bounded on bounded sets, it is enough, using Lemma 1, to show that every subsequence $\{f'_+(u_{n_k})u'_{n_k}\}_{k=1}^{\infty}$ of $\{f'_+(u_n)u'_n\}_{n=1}^{\infty}$ has a subsequence which converges pointwise almost everywhere to $f'_+(u)u'$.

Every subsequence of $\{u'_{n_k}\}_{k=1}^{\infty}$ has a subsequence (also denoted by $\{u'_{n_k}\}_{k=1}^{\infty}$) which converges to u' on a set U of full measure. Let $E \subset U$ denote the set on which u' exists, let $E_0 = \{x \in E : u'(x) = 0\}$ and let $E_1 = E \setminus E_0$. Clearly $f'_+(u_{n_k}(x))u'_{n_k}(x) \to 0 = f'_+(u(x))u'(x)$ for $x \in E_0$. Moreover, the earlier discussion ensures that f'(u(x)) exists for almost all $x \in E_1$. Therefore, for almost all $x \in E_1$, the function $t \mapsto f'_+(t)$ is continuous at t = u(x). Hence $f'_+(u_{n_k}(x))u'_{n_k}(x) \to f'_+(u(x))u'(x)$ at all such points. We have shown that $f'_+(u_{n_k}(x))u'_{n_k}(x) \to f'_+(u(x))u'(x)$ for almost all $x \in E$. Since E has full measure this completes the proof. \square

Proposition 8. For $f \in DC$, the Nemytskii operator $F: \mathcal{H}^{1,1}(\mathbf{T}^1) \to \mathcal{H}^{1,1}(\mathbf{T}^1)$ is continuous.

Proof. As with the proof of Proposition 4 and Lemma 7, it suffices to prove the result for convex f. Also, by Lemma 7, it is now enough to show that $C(f'_+(u_n)u'_n) \to C(f'_+(u)u')$ in $L^1(\mathbf{T}^1)$, as $n\to\infty$, where $\{u_n\}_{n=1}^\infty$ is a subsequence of a sequence converging to u in $\mathcal{H}^{1,1}(\mathbf{T}^1)$. Let $g_n = (C(f'_+(u_n)u'_n))^+$ and let $0 \le M = \sup\{f'_+(u_n(x)): x \in \mathbf{T}^1, n \in \mathbf{N}\} < \infty$. Then by Proposition 3,

$$0 \le g_n = (\mathcal{C}(f'_+(u_n)u'_n))^+ \le |f'_+(u_n)\mathcal{C}u'_n| \le M|\mathcal{C}u'_n|$$

almost everywhere, for all n. By Lemma 7 and (i), every subsequence of $\{g_n\}_{n=1}^{\infty}$ has a subsequence which converges almost everywhere to $g = (\mathcal{C}(f'_+(u)u'))^+$. Let subsequences be indexed by n and let $h_n = M|\mathcal{C}u'_n|$. Then $h_n \to h$ in $L^1(\mathbf{T}^1)$, where $h = M|\mathcal{C}u'|$. Now an application of Lemma 1 shows that $g_n \to g$ in $L^1(\mathbf{T}^1)$. By Proposition 4, $\mathcal{C}(f'_+(u_n)u'_n) \in L^1(\mathbf{T}^1)$ and has zero integral (by (iii) and (iv)). Therefore for a subsequence of the negative parts, $(\mathcal{C}(f'_+(u_n)u'_n)^- \to (\mathcal{C}(f'_+(u)u')^- \text{ almost everywhere and } \int_{-\pi}^{\pi} (\mathcal{C}(f'_+(u_n)u'_n)^- dx \to \int_{-\pi}^{\pi} (\mathcal{C}(f'_+(u)u')^- dx, \text{ as } n \to \infty.$ The result now follows from the last statement in Lemma 1. \square

Remark. From the preceding proof it follows that if f is convex.

$$\int_{-\pi}^{\pi} |\mathcal{C}(f'_{+}(u)u')(x)| \, dx \leq 2 \int_{-\pi}^{\pi} |f'_{+}(u(x))\mathcal{C}u'(x)| \, dx,$$

and therefore that F maps bounded sets into bounded sets in $\mathcal{H}^{1,1}(\mathbf{T}^1)$ when f' is locally of bounded variation. \square

By contrast with the mapping $u\mapsto f'_+(u)u'$, which is continuous from $W^{1,1}(\mathbf{T}^1)$ to $L^1(\mathbf{T}^1)$, we now show that $u\mapsto f'_+(u)\mathcal{C}u'$ need not be continuous from $\mathcal{H}^{1,1}(\mathbf{T}^1)$ to $L^1(\mathbf{T}^1)$. (As a consequence of this remark and Proposition 8, $\mathcal{F}:\mathcal{H}^{1,1}(\mathbf{T}^1)\to L^1(\mathbf{T}^1)$ is well defined but not necessarily continuous when $f\in DC$. If, in addition, f' is continuous then it follows from Proposition 8 and the dominated convergence theorem that $\mathcal{F}:\mathcal{H}^{1,1}(\mathbf{T}^1)\to L^1(\mathbf{T}^1)$ is continuous.) First a simple observation.

Lemma 9. Let $u: \mathbf{T}^1 \to \mathbf{R}$ be a non-negative smooth function which is zero on an open interval I, but not identically zero. Then for all $x, y \in I$ with x > y, Cu(x) - Cu(y) < 0. In particular, $Cu' \not\equiv 0$ on I.

Proof. Let x>y, $x,y\in I$. Then, since $u\equiv 0$ on I,

$$\begin{aligned} \mathcal{C}u(x) - \mathcal{C}u(y) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{u(x-z) - u(y-z)}{\tan(\frac{1}{2}z)} \, dz = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(\partial/\partial z) \int_{y-z}^{x-z} u(t) \, dt}{\tan(\frac{1}{2}z)} \, dz \\ &= -\frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{\int_{y-z}^{x-z} u(t) \, dt}{\sin^2(\frac{1}{2}z)} \, dz < 0. \quad \Box \end{aligned}$$

Proposition 10. Suppose that f(t)=|t|, $t \in \mathbb{R}$. Then $\mathcal{F}: \mathcal{H}^{1,1}(\mathbb{T}^1) \to L^1(\mathbb{T}^1)$ is not continuous.

Proof. Let $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$ be as described in Lemma 9 and let $v \in \mathcal{H}^{1,1}(\mathbf{T}^1)$ be a non-negative, smooth function which is non-zero and has compact support in I. Now for x in the support of v and $\varepsilon > 0$,

$$[f'_{+}(u+\varepsilon v)\mathcal{C}(u+\varepsilon v)']_{x} = \operatorname{sgn}(\varepsilon)(\mathcal{C}u'(x)+\varepsilon\mathcal{C}v'(x)).$$

The result now follows since $Cu' \not\equiv 0$ on the support of v, by Lemma 9. This shows that $w \mapsto f'_+(w)Cw'$ is not continuous from $\mathcal{H}^{1,1}(\mathbf{T}^1)$ into $L^1(\mathbf{T}^1)$ which, by Proposition 8, is equivalent to the required result. \square

Remark. We finish this section with a useful inequality. Suppose that f is convex and that there exists $0 \le \alpha \le \beta$ such that $\alpha(a-b)^2 \le (a-b)(f'_+(a)-f'_+(b)) \le \beta(a-b)^2$ for all $a, b \in I = \{u(x) : x \in \mathbf{T}^1\}$, where $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$. Then

$$0 \le \alpha \int_{-\pi}^{\pi} u \mathcal{C}u' \, dx \le \int_{-\pi}^{\pi} f'_{+}(u) \mathcal{C}u' \, dx \le \beta \int_{-\pi}^{\pi} u \mathcal{C}u' \, dx.$$

To see this simply note by symmetry and the proof of Proposition 3 that, for all $x \in \mathbf{T}^1$,

$$\begin{split} \int_{-\pi}^{\pi} f'_{+}(u(x))\mathcal{C}u'(x) \, dx &= \int_{-\pi}^{\pi} \left[f'_{+}(u(x))\mathcal{C}u(x) - \mathcal{C}(f'_{+}(u)u')(x) \right] dx \\ &= \frac{1}{4\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{G(u)(x,y)}{\sin^{2}\left(\frac{1}{2}(x-y)\right)} \, dy \, dx \\ &= \frac{1}{8\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{G(u)(x,y) + G(u)(y,x)}{\sin^{2}\left(\frac{1}{2}(x-y)\right)} \, dy \, dx \\ &= \frac{1}{8\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{(f'_{+}(u(x)) - f'_{+}(u(y)))(u(x) - u(y))}{\sin^{2}\left(\frac{1}{2}(x-y)\right)} \, dy \, dx. \end{split}$$

This identity in the special case when $f(u) = \frac{1}{2}u^2$ (see (5)), and the general case when f'_+ satisfy the hypotheses of this remark, combine to give the required result. \square

Fréchet differentiability

Suppose now that f'' is locally Lipschitz. We will show that the Nemytskii operator F is continuously Fréchet differentiable on $\mathcal{H}^{1,1}(\mathbf{T}^1)$. For $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$, the obvious candidate for the Fréchet derivative of F at u is the linear operator L_u defined by the product

$$L_u v = v f'(u), \quad v \in \mathcal{H}^{1,1}(\mathbf{T}^1).$$

Proposition 11. When f'' is locally Lipschitz the operator F on $\mathcal{H}^{1,1}(\mathbf{T}^1)$ is continuously Fréchet differentiable and L_u is the derivative of F at u.

Proof. For $u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$, $f' \circ u \in \mathcal{H}^{1,1}(\mathbf{T}^1)$ depends continuously on u, by Proposition 8. Hence, for $v \in \mathcal{H}^{1,1}(\mathbf{T}^1)$, the product $vf'(u) \in \mathcal{H}^{1,1}(\mathbf{T}^1)$ depends continuously on $u, v \in \mathcal{H}^{1,1}(\mathbf{T}^1)$, by Corollary 6. It remains only to show that L_u is

391

the Fréchet derivative of F at u. In other words we have to show that when $||v_n||_{\mathcal{H}^{1,1}(\mathbf{T}^1)} \to 0$,

$$\lim_{n\to\infty} \frac{\|F(u+v_n)-F(u)-L_uv_n\|_{\mathcal{H}^{1,1}(\mathbf{T}^1)}}{\|v_n\|_{\mathcal{H}^{1,1}(\mathbf{T}^1)}} = 0.$$

It is easy to see, from the intermediate value theorem and the hypothesis on f, that the mappings

$$u \longmapsto f(u), \quad u \longmapsto f'(u)u', \quad u \longmapsto f'(u)\mathcal{C}u'$$

are Fréchet differentiable from $\mathcal{H}^{1,1}(\mathbf{T}^1)$ into $L^1(\mathbf{T}^1)$ with derivatives

(6)
$$v \mapsto f'(u)v, \quad v \mapsto f''(u)u'v + f'(u)v', \quad v \mapsto (f''(u)\mathcal{C}u')v + f'(u)\mathcal{C}v'.$$

Therefore it suffices to show that the mapping $u \mapsto \mathcal{C}(f'(u)u')$ is Fréchet differentiable from $\mathcal{H}^{1,1}(\mathbf{T}^1)$ to $L^1(\mathbf{T}^1)$ with derivative

$$v \longmapsto \mathcal{C}((f''(u)u'v+f'(u)v').$$

However, because of the definition of $\mathcal{F}(u)$, given in (3), it suffices to show that $\mathcal{F}:\mathcal{H}^{1,1}(\mathbf{T}^1)\to L^1(\mathbf{T}^1)$ is Fréchet differentiable at u where, as in the proof of Proposition 3,

(7)
$$\mathcal{F}(u)(x) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{G(u)(x,y)}{\sin^2(\frac{1}{2}(x-y))} dy.$$

Note first that G(u)(x,y)=H(u(x),u(y)) where, by Taylor's theorem,

$$H(a,b) = f(b) - f(a) - f'(a)(b-a) = \frac{1}{2}f''(\xi)(b-a)^2$$

for some ξ between a and b. Let

$$h(a,b) = \begin{cases} \frac{H(a,b)}{(b-a)^2}, & \text{if } a \neq b, \\ \frac{1}{2}f''(a), & \text{if } a = b. \end{cases}$$

Then h is continuous on \mathbb{R}^2 , and continuously differentiable on the open set where $a \neq b$. At such points

$$\begin{split} \frac{\partial h}{\partial b} \left|_{(a,b)} &= \frac{H(a,b) - H(b,a)}{(a-b)^3} = \frac{1}{2} \frac{f''(\chi) - f''(\zeta)}{a-b}, \qquad \chi, \zeta \in [a,b], \\ \frac{\partial h}{\partial a} \left|_{(a,b)} &= 2 \frac{H(a,b) - \frac{1}{2} f''(a)(b-a)^2}{(b-a)^3} = \frac{f''(\xi) - f''(a)}{b-a}, \qquad \xi \in [a,b]. \end{split}$$

(Here [a,b] denotes the closed interval with end-points a, b, whether $a \le b$ or not.) Since f'' is locally Lipschitz, it follows that ∇h is uniformly bounded on bounded sets of points (a,b) with $a \ne b$. Note that for $a \ne b$.

(8)
$$\frac{\partial h}{\partial b} = \frac{h(a,b) - h(b,a)}{a - b} \quad \text{and} \quad \frac{\partial h}{\partial a} = \frac{2}{b - a} (h(a,b) - h(a,a)).$$

For definiteness in formulae later we use the convention that $\nabla h(a,a) = (0,0)$. Now

$$H(a+a',b+b') - H(a,b) - 2(a-b)(a'-b')h(a,b) - (a-b)^{2}\nabla h(a,b) \cdot (a',b')$$

$$= (a-b)^{2}[h(a+a',b+b') - h(a,b) - \nabla h(a,b) \cdot (a',b')]$$

$$+ 2(a-b)(a'-b')[h(a+a',b+b') - h(a,b)] + (a'-b')^{2}h(a+a',b+b').$$

When a=b and $(a',b') \in \mathbb{R}^2$, then

$$H(a+a',b+b')-H(a,b)=(a'-b')^2h(a+a',b+b').$$

Now for $a \neq b$ and $(a', b') \in \mathbb{R}^2$ let

$$k(t) = h(a + ta', b + tb') - h(a, b) - t\nabla h(a, b) \cdot (a', b'), \quad t \in [0, 1].$$

Then k is Lipschitz on [0,1] and is continuously differentiable except possibly at one point $t \in [0,1]$. Therefore for $(a',b') \in \mathbb{R}^2$ and $a \neq b$

(10)
$$K_{1}(a,b,a',b') :\equiv h(a+a',b+b') - h(a,b) - \nabla h(a,b) \cdot (a',b') = k(1) - k(0)$$
$$= (a',b') \cdot \int_{0}^{1} (\nabla h(a+ta',b+tb') - \nabla h(a,b)) dt,$$

where

$$\left| \int_0^1 (\nabla h(a+ta',b+tb') - \nabla h(a,b)) \, dt \right|$$

is bounded for (a, b, a', b') in bounded sets in \mathbb{R}^4 , and, by the dominated convergence theorem, converges to 0, as $(a', b') \rightarrow (0, 0)$, for fixed $a \neq b$. Let $K_1(a, b, a', b') = 0$ when a = b and let

(11)
$$K_2(a,b,a',b') \equiv h(a+a',b+b') - h(a,b) \to 0$$
, as $(a',b'), \to (0,0)$,

uniformly for (a, b) in bounded sets.

Therefore, by (9), for all $u, v \in \mathcal{H}^{1,1}(\mathbf{T}^1)$ and $x, y \in \mathbf{T}^1$,

$$\begin{split} H(u(x)+v(x),&u(y)+v(y))-H(u(x),u(y))-2(u(x)-u(y))(v(x)-v(y))h(u(x),u(y))\\ &-(u(x)-u(y))^2\nabla h(u(x),u(y))\cdot (v(x),v(y))\\ &=(u(x)-u(y))^2K_1(u(x),u(y),v(x),v(y))\\ &+2(u(x)-u(y))(v(x)-v(y))K_2(u(x),u(y),v(x),v(y))\\ &+(v(x)-v(y))^2h(u(x)+v(x),u(y)+v(y)). \end{split}$$

It now follows, from Corollary 5, with (7), (8), (10), (11) and the dominated convergence theorem, followed by an integration by parts, that $\mathcal{F}: \mathcal{H}^{1,1}(\mathbf{T}^1) \to L^1(\mathbf{T}^1)$ is Fréchet differentiable at u with derivative

$$\begin{split} v \mapsto & \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{2(u(x) - u(y))(v(x) - v(y))h(u(x), u(y))}{\sin^2(\frac{1}{2}(x - y))} \, dy \\ & + \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{(u(x) - u(y))(h(u(x), u(y)) - h(u(y), u(x)))}{\sin^2(\frac{1}{2}(x - y))} v(y) \, dy \\ & - \frac{1}{2\pi} v(x) \int_{-\pi}^{\pi} \frac{(u(x) - u(y))(h(u(x), u(y)) - h(u(x), u(x)))}{\sin^2(\frac{1}{2}(x - y))} \, dy \\ & = \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{(u(x) - u(y))v(x)f''(u(x)) + v(y)(f'(u(y)) - f'(u(x)))}{\sin^2(\frac{1}{2}(x - y))} \, dy \\ & = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(f''(u(x))v(x) - f''(u(y))v(y))u'(y) + (f'(u(x)) - f'(u(y)))v'(y)}{\tan(\frac{1}{2}(x - y))} \, dy \\ & = [f''(u)v\mathcal{C}u' + f'(u)\mathcal{C}v'](x) - [\mathcal{C}(f''(u)vu') + \mathcal{C}(f'(u)v')](x). \end{split}$$

In the light of (6), this is what is needed to conclude that $F: \mathcal{H}^{1,1}(\mathbf{T}^1) \to \mathcal{H}^{1,1}(\mathbf{T}^1)$ is Fréchet differentiable at u with derivative L_u . \square

Acknowledgement. This work was supported by EPSRC Senior Fellowship. I am grateful to Professor D. E. Edmunds (Sussex) for advice and to Professor W. Sickel (Jena) for his interest and for drawing my attention to Janson's work [2].

References

- APPELL, J. and ZABREJKO, P. P., Nonlinear Superposition Operators, Cambridge Tracts in Math. 95, Cambridge Univ. Press, Cambridge, 1990.
- JANSON, S., On functions with derivatives in H¹, in Harmonic Analysis and Partial Differential Equations (El Escorial, 1987) (García-Cuerva, J., ed.), Lecture Notes in Math. 1384, pp. 193-201, Springer-Verlag, Berlin-Heidelberg, 1989.

- 394
 - 3. Marcus, M. and Mizel, V. J., Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), 217-229.
 - 4. Runst, T. and Sickel, W., Sobolev Spaces of Fractional Order, Nemytskii Operators and Nonlinear Partial Differential Equations, de Gruyter, Berlin, 1996.
 - 5. Toland, J. F., Regularity of Stokes waves in Hardy spaces and as distributions, J. Math. Pures Appl. 79 (2000), 901-917.
 - 6. ZYGMUND, A., Trigonometric Series I & II, Cambridge Univ. Press, Cambridge, 1959.

Received February 21, 2000

John F. Toland
Department of Mathematical Sciences
University of Bath
Bath BA2 7AY
England, U.K.
email: jft@maths.bath.ac.uk