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An inversion formula for the 
attenuated X-ray transformation 

Roman G. Novikov 

A b s t r a c t .  The problem of inversion of the attenuated X-ray transformation is solved by an 

explicit formula. Several subsequent results are also given. 

1. I n t r o d u c t i o n  

Consider some real-valued sufficiently regular function a on R d sufficiently 
rapidly vanishing at infinity. We say also that a is an attenuation coefficient. Con- 

sider the attenuated X-ray transformation P~ defined by the formula 

G f ( x , O ) = / I  exp(-Da(x+.~O,O))f(x+sO)ds, x e R  d, OES d-l, (1.1) 

for any real-valued sufficiently regular function f on R d sufficiently rapidly vanishing 
at infinity, where Da is the divergent beam transform of a, i.e. 

(1.2) 

In addition, 

(1.3) 

where 

Da(x,O)= a(x+sO) ds, x E R  d, 0 E S  d-1. 

P~f(x, 0) = Paf(~ex, 0), x E R d, 0 E S d 1, 

(1.4) 
roe is the orthogonal projector of R d on the subspace 

XO = {x C R d I xO= 0}. 

Due to (1.3), P , f  on a d •  S d-1 is uniquely determined by Paf on TS d-l, where 

(1.5) TS d-1 = {(x,0) Ix c R  d, 0 E S d-1 and xO= 0}. 
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We interpret T S  d-1 as the set of all oriented straight lines in R d. If 7=(x,O)E 
TS d-l ,  then y={y~Ild[y=x+tO and t ~ R }  (up to orientation) and 0 gives the 

orientation of % 
As a basic problem, we consider the problem of finding flY, where Y is a two- 

dimensionM plane in R d, d>2,  from P~flTslcy), where TS~(Y) is the set of all 
oriented straight lines lying in Y, under the condition that  alY is known. For this 
problem the case when d>_3 is reduced to the case when d=2.  

This problem comes from the emission tomography (see [Na]). In the emis- 
sion tomography setting, f is the density of emitters, a is the linear attenuation 
coefficient of the medium, P~f(~/), "y=(x, O)ETS d-l, is the measured emission in- 
tensity in the direction 0 at a detector at +c~ on "y (at, a detector on the connected 
component of -y\(supp fUsupp a) containing +oc on ~y for compactly supported f 
and a). 

We carry out the basic considerations of Section 2 assuming that  

(1.6) a, f E C~'l+~(Rd, R) for s o m e a E ] 0 , 1 [ a n d e > 0 ,  

where 

(1.7) 
(1.8a) 
(1.8b) 

(1.8c) 

C",~ (R a, C) = {u E C ( R  d, c)  I H~II~,~ < + ~ } ,  

II~ll0,~ = sup (l+lxl)~l~(z)J,  
:zER d 

I I1~11.,~= snp ( l + l z l F  I~ (~+v) -~ (x ) /  r  
Z , y e R  d lYl/x' ' P 

0<lYl_<l 

where/z ff [0, 1 [ and cr > 0. 
In addition, we extend the final results of Section 2 to the case when 

(1.9) a, fEL~'I+~(Rd, R) for s o m e e > 0 ,  

where 

(1.1o) 
c .~,"(ad,  c )  = {~ ~ c ~  1%110,~ < +oo) ,  

II~(Io,. = ess sup~R~ (1+ I~1) ~ I'~(~) I, o->0. 

Our main result is Theorem 2.1 stating that,  under the assumptions (1.6) for d=2,  
and under the condition that  a is known, the transform P , f  on TS  1 uniquely de- 
termines f on R 2 by the explicit formulas (2.12), We obtain Theorem 2.1 using 
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techniques of [MZ], [FN] and [N2]. Theorem 2.1 implies Corollary 2.5 stating that,  
under the assumptions (1.6) for d>2, and under the condition that  a is known, the 
transform P~f on A4(S) uniquely determines f on R a by the scheme (2.68) (where 
Ad(S), defined by (2.67) for some great circle S in S a-~, is a d-dimensional sub- 
manifold of TS d-1 for d_>2 and A/I(S)=TS 1 for d=2).  In addition, Theorem 2.1 
and Corollary 2.5 remain valid under the assumptions (1.9) in place of (1.6) accord- 
ing to our Remark 2.6. Note also that,  under the assumptions (1.9) and d=2, the 
formula (2.12) splits up into (2.20a-c) and (2.19), (2.20b-c). Actually, the formulas 
(2.20a-c) are our inversion formula for the transformation P~ for d=2, the formulas 
(2.19) and (2.20b-c) are new necessary range conditions for P~ for d=2. In Sec- 
tion g we give several subsequent results concerning finding f from P~f, under the 
condition that  a is known, for d_>2, and concerning the range characterization for 
P,~ for d=2. 

To our knowledge, the aforementioned results of Theorem 2.1 and Corollary 2.5 
are completely new even on the level of pure uniqueness (without an inversion 
method) under the assumptions that  a and f are real-valued functions of the 
Schwartz class on R d in place of (1.6). The work [ABK] comes rather close to the 
proof of the uniqueness results (without the inversion formulas (2.12) and (2.68)) 
contained in our Theorem 2.1 and Corollary 2.5, at least, under the assumptions 
that 

(1.11) a, f �9 C~(Rd, R) 

(the space of real-valued infinitely smooth compactly supported functions on R d) in 
place of (1.6). In addition, the question whether the two-dimensional transformation 
P,  is injective (even being restricted to C~(R2 ,  R) and for a E C ~ ( R 2 , R ) )  was 
known as an open problem for a long time see, e.g., [Na]. 

Concerning known uniqueness, nonuniqueness and other results for generalized 
Radon transformations, of which P~ is an example, see [M], [BG], [MQ], [Na], IF], 
[BQ], [S], [B], [KLM], [ABK] and references given there. To our knowledge, the 
strongest local uniqueness result given in the literature for the two-dimensional 
transformation P~ was obtained in [F]. (Local uniqueness means that  every point 
x has a neighbourhood U~ so that  no non-trivial f supported in Ux lies in the 
kernel of P~.) It is indicated also in [F] that  P~f=--O o n  T S  d-1 implies f - -0  on 
R d for d_>3, under the assumptions (1.11). (Note, however, that  the problem of 
finding f on R d from P~f on TS d-l ,  under the condition that  a is known, is 
strongly overdetermined for d>3 (i.e. dimTSd-l=2d-2>d for d_>3).) In IF], the 
proofs of the aforementioned results of [F] contain no inversion methods for the 
transformation P~ for known a. In [ABK 1 an inversion method is developed for the 
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two-dimensional at tenuated X-ray transformation P~ for the case when a is a real- 
valued twice differentiable compactly supported function on R 2 and P~ is restricted 
to the space of real-valued sufficiently regular compactly supported functions f 
on R 2. The inversion method of [ABK] is based on a Cauchy type formula for 
generalized A-analytic /2-valued functions. Our inversion method based on the 
explicit formula (2.12) is drastically simpler than the inversion method of [ABK]. 

In the literature (see [TM], [Na], [AK], [P]) the theory of the transformation 
P ,  defined by (1.1) is well developed for the case when f is supported in f~ and a 
is constant in f~, where f~ is an open convex bounded domain in R d. For this case 
our Theorem 2.1 complemented by Remark 2.6 gives a new inversion formula. 

Acknowledgements. We thank D. V. Finch, P. Kuchment and G. Uhlmann for 
informing us in June 2000 (after receiving the preprint IN3] of the present work) 
about the work [ABK]. We thank P. Kuchment and L. Kunyansky for informing us 
on July 10, 2000 that  L. Kunyansky successfully implemented our inversion formula 
(2.12) numerically. This work of L. Kunyansky is presented in detail in [K]. 

2. Inverse scattering for the attenuated X-ray equation 

Consider the equation 

(2.1) Oaxr162 f(x), x c R  d, OES ~-1, 

, 0  d where 0 is a spectral parameter, Ox=(O/Oxl, ..., O/Oxcl) 0 z = ~ j = l  OjO/OYj and 
where a and f satisfy (1.6). 

For any OES d-1 consider the real-valued continuous solution r  0) of (2.1) 

specified by 

(2.2) lira r O)=O f o r x e R  d. 

For any OES d-1 such h solution exists and is unique. In the emission tomography 
setting, ~+(x, 0) is the emission intensity through the point x in the direction 0, 
where a is the linear attenuation coefficient of the medium and f is the density of 
emitters. We say that  equation (2.1) is the at tenuated X-ray equation. 

The following formula holds: 

/0 
(2.3) < ( x ,  0) = exp(-D~(x, -0)) exp(D~(x+~0, -O))f(x+~O) dr, 

O ~  

x E R  a, 0ES ~-1, where Da is defined by (1.2). 
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Note that for any 0ES a-1 the factor 

(2.4) ~+( -, 0) = e x p ( - D a ( . ,  -0 ) )  

of the right-hand side of (2.3) is the real-valued continuous solution of the equation 

(2.3) 0o~(x,o)+~(2:)~(x,0):0, x~R ~, 0~s  d-l, 

specified by 

(2.6) lira ~+(x+sO, O)= l i b r 2 : E R  a. 
S ~ - - O O  

The following formula holds: 

(2.7) Paf(2:,O)= lira ~+(x+sO, O), x c R  d, O~S a-1, 
s--++oo 

where P~f is defined by (1.1). 
We say that  Paf is the relative scattering matrix for the equation (2.1), where 

a is considered as a background parameter and f is considered as a perturbation. 
Under the assumptions (1.6), the functions ~+, r and P~f have, in particular, 

the properties 

(2.8) ~+, ~+, P~f E C(R ~ x S d-l ,  R), 

(2.9a) _< exp(cl(a,  0, 2:)llaii0,1+~)-- 1, 
(2.9b) < (exp(2cl(c, 0, x)Ilall~,l+~)- 1)lyP, 

(2.9c) _< exp (25/211~1~'~+~ }, 

(2.101) < e x p -  -- (25/2";5'0'1+~)r (s 0, 2:) II.f H0,a+~, 

(27/2"~'o~,1+c) o~ 
(2.10b) _< 4 exp el @, 0, x)[[fllc~,l+z lyl , 

(2.111) _< exp (25/2 [l~ I~ )c3(e, lTr02:l) II f H0,1--~, 

(2.11b) IP~f(x+y,  O)-P~Z(2:, O)l <_ 4exp c3(e, l~ozl)llfll~,a+~lyl , 

where cl(e, 0, 2:) is given by (1.8), c3(e, s) is given by (1.13), r is defined by (1.4), 
2:,u~R d, lYl<_l and 0~S d-~. We obtain (2.8) (2.11) using Lemmas A.1, A.2, A.4 
and the formulas (2.3), (2.4) and (2.7). 

1~+ (2:, e) -11 
I~ + (x-Fy, e) - ~+ (2:, o)/ 

I1~+( .,o)11~,o 

1<(2:, e)l 

1<(2:+u, e ) - <  (2:, e)l 

IPaf(X, e) l 
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For d>2 we consider the problem of finding flY, where Y is a two-dimensional 
plane in R d, from P~ftTS~(Y), where TS 1 (Y) is the set of all oriented straight lines 
lying in Y, under the condition that  aly is known. We say that this problem is an 
inverse scattering problem for the equation (2.1). For this problem the case when 
d_>3 is reduced to the case when d=2. Further, for the latter case we obtain the 
following result. 

T h e o r e m  2.1. Suppose that a and f satisfy (1.6) for d=2.  Then, under the 
condition that a is known, P~f on TS 1 uniquely determines f on R 2 by the formulas 

1 ( 0  i O ~  
(2.12a) f ( x ) = - ~ \ O ~ z l -  O--~x2/] s  ~(x,O)(Ol+iO2)dO, 

(2.12b) ~(x,O)=exp(-D_oa(x))m(zO',O), 

(2.12c) re(s, 0) = • exp 2i \ 2i Pk~ 

1 ( H  P~a(s)~ H e x p (  H+P~ 
+ g  e x p \  2i J 2i / Pk~ 

where Do, PO J-, P~O, H• and exp(• are the operators such that 

/o (2.13) Dou(x) = u(x+tO) dt, 

(2.14) Po~u(s) =/. u(sO • +tO) dr, 

(2.15) Pkou(S) = f exp(- Doa(sO • +tO) )u(sO-- +tO) dt 
J R  

= P~u(sO l ,  0), 

(2.16) H• = re-1/a s• dr, 

/ HTP~a\  

where u and v are test functions, x : ( x , , x2 )CR 2, 0:(01,02)ES*,  0 •  
sER and dO is the standard element of are length on S 1. 

Remark 2.2. If a - 0  in (2.12), then the fbrmulas (2.12) turn into the formulas 
(4.6) of IN1] which are similar to the formula (1.12) of [FN]. 

Remark 2.3. Under the conditions (1.6) and d=2, the formulas (2.12) imply 
that 

(2.18) a e ~ ( x ,  0 ) =  O, ae ,~(s ,  e) - O, 
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(2.19) C9xlC9 ffslIm~(x'O)OldO+o@2ffsllmF(x'O)O2dO=O' 

010  0+ /Sl 010  / (2.20a) f(x) = - U  

(2.20b) Im ~(x, 0) = exp(-D_oa(x)) Im m(xO • 0), 

(2.20c) Imm(s ,  0) = -  Re exp 2i 

. /H-P~-a\p~of(.s) ) X(c+H+-}-C H-)  exp ~ ~ ) 

for any real c+ and c such that  c + + c _ = l ,  where x E R  2, 0ES 1 and sEN. 

Remark 2.4. Under the conditions (1.6) and d=2, the formulas (2.12) and 
(2.18)-(2.20) are valid pointwise. 

Proof of Theorem 2.1. Consider the equation 

(2.21) OOx~(x,O)+a(x)~(x,O)=f(x), xCR 2, OeE, 

where 

(2.22) ~ = { o � 9  2102 2 2 = 01 +02 = 1}. 

The equation (2.21) is the equation (2.1) for d=2 with complexified 0. 
For any 0 ~ E \ S  1 we consider the complex-valued continuous solution ~{~(. ,0) 

of (2.21) specified by 

(2.23) ~(~,  0) -+ o, as I~1 - +  ~ .  

For any 0EE\S  1 such a solution exists and is unique. 
The following %rmula holds: 

(2.24) 

where 

(2.25) 

(2.2~) 

(2.27a) 

(2.2~h) 

r O) =/rt2 It(x, y, O)f(y) dy, x ~ R  2, O ~ E \ S  1, 

~(x,  y, o) : e x p ( - C o a ( ~ ) ) G ( ~ - y ,  o) exp(Ooa(y)), 

a (x ,  0) : sgn(Re 01 In~ 0~-  ae  0~ Im 01) 
- 2~ri(O2z1-01cc2) 

Go is the convolution operator with the function G( . ,  0), 

Goa(x) = JR/2 G(x- y, O)a(y) dy. 
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Note that for any 0 E E \ S  1 the factor 

(2.28) ~ ( . ,  0) = exp(--G0a(.  )) 

on the right-hand side of (2.25) is the complex-valued continuous solution of the 
equation 

(2.29) OOx~(z,O)+a(x)7)(x,O)=O , zER 2, 0 E E ,  

specified by 

(2.30) ~(x, 0) --+ 1, as Ixl -+ o o .  

Note also that for any 0 E E \ S  1 the function G( . ,  0) is the complex-valued solution 
continuous outside of zero of the equation 

ooxa(z,O)=6(z), x E R  2, OEE, (2.31) 

specified by 

(2.32) 

The function ~ ( . ,  0) is not defined tbr 0ES 1, in general. For 0 c S  1 we consider the 
functions ~b• 0) defined by the formula 

(2.33) ~• = lira r  for any z E R  2, 
T-+O+ 

where 
(2.34) 

w(r):Ox/l-+Ts+irO • rER ,  0=(01,02) ES 1, d l+ 'T  2 ) 0 ,  0• 

Note that 

(2.35) w(r) E E \ S  1 for "I- E R\{0} .  

The following formula holds: 

(2.36) 

where 

(2.37) 

(2.38) 

ib• O) =/R  ~ R~-(X, y, O)f(y) dy, x E R  2, 0 E S  1, 

R• (x, y, 0) : ( x - y ,  0) 
i l  

G+(z, O) : 27ci(O• 0 sgn <~ ))"~x"' 
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(2.401) 

(2.~Ob) 

(2.411) 

(2.41b) 

where 

G• are the convolution operators with the generalized functions G•  0), 

(2.39) G~,o~(~) = / ~  a• 0)~(y) dy. 

The following formulas are valid: 

•  
o+(z, o) = 2~i(oiz•  ) ~5(olx)x+(ox), 

• 
G~:(~, o) - 2,,i(o" xTio) -a(~177176 

G• = D_ou(x) • 1H•177 

G4- ou(x) : -Dou(X)•  ~ H:~P~-u(O• 

1 for s > 0 ,  
(2.42) ~+(s )=  0 for s < 0 ,  

Do, P~, H i  are defined by (2.13), (2.14) and (2.16), respectively, u is a test function, 
x E R  2 and 0ES 1. 

The fact that  the limits in (2.33) exist and that  the formulas (2.36) and (2.37) 
are valid follows from (2.24), (2.25), (1.25), (1.31), (1.32), (2.41), (A.15), (1.16), 
(A.19), (A.24) and the formula 

G~(• (exp(G~o (~=~)a)f) = G~,s (exp(G~=,oa) f)  + (G~,(-E~) - G=E,o) (exp(G~o (• a) f) 

+G+,o ((exp((Gw(:E~) - G :<e )a ) - 1) exp( G • ) f ). 

Using (2.411), (A.31), (1.33), (A.15), (A.16), (A.19), (A.24) and (A.6) we 
obtain, in particular, that  

(2.43) ~r E C ( R  2 • S 1, C), 

(2.44) r177 0) satisfy (2.21) for x 6 R ~, 0 C S 1, 

(2.45) lira V~:(~+~e, e) = m• e), 
8--+-- O0 

where 

(2.4~) _ 1 / H•177 
rn~ (O• O) = m ~ / e x p  ~T ~ H• L exp(G+,oa)f(O• 
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for x E R  2 and 0ES 1, exp(G:k,oa) denotes the operator such that  

(2.47) exp(G• = exp(G• x E R 2, 

and u is a test function. In addition, 

2i eXp 2i /H~P~g(s), 

where, using (2.41b), 

9(z) = exp(G• )f(x) 

(2.48b) ~• HTP~a(O• 
= exp \ 2i j exp(-Doa(x))f(x), s E R, 0 E S 1 ec ~ R 2. 

In addition, using (2.48) and the definitions (2.14), (2.15) and (2.17) we obtain that 

(2.49) P~g(s)=exp(• II~:P~a(s) )p~)of(s), 

(2.50) ~(~'  ~ = i l ,  2i exp l/~: H~P~ ~ e~p \(•177176 J ' 

s c R ,  0cS  1, x E R  2. 
The following formula holds: 

(2.51) ~+( .~ ,0) -~  (x, 0) -- ~(x, 0), x ~ R  ~, 0 c S  ~, 

where ~ is given by (2.12b-c). 
To obtain (2.51) we use that if ~ is defined by the left-hand side of (2.51), then, 

by virtue of (2.43)-(2.45) and (2.50), 

(2.52) ~ E C ( R  2 x S  1,C), 

(2.53) ~(z, 0) satisfies (2.29) for x E R 2, 0 d S ~, 

(2.54) lira ~(x+sO, O)=m+(O• (O• x ~ R  2, 0 c S  1, 
8 ---} - -  O G  

where m is given by (2.12c), and that the properties (2.52)-(2.54) imply (2.12b). 
The Riemann surface E defined by (2.22) admits the following parametrizadon 

by a c e \ { 0 } :  

A(0) =0~+i02 for 0 = (0~, 0_9) E E, 

(2.55) 01(1)=}~ +X)' ~ a- for a~c\{0}, 
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In the variable A the circle S 1 takes the form 

(2.56) T={A�9 
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0 
(2.57) bT>(~, e(~)) = 0 for ~ �9 (C\{0})\T 

(i.e. ~{b(x, 0(A)) is a holomorphic function in A � 9  

(2.58) Ib(x,O(A))= ~Cf (x )+o  ~ , asA--+oo, 

(2.59) ~(x,O(s =ACf(x)+o(A),  as A-+0, 

(2.60) ~(,, 0(~(1• ~T(~,0(A)) fo~ ~CT, 

where C and C are the operators such that  

(2.61) 

(2.62) 

C~(x) = _ !  [ ~(Y) @ 
7r j R  2 ( y l •  

1/R u(y) @ 

where x (Xl, x 2 ) � 9  2, Y=(Yl, Y2) �9  2 and u is a test function. In addition, note 
that  for G given by (2.26) the following formula holds: 

(2.6a) C(~,O(A)) = sgn(1-IAI) 
2rci(li)(A2-z/A) ' 

�9 �9 R 2, ~ e ( C \ { 0 } ) \ T ,  

where 

(2.64) z = x l + i x 2 ,  Z = X l - i x 2 .  

The properties (2.57)-(2.60) imply that  

(2.65) 
Cf(x)  - 

1s 
2~i (V+(*, o(A))-r (,, o(A))) d~ 

s (r162 (x,e))(el+ie2)de. 
27c * 

Using (2.24), (2.33), (2.55) and Lemma A.7 we obtain that  for any x C R  2 the 
following formulas hold: 
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The formulas (2.65), (2.51) and the formula 

(2.66) 2 \ 0 X l  Ox2J C f ( x ) = f ( x ) '  x E R 2 '  

imply the formula (2.12a). [] 

Let S be a great circle in S d-l ,  X(S)  be the linear span of S in R s, X •  be 
the orthogonal complement of X ( S )  in R d, and 

(2.67) Ad(S) = { 7 =  (x,0) ET S  a-1 I OES}. 

Note that  d i m A d ( S ) = d  for d_>2 and Ad(S )=TS  1 for d=2.  
Theorem 2.1 implies the following corollary. 

C o r o l l a r y  2.5. Suppose that a and f satisfy (1.6), where d>_2. Then, under 
the condition that a is known, P~f on A/I(S) uniquely determines f on R d by the 
following scheme 

( 2 . 1 2 ) . ,  
(2.68a) PafITsl(Y) > JIY 

for each two-dimensional plane Y of the form 

(2.68b) yeX• 

where TSI(Y)  is the set of all oriented straight lines lying in Y.  

Note that 

(2.69) M(s)= [_J 
ycx• 

Remark 2.6. Theorem 2.1, Remark 2.3 and Corollary 2.5 remain valid un- 
der the assumptions (1.9) (in place of (1.6)). In this case the formulas (2.12c) 
and (2.20c) are valid in LV(R,C) for any 0ES ~, where m a x ( 1 , c - 1 ) < p < + ~ ;  the 
formulas (2.12a), (2.19) and (2.20a) are valid in the sense of distribution the- 
ory; and the scheme (2.68) is valid for almost any Y of the form (2.68b). Note 
also that Theorem 2.1 and Corollary 2.5 remain valid under the assumption that 
a, f ~ C ~ ' s + ~ ( R  d, C) for some (~E]0, 1[ and e>0  (in place of (1.6)). In this case the 
formulas (2.12) are valid pointwise. 
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3. Subsequent results (added in October 2000) 

The main results of this section are Propositions 3.1, 3.4, 3.5, 3.9, Corollary 3.3 
and Remark 3.8. For d=2, Proposition 3.1 relates holomorphic moments of a func- 
tion f and the attenuated X-ray transform P~f by formula (3.2). For d_>2, Corol- 
lary 3.3 relates, in particular, the classical Radon transform (along two-dimensional 
planes) /g2,~f and the attenuated X-ray transform P~f by means of the fommla 
(3.2) with n=0.  For d=2,  in Proposition 3.4 we deal with the reconstruction of f 
from P~f on a subset of TN 1, under the condition that  a is (completely) known. 
For d=2, in Proposition 3.5 we give new necessary conditions on Paf; these con- 
ditions can be considered as a generalization of the well-known symmetry (3.16) 
for the classical X-ray transform Pf. In Remark 3.8 we relax the assumptions of 
Propositions 3.1, 3.4, 3.5 and Corollary 3.3. For d=2, in Proposition 3.9 we give, in 
particular, sufficient conditions for a function g on TS 1 in order to be in the range 
of P,  defined on C~ ' I+~(R2,R) ,  cE]0, 1[, for a E C ~ ( R 2 , R ) .  We plan to develop 
Proposition 3.9 in a subsequent paper. 

Proposition 3.1. Let 

(3.1) a E Ca ' l+~  (R2, R),  f E C~ (R2, R) 

for some c~E]0, 1[, Ca>0 and a f > l .  Then 
(3.2) 

2(xl_4_ix2)~f(x)dx=~_ ~ (01+i02) n s~ exp 4_Hq: a(s) of(s)dsd 0 
J R  

for any nENU{0} such that n < e f - 1 .  

Pro@ Consider the functions 

(3.3) L~(O)=./n(-O2zl+OlZ2)~exp(Goa(z))f(z)dx for 0 E E \ S  1, 

(3.4) I• = lira I,~(co(:kT)) for 0 E S 1, 
"r--~O+ 

where CO(T) is given by (2.34) and where nENU{0}, n < e f - 1 .  
The following formula holds: 

I+,,~(O) = s  (O• ~ exp(G• da 

(3.5) = /R~(O• expk -'~ 2i ) f(x) dx 

= / s" exp (-J- HT/2-~e~a(s> ) P~o f(s) .s , 

where 0=(01, 02)cS 1 and 0 •  01). 
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The fact that  (under the conditions of Proposition 3.1) the limits in (3.4) exist 
and the formula (3.5) is valid follows from (A.25), (A.31), (A.32), (2.41b) and (2.15). 

Using (3.3), (3.4), (2.55) and Lemma A.7 we obtain that  

(3.6)  ~In(O(/~)) = 0 for )~ E ( C \ { 0 } ) \ T ,  

~ (x~ -i~)'~f(~) d~+o(X~), 

(3.8) L~(0(~)) = ~Tn (-2) ~/R(Xl+ix2)nf(x)dx+o(,~-~), 
(3.9)  I n ( O ( A ( l + O ) ) )  = I• 

as /k --+ oc, 

as ) ~ 0 ,  

for /kET. 

The properties (3.6) (3.9) imply that  

(3.1o) 
(~)n /R (xl • f(x) dx= 2@~ .;.k+~-l[:k,n(O()~)) d)~ 

1 ~ (01+i02),~[• = ~  

The formula (3.2) follows from (3.10) and (3.5). [] 

Remark 3.2. If the conditions (3.1) are valid, then the formulas (3.5) (3.9) 
imply also that  

(3.11) 

for any nENU{0} and m E N  such that  n < m  and n<cf-1. For the case when a 
and f are real-valued functions of the Schwartz class on R 2, the formula (3.11) (in 
slightly different form) was given previously in Theorem 6.2 of [Na] as necessary 
conditions on the range of the attenuated Radon transformation. 

Let ~v,d denote the set of all p-dimensional planes in R d, d>_p. Consider the 
Radon transformation R2,d defined by the formula 

(3.12) R2,df(Y)=./yf(x)dx, Yen2,d, d> 2, 

for any real-valued sufficiently regular function f on R d sufficiently rapidly vanishing 
at infinity, where dx is the standard element of area on Y. 

Proposition 3.1 implies the following corollary. 
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Corol lary 3.3. Suppose that 

(3.13) a E C  ~ ' I+~(R d,R), f E C  ~ d,R), d>2 ,  

for some ~E]0, 1[, c~>0 and c f > l .  Then for any YC~2,d, under the condition 
that a]y is known, one can find R2,df(Y) from P~flTsl(y) by means of (3.2) with 
n=0. In addition, ford>>_3 under the condition that nix is known, one can find f i x  
from P~fITs2(x) for any XE~/3,d, using (3,2) with n=0 and the classical Radon 
inversion formula for the transformation R2,3. (Here TSP-I(h) is the set of all 
oriented straight lines lying in hE~/p,d.) 

Propos i t ion  3.4. Let 

aEC~'I+~(R2, R) for someaE]O,l[ andr 
(3.14) 

f E Co (R ~, R) 

(C0(R ~, R) being the .space of real-valued continuous compactly supported functions 
on R2). Let 0 be a subset of S 1 of positive length. Then, under the condition that 
a is known, P2of(s) given for all (0, s)E@ •  uniquely determines f .  

Pro@ Consider the functions L~, Ii ,~ defined by (3.3) and (3.4), where nE 
NU{0}. Under the conditions (3.14), the functions I~ and I• are well-defined by 
(3.3) and (3.4), and the formulas (3.5)-(3.9) hold for any n~NU{0}. 

The proposition follows from the following statements (being valid under the 
assumptions (3.14)): 

(1) Under the condition that a is known, the transform P~of(s) given for all 
(0, s)EO x R uniquely determines I+,~ (0) for all 0 E ID and n ENU{0} by (3.5). 

(2) The function Ij,~(. ) on O uniquely determines this function on S 1 via 
analytic continuation according to (3.6)-(3.9) for any j E { + , - }  and nENU{0}. 

(3) Under the condition that a is known, the sequence Ij,o, Ij,1, Ij,2, ..., uniquely 
determines P~of(" ) on R by means of (3.5) and the inverse moment problem for 
any j E { + , - }  and 0ES 1. 

(4) Under the condition that a is known, the transform P~of(S) given for all 
(0, s)ES 1 x R  uniquely determines f by (2.12). [] 

Propos i t ion  3.5. Under the assumptions (1.6) and d=2, the following for- 
mula holds: 

(3.15) f s  ~ Imp(x,0) dO=O for any x E R  2, 

where Im p(z, 0) is given by (2.20b c). 

Remark 3.6. We consider the formulas (3.15), (2.20b-c) as necessary conditions 
on the attenuated X-ray transform P~o f (s), 0 E $1, s E R. The necessary conditions 
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(3.15), (2.20b c) differ from Natterer 's necessary conditions (3.11): under the as- 
sumptions (1.6) and d=2,  the integral over S 1 x R  in (3.11) can diverge for n_>e-1 
(i.e. even for n = 0  if e_<l), whereas the formulas (3.15), (2.20b-c) are completely 
well-defined. For the case when a - 0 ,  the necessary conditions (3.15), (2.20b c) are 
a corollary of the following well-known property 

(3.16) Po•177 0 c S  1 , s f f R .  

For this case the property (3.16) implies the formula Imp(x,O)=-Imp(x,-O), 
x c R  2, 0ES 1, implying (3.15). 

Remark 3.7. Using that ~ of Theorem 2.1 and Remark 2.3 satisfies (2.29), 
0ES 1, the formula (2.19) can be rewritten as 

(3.17) a(x) ~1 Im qo(.~, O) dO = O, x E R 2. 

The formula (3.15) strengthens (3.17) for those ,  where a(x)=0. 

Proof of Proposition 3.5. The properties (2.57) (2.60) imply that 

0= lim ~b(x, 0(/~)) = 1 ~ ?77 (x,0(0)) r (3.18) 
= 2~ 1(@--(,~, 0)-- ~ (..~, 0)) dO. 

The formula (3.15) follows from (3.18), (2.51) and (2.20b c). [] 

Remark 3.8. Proposition 3.1, the formula (3.11) and the formulas (3.5) (3.9) 
for the functions L~ and I+,~ defined by (3.3) and (3.4) remain valid under the 
assumptions 

(3.19) " aEL~'I+<',(Ra, R), fEL~176  R)  for some e~ > 0  and cf > 1, 

d=2,  in place of (3.1). Corollary 3.3 remains valid under the assumptions (3.19), 
d>_2, in place of (3.13) for the only YE~2,d for d=2,  for almost any YE~2,d for d>_3, 
for the only XE~a ,d  for d=3,  and for ahnost any XE~a ,d  for d_>4. Proposition 3.4 
remains valid under the assumptions 

a C L ~ ' S + ~ ( R 2 , R )  for some e~>0 ,  
(3.20) 

f(s ff L ~176 (R 2, R)  for some 6 > 0, 

where fa(x)=ealzlf(x), x C R  2, in place of (3.14). Proposition 3.5 remains valid 
under the assumptions (1.9) in place of (1.6) for (3.15) being valid, say, in L I ( R  2, R)  
and (2.20c) being valid as in Remark 2.6. Note also that, under the assumption 
that a, fEC~'I+~(R2,  C) for some c~E]0, 1[ and e>0,  the following formula holds 

ffs~ g~(x, O) dO for R 2, any x E 

where ~ is given by (2.12b-c). 
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P r o p o s i t i o n  3.9. (I) Suppose that a and f satisfy (1.11) for d=2.  Then 

(3.21) 9 � 9 2 1 5  whereg(s,O)=P~of(s), s E R ,  OES 1, 

and the conditions (3.15), (2.20b c) are valid. 
(II) Suppose that 

(3.223) a �9 C ~ ( R  2, R), 

(3.22b) g �9 C ~ ( R x  S 1 , R )  

and that the conditions (3.15), (2.20b c) for g are valid, i.e. 

f s  eXp(_D_oa(x) ) R e (  exp(  H+Po~ a(O• ~ 
J 

(3.23) x(H++H_)exp(H-P~-a)go(O•  dO=O, x c R  2, 
i 

where 9o denotes the function on R such that 9o(s)=g(s,O), sER.  Then there is a 
function f such that 

(3.24) g(s, O) = P~of(s), s �9 R, 0 �9 S 1, 

(3.25) f e C ~ 1 7 6  for arty e�9 1[, 

where 

(3.26) C~'~ (R ~, R) = { f lOYf  C C~ (R 2, R) for j = (jl ,j2) �9 (NU{0})2}] c~ > 0, 

OJf(x) = OJl+J2f(x) x �9 R 2. 
jl j2 ' Ox 10x 2 

Remark 3.10. Proposition 3.9 is a result on the range characterization for the 
two-dimensional attenuated X-ray transformation P~. In part I we deal with nec- 
essary conditions, and in part II we deal with sufficient conditions. 

Remark 3.11. For the case when a - 0 ,  part II of Proposition 3.9 is also valid 
with 

(3.27) g(s ,O)=g(-s , -O) ,  s E R ,  0 � 9  1, 

in place of (3.23). To our knowledge, even the latter result was not given explicitly 
in the literature. 
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Remark 3.12. As a corollary of Proposition 3.9 and Theorem 2.1, under the 
assumption that  a E C~ ~ (R 2, R),  one can give a range characterization for P~ defined 
on C ~ ( R 2 , R ) = { f c C ~ ( R 2 , R ) I s u p p f C _ D } ,  where D is a compact in R 2, just 
complementing the necessary conditions for g of part I of Proposition 3.9 or, which 
is the same, the sufficient conditions for g of part II of Proposition 3.9 by the 
condition that f constructed from g by means of (2.20) is identically zero on R2\D. 

Remark 3.13. Part I of Proposition 3.9 follows from Proposition 3.5 and well- 
known facts. We plan to give the proof of part II of Proposition 3.9 in a subsequent 
paper. 

Appendix:  Estimates  for operators 

We present, first, some estimates for the operators Do, Po and Po L. Here Do 
and Po are defined by 

(A.1) 

(A.2) 

where x E R  d, 0ES d-1 and u is a test function; Po ~ is defined by (2.14). We use 7vo 
defined by (1.4) and X+ defined by (2.42). 

f0  ec Do~(~) = ~(~+tO) dr, 

,lit 

Lemma A.1. Let 

(A.a) 
(1.4) 

(1~) 

~here 

(A.6) 

(A.7) 

u E C~'I+~(R d, C), 

]]ul]o,l+~ _< u1, 
/ ]]~]]~,1+~ -< u2, 

0 4 1 < 1  and c>O. Then 

ID o~(~)1 <<(c,O,~)Vl, 
iD_eu(x+y) -D_ou(x ) ]  _< el(c, 0, x)U2 ]y] ~, 

(A.8) c1(s , O, X) dezf 9(1+@/2(1@~+(0X)) 
~ ( ~  + l ~ o ~ i - 0 x > ( - 0 x ) )  ~' 

(A.9) ID o~(x)-D o,~(x)l<_~2(c,Z,l~l)gio-o'l ~, 

(1.10) c2(e,/3, r) ~t~f 2 (a+~)/2 (3c -2 /3  ) e \ ~  +3"2~/%~ 

forz, yER a, lyl_<l, 0,0'cS e-~, 10-0'1_<1, 0<~<< ~_<~ arid U=max(U1,U2). 
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L e m m a  A.2. Under the assumptions of Lemma A.1, the following estimates 
hold: 

(A.11) 
(1.12) 

(A.13) 

(A.14) 

IPo~(x) l ~ ea(~, 0, I~oxl)U~, 

IPo~(~ +y) - Po~(z) l ~ Ca (~, O, I~oxl)g~ lYl ~, 

e3@, s) clef 2 (3+e)/2 

e ( ~ + l ~ l f '  
IPou(z)- Po,u(x)[ < 2c2(c, 3, ix l )g[o-o' l& 

in addition, for d=2, 

(A.15) 
(A.16) 
(A.17) 

(A.18) 

IP~(s)l ~ e~(~, ~)Ux, 
IPol~(s+ ~)- Po-~(s)I ~ ea(~, s)U21~l ~, 

IP0--~(~)-P~(s)l < e4(~, 9)UIO-O'I& 
C4(s (3C__2/~_F3( 2 )c~) 

s, SER and I~1_<1. 

(A.19) 

Lemmas A.1 and A.2 follow from Lemmas A.la and A.2a of [N2], respectively. 

Remark A.3. Let uEC~ 2, C), where e>0. Then 

liD o~11o,o ~ 2 R  sup ~(x)+e3(c,R)llullo,~, 
Ixl<R 

IlP~ullo,o _< 2R sup u(x)+c3(c,R)llullo,~, 
Ixl<R 

where 0ES 1 and R_>0. 

L e m m a  A.4. Let uEC~'"(R d, C) and vEC~'~(R d, C), where 0<c~<l, 0_>0 
and T>O. Then uvEC~'"+~(R d, C) and 

(A.20) 
(A.21) 

This lemma is elementary. 
We present now some estimates for the operators H= defined by (2.16). 



164 Roman G. Novikov 

Lemma A.5.  Let v6C~,e(R,C) ,  where 0 < ~ < 1  and e>0.  Let H• be 
defined by (2.16) for s c R U C •  where C •  }. Then 

,c) 
(A.22) ~s H• = 0 

and the .following estimates hold: 

(A.23) 

f o r s E C •  

Ilvll~,~ 
IH• l <- c5 (c~, c, c') (1+ Isl) ~'' 

IB~:v (s+g) -H•  < c5(~, c, c') II~'ll~'~l~l~ 
- ( l+ l~ l )~ , ,  

where c5(c~,e,e') is a positive constant, for s , s + d E R U C •  151<_1 and 0_<e~< 
•  e); 

(A.24) - - I lvl l~,oh + 1+ in Ilvllo,o+c6(~,9) Ilvll~ 
- -  7ro~ r ~ 

where c6(e,~) is a positive constant, for 0<h_<l, r_>l and 0<-/~<min(1,e). 

The formulas (1.22) and (1.23) are give~ in Lemma 1.3 of [Fa]. The estimates 
(1.24) follow from the estimate (A.80) of IN2]. 

We now present estimates for the operators Go and Gm,o defined by (2.27a) 
and (2.39). 

Lemma A.6. Let uEC~'I+e(R2,C),  where 0<c~<l and ~>0. Then 

(A.25) a~(•177 as ~ 0 + ,  

uniformly in u and x for [lull~,l+~<-A and Ix[<-R, where A, R, c~ and e are fixed 
and w(r) is defined by (2.34). 

(To prove (A.25), we decompose u into the sum u(-)=Ul,0• )-[-tt2,0• ), 
where 

ul ,oi  x (y) = x(o" y -  O 'x )~(y ) ,  

~,olx(y) = (1- x( o•177 )~(y), 
1, Isl <- 1, 

~ ( s ) =  2--1el, 1<-Is1<-2, 

0, Isl>2. 
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The proof of (A.25) with %,o 'x  in place of u is rather elementary. To prove 
(A.25) with Ul,o• in place of u, we take p=Oy, q=O• as the variables of inte- 
gration instead of Y=(Yl,Y2),  we integrate, first, with respect to q and use the 
estimates (A.23).) 

In the next lemma we use 0(A)=(01(A), 02(A)) of (2.55). 

L e m m a  A.7. (1) Let uEC~ 2, C), where e>0. Then 

(A.26) Go(A)uECAd(R2 ,  C), 0_</3<1, 0_<e'<min@,l) ,  IAIr 

and, in particular, 

(1.27) IIGo<A>Ullo,o~ ~ I~1 Ilullo,a+~, I~ l< l ,  
~ 1-1),12 
4 

(A.28) [[Go(x)u-ACullo, o < 7(1-{AI2)lklallullo,s+r Ihl < 1, 

4 1 
(A.29) Ilao(A)~llo,o< Ilullo,>~, IAI>I, 

- e ( 1 - I A I - 2 ) I A I  

(a.ao) a o ( a ) u - l c u  [ < 4 1 Ilullo,>~, Ial > 1, 
A o,o - ~ ( 1 - } A I - ~ ) I A I  ~ 

where AE(C\{0})\T and the operators C and C are defined by (2.61) and (2.62). 
(2) Let ux e C~ 2, C) for some c>0 and any Ae (C\{0})\T. Let Ilux IIO,l+~ 

be bounded in A on each compact of (C\{0})\T. Let uA(x) be a holomorphic func- 
tion in Ae(cx{0}) \T for any x E R  2. Then Go(A)uA(x) is a holomoTThic function 
in ActC\{0}) \T for arty xCR 2. 

L e m m a  A.8. Let uEC~J+~(R2,  C), where 0<c~<1 and c>0. Then 

(A.31) IIGi,oull~,o -< c7(oz , G)Ilu//c,,l+~, 0 c S 1 , 
(A.32) IIGoull~,o _< c7(c~, c)llull~,l+~, 0 E E\S l, 

( A . 3 3 )  

IG--,ou(x)-G• <_ cs(m e,/3)(1+ Ixl) ~ Ilull~,l+~ (1+ Ilog IO-O'l I)I0-0'1 ~, 

O, 01 ~ S 1, X C R 2, 0 </3 < e, [~ <_ c~, where cr (c~, e) and cs (a, e,/3) are positive constants. 

Lemmas A.6 A.8 are obtained in [N2]. 
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