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Very weak solutions of parabolic 
systems of p-Laplacian type 

Juha  K i n n u n e n  and  John  L. Lewis(1) 

Abstract .  We show that the standard assumptions on weak solutions to certain parabolic 
systems can be weakened and still the usual regularity properties of solutions can be obtained. In 
order to do this, we derive estimates for the solutions below the natural exponent and then apply 
reverse HSlder inequalities. 

1. I n t r o d u c t i o n  

Our  work is mot iva ted  by the classical Weyl 's  lemma: If a locally integrable  

funct ion satisfies Laplace 's  equa t ion  in the sense of dis t r ibut ions ,  then  it is real 

analyt ic .  In  other words, only a very modest  requi rement  on the regular i ty  of a 

solut ion is needed for a par t ia l  differential equat ion  to make sense and  then  the 

equat ion  gives ext ra  regularity. We are interested in nonl inear  parabolic  systems of 

par t ia l  differential equat ions  so tha t  a counterpar t  of Weyl 's  l emma is too much to 

hope for, bu t  the quest ion of relaxing the s t andard  Sobolev type  assumpt ions  on 

weak solut ions and  still ob ta in ing  regular i ty  theory is the object ive of our work. 

We consider solut ions to second order parabolic  systems 

OUi=divAi(x,t, Vu)+Bi(x, L Vu), i=l, . . . ,N. 
(1.1) at 

In  par t icular ,  we are interested in systems of p -Laplac ian  type. The  pr incipal  pro- 

to type  is the p-parabol ic  sys tem 

COUi _d iv( lV~t lp_2Vui ) ,  i = 1 ,  ,N ,  
0t  "'" 
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with l<p<oo. Equations of type (i.I) have recently received new interest, see for 

example [D] and [KLi]. Solutions to (l.1) are usually taken in a weak sense and 

they are assumed to belong to a parabolic Sobolev space of order p. However, the 

weak formulation of (i.I) makes sense under a weaker assumption that the solution 

belongs to a Sobolev space of order r for some r<p. Thus we define very weak 

solutions of (i.I) to be those functions which satisfy the usual integral identity 

associated with the weak formulation of (I. i) and which belong a priori to a weaker 

Sobolev space than the usual one. We show that very weak solutions are actually 

weak solutions when p>2n/(rt+2), so possess the usual regularity properties of 
such solutions as boundedness, Hhlder continuity and higher integrability, see [D] 

and [KLe]. In short, we are able to pass from an exponent below to an exponent 

which is above the natural Sobolev exponent for such a partial differential equation. 

We conclude this paper by making some brief remarks concerning the singular ease 

1 <p_<2n/ (n+2) .  W~e remind the reader that  for this range of p, weak solutions do 

not have to be even locally bounded. 
In the elliptic case when the system is 

(1.2) divAi(x,t, Vu)+Bi(x,t,V~,)=O, i = 1 , . . . ,N ,  

it is known that  very weak solutions are weak solutions. When p = 2  and the system 
is linear this is due to Meyers [M]. Elcrat and Meyers [ME] extended the result to 
cover the case l < p < o c .  They used a duality argument which is not available in 

the nonlinear situation. Later Iwaniec and coauthors (see [I] and [IS]) developed 
methods which proved the result for equations of p-Laplacian type and an alterna- 
tive approach which also worked for higher order systems was given in ILl. Even 
though none of these methods apply directly to the parabolic case, our result is 
based on [L]. 

The major  difficulty in dealing with a very weak solution u is that  u times 
a cutoff function cannot be used as a test function in the weak formulation of the 
equation. This is a consequence of the assumption that  u belongs to a Sobolev space 

below the natural  exponent p. In ILl suitable test functions are constructed by using 
the Whitney extension theorem to extend u off the set where a certain maximal 
function is bounded. This approach appears to have first been used in [AF]. In 
the present case we encounter major  difficulties with this approach. For example 
there is no natural  maximal  function of ]Vu I. We use the so called strong maximal  
function. Extension of u off the set where this maximal function is bounded has 
to be done relative to weighted parabolic rectangles whose side length in either 
space or t ime depends on the given bound. Showing that  such an extension can 
be used to get the usual Caecioppoli type inequality for the parabolic p-Laplacian 
involves some very delicate estimates especially as regards this inequality on t ime 
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slices. Finally we obtain reverse HSlder inequalities similar to those obtained for 
weak solutions in [KLe]. 

Another problem is that  in [L] an important  part  of the argument uses the fact 
that  the Hardy-Li tdewood maximal function raised to a sufficiently small positive 
power is an A v weight in the sense of Muckenhoupt, thanks to a result of Coifman 

and Rochberg. In the parabolic case the strong maximal  function need not have 
this property. We give an alternative argument which turns out to be somewhat 

simpler than the one in ILl even in the elliptic ease. 
As outlined above out' argument  is rather delicate and somewhat technical. In 

fact in an early preprint this paper  was combined with [KLe] but in order to keep 
the reader from being swamped with technicalities we decided to divide it into two 
papers. Thus the reader is advised to have [KLe] at hand as we simply refer to the 
relevant parts  in [KLe] instead of repeating all details here. 

As far as we know there are no earlier results which deal with such fundamental  
questions as integrability below the natural  exponent for the gradients of solutions 
to systems of nonlinear parabolic partial  differential equations. Our results appear  

to be new even when p=2 .  

2. M a i n  r e s u l t  for v e r y  w e a k  s o l u t i o n s  

Let f ~ c R  n be an open set and let Wl'~(f~) denote the Sobolev space of real 
valued functions g such that  g E L r (f~) and the distributional first partial derivatives 
O9/Ox~, i=1 ,  2, ..., n, exist in f~ and belong to U(f~).  The space WI,"(~) is equipped 
with the norm 

i 1 = 

Given O c R  n open, N a positive integer, -oo<_S<T<_~o, let 

U=(Ul,...,UN):O• >R N 

and suppose that  whenever p>max{2n/(n+2), 1}, -cc<S<Sl<Tl<T<_oo and 

C O we have 

(9.1) u �9 L2 (a  • [Sl, r l ] ) N L r  ([Sa, T1]; Wl'< (fl)), 

where p -  �89 <r<p. Here the notation Lr([&, T1]; WI'~(F*)) means that  for almost 
every t, S I < t < T 1 ,  with respect to one-dimensional Lebesgue measure, the function 
x~-~u(x, t) is in Wl'"(f~) componentwise and 

T1 N 

(2.2) blblll ,  = Ilull;,g • <s,,r=> + s  Ibi(,e)llL,  at < oc. 
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Let Vu denote the distributional gradient of u (taken componentwise) in the x 
variable only. 

We suppose that  A=(A1, ..., A~v), where 

A~=Ai(x,t, Vu):O•215 ~N >R ~, 

and B=(B1, ..., Bx), where 

Bi=Bi(x,t, Vu):Ox(S,T)• ~N >R, 

are (n+l)-dimensional  Lebesgue measurable functions on O•  (S,T). This is the 
case, for example, if Ai and B,, i=1 ,  2, ..., N, satisfy the well-known Carath6odory 

We assume that  there exist positive constants ci, i=1,  2, 3, such type conditions. 
that 

( 2 a )  

(2.4) 

and 

IAil _< cllVulP-lq-hl, 
ISil ~ c2lV~l p-  I ~-h2, 

N 

(2.5) E { A ~ ,  Vui} > calVu]~-ha, 
i 1 

for i=1,  2, ..., N, and almost every (x, t) EO x (S, T). Here ( . , . )  denotes the stan- 
dard inner product in R n and h~, i=1,  2, 3, are measurable functions in O•  (S,T) 
so that  

(2.6) 

where ~> 1 and 

c4 = IIh ll0,o• < oo, 

h , =  ( l<r+%l)  , / ( ,  1)+lh.b 

Finally u satisfying (2.1) is said to be a very weak solution in O x (S, T) to the 
nonlinear parabolic system 

Oui =divA~(x,t, Vu)+B~(x,t, Vu), i = I , . . . , N ,  
Ot 

if the structural conditions (2.3)-(2.6) hold and 

(2.7) .~, /o~=~ ( dxdt 

for every test function r162  ..., CN) EC~(O • (S, T)). Observe that  i f r  is replaced 
by p in (2.1), then u is said to be a weak solution. 
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The following theorem is our main result. 

T h e o r e m  2.8. Let p>2n/(n+2) .  Then there exists fl>O such that i f n  is a 
very weak solution to (1.1) with r = p - f l ,  then 

where fl>O depends only on n, p, ~ and ci, for i=1 ,  2,3, while nlu]]]p+~,~ depends 
on these quantities as well as N, ~, $1, T1 and c4. 

We present the proof of our main result in Section 4. 

Remark 2.9. Theorem 2.8 implies that  u is a weak solution to (1.1), so as in [D] 
it can be shown for N = I  and h ~ 0 ,  i=1 ,  2, 3, that  u has a representative which is 
HSlder continuous on compact subsets of O x (S, T). 

and 

3. P r e l i m i n a r y  r e d u c t i o n s  

Given r, s>0,  ( x , t ) E R  ~+1, let 

Iw-x l <r', i - -  

Qr,.~(x, t) = D.(x)  x ( t - s ,  t+s)  

a rectangle in R '~+1. Let ]E] denote the (n+l)-dimensional  Lebesgue measure of 
the measurable set E and if f is integrable on E with 0< ]E] < ~ ,  then the integral 
average of f over E is 

1 

If Qe,,(z, T) c O  x (S, T), then 

re(De(z)) o(z) 

whenever T-s<t<7-~-s.  Here m denotes Lebesgue measure in R n and the integral 
is taken eomponentwise. 

Let Q be a rectangle in R n+l, We write 

a=a(Q)=(a l (Q) , . . . , aN(Q) ) ,  w h e r e a ~ ( Q ) = / Q u i d x d t  f o r i = l , 2 , . . . , N .  

We begin with a useful lemma, which was proved for weak solutions in [KLe] 
(see Lemma 3.1). However, the same proof gives the result for very weak solutions 
as well. 
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L e m m a  3.1. Suppose that u is a very weak solution to the system (1.1) with 
r > m i n { P - � 8 9  If  Q@,s ( z ,T ) cO•  then there exists 3, 0<~<2g ,  and a 
constant c depending on p, n, cl and c2, such that 

II~(t~)-Io(t~)J <_ T ,oo(~,~) 

for almost all ti with Iti--Tl<S, i=1,  2. 

We assume that  u is g very weak solution to (1.1) and 

m a x { p -  1 r = p - f l  < ~, ~( l+~p)} < p. 

To prove Theorem 2.8, we essentially prove analogues of Propositions 4.2 and 4.14 
of [KLe] with p replaced by p - f t .  

W~e assume, as we may, that  r = l  and (2, t ) = ( 0 ,  0), since otherwise we consider 

~(~, t) = ~ (~+r~ ,  ~+r~t) 

for (x,t)EQ~o,~o~(O,O). It is easily seen that  v is a weak solution to a partial 
differential equation similar to (1.1) and with the same structure. Proving claims 
for v with r = l  relative to (0, 0) and then transforming back we get the result for 
the original u. 

1 Let 0 c C ~ ( - 1 ,  1) be such that  0 equals a constant which is greater than 
on ( - ~ ,  ~), 0 is even, positive and 

RO(7) dr=  l. 

If f :  Qlo,lo~ (0, 0 ) -~R  is locally Lebesgue integrable we put 

whenever 0 < c <  ~0 and (x, t)~Q8,8, (0, 0), where c is chosen so that  

C JR~+, O(T)O(M) &- dy= I 

and 7 > 0  will be chosen later. Next let Q=Q103~,~06~(z, ~-)cQ2,2; (0, 0), with ~_<0< 
1003, and .~8~104.~. Set 
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whenever (x, t ) E R  n+l. Note that for fixed x c R  n the function 4](z,. ) is constant 
on (~--12s, 7+12s) ,  4] is constant oil Qao,12s(z, T), 4]EC~(Q4o,16s(z,T)), and 

Let Qe,s(z, ~-)=Q, fix e with 0 < e <  10 -6 min{L), s} and put 

[ (u(x,t)-a(Q))~4](x,t), when (z,t)  C Q8,8~(0,0), 
(t(x, t) [ 0, otherwise. 

Let ~=max{p  -lg,gl ( l+p )}  and 

(3.2) A I = ./~ (IVul + Ihl) ~ dx dr. 

Next for a locally integrable function g: R ~-+ [-oc,  eel, let M 9 be the strong max- 
imal function defined by 

Mg(z, t) = su 2 ? / Ig l  dz &,  
Q JQ 

where the supremum is taken over all rectangles Q with sides parallel to the coor- 
dinate axes and (x, t)E~). An iteration of the one-dimensional Hardy-Lit t lewood 
maximal theorem implies that 

IIMgG _< c(n, ~) Hgll~ 

for ~>1.  
Let l>_cs(n,p).h=.k2, Q+=Q6~,a6.~(z, T), ~ = m a x { p - 1 , 1 } ,  and set 

E(~) = {(x, t) ~ R~+~: (M((IVul+lhl)~XQ§ t)) ~/~ <_ ~}, 

S = {(x, t) E R~+I : l t -TI _< 16s}, 

(3.3) S' = {(x, t) �9 R~+I : [t-~-I _< 6s}, 

s" = {(x, t) c w~+*:  I~-~1 -< 12s}, 

;:(I) :E(X)nS. 

Here KQ+ is the characteristic function of Q+. From our definition of a weak solution 

and the Hardy-Lit t lewood maximal theorem it follows that there is cs(n,p)_> 1 so 
that 

(3.4) / ~ ( A ) n Q r  when A_>.k2. 

We shall need an analogue of Lemma 3.1 for g. 
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L e m m a  3.5 .  Let 0 < c < 1 0 - e m i n { g , s } ,  7=A 2- ;  and A=max{A~ ls~-2,A}. 
Suppose that 

@.,.y,r2 (x, t)C~E(~),) r 0 

for some A>_A1 and @.~,~ (x, t) C S ' .  Then there exists r*, r<r* <2r,  such that for 
L . ( h ) = L . ( t ~ , < x , t ) ,  i=1 ,2 ,  we have 

Ia. (t~)-a. (tall <_ A ~i~{r, ~}, 

whenever I h - t l < T r  2, for i=1 ,  2. Here e depends on n, N,  p and ei, i=1,  2, 3,4. 

Pro@ To prove Lemma 3.5, let ~,r/>0 be small, ~EC~(h-~] , t s+~?)  with 
~bl-1 on (tl,tS) and ~sEC~(D~..+~(x)) with e2--1 on D<(x) .  Let 

0~ = ( 4 ; ~ 2 ) ~ ,  j=I,~, . . . ,N. 

We use (0, ..., r  0) as a test function in (2.7). If we denote 

r = (~l,  ..., ON), 
(A(-,  Vu),  Vr = ((A1 ( . ,  Vu), Vr ..., (AN(-,  Vu), VON}), 

B(~ = ( B I ( ~ I ,  . . . ,  B N O N )  , 

we get using simple properties of convolutions that 

=Ks+K3.  

Letting first 7-+0 and then 5-+0 we find that 

K1 
(3.7) rn(D< (x)) ~ - I t*  (ts)+I,-* (h) .  

We have Ks-O,  since 0(x , . )  is constant on [7--12s, T+12s]. Also as ~1,6-+0, we 
see that K3 converges to the N-vector whose ith component is 

t2 

h D~.* (x) OD.* (x) • (h  ,t2) 
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where ~, is the  outer  unit  no rmal  to Dr.* (x) considered as a subset  of R ~, and a is 
( n - 1 ) - d i m e n s i o n a l  surface area  on the  b o u n d a r y  of this set. The  in tegrands  in (3.8) 
are unders tood  to be zero outside the  suppor t  of 0. 

1 Since q~ vanishes Now we consider two cases. Firs t  suppose  t ha t  r >  l~6g" 
outside of Q4e,16~(z,~-), it is easily seen t h a t  r*, g* and 2, can be chosen so t ha t  

1 * r<r* <2r, T6gg<_O _<20~ and 

whenever  t E R .  Thus  we can replace r* by 0* in (3.6)-(3.8).  Using (3.8), (2.3) and 
(2.4), we find for p roper ly  chosen ~)* and tx,t2ER t ha t  

(3.9) lirn IKal 
,,~-~o re(D< (x)) cs ~ (iVul~ ~+lh~l+lh21)dzd~<&~. -<T JQ+ 

1 Next  if r <  1~6t), we see from the definition of E(A) in (3.3) t h a t  (3.9) is still 
valid. To be more  precise, i f / = 2 r + 2 c  and s~=~/(2r+2c) 2, then  there  is r*, r< 
r* <2r, such t h a t  we have 

(3.10) lint IN31 
.~,~-~0 .~(n~. (x)) <c~r~ ( Iv~ tp -~  § Ihxl+ Ih21)XQ+ dzdw<cAr. 

@-,,J(~,0 

From (3.6) (3.10) we conclude t ha t  L e m m a  3.5 is valid. [] 

Since/~(/~) is closed and ~ is as in (3.4) we can use a W h i t n e y  type  a rgumen t  

(see IS, Chap te r  VII), to divide R n + l \ / ~ ( ~ )  into rectangles  Qi=Q~,~(xi ,  ti), i= 
1, 2, ..., wi th  

(3.11) 
A 1 

10~0 ~x(@, E(x)) <_ ~r <_ ~ a ~ ( @ ,  ~(x)), 

where 

(3.12) d~(G,H)=inf{[z2-zl[+A (p 2) /21T2- -T l I1 /2 : (Z1 ,T1)~G , (Z2,T2)~H }. 

W i t h  c and A fixed as in L e m m a  3.5, we define v=v(. ,  c, ~) on R n+l  by 

f a(~, t), when (~, t) �9 ~(.~), 
v(x, t) 

E~:~ a(@, ~)w~(x, ~), when (x, t) e R ~+1 \~(A). 
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Here {Wi}i~176 is a partition of unity of R '~+1 \/~(A) adapted to the covering {Qi}i~=l. 
By this we mean that for i=  1, 2,..., we have wi E C~  (Q2~,4v~ (xi, ti)), 0 < wi _< 1, 
w~>_e(n) -1  on Qi, 

l l lvw~l l~+ 1 ow~ 

and 
O(3 

~ w { ( x , t ) = l  forM1 (x,t) cRn+ l \ /~ ( t ) .  
i - - 1  

We collect the basic properties of the function v into the following lemma. 

L e m m a  3.13. There exists c>_1 with the same dependence as in Lemma 3.5 
such that for every A>_A~ the following claims are true: 

(b) the function v( . , t )  is locally Lipschitz on S t with Lipschitz constant inde- 
pendent of s and t; 

(c) the function v is locally Lipschitz on S'\E()~) with Lipschitz constant in- 
dependent of c; 

(d) 

Ov ~t v) Rn+I \E(A) I+  c 
- 

(e) 

L,\~(>,)(IVul § (~ § IVvl) dz d~- <_ ci2A p-2 IR ~+~ \E(A)I 

+c_ + [n-a(Q)12 dzd~-; 

(f) the function ( 5 - v )  ~ has distributional partial derivatives in t on S'. 

Proof, Suppose that 

and let r ' =2 r+2a  and s '=7(2r+2s)  2. Choose Q- so that Lemma 3.1 holds with 
Qo,s(z, T) replaced by Q- and Qse258(z, T ) c Q - c Q  +. We claim that 

(3.14) T =  7 lu-a(Q)b~Q- dzdT<_cgA. 
JQ ,.,,~, (x,t) 
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N o w  

la(Q)-a(Q-)l <_ c/Q_ lu-a(Q-)tXQ- dz d~- ~ c~A 

as we find from using Poincgre's inequality and Lemma 3.1. Thus it suffices to 
prove (3.14) with Q replaced by Q . 

If r~_>p, this inequality follows once again from Lemma 3.1 and Poinegre's 
inequality. Otherwise, let 1 be the least positive integer such that  2l> L~. Choose 
Q~ =Q~,,~, (x, t) such that  Ur'_< r~ _< U+lr  ' for i = 1, 2, ..., l and Lemma 3.1 holds with 
Q~,s(z,~-) replaced by Q~. Using the triangle inequality, Lemma 3.1, Poinegre's 
inequality, (3.2) and (3.3) we get 

l 

T < _ c E J  L [u-a(Q:)[X Q dzdT+f lu-a(Q )IXQ dzdT 

1 

i=1 

Thus claim (3.14) is true. 
Now suppose that  (x', t')EQi c R  n+l \/~(A). Let 

#i={j:wjr suppwi}, i=1,2,..., 

and observe from (3.11) and (3.12) that  (3.14) holds with r=rj. Hence 

Iv(x',t')l ~ c ~ a(Qj, I~1) ~ c ~ .j~ I(~-a(Q))~l dzd'r <_ cp~. 
jE,u~ jE,ul J 

From this inequality we conclude that  (a) is valid. 
Next let Qi be a Whitney rectangle as above and suppose that  QiNSrr 

Choose r and (x, t)C/~(A), so that  

(3.15) U supp wj C Qr.,~r2 (x, t) 
jE/zl 

and 

?- 

(3.16) c(p,n) <<_r'j <c(p,n)r for j ep i .  

Again the existence of r follows from (3.11) and (3.12). 
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We consider two cases. If Q,.,~.=(x,t)cS', let r* be as in Lemma 3.5 and set 
Q - Q < , ~  (x, t). From Lemma 3.5, (3.14) and Poinc~re's inequality we deduce for 
jE#,i that 

I~(Q~,~)-~(Q*,u)I- < I -a(Q ,u)Idzd~- 

<~[ I~-L~.(~)Id~d~+c sup g.(<)-I~.(t)l 
JQ 

* It,_tl<_~2 

_< cmin{r, g} ~ .  IVy2] dz+cmin{r, ~}X 

< c m i n { r , g } ~ / Q .  (u-a(Q))~O~Q~s(z,r dzdr+cmin{r,g}X 

< c min{r, g}~. 

We conclude that 

(3.17) IVvl(J,t') ~< 2 ~ la(%,~)-a(Q*,~)l  <oN, 
Ta jE/~i 

and 

(3.18) 
Ov x' t' c ~-, cXA p-2 

( , ) _ ~ -  la (%,~) -a (Q*,~) l  _ < - -  ?7 ,r-; 7 �9 f i  

(3.19) 

a n d  

for almost every (x', t ' )EQi. If Qr,~.2(x, Q N ( R n + I \ S " ) r  then c(n)vr~>_s and so 
using (3.14) we find as in (3.17) and (3.18) that  

c~A(2-p)/2co 
IVVI(Xt, St ) <~ C~O~ <__ S 1/2 

ri 

OV Xt tt CfkcO (3.20) ~ - (  ' ) <  s 

for almost every (x',t')zQi. Thus (c) is valid. 
To complete the proof of (b) let (x',t')CS'SE(A) and (x,t')EQi. If (x',t') is 

a point in E(A) on the line segment connecting these two points and closer to (x, if) 
than to (x',t'), then for Iz-x'l small enough we deduce from (3.17), (3.18) and the 
continuity of v that 

Iv(x, t ' ) -  v(x', t')l <_ Iv(x, t') -~(x", t')l + lv(x', t ' ) -  v(x ", t')l 
<_ c~lx- x' l + Iv(S, t') -~(x", 1')1. 
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We observe tha,t 
I~,(x', t ' ) - v ( x " ,  t')l = I~(x', t') -~4x" ,  t')l. 

Suppose that  Iz-x'l is so small that  Q2r,4.yr2 (x', t ')CS '! when r=21x'-x" I. Let r* 
be as in Lemma 3.5 and set Q~)=Q~.,.y,.~ (x', t'). Then clearly 

I~(x', t ' ) -~(x",  t')l _< I~(x', t ')-a(Q;, ~)I + I~(x", t ' ) -a(Q; ,  ~)l- 
To estimate the first term on the right-hand side of this equation, let 

Q~ = Q2-5~.,~/4-J~.2 (x', t '), j = 1, 2 , . . . .  

Using Lemma 3.5 and arguing as in the proof of (3.17) and (3.18) we find that  

. ~ . ci la(Qj+l, )-a(Qj,~)] <_ ~l~ ' -x"l ,  
for j =  1, 2, .... From this inequality and the continuity of g it follows that  

oo 

I~(z',t')-a(Qo, )1 la(Qj+~, ) -a(Qj ,~) l<cXlx ' -x"l .  
j = l  

The term lu(x', t')-a(Q;, g)l can be estimated similarly. Hence 

Iv(z', t ' ) -v(x,  t')l <_ &lz- x'l. 
If (x, F)hE(A) we can repeat the above argument with (x", t) replaced by (x, t), to 
see that the above inequality is true. In view of this inequality, (3.17) and (3.19) 
we conclude that  (b) holds. 

To prove (d) and (e) we let O1 be the set of those indices i for which there exists 
Q~.,.y~ (x, t) satisfying (3.15) and (3.16) with supp wiAS'r and Q2r,4.y~2 (x, t) cS". 
Put 

02 = { i : s u p p w ~ N S ' # 0  and i~  O1}. 

From (a), (3.17), (3.18) and the same argument as in proving these inequalities, we 
obtain 

ir ( ~ 'u-v'+([Vu'+h)p-l (~+'Vv') ) dzd'r 

iEOI iNS' ri 

(3.2i) +ci Z [ (IV./+h)~-ld~- 
iEOi JQiV]St 

+cs 2 ~ [@NS'[ ~ [a(Qj,~)-a(Qi,~)l 
Ti 

iCOl jE~i 

-< cX2A~-2 ~ I@l-< ci2A~-21R~+~\E(A)I. 
iEO1 
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Also using HSlder's inequality, (3.3) and the fact that c(n)Tr] >_ s if i E @2, we obtain 

lEO2 

C 
< -  ~_, ~ I@c~Sla(Qo, l~l)2§ ~_, f (IVul§ p-~ dzdr 

8 iE(~2 jEI*~ iC02 JQ'zNS~ 

cA(2-P)/2 /Q 
(3.22) ~ sl/~ ~ ( I W l + h )  ~-~ dz dr  ~ a(Qj,  >1) 

iEOe ~ns' j E t ~  

C <_- ~ ~ IQ~nSla(Oj, I~I)~+Aa >~ ~ IQ~nSl 
8 

iEO2 jEpl lEO2 

Here we have used the fact that E(A)=E(A)NS.  Clearly, (3.21) and (3.22) imply 
the claims (d) and (e). 

To prove (f), observe fi'om the usual Whitney type argument that ~ - v  is 
continuous in R n+l and vanishes on/~(A). This fact, the claim (d), and a standard 
argument give (f). The proof of Lemma 3.13 is now complete. [] 

With A still fixed we let s--+0 and note from simple properties of convolutions 
that v( . ,  e, A)--+w(-, A) pointwise for almost every (x, t). In fact if 

S (u(x,t)-a(Q,u))r when (x,t)e{~40,16s(Z,T), 
~tl (x~ t) 

l 0, otherwise, 

then 
f u'(x, t), when (x, t) C E(A), 

W(X, t) I E~_la(Qi,~')w~(x,t), when (.,t) ~W~+I\~(~). 
Clearly (a)-(e) of Lemma a.~a and (3 . s7) - (320)  are valid with v replaced by w. 
Moreover, Lemma 3.5 holds with g replaced by u'. 

L e m m a  3.23. For almost every t with (R"  x { t} )AS '#0  the following is true: 
If lEO1 and s u p p w i n ( R  n • {t})~0,  then for A>Au we have 

I fR dx cAAP-2 ( 3 . 2 4 )  [(~'-a(@,~'))wd(.,t) _< - - I @ 1  
n r i  

and 

(3.25) 

where c>_ 1 has the same dependence as in Lemma 3.5. 
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Pro@ We prove oaly (3.25) as the proof of (3.24) is similar. To begin we note 
from a now well-known argument (see (3.14), (3.17) and (3.18)) that  

(3.26) /R'~+~ In*-a(Q.i,  u*)[wi dx dt < c~ min{ri, o}IQ, I, 

whenever u*=u ~ or QicQ + and u*=u. This inequality and the same proof as 

in (3.17) and (3.18) imply that  

(3.27) II (w- a(Qi, u'))wi II ~ <- cX min{~, 0}- 

We consider two cases. If ri_> ~c0, we can argue as in (3.14) to get 

[a(@, u')[ <_ c]~ min{ri, 0}. 

From this inequality and (3.27) we find in this case that  

(a.28) 

J2 ~ [(u'-a(Q~, u'), w-a(Qr g') }wi](x, t) dx 

-< cXuAP 21@1+ ./Rn [(~'' w-a(@,  u'))'wd(z, t) dx 

=eA2Ap-2I@I+I. 

To estimate the integral I let ~l EC~(t1-7], t2-~-7]) aS earlier. We define 

*j = r  - a ( @ ,  u} ) )w~ l ,  j = 1, 2, ..., N, 

where ~gj de*totes the j t h  component of w and use (0, ..., Cj, ..., 0) as a test function 
in (2.7) for j = l ,  2, ... ,N.  Setting ~=(~1, ... ,~2N), where 

izj=u'o(gJj-a(Qi,u'j))wi, j = 1 ,2 , . . .X,  

and letting 77-40 we get for almost every tl  <t2 with It-tk] _<~/r~, k=l ,  2, that  

~ ( ( w - a ( O i ,  dr 

+c/ao+,CIw~F ~+lh~l+lh~l)CIvr162 & a~ 

< c5,2a~ 21@ I. 
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The last inequality is obtained using (3.17) and (3.18) for w, (3.26) and (3.27). We 
deduce from the above inequality tha t  

c f l + < [  
7r i  Jt- ' rr~ JR'~ 

1 Combining this inequality wi th (3.28), we get (3.25) when r >  ~&. 
Otherwise we note that either u ~=0 oil supp wi  D(~)i in which case the integral 

in (3.25) is trivially zero or QicQsQ,12~(z,~-). In this situation we once again use 
the fact that  r  ) is constant on (~--12s,~-+12s) to get for (x,t)Esuppw~ that  

l a (@,u ' ) - r  <_ ~_ lu-a(Q,u)l  Ir162 dyds 
Jr2 i 

< cr-A~ ~ [u-a(Q, u)t dx dt <_ c~ri, 
P Jo,,~ 

where the last inequality follows from (3.14). From this inequality and (3.27) we 
obtain 

dx 

< 

We can now define 

r j = 1 ,2 , . . . ,N ,  

and proceed as in the previous case to est imate the last integral. Doing this we 
get (3.25). In view of our earlier remark we see that  Lemma 3.23 is true. [] 

The next lemma is rather  delicate and crucial for Theorem 2.8 to hold. 

L e m m a  3.29. For almost every t with ( R n x  {t})C~S'r we have for A2)~2 
that 

-cL+ lu-a(Q)l 2 dzd% 

where c>1 has the same dependence as in Lemma 3.5. 

Proof. Let 

A1 = {i: l u ' l + l w l ~ 0  on s u p p w i N ( R  n x { t } )  r  
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and put A2=AlnO2 and A=AI\A2.  To prove Lemma 3.29 we write 

[lu'l 2 - lu ' -w[2] (z ,  t) dz = E / ]  w~(l~'12- I~'-w12)] (~, t) dz 
Y 

n \ { x : ( x ' t ) G E ( ) ~ ) }  iGA JR 

= P~ + P2. 

To estimate P2 we observe that  c(n)yr2>>_s, when iEA2, and argue as in (3.22) to 
find that 

(3.31) 

IP21= i~A2/R~[Wi(2u~w--w2)](z't)dz 

<2 ~ fa [~'wwd(z,t)d~ +c ~ ~ a(Qj, lu'l)~l@nSl 
~iGA2 ,a 8 lEA2 jEl~i 

To estimate the last sum in this display we put 

N 
Cj = Cwjwi'(~l, j = 1, 2, ..., N, 

where ~1 is defined following (3.28), and use (0,..., ~bj,...,0) as a test function 
in (2.7) for j = l , 2 ,  ... ,N.  Arguing as in (3.22) and Lemma 3.23 we get 

(3.32) IP2I < c,~2Az~-21R~+l \E(A)[+  c / Q +  [u-a(Q)] 2 d z & .  

To estimate Pt set ai=a(Qi,u')  and write 

(3.33) 

F 

P1 = ~ / [w,(l~'l ~-  I~'-wli)](z, ~) dz 
icA J R n  

l E A  ~ l E A  J R n  

+2 i~cA /R, [wi(u'--ai, w--ai)](z, t) dz 

= LI + L2 + L3. 
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To handle Lx we use (3.24) to obtain  

LI =i~Ea /R [wi(lu"2-1u'-ail2)](z,t) dz 

= ~ ~ [(2(a~,u'-ai}+,ail2)wi](z,t)dz 
(3.34) '~ 

i E A  i E A  "~ 

= L l x + L 1 2 .  

We note t ha t  if wi~;O on R n x  {t}, then there exists a Whi tney  rectangle Qd with 

Wd>_c(n,P) -1 on Qjf3(R n x {t}) and suppwdNsuppw~#O. Either  j c A  or jEA2 .  

Let A I denote the set of those i 's  for which j E A .  In this case we see from the same 

argument  as in (3.17) and (3.18) t ha t  

]a(Qi, u') -a(Qj, U')] ~ cA min{Q, ri}- 

Using these observations we find for some cs > 1 tha t  

L12 > AP-2 i~A ' I'~d~ 1@1-&2),~-2 ~ I@1. 
- -  C6 " f/2 l E A  

To est imate  L l l  observe tha t  if i C A \ A ' ,  then c(n)Tr ~ >_s, so we have 

I@1-< Cla,121Q, l+ci2aP 21@1 
f i  8 

while if iEA ~, then  

~a~-~la, I 
I@1-< 2 I @ l + ~ l @ l .  ri r i 

Choosing 6 > 0  suffaciently small and summing the above inequalities, we see for 

some c >  1 tha t  

Ap 2 ~ la~12,@l_e52Ap_2,R~+l\E(A),_c fQ Ll l  _> - - - -  ~ -  - lu-a(Q)12dzgT. 
C 6 r i S + 

Pu t t i ng  these inequalities for L n  and L12 in (3.34) we conclude for c_>l large 

enough tha t  

L1 > -c~2AP-2IR~'+I\E(A)I - c  f {u-a(Q)l 2 dzdT. 
- -  8 J Q +  
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Moreover,  f rom (3.27) we deduce t ha t  

L2 >_ -c]X2A p-2 IR ~+l \ E ( A )  [ 

and fi 'om (3.25) we have 

L3 _> -c ,~2AP-2]R n+l \E(A)I .  

Using these inequalit ies in (3.33) we conclude first t ha t  

P~>_ 
~2Ap 2 
- -  IR~+I\E(A)I--Cs/Q+ [u-a(Q)l ~ dzdT 

and the reupon  from (3.32) and (3.30) t ha t  L e m m a  3.29 is true.  [] 
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4. P r o o f  o f  t h e  m a i n  resul t  

We continue under the assumptions and notation introduced in Section 3. Re- 

call t ha t  Q=Qo,~(z,7), Q=Q103~,106~(z,T), ~_<~<100~ and g<s<104,~.  Let  

(4.1) ~ - p  = 

and assume tha t  for some c7=c7(p, n) > 1 

AP-~ <- /Q 'Vu'P-~ dxdt+a(P) /Q (lu-a~? khP-~) dxdt 

_ _  ~ 7 ~ , 3  , 

where ~(p)=l  for 2~ / (~+2)< ;<2  and ~(p)=0 for ;>2 .  For fixed ~>_~ and ~>0 
small  we cons t ruc t  v ( - ,  c, A) as in Section 3 and put  

Cj=(vjr162 j = 1 , 2 , . . . , N ,  

where ~l~C~(tl-r],t2+r]). We use (0, ... , r  ... ,0) as a test  funct ion in (2.7). If  
r  ..., ON), we obta in  using the  same no ta t ion  as in (3.6) t ha t  

J1 = f ~'~t,V;@ld2gd]. 
JR~+~ \ ut / 

(~.3) =~n+l((%--a((~))r dxdl~- l ((A(2g,t,~%t),~7~}-~)dxd~c JRn+l 
= J 2 + J 3 .  
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We observe from Lemma 3.13(d) and (f) that  

fR <0~ _> l fR O [~tl2~ldzd t 

l fW~+~lv_el2~dxdt+~ fR,~+l O 2 (4.~) 2 

JR + \E(A) 

when It~--v]<6S--~h i=1,2.  Letting ~--+0 in (4.4) we deduce that  

J '=2  jR. [l~12-1~-vlz](x't) {='1 J I . 1 J R  n ' 

for almost every tl <t2, with Iti-~-l<_6s, i=1,  2. The last integral in this display 
can be estimated using Lemma 3.13(d). Thus 

& = ~ [ l~12-1~-vl2](z,t)  + e l  = J(t2)-d(tl)q-el, (4.5) 

where 

(4.6) 

and 

I~11 _< &2Ap-ilRn+I NE(A)I+ eG/Q § lu-a(Q)12dxdt:J. 

Letting ~?-+0 in d2 and J3 we deduce from Lemma 3.13(e) that  

(4.7) 

~] :TR ((A(x,t, & -+ - w)~, V(vj))- B~.j) d. de 

= d~ +e3, 

where l e31< J for c sufficiently large. 
We now let e--+0 through a properly chosen sequence. For almost every tl <t2 

with Iti-vl<6s, i=1,  2, we see that  d(t~)--+d'(ti), where 
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We choose tl ,  ~ - - 6 s < t l  < T - 4 s ,  so tha t  

(4.8) J ' ( t d  _< __l~176 I~-a(@l 2 dxdt. 

Next from Lemma 3.29 we see for almost every t2 that  

l f~  lu'(x, ts)l~dx+4 d"~t ~'e '  (4.9) J'(ts) : ~ ~ n { x : ( x , t 2 ) e f i . ( A ) }  = \ S/d- 1 

and -e~ _< J. We also have J~* _~j:~1 and j~. _~j~,I where 

1 f 05 dx dt IJ~l= ~ JR,,+ (u-a(Q)"w}~[ <_3, (4.1o) 

and 

(4.~1) 

J~ / ({A(x,t, Vu) V(u'@)}-Bu'r ' " ' = -- , dr+e3 =-J~ +e3, 
J E(  A )rQ{ (x~t):tl <t  <t2 } 

where le~l_<J. Combining (4.3)-(4.11) we conclude for c sufficiently large that  

(4.12) J"lt ~' J" ~2~,- 3<_J. 

Put  
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l(x, t) = M ( ( l w l  + Ihl)~xQ+)~/~(~, t) 

We multiply both sides of (4.12) by A -(1+~3) and integrate with 

K(t~) j~ oo j,,(f~) 
- ~ Al+t s dA 

_ 1 JR lu'(x't2)12dx 
2/3A4 ~ ~n{x:(x,t2)eE(A4)} 

1 I~'(x, t2)]2 ~ w z  dx 
+ 2 ~:(x,t2)~E(~)} x,~) 

= 2~ ~ .~(~,t~)9 ~ '  

(4.13) 

for ( x , t ) E R  "+1. 
respect to A over (A4,00), where Az<_A4. It  is easily seen that  for almost every tl  
and ts we can interchange the order of integration. For the term corresponding to 

J"(t2) we obtain 
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where re=max{A4,1}. Similarly, 

(4.14) K1 _ j / ~  ~ Z J~' 1 .~tt:y R ( (A(x,t, Vu), V(u'r Bu@) dxdt. 

We now consider two cases. First suppose fbr he and A3 as in (3.4) and (4.1) 
respectively, that  

(4.15) ~2 _< 5~3, 

where 0<6<10  -3 will be chosen after the proof of Lemma 4.19 to depend only on 
the constants listed in Theorem 2.8. To estimate the term involving J we note 
from (4.1) and the definition of A in Lemma 3.5 that  ~_<cA on (A2,oc) when p_>2 
while i < e ~ p - l ~  ~+eA on this interval when 2n/ (~+2)<p<2 .  If (4.15) holds we 
put 14=513 and use the above fact to obtain from the Hardy-Littlewood maximal 
theorem that  

L l (4.16) ~ ),P-3-~i21R'~+I \m(~)l d~ ~ c(~P--2~-I) JR ~-~1 I p-~ d?~ dt 

_< ~(5~-~+I)IQ§ -~. 

Inequality (4.16) implies that  

(4.17) jr5 ~~ J c /c 2 ,u-a(Q),2 dxdt. ~= ~ dA<-e(Sp =+I)IQ+IA~-~-t ;~(6A3)gs + 

Combining (4.12)-(4.14) and (4.17) we get, provided 6 4(2-p)_>/3 and 3 > 0  is suffi- 
ciently small 

e /Q i~ (4.18) K(t2)+K1 <_ AYahs + lu-a(Q) dxdt+e, 

where O<_e<_fll/2A[-zlQ+ I. 

We use (4.18) to prove a form of Caccioppoli type estimate tailored to our 
situation. 

L e m m a  4.19. Let u be a very weak solution to (1.1) .[or p>2n/(n+2) and 
suppose that (4.1), (4.2) and (4.15) are valid. Then there exists/3>0 and c>_1 with 
the same dependence as the constants in Theorem 2.8 such that 

10+1~ ~+ esssup f lu(x't2)-a(Q)12 dx 
t2r (r--4s,~-+6s) d D3o(z) ~Yt/3 

c /(2 ~ ' /Q  'u-a(Q)'Pdxdt+e f hP-~dxdt" (4.20) _< sA~ + }u-a(Q)12dxdt+ e. + rn '  jQ+ 
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Pro@ From (2.5), the fact that q~ is constant on Qao,12s(z, 7) with support in 

Q4o,16s(z, ~-), and ~--6s<tl <~--4s ,  we deduce for t2, ~--4s<t2<T+6s, that  

cKI > ~t~ /D IVul p 
- -  - 4 s  3o(z) ~'~ 

(4.21) 
=K2(tz)-K3. 

- - d x d t  -c2 f lu-a(Q)l(IVul§ dxdt 

(4.2~) 

Let 

Here c>  1 depends only on p, n, cl, c2 and c3. Thus, 

esssup K(t2)+K2(T+6s)<c( 1 /Q ) [u-a(Q)[2 dx dt+e+K3 �9 
('r-4s,T+6s) -- \ A 3 8  + 

E = {(~, t) ~ D3~(~)• (~-4s, ~+6s): lWl(~, t) > ~Z(x, t) and l(~, t) _> 5~3}. 

Then 

1 /E IVulP-Zdxdt=K4" 

We may suppose tha t  /3>0 is so small tha t  /3 Z>�89 Then from (4.2) and the 
Hardy Littlewood maximal  theorem we see that  

fT+6~[ IVul p-~ dx dt <_ 2K4-[-c5p-g3/~13 -/3 IQ+ I+c~ p-~ J~f +~ z~ ~ dx dt 
a T--4s a Da~,(z) 

< 2 K 4 - k c S P - 3 A  p 91Q+I, 

since /3<5 4(2-p). Thus i f  5_<5o and 5o>0 is small enough (depending on the con- 
stants listed in Theorem 2.8), we deduce from (4.2) and tlle above inequality that 

(4.23) K4 > A ~ - ~ ' Q + ' -  4c7 c/Q+ hP-~dxdt-s~3/Q+ [u-a(Q)[2dxdt. 

From Young's inequality, and the fact tha t  Q+=Q6e,36s(Z, 7), we also obtain 

< ~-91Q+ I § c f I~-~(Q)I p dxdt. (4.24) I~:31 
- 32c7 ~ JQ+ m/~ 

Put t ing (4.24) and (4.23) into (4.22) we find that  Lemma 4.19 is true. [] 

Fix 5>0  so small that  Lemma 4.19 is true. Next we use Lemma 4.19 to prove 
a Sobolev type estimate for the very weak solution. 
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L e m m a  4.25. / f  the hypotheses of Lemma 4.19 are satisfied, /)=max{p, 2} 
and 

n/)p 
q =  (n+2)p-/3(2+/))  ' 

then for/3>0 sufficiently small there exists ~, ~<~<2~,  .such that whenever 0 < e <  
10 -5 , we have 

, \ a C & , ~ ( z )  

for some c(c) >_ 1. 
Proof. Choose ~, g<~<2Q, such that  Lemma 3.1 is valid with ~ replaced by ~. 

Set g=2(p- /3) /p  and define q by q ( l + ~ / n ) = ~ .  
We proceed as in the proof of Lemma 3.3 in [KLe]. Let ~EC~(Q2&2,(z,~-)) 

be a cutoff function such that  r  on QS,s(z,r) and Iv~I_<10/D. Let 

v(m, t) : b(x, t)-Io(t)I~(x, t). 

Set ~)* =2~. H61der's inequality implies that  

J =/D V(X, t) q(l+~ dx 
o* (2) 

( / D  -,l/n// f ,x(n 1)/~'~ V(X't)cr dxl (It V(X,t) (q+(q-1)a/n)n/(n-1) d2g) . 
~.(z) / \ Do. (z) 

We use Sobolev's theorem for functions in Wl,l(Do.(z))  to deduce that  there is 
constant e=e(n) such that  

/Do. (~) 
v(x, t) (r dx)  (~-l)/n 

<_ely v(x,t)(q-lm+"/n)lVv(x,t)ldx 
o*(~) 

dx)(q-1)/q .~l/q _<c(/oo.(z) v(x't)q(~+~/n) (fDo.(z) [vv(x't)lq dx) " 

Thus 

J ~_ dx /  \aDo. (z) 
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The same argument as in the proof of Lemma 3.3 in [KLe] gives 

(/Do.(.) 'Vv(x't)'q dx) ~/q< (/.o.(~) c IVu(x,t)lqdx) Uq 

and 

./Do. (z) v(x, t)~ dx) ~/n _ < C( /D~ . (~ ) lu (x , t ) - I e ( t ) l~dx )  ~/~ 

<_c(~o.(~) 'u(x,t)-Io*(t)'2 dx) 1/n. 

Collecting the obtained estimates we arrive at 

(4.26) J < c L o  * (z) I V u ( x , t ) l  q dx( f 
\ d  Do* (z) 

V/n 
I~(~, t ) - z 0 .  (t) l ~ d x )  . 

/ 
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I~(x, t)-I6~(t)l  < cQM(IV~I)CQ+)(x, t) <_ col(x, t), (x, t) ~ Q+, 

Lemma 3.1, (4.1) and (4.2) (see (3.8) and (3.9) in [KLe]). Using this note, HStder's 
inequality, Lemma 4.19 and the definitions of cr and q we see that 

(/D lu(x't)-Io(t)l~ dz)q/~< (JD lu(x't)-Ia~ q~/2~ o(z) - 3o(~) rn~ 

(4.27) < c(ag-ZlQ+r) q~/2'~ ,~p Z d x )  . 
3o(z) 

Putt ing (4.27) into (4.26) and integrating over (T-s,~-+s) we get using H61- 

We note that the right-hand side of (4.20) is smaller than cA~ ZlQ+I. If 
2n/(n+2) <p_<2, then this note is a direct consequence of (4.1), (4.2) and HSlder's 
inequality. If p>2  and I6o is defined relative to (z, ~-), then this note follows from 
the Sobolev inequality, 
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der's inequality and the definitions of q, ~ and a that  

(4.2s) 

fo~,~(~) 
• , rxv-~ ic~+lxq~/2~ ~z(x, t) v-p dx v~ dx dt - ~t,,3 i'~ iJ 

~--~ ,~(~) 

where to get the last line we have also used Young's inequality for small g in the 

fo rm 

a b <  (ca)r--~ ( r - 1 ) ( b / G ) r / ( r ' - l )  

r r 

with 

(4.29) 

a ~ 
(X3 ~))/Sq/0 

C1 np 
q _ q - ~ '  

as well as (4.1) and (4.2). The proof of Lemma 4.25 is now complete. [] 

L e m m a  4.30. Let ~ be a very weak solution to (1.1) for p>2n/ (n+2)  and 
suppose that (4.1) and (4.2) are valid. Then there ezists /3>0 and c>_1 with the 
same dependence as the constants in Theorem 2.8 such that 

A~ ~ <_c(/Q IVulq dxdt](P-~) /q+jl  hP-~ dxdt,  
6~,36~ (z,7) / Q12o,.6~ (~,~) 

where q=max{p- �89 0} when p>2 and q=max{�89 ~} when 2,~/(~+2)<p<2. 
Proof. Note tha t  if (4.15) is false, then Lemma 4.30 is trivially true. Thus 

we assume tha t  (4.15) is true. To prove Lemma 4.30 we can copy the proofs of 
Lemmas 3.4 and 3.20 in [KLe] with minor changes except that  we now replace p 
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by p - ~  and use Lemma 4.19 (with t)=~ and s=g), as well as Lemma 4.25 (with 
t)=6~ and s=36~), in place of Lemma 3.2, (3.11) and (3.24) in [KLe]. We omit the 
details. [] 

Proof of Theorem 2.8. Using Lemma 4.30 in place of Lemmas 3.4 and 3.20 
in [KLe] we can repeat the argument given in the proof of Propositions 4.1 and 4.14 
in [KLe] with p replaced by p - ~ .  The covering argument used in the proof of these 
propositions guarantees the existence of c7, ~ and g for which (4.1) and (4.2) hold. 
Also since the constants in Lemma 4.30 are independent of/3 for/3 sufficiently small, 
it is cleat' from the proof of Propositions 4.1 and 4.14 in [KLe] that  

for fl> 0 small enough with the same dependence as in Theorem 2.8. Again we omit 
the details. [] 

Remark 4.31. We do not know if one can replace L2(ftx(S1,T1)) in (2.1) by 
L2-~(ft  • ($1, T1)) for small f l>0 and still get the same conclusion in Theorem 2.8 
for 2n/(n+2)<p<2. Although this seems plausible it would for example require 
a different estimate of the error term in Lemma 3.29. This query is false when 
p=2n/(n+2) as can be seen from the example 

e kt 

~ ( x ,  t )  - iml,~/~ , 

where k=-(�89 -2~/(~+2). It can be easily checked that  u satisfies the parabolic 
2n/(n+ 2)-Laplace equation 

0u_u = div ( Vu ) 
0t IVul4/<n+ 2) 

for xf fRn\{0} .  Moreover, u satisfies (2.7) and the weakened form of (2.1) when 
p=2n/(n+2). One also easily sees for 0 < k ' < k ,  that  

gk~t 

a ( x , t )  = Iml~/~log Iml 

is a weak subsolution to the above equation near (0, 0) (in the sense defined in 
Section 2), but u~L2+r 0)) for any small fl, t)>0. 
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