Continuity and differentiability of Nemytskii operators on the Hardy space $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$

John F. Toland

Abstract

Let $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ denote the Hardy space of real-valued functions on the unit circle with weak derivatives in the usual real Hardy space $\mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$. It is shown that when the weak derivative of a locally Lipschitz continuous function f has bounded variation on compact sets the Nemytskii operator F, defined by $F(u)=f \circ u$, maps $\mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$ continuously into itself. A further condition sufficient for the continuous Frechet differentiability of F is then added.

Introductory remarks

Let $L^{1}\left(\mathbf{T}^{1}\right)$ denote the Banach space of real-valued Lebesgue integrable 'functions' on the unit circle $\mathbf{T}^{1}=\mathbf{R} / 2 \pi \mathbf{Z}$ and let $L \log ^{+} L$ be the linear space of functions v for which $|v| \log (1+|v|) \in L^{1}\left(\mathbf{T}^{1}\right)$. For $v \in L^{1}\left(\mathbf{T}^{1}\right)$, let $\mathcal{C} v$ denote the Hilbert transform of v, also known as the function conjugate to v, whose value at $x \in \mathbf{T}^{1}$ is given almost everywhere by the Cauchy principle value integral

$$
\mathcal{C} v(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{v(y)}{\tan \left(\frac{1}{2}(x-y)\right)} d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{v(x-y)}{\tan \left(\frac{1}{2} y\right)} d y
$$

A function $v \in L^{1}\left(\mathbf{T}^{1}\right)$ is said to be in the real Hardy space $\mathcal{H}^{1}\left(\mathbf{T}^{\mathbf{l}}\right)$ if $\mathcal{C} v \in L^{1}\left(\mathbf{T}^{1}\right)$ and, for $v \in L^{1}\left(\mathbf{T}^{1}\right)$, Zygmund's lemma implies that $|v| \in \mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$ if and only if $v \in$ $L \log ^{+} L$. (Zygmund's lemma [6, Vol. I, VII, (2.8) and (2.10)] states that if $u \geq \alpha>$ $-\infty$ and $u \in \mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$ then $u \in L \log ^{+} L$.) The Hardy space $\mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$ is a Banach space with the norm $\|u\|_{\mathcal{H}^{1}\left(\mathbf{T}^{1}\right)}=\|u\|_{L^{1}\left(\mathbf{T}^{1}\right)}+\|\mathcal{C} u\|_{L^{1}\left(\mathbf{T}^{1}\right)}$.

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function and define a Nemytskii operator [4] F on spaces of functions u by $F(u)=f \circ u$. (Nemytskii operators are sometimes called superposition operators [1], [3].) The mapping $v \mapsto|v|$ is a Nemytskii operator which maps $L^{1}\left(\mathbf{T}^{1}\right)$ to itself but does not map $\mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$ to itself.

Let $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ denote the Banach space of all real-valued absolutely continuous functions u on \mathbf{T}^{1} for which $u^{\prime} \in \mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$, where the norm is $\|u\|_{\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)}=$
$\|u\|_{\mathcal{H}^{1}\left(\mathbf{T}^{1}\right)}+\left\|u^{\prime}\right\|_{\mathcal{H}^{1}\left(\mathbf{T}^{1}\right)}$. In [2, Remark 1, p. 200] Janson used $I H\left(\mathbf{T}^{1}\right)$ to denote our space $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ and observed that a Nemytskii operator F maps $I H\left(\mathbf{T}^{1}\right)$ into itself if and only if f is locally Lipschitz continuous. (In fact Janson's proof yields the stronger result that a Nemytskii operator maps $\mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$ into the space $W^{1,1}\left(\mathbf{T}^{1}\right)$ of absolutely continuous functions on \mathbf{T}^{1} if and only if f is locally Lipschitz continuous, in which case it maps $\mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$ into itself.)

Here we are concerned with sufficient conditions for continuity and differentiability of F on $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$. Marcus and Mizel [3] have shown that any Nemytskii operator from $W^{1,1}\left(\boldsymbol{T}^{1}\right)$ to itself is continuous. While it is not clear whether such a result holds for $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$, we will see that f^{\prime} being locally of bounded variation ensures that F maps $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ continuously into itself. (In particular, $u \mapsto|u|$ maps $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ continuously into itself.) We also show that if $f^{\prime \prime}$ is locally Lipschitz continuous then F is continuously Fréchet differentiable on $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$.

The present remarks arose as a natural extension of observations, motivated by questions about functions on the unit disc, in the case $f(t)=\frac{1}{2} t^{2}$ [5]. Recall that for $v \in \mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$ the complex-valued function $v+i \mathcal{C} v$ can be interpreted as the boundary values of a holomorphic function V on the unit disc \mathcal{D} in the complex plane. It is well known [6] that the image of \mathcal{D} under V is a connected set, the boundary of which has bounded variation ($v+i \mathcal{C} v$ has bounded variation on $\left.\mathbf{T}^{\mathbf{1}}\right)$ if and only if $v+i \mathcal{C} v$ is absolutely continuous. This in turn is equivalent to the fact that v^{\prime}, the weak derivative of v, is in $\mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$ in which case $(v+i \mathcal{C} v)^{\prime}=v^{\prime}+i \mathcal{C}\left(v^{\prime}\right)$.

The treatment here, which is independent of [2] and [3], is self-contained and elementary.

Continuity

Suppose that f is a real-valued function on \mathbf{R} which is locally Lipschitz (Lipschitz continuous on every compact interval) and u is an absolutely continuous function on \mathbf{T}^{1}. It follows from first principles that the composition $f \circ u$ is absolutely continuous on \mathbf{T}^{1}. Therefore, for almost all $x \in \mathbf{T}^{1}$, the classical derivative of $f \circ u$ at x exists. Note also that f is differentiable at t for almost all $t \in \mathbf{R}$. Suppose now that $t \in \mathbf{R}$ is a point at which f is not differentiable and suppose that $u(x)=t$. Then if u is differentiable with non-zero derivative at x it is easily verified that $f \circ u$ is not differentiable at x. From these observations it follows that, no matter what finite value is assigned to $f^{\prime}(t)$ at points t where f is not differentiable, the formula

$$
\begin{equation*}
(f \circ u)^{\prime}(x)=f^{\prime}(u(x)) u^{\prime}(x) \tag{1}
\end{equation*}
$$

holds for almost all $x \in \mathbf{T}^{\mathbf{1}}$, where ' denotes the classical derivative at points where it
exists. This formula also gives the weak derivative of $f \circ u$ almost everywhere on \mathbf{T}^{1}. (The example $f(t)=|t|$ and $u \equiv 0$ illustrates the point discussed in this paragraph.)

Now consider the case when f is convex. At each point $t \in \mathbf{R}$, let $f_{+}^{\prime}(t)$ represent the right derivative of f at t. The right derivative always exists and is finite because of convexity, and coincides with the classical derivative almost everywhere. Moreover, at points where the classical derivative f^{\prime} exists, $t \mapsto f_{+}^{\prime}(t)$ is continuous.

If, more generally, f^{\prime} has bounded variation on every compact interval I, or equivalently if f is the difference of two convex functions on I, the right derivative $f_{+}^{\prime}(t)$ is well-defined for all $t \in \mathbf{R}$. In this case we write $f \in D C$ and put $f^{\prime}=f_{+}^{\prime}$ in (1). If u is absolutely continuous and $f \in D C$ we see from the above discussion that, for almost all $x \in \mathbf{T}^{1}$, the function $G(u): \mathbf{T}^{1} \times \mathbf{T}^{1} \rightarrow \mathbf{R}$ defined by

$$
\begin{equation*}
G(u)(x, y)=f(u(y))-f(u(x))-f_{+}^{\prime}(u(x))(u(y)-u(x)) \tag{2}
\end{equation*}
$$

is differentiable with respect to y at $y=x$, and $\left.(\partial / \partial y) G(u)(x, y)\right|_{y=x}$ is zero for almost all values of x. The following slight variant of the dominated convergence theorem will be useful.

Lemma 1. Suppose for a sequence $\left\{\left(g_{n}, h_{n}\right)\right\}_{n=1}^{\infty}$ in $L^{1}\left(\mathbf{T}^{\mathbf{1}}\right) \times L^{1}\left(\mathbf{T}^{1}\right)$, that $\left|g_{n}\right| \leq h_{n}$ almost everywhere. Suppose also that there exists $(g, h) \in L^{1}\left(\mathbf{T}^{1}\right) \times L^{1}\left(\mathbf{T}^{1}\right)$ such that every subsequence $\left\{\left(g_{n_{k}}, h_{n_{k}}\right)\right\}_{k=1}^{\infty}$ of $\left\{\left(g_{n}, h_{n}\right)\right\}_{n=1}^{\infty}$ has a subsequence (also denoted by $\left.\left\{\left(g_{n_{k}}, h_{n_{k}}\right)\right\}_{k=1}^{\infty}\right)$ with $\left(g_{n_{k}}, h_{n_{k}}\right) \rightarrow(g, h)$ pointwise almost everywhere and $\int_{-\pi}^{\pi} h_{n_{k}} d x \rightarrow \int_{-\pi}^{\pi} h d x$, as $k \rightarrow \infty$. Then $g_{n} \rightarrow g$ in $L^{1}\left(\mathbf{T}^{1}\right)$. In particular, if the hypotheses are satisfied with $g_{n}=h_{n}$, then $h_{n} \rightarrow h$ in $L^{1}\left(\mathbf{T}^{1}\right)$.

Proof. Suppose that $g_{n} \nrightarrow g$ in $L^{1}\left(\mathbf{T}^{1}\right)$, as $n \rightarrow \infty$. Then there is a number α and a subsequence with $\left\|g_{n_{k}}-g\right\|_{L^{1}\left(\mathbf{T}^{1}\right)} \geq \alpha>0$ for all k. From the hypothesis we may assume that $\left(g_{n_{k}}, h_{n_{k}}\right) \rightarrow(g, h)$ pointwise almost everywhere. Hence, by Fatou's lemma,

$$
\begin{aligned}
\int_{-\pi}^{\pi} 2 h d x & \leq \liminf _{k \rightarrow \infty} \int_{-\pi}^{\pi}\left(h+h_{n_{k}}-\left|g_{n_{k}}-g\right|\right) d x \\
& =\int_{-\pi}^{\pi} 2 h d x+\liminf _{k \rightarrow \infty}-\int_{-\pi}^{\pi}\left|g_{n_{k}}-g\right| d x
\end{aligned}
$$

It follows that $0 \leq-\lim \sup _{k \rightarrow \infty}\left\|g_{n_{k}}-g\right\|_{L^{1}\left(\mathbf{T}^{1}\right)} \leq-\alpha<0$, which contradiction proves the claim.

Recall the properties of \mathcal{C} and of integrability- B, which is defined in Zygmund [6].
(i) That $v_{n} \rightarrow v$ in $L^{1}\left(\mathbf{T}^{1}\right)$ implies that a subsequence $\mathcal{C} v_{n_{k}} \rightarrow \mathcal{C} v$ pointwise almost everywhere.
(ii) For $v \in L^{1}\left(\mathbf{T}^{1}\right),|\mathcal{C} v|^{[p]} \in L^{1}\left(\mathbf{T}^{1}\right)$ for all $p \in(0.1)$, where $t^{[p]}=\min \left\{t, t^{p}\right\}$ for $t \geq 0$.
(iii) If $u \in L^{1}\left(\mathbf{T}^{1}\right)$ then u is integrable- B and the two integrals coincide. (We write this as $\int_{-\pi}^{\pi} u d x=(B) \int_{-\pi}^{\pi} u d x$.)
(iv) If $u \in L^{1}\left(\mathbf{T}^{\mathbf{1}}\right)$ then $\mathcal{C} u$ is integrable-B and (B) $\int_{-\pi}^{\pi} \mathcal{C} u d x=0$.
(v) If u and v are integrable- B , then $u+v$ is integrable- B and

$$
(B) \int_{-\pi}^{\pi} u d x+(B) \int_{-\pi}^{\pi} v d x=(B) \int_{-\pi}^{\pi}(u+v) d x
$$

The key is the following observation.
Proposition 2. For $v \in L^{1}\left(\mathbf{T}^{1}\right), v \in \mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$ if and only if the positive part of $\mathcal{C} v$ is in $L^{1}\left(\mathbf{T}^{1}\right)$.

Proof. The 'only if' part is clear from the definition of $\mathcal{H}^{1}\left(\mathbf{T}^{\mathbf{1}}\right)$. Suppose that $v \in L^{1}\left(\mathbf{T}^{1}\right)$ and that $u=(\mathcal{C} v)^{+} \in L^{1}\left(\mathbf{T}^{1}\right)$, where $w^{+}(x) \equiv \max \{w(x), 0\}$ for any function w. Then $u-\mathcal{C} v \geq 0$ almost everywhere. Therefore, for all $p \in(0,1)$, (ii) $-(\mathrm{v})$ give that

$$
\begin{aligned}
\int_{-\pi}^{\pi}(u-\mathcal{C} v)^{[p]} d x & =(B) \int_{-\pi}^{\pi}(u-\mathcal{C} v)^{[p]} d x \\
& \leq(B) \int_{-\pi}^{\pi}(u-\mathcal{C} v) d x=(B) \int_{-\pi}^{\pi} u d x=\int_{-\pi}^{\pi} u d x
\end{aligned}
$$

When $p \nearrow 1$ we learn from Fatou's lemma that $u-\mathcal{C} v \in L^{1}\left(\mathbf{T}^{1}\right)$. Since $u \in L^{1}\left(\mathbf{T}^{1}\right)$, the result follows.

Remark. A trivial consequence of this observation and Zygmund's lemma is that if $u \in L^{1}\left(\mathbf{T}^{1}\right)$ and $\mathcal{C} u \geq \alpha$ for some $\alpha \in \mathbf{R}$, then $\mathcal{C} u \in L \log ^{+} L$.

For any absolutely continuous function u and $f \in D C$, let $\mathcal{F}(u)$ be defined for almost all $x \in \mathbf{T}^{1}$ by

$$
\begin{equation*}
\mathcal{F}(u)(x) \equiv f_{+}^{\prime}(u(x)) \mathcal{C} u^{\prime}(x)-\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)(x) \tag{3}
\end{equation*}
$$

Proposition 3. Suppose that f is convex on \mathbf{R} and u is absolutely continuous on \mathbf{T}^{1}. Then $\mathcal{F}(u)(x) \geq 0$ for almost all $x \in \mathbf{T}^{1}$.

Proof. Let x be a point at which the partial derivative of $G(u)(x, y)$ with respect to y at $y=x$ exists and is zero. From (2) and the convexity of $f, G(u)(x, y) \geq 0$ for
all $y \in \mathbf{R}$. Therefore, by definition,

$$
\begin{aligned}
f_{+}^{\prime}(u(x)) \mathcal{C} u^{\prime}(x)-\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(f_{+}^{\prime}(u(x))-f_{+}^{\prime}(u(y))\right) u^{\prime}(y)}{\tan \left(\frac{1}{2}(x-y)\right)} d y \\
& =-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{(\partial / \partial y) G(u)(x, y)}{\tan \left(\frac{1}{2}(x-y)\right)} d y \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{G(u)(x, y)}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y \geq 0
\end{aligned}
$$

Proposition 4. Suppose $f \in D C$. Then $f \circ u \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$ for all $u \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$.
Proof. Suppose that $u \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$. Then there is a compact interval I such that $u(x) \in I$ for all $x \in \mathbf{T}^{1}$. Since $f \in D C$ it suffices to restrict attention to the case when f is convex on \mathbf{R}. Since $u^{\prime} \in \mathcal{H}^{1}\left(\mathbf{T}^{\mathbf{1}}\right)$ and

$$
\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)=f_{+}^{\prime}(u) \mathcal{C} u^{\prime}-\mathcal{F}(u)
$$

we find, from Proposition 3, that $\left(\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)\right)^{+} \in L^{1}\left(\mathbf{T}^{1}\right)$. Hence $f_{+}^{\prime}(u) u^{\prime} \in \mathcal{H}^{1}\left(\mathbf{T}^{1}\right)$, by Proposition 2. However $f_{+}^{\prime}(u) u^{\prime}$ is the weak derivative of $f(u)$. Hence $f(u) \in$ $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$.

Remark. Suppose that $u \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$. Then it follows from elementary calculus that

$$
\begin{equation*}
\left|u(x)-\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(x) d x\right| \leq \frac{1}{2} \int_{-\pi}^{\pi}\left|u^{\prime}(x)\right| d x \tag{4}
\end{equation*}
$$

and therefore

$$
\int_{-\pi}^{\pi} u \mathcal{C} u^{\prime} d x \leq \frac{1}{2}\|u\|_{\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)}^{2}, \quad u \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)
$$

Corollary 5. For $u \in \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$

$$
\begin{equation*}
0 \leq \frac{1}{8 \pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left(\frac{u(x)-u(y)}{\sin \left(\frac{1}{2}(x-y)\right)}\right)^{2} d y d x=\int_{-\pi}^{\pi} u \mathcal{C} u^{\prime} d x \leq \frac{1}{2}\|u\|_{\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)}^{2} \tag{5}
\end{equation*}
$$

Proof. This follows from taking $f(t)=\frac{1}{2} t^{2}$ in the proof of Proposition 3 and integrating over $[-\pi, \pi]$, using Proposition 4 and the preceding remark.

Next we have the following result.

Corollary 6. $\mathcal{H}^{1.1}\left(\mathbf{T}^{\mathbf{1}}\right)$ is an algebra in which multiplication is continuous.
Proof. Let $f(t)=\frac{1}{2} t^{2}, t \in \mathbf{R}$, in Proposition 3. For $u \in \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ let

$$
0 \leq \mathcal{Q} u(x)=u(x) \mathcal{C} u^{\prime}(x)-\mathcal{C}\left(u u^{\prime}\right)(x), \quad x \in \mathbf{T}^{\mathbf{1}}
$$

Hence $\left(\mathcal{C}\left(u u^{\prime}\right)\right)^{+} \leq\left|u \mathcal{C} u^{\prime}\right|$ and that $\left\|\left(\mathcal{C}\left(u u^{\prime}\right)\right)^{+}\right\|_{L^{1}\left(\mathbf{T}^{1}\right)} \leq \frac{1}{2}\|u\|_{\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)}^{2}$ follows. Since $\int_{-\pi}^{\pi} \mathcal{C}\left(u u^{\prime}\right) d x=0$ it follows that $\left\|\mathcal{C}\left(\left(u^{2}\right)^{\prime}\right)\right\|_{L^{1}\left(\mathbf{T}^{1}\right)} \leq 2\|u\|_{\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)}^{2}$. The result follows.

Let $W^{1,1}\left(\mathbf{T}^{1}\right)$ denote the Banach space of real-valued absolutely continuous functions on \mathbf{T}^{1} with norm $\|u\|_{W^{1,1}\left(\mathbf{T}^{1}\right)}=\|u\|_{L^{1}\left(\mathbf{T}^{1}\right)}+\left\|u^{\prime}\right\|_{L^{1}\left(\mathbf{T}^{1}\right)}$.

Remark. When f is locally Lipschitz, the Nemytskii operator F maps $W^{1,1}\left(\mathbf{T}^{1}\right)$ continuously into itself [3], but a simpler result is sufficient here; for completeness we include the proof.

Lemma 7. Suppose that $f \in D C$. Then $F: W^{1,1}\left(\mathbf{T}^{1}\right) \rightarrow W^{1,1}\left(\mathbf{T}^{1}\right)$ is continuous.

Proof. Since $f \in D C$ it suffices to consider the case when f is convex on \mathbf{R}. In this case, by our earlier discussion, $(F(u))^{\prime}=f_{+}^{\prime}(u) u^{\prime}$ almost everywhere. Let $u_{n} \rightarrow u$ in $W^{1,1}\left(\mathbf{T}^{1}\right)$. It suffices to show that $f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime} \rightarrow f_{+}^{\prime}(u) u^{\prime}$ in $L^{1}\left(\mathbf{T}^{1}\right)$. Since $u_{n}^{\prime} \rightarrow u^{\prime}$ in $L^{1}\left(\mathbf{T}^{1}\right)$ and f_{+}^{\prime} is bounded on bounded sets, it is enough, using Lemma 1 , to show that every subsequence $\left\{f_{+}^{\prime}\left(u_{n_{k}}\right) u_{n_{k}}^{\prime}\right\}_{k=1}^{\infty}$ of $\left\{f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right\}_{n=1}^{\infty}$ has a subsequence which converges pointwise almost everywhere to $f_{+}^{\prime}(u) u^{\prime}$.

Every subsequence of $\left\{u_{n_{k}}^{\prime}\right\}_{k=1}^{\infty}$ has a subsequence (also denoted by $\left\{u_{n_{k}}^{\prime}\right\}_{k=1}^{\infty}$) which converges to u^{\prime} on a set U of full measure. Let $E \subset U$ denote the set on which u^{\prime} exists, let $E_{0}=\left\{x \in E: u^{\prime}(x)=0\right\}$ and let $E_{1}=E \backslash E_{0}$. Clearly $f_{+}^{\prime}\left(u_{n_{k}}(x)\right) u_{n_{k}}^{\prime}(x) \rightarrow$ $0=f_{+}^{\prime}(u(x)) u^{\prime}(x)$ for $x \in E_{0}$. Moreover, the earlier discussion ensures that $f^{\prime}(u(x))$ exists for almost all $x \in E_{1}$. Therefore, for almost all $x \in E_{1}$, the function $t \mapsto f_{+}^{\prime}(t)$ is continuous at $t=u(x)$. Hence $f_{+}^{\prime}\left(u_{n_{k}}(x)\right) u_{n_{k}}^{\prime}(x) \rightarrow f_{+}^{\prime}(u(x)) u^{\prime}(x)$ at all such points. We have shown that $f_{+}^{\prime}\left(u_{n_{k}}(x)\right) u_{n_{k}}^{\prime}(x) \rightarrow f_{+}^{\prime}(u(x)) u^{\prime}(x)$ for almost all $x \in E$. Since E has full measure this completes the proof.

Proposition 8. For $f \in D C$, the Nemytskii operator $F: \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right) \rightarrow \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ is continuous.

Proof. As with the proof of Proposition 4 and Lemma 7, it suffices to prove the result for convex f. Also, by Lemma 7 , it is now enough to show that $\mathcal{C}\left(f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right) \rightarrow$ $\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)$ in $L^{1}\left(\mathbf{T}^{1}\right)$, as $n \rightarrow \infty$, where $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a subsequence of a sequence converging to u in $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$. Let $g_{n}=\left(\mathcal{C}\left(f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right)\right)^{+}$and let $0 \leq M=\sup \left\{f_{+}^{\prime}\left(u_{n}(x)\right)\right.$: $\left.x \in \mathbf{T}^{1}, n \in \mathbf{N}\right\}<\infty$. Then by Proposition 3,

$$
0 \leq g_{n}=\left(\mathcal{C}\left(f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right)\right)^{+} \leq\left|f_{+}^{\prime}\left(u_{n}\right) \mathcal{C} u_{n}^{\prime}\right| \leq M\left|\mathcal{C} u_{n}^{\prime}\right|
$$

almost everywhere, for all n. By Lemma 7 and (i), every subsequence of $\left\{g_{n}\right\}_{n=1}^{\infty}$ has a subsequence which converges almost everywhere to $g=\left(\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)\right)^{+}$. Let subsequences be indexed by n and let $h_{n}=M\left|\mathcal{C} u_{n}^{\prime}\right|$. Then $h_{n} \rightarrow h$ in $L^{1}\left(\mathbf{T}^{1}\right)$, where $h=M\left|\mathcal{C} u^{\prime}\right|$. Now an application of Lemma 1 shows that $g_{n} \rightarrow g$ in $L^{1}\left(\mathbf{T}^{\mathbf{1}}\right)$. By Proposition $4, \mathcal{C}\left(f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right) \in L^{1}\left(\mathbf{T}^{1}\right)$ and has zero integral (by (iii) and (iv)). Therefore for a subsequence of the negative parts, $\left(\mathcal{C}\left(f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right)^{-} \rightarrow\left(\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)^{-}\right.\right.$almost everywhere and $\int_{-\pi}^{\pi}\left(\mathcal{C}\left(f_{+}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right)^{-} d x \rightarrow \int_{-\pi}^{\pi}\left(\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)^{-} d x\right.\right.$, as $n \rightarrow \infty$. The result now follows from the last statement in Lemma 1.

Remark. From the preceding proof it follows that if f is convex,

$$
\int_{-\pi}^{\pi}\left|\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)(x)\right| d x \leq 2 \int_{-\pi}^{\pi}\left|f_{+}^{\prime}(u(x)) \mathcal{C} u^{\prime}(x)\right| d x
$$

and therefore that F maps bounded sets into bounded sets in $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ when f^{\prime} is locally of bounded variation.

By contrast with the mapping $u \mapsto f_{+}^{\prime}(u) u^{\prime}$, which is continuous from $W^{1,1}\left(\mathbf{T}^{1}\right)$ to $L^{1}\left(\mathbf{T}^{1}\right)$, we now show that $u \mapsto f_{+}^{\prime}(u) \mathcal{C} u^{\prime}$ need not be continuous from $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ to $L^{1}\left(\mathbf{T}^{1}\right)$. (As a consequence of this remark and Proposition $8, \mathcal{F}: \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right) \rightarrow$ $L^{1}\left(\mathbf{T}^{1}\right)$ is well defined but not necessarily continuous when $f \in D C$. If, in addition, f^{\prime} is continuous then it follows from Proposition 8 and the dominated convergence theorem that $\mathcal{F}: \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right) \rightarrow L^{1}\left(\mathbf{T}^{1}\right)$ is continuous.) First a simple observation.

Lemma 9. Let $u: \mathbf{T}^{1} \rightarrow \mathbf{R}$ be a non-negative smooth function which is zero on an open interval I, but not identically zero. Then for all $x, y \in I$ with $x>y$, $\mathcal{C} u(x)-\mathcal{C} u(y)<0$. In particular, $\mathcal{C} u^{\prime} \not \equiv 0$ on I.

Proof. Let $x>y, x, y \in I$. Then, since $u \equiv 0$ on I,

$$
\begin{aligned}
\mathcal{C} u(x)-\mathcal{C} u(y) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{u(x-z)-u(y-z)}{\tan \left(\frac{1}{2} z\right)} d z=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{(\partial / \partial z) \int_{y-z}^{x-z} u(t) d t}{\tan \left(\frac{1}{2} z\right)} d z \\
& =-\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{\int_{y-z}^{x-z} u(t) d t}{\sin ^{2}\left(\frac{1}{2} z\right)} d z<0 .
\end{aligned}
$$

Proposition 10. Suppose that $f(t)=|t|, t \in \mathbf{R}$. Then $\mathcal{F}: \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right) \rightarrow L^{1}\left(\mathbf{T}^{1}\right)$ is not continuous.

Proof. Let $u \in \mathcal{H}^{1, \mathbf{1}}\left(\mathbf{T}^{1}\right)$ be as described in Lemma 9 and let $v \in \mathcal{H}^{\mathbf{1 , 1}}\left(\mathbf{T}^{\mathbf{1}}\right)$ be a non-negative, smooth function which is non-zero and has compact support in I. Now for x in the support of v and $\varepsilon>0$,

$$
\left[f_{+}^{\prime}(u+\varepsilon v) \mathcal{C}(u+\varepsilon v)^{\prime}\right]_{x}=\operatorname{sgn}(\varepsilon)\left(\mathcal{C} u^{\prime}(x)+\varepsilon \mathcal{C} v^{\prime}(x)\right)
$$

The result now follows since $\mathcal{C} u^{\prime} \not \equiv 0$ on the support of v, by Lemma 9 . This shows that $w \mapsto f_{+}^{\prime}(w) \mathcal{C} w^{\prime}$ is not continuous from $\mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$ into $L^{1}\left(\mathbf{T}^{1}\right)$ which, by Proposition 8 , is equivalent to the required result.

Remark. We finish this section with a useful inequality. Suppose that f is convex and that there exists $0 \leq \alpha \leq \beta$ such that $\alpha(a-b)^{2} \leq(a-b)\left(f_{+}^{\prime}(a)-f_{+}^{\prime}(b)\right) \leq$ $\beta(a-b)^{2}$ for all $a, b \in I=\left\{u(x): x \in \mathbf{T}^{1}\right\}$, where $u \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$. Then

$$
0 \leq \alpha \int_{-\pi}^{\pi} u \mathcal{C} u^{\prime} d x \leq \int_{-\pi}^{\pi} f_{+}^{\prime}(u) \mathcal{C} u^{\prime} d x \leq \beta \int_{-\pi}^{\pi} u \mathcal{C} u^{\prime} d x
$$

To see this simply note by symmetry and the proof of Proposition 3 that, for all $x \in \mathbf{T}^{1}$,

$$
\begin{aligned}
\int_{-\pi}^{\pi} f_{+}^{\prime}(u(x)) \mathcal{C} u^{\prime}(x) d x & =\int_{-\pi}^{\pi}\left[f_{+}^{\prime}(u(x)) \mathcal{C} u(x)-\mathcal{C}\left(f_{+}^{\prime}(u) u^{\prime}\right)(x)\right] d x \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{G(u)(x, y)}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y d x \\
& =\frac{1}{8 \pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{G(u)(x, y)+G(u)(y, x)}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y d x \\
& =\frac{1}{8 \pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\left(f_{+}^{\prime}(u(x))-f_{+}^{\prime}(u(y))\right)(u(x)-u(y))}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y d x
\end{aligned}
$$

This identity in the special case when $f(u)=\frac{1}{2} u^{2}$ (see (5)), and the general case when f_{+}^{\prime} satisfy the hypotheses of this remark, combine to give the required result.

Fréchet differentiability

Suppose now that $f^{\prime \prime}$ is locally Lipschitz. We will show that the Nemytskii operator F is continuously Fréchet differentiable on $\mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$. For $u \in \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$, the obvious candidate for the Fréchet derivative of F at u is the linear operator L_{u} defined by the product

$$
L_{u} v=v f^{\prime}(u), \quad v \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)
$$

Proposition 11. When $f^{\prime \prime}$ is locally Lipschitz the operator F on $\mathcal{H}^{1.1}\left(\mathbf{T}^{\mathbf{1}}\right)$ is continuously Fréchet differentiable and L_{u} is the derivative of F at u.

Proof. For $u \in \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right), f^{\prime} \circ u \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$ depends continuously on u, by Proposition 8. Hence, for $v \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$, the product $v f^{\prime}(u) \in \mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)$ depends continuously on $u, v \in \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$, by Corollary 6 . It remains only to show that L_{u} is
the Fréchet derivative of F at u. In other words we have to show that when $\left\|v_{n}\right\|_{\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)} \rightarrow 0$,

$$
\lim _{n \rightarrow \infty} \frac{\left\|F\left(u+v_{n}\right)-F(u)-L_{u} v_{n}\right\|_{\mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)}}{\left\|v_{n}\right\|_{\mathcal{H}^{1.1}\left(\mathbf{T}^{1}\right)}}=0
$$

It is easy to see, from the intermediate value theorem and the hypothesis on f, that the mappings

$$
u \longmapsto f(u), \quad u \longmapsto f^{\prime}(u) u^{\prime}, \quad u \longmapsto f^{\prime}(u) \mathcal{C} u^{\prime}
$$

are Fréchet differentiable from $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ into $L^{1}\left(\mathbf{T}^{1}\right)$ with derivatives

$$
\begin{equation*}
v \longmapsto f^{\prime}(u) v, \quad v \longmapsto f^{\prime \prime}(u) u^{\prime} v+f^{\prime}(u) v^{\prime}, \quad v \longmapsto\left(f^{\prime \prime}(u) \mathcal{C} u^{\prime}\right) v+f^{\prime}(u) \mathcal{C} v^{\prime} \tag{6}
\end{equation*}
$$

Therefore it suffices to show that the mapping $u \mapsto \mathcal{C}\left(f^{\prime}(u) u^{\prime}\right)$ is Fréchet differentiable from $\mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ to $L^{1}\left(\mathbf{T}^{1}\right)$ with derivative

$$
v \longmapsto \mathcal{C}\left(\left(f^{\prime \prime}(u) u^{\prime} v+f^{\prime}(u) v^{\prime}\right)\right.
$$

However, because of the definition of $\mathcal{F}(u)$, given in (3), it suffices to show that $\mathcal{F}: \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right) \rightarrow L^{1}\left(\mathbf{T}^{1}\right)$ is Fréchet differentiable at u where, as in the proof of Proposition 3,

$$
\begin{equation*}
\mathcal{F}(u)(x)=\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{G(u)(x, y)}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y \tag{7}
\end{equation*}
$$

Note first that $G(u)(x, y)=H(u(x), u(y))$ where, by Taylor's theorem,

$$
H(a, b)=f(b)-f(a)-f^{\prime}(a)(b-a)=\frac{1}{2} f^{\prime \prime}(\xi)(b-a)^{2}
$$

for some ξ between a and b. Let

$$
h(a, b)= \begin{cases}\frac{H(a, b)}{(b-a)^{2}}, & \text { if } a \neq b \\ \frac{1}{2} f^{\prime \prime}(a), & \text { if } a=b\end{cases}
$$

Then h is continuous on \mathbf{R}^{2}, and continuously differentiable on the open set where $a \neq b$. At such points

$$
\begin{array}{ll}
\left.\frac{\partial h}{\partial b}\right|_{(a, b)}=\frac{H(a, b)-H(b, a)}{(a-b)^{3}}=\frac{1}{2} \frac{f^{\prime \prime}(\chi)-f^{\prime \prime}(\zeta)}{a-b}, & \chi, \zeta \in[a, b] \\
\left.\frac{\partial h}{\partial a}\right|_{(a, b)}=2 \frac{H(a, b)-\frac{1}{2} f^{\prime \prime}(a)(b-a)^{2}}{(b-a)^{3}}=\frac{f^{\prime \prime}(\xi)-f^{\prime \prime}(a)}{b-a}, & \xi \in[a, b]
\end{array}
$$

(Here $[a, b]$ denotes the closed interval with end-points a, b, whether $a \leq b$ or not.) Since $f^{\prime \prime}$ is locally Lipschitz, it follows that ∇h is uniformly bounded on bounded sets of points (a, b) with $a \neq b$. Note that for $a \neq b$,

$$
\begin{equation*}
\frac{\partial h}{\partial b}=\frac{h(a, b)-h(b, a)}{a-b} \quad \text { and } \quad \frac{\partial h}{\partial a}=\frac{2}{b-a}(h(a, b)-h(a, a)) . \tag{8}
\end{equation*}
$$

For definiteness in formulae later we use the convention that $\nabla h(a, a)=(0,0)$. Now

$$
\begin{align*}
& H\left(a+a^{\prime}, b+b^{\prime}\right)-H(a, b)-2(a-b)\left(a^{\prime}-b^{\prime}\right) h(a, b)-(a-b)^{2} \nabla h(a, b) \cdot\left(a^{\prime}, b^{\prime}\right) \\
&=(a-b)^{2}\left[h\left(a+a^{\prime}, b+b^{\prime}\right)-h(a, b)-\nabla h(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)\right] \tag{9}\\
& \quad+2(a-b)\left(a^{\prime}-b^{\prime}\right)\left[h\left(a+a^{\prime}, b+b^{\prime}\right)-h(a, b)\right]+\left(a^{\prime}-b^{\prime}\right)^{2} h\left(a+a^{\prime}, b+b^{\prime}\right)
\end{align*}
$$

When $a=b$ and $\left(a^{\prime}, b^{\prime}\right) \in \mathbf{R}^{2}$, then

$$
H\left(a+a^{\prime}, b+b^{\prime}\right)-H(a, b)=\left(a^{\prime}-b^{\prime}\right)^{2} h\left(a+a^{\prime}, b+b^{\prime}\right)
$$

Now for $a \neq b$ and $\left(a^{\prime}, b^{\prime}\right) \in \mathbf{R}^{2}$ let

$$
k(t)=h\left(a+t a^{\prime}, b+t b^{\prime}\right)-h(a, b)-t \nabla h(a, b) \cdot\left(a^{\prime}, b^{\prime}\right), \quad t \in[0,1] .
$$

Then k is Lipschitz on $[0,1]$ and is continuously differentiable except possibly at one point $t \in[0,1]$. Therefore for $\left(a^{\prime}, b^{\prime}\right) \in \mathbf{R}^{2}$ and $a \neq b$

$$
\begin{align*}
K_{1}\left(a, b, a^{\prime}, b^{\prime}\right) & : \equiv h\left(a+a^{\prime}, b+b^{\prime}\right)-h(a, b)-\nabla h(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=k(1)-k(0) \\
& =\left(a^{\prime}, b^{\prime}\right) \cdot \int_{0}^{1}\left(\nabla h\left(a+t a^{\prime}, b+t b^{\prime}\right)-\nabla h(a, b)\right) d t, \tag{10}
\end{align*}
$$

where

$$
\left|\int_{0}^{1}\left(\nabla h\left(a+t a^{\prime}, b+t b^{\prime}\right)-\nabla h(a, b)\right) d t\right|
$$

is bounded for ($a, b, a^{\prime}, b^{\prime}$) in bounded sets in \mathbf{R}^{4}, and. by the dominated convergence theorem, converges to 0 , as $\left(a^{\prime}, b^{\prime}\right) \rightarrow(0,0)$, for fixed $a \neq b$. Let $K_{1}\left(a, b, a^{\prime}, b^{\prime}\right)=0$ when $a=b$ and let

$$
\begin{equation*}
K_{2}\left(a, b, a^{\prime}, b^{\prime}\right) \equiv h\left(a+a^{\prime}, b+b^{\prime}\right)-h(a, b) \rightarrow 0 . \quad \text { as }\left(a^{\prime}, b^{\prime}\right), \rightarrow(0,0) \tag{11}
\end{equation*}
$$

uniformly for (a, b) in bounded sets.

Therefore, by (9), for all $u, v \in \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right)$ and $x, y \in \mathbf{T}^{1}$,

$$
\begin{gathered}
H(u(x)+v(x), u(y)+v(y))-H(u(x), u(y))-2(u(x)-u(y))(v(x)-v(y)) h(u(x), u(y)) \\
-(u(x)-u(y))^{2} \nabla h(u(x), u(y)) \cdot(v(x), v(y)) \\
=(u(x)-u(y))^{2} K_{1}(u(x), u(y) \cdot v(x), v(y)) \\
\quad+2(u(x)-u(y))(v(x)-v(y)) K_{2}(u(x), u(y), v(x), v(y)) \\
+(v(x)-v(y))^{2} h(u(x)+v(x), u(y)+v(y)) .
\end{gathered}
$$

It now follows, from Corollary 5 , with (7), (8), (10), (11) and the dominated convergence theorem, followed by an integration by parts, that $\mathcal{F}: \mathcal{H}^{\mathbf{1 . 1}}\left(\mathbf{T}^{1}\right) \rightarrow$ $L^{1}\left(\mathbf{T}^{1}\right)$ is Fréchet differentiable at u with derivative

$$
\begin{aligned}
v \mapsto & \frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{2(u(x)-u(y))(v(x)-v(y)) h(u(x), u(y))}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y \\
+ & \frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{(u(x)-u(y))(h(u(x), u(y))-h(u(y), u(x)))}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} v(y) d y \\
- & \frac{1}{2 \pi} v(x) \int_{-\pi}^{\pi} \frac{(u(x)-u(y))(h(u(x), u(y))-h(u(x), u(x)))}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{(u(x)-u(y)) v(x) f^{\prime \prime}(u(x))+v(y)\left(f^{\prime}(u(y))-f^{\prime}(u(x))\right)}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(f^{\prime \prime}(u(x)) v(x)-f^{\prime \prime}(u(y)) v(y)\right) u^{\prime}(y)+\left(f^{\prime}(u(x))-f^{\prime}(u(y))\right) v^{\prime}(y)}{\tan \left(\frac{1}{2}(x-y)\right)} d y \\
& =\left[f^{\prime \prime}(u) v \mathcal{C} u^{\prime}+f^{\prime}(u) \mathcal{C} v^{\prime}\right](x)-\left[\mathcal{C}\left(f^{\prime \prime}(u) v u^{\prime}\right)+\mathcal{C}\left(f^{\prime}(u) v^{\prime}\right)\right](x) .
\end{aligned}
$$

In the light of (6), this is what is needed to conclude that $F: \mathcal{H}^{1,1}\left(\mathbf{T}^{1}\right) \rightarrow \mathcal{H}^{1,1}\left(\mathbf{T}^{\mathbf{1}}\right)$ is Fréchet differentiable at u with derivative L_{u}.

Acknowledgement. This work was supported by EPSRC Senior Fellowship. I am grateful to Professor D. E. Edmunds (Sussex) for advice and to Professor W. Sickel (Jena) for his interest and for drawing my attention to Janson's work [2].

References

1. Appell, J. and Zabrejko, P. P., Nonlinear Superposition Operators, Cambridge Tracts in Math. 95, Cambridge Univ. Press, Cambridge, 1990.
2. Janson, S., On functions with derivatives in H^{1}, in Harmonic Analysis and Partial Differential Equations (El Escorial, 1987) (García-Cuerva, J., ed.), Lecture Notes in Math. 1384, pp. 193-201, Springer-Verlag, Berlin-Heidelberg, 1989.
3. Marcus, M. and Mizel, V. J., Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), 217-229.
4. Runst, T. and Sickel, W., Sobolev Spaces of Fractional Order, Nemytskii Operators and Nonlinear Partial Differential Equations, de Gruyter, Berlin, 1996.
5. Toland, J. F., Regularity of Stokes waves in Hardy spaces and as distributions, J. Math. Pures Appl. 79 (2000), 901-917.
6. Zygmund, A., Trigonometric Series I \& II, Cambridge Univ. Press, Cambridge, 1959.

Received February 21, 2000

John F. Toland
Department of Mathematical Sciences University of Bath
Bath BA2 7AY
England, U.K.
email: jft@maths.bath.ac.uk

