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Resultants and the Hilbert 
scheme of points on the line 

Roy Mikael  Skjelnes 

Abs t r ac t .  We present an elementary and concrete description of the Hilbert scheme of 
points on the spectrum of fraction rings k[X]u of the one-variable polynomial ring over a commu- 
tative ring k. Our description is based on the computation of the resultant of polynomials in k[X]. 
The present paper generalizes the results of Laksov-Skjelnes [7], where the Hilbert scheme on 
spectrum of the local ring of a point was described. 

1. I n t r o d u c t i o n  

In the present article we generalize the techniques and results of [7], where the 

Hilbert scheme of points on the spectrum of the local ring of a point on the affine 

line over a field was described. W~e will describe the Hilbert scheme of points on the 

s p e c t r u m  of a r b i t r a r y  f rac t ion  r ings k[X]u of the  po lynomia l  r ing in the  var iable  X ,  

over an a r b i t r a r y  ( c o m m u t a t i v e  and  un i t a ry )  base  r ing k. 

I t  is well known t h a t  the  Hi lbe r t  scheme of n -po in t s  on a s m o o t h  curve is given 

by  the  n-fold s y m m e t r i c  p r o d u c t  ([1], [3], [4], see also R e m a r k  4.3). W h e n  t i le  mul t i -  

p l i ca t ive ly  closed set UC_k[X] is gene ra t ed  by  a single e lement  t hen  S p e c ( k [ X ] u ) - +  

Spec(k)  is a family  of curves,  and  our resul ts  are well known. For  genera l  closed 

subse ts  UC_k[X] the  s i tua t ion  is new since the  scheme Spec (k [X]u )  is not  of finite 

t ype  over the  base  Spec(k) .  Even  t h o u g h  Spec(k[X]u) is not  genera l ly  a curve, it  

is not  surpr i s ing  t h a t  the  Hi lbe r t  scheme of n -po in t s  on Spec(k[X]u) is given by 

i ts  n-fold s y m m e t r i c  p roduc t .  However,  the  i m p o r t a n t  th ing  to  keep in mind  when 

s tudy ing  po in t s  on Spec (k [X]u )  is t h a t  one has  to  consider  families of points .  A n  

a rgumen t  based  on the  classif icat ion of the  k - ra t iona l  po in ts  of the  Hi tber t  scheme 

will not  suffice; the  H i lbe r t  scheme of po in t s  can  be  large even t hough  the  under-  

ly ing set of k - ra t iona l  po in ts  is smal l  or even e m p t y  (see E x a m p l e s  3.9 and  3.11). 

Fu r the rmore ,  as Spec(k[X]u) is not  necessar i ly  a sub-scheme of the  line Spec(k[X]) ,  

even the  exis tence  of the  Hi lbe r t  scheme on Spec (k [X]u )  has  to  be es tabl ished.  
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We shall give an elementary and concrete description of the Hilbert scheme of 
points on the spectrum of fraction rings k[X] u of the polynomial ring k [X]. Essential 
for our description is the classification of degree n, monic polynomials F EA[X], for 
an arbi t rary k-algebra A, such that  the induced map A[X]/ (r ) .AO~k[X]~/ (r )  
is an isomorphism. 

The principal tool we use to s tudy monic polynomials FEA[X]  is the ho- 
momorphism uF:A[sl, ..., s~]-+A determined by the coefficients of F (the source 
of Up is the polynomial ring in the elementary symmetric  functions Sl, ..., s,~ in 
n-variables tl ,  ..., tn). The homomorphism Up was introduced in [7] and used 
there to study roots of polynomials defined over fields. The approach presented 
here is different, emphasizing endomorphisms and characteristic polynomials. Our 
main innovation is Theorem 2.2 where we show that  for any fEA[X] we have that  

up (f(tl)...  f(tn))C A is the determinant  of the A-linear endomorphism on A[X]/(F) 
that  sends a~-+af. In other words the image of the symmetric  function f(t~).., f(tn) 
under the morphism up is the resultant of f and F.  

An interesting observation tha t  follows from our description of the Hilbert 
scheme of Spec(k[X]v) is that  the Hilbert scheme of points on the line commutes 
with localization, see Remark  3.10. In a forthcoming paper  [10] the localization 
property will be established for schemes in general, not only for smooth curves or, 
as discussed here, the line. 

2. Symmetr ic  operators  on  the  po lynomia l  ring 

We recall the symmetric operators introduced in [7], and we introduce some 
notation. We also establish the elementary, but important  Theorem 2.2. 

2.1. N o t a t i o n  

Let fl ,  ..., tn be independent variables over a commutat ive ring A. Let sl ,  ..., Sn 
denote the elementary symmetric functions in tl ,  ..., t~. Denote the polynomial ring 
of symmetr ic  functions as 

S~ = A[s l , . . . ,  s~d. 

To each polynomial fEA[X] in one variable we define the symmetric  functions 
sl ( f ) , . . . ,  s~(f) by the following identity in the polynomial ring A[t l , . . . ,  t~, X]: 

n 

(2.1) I I ( x -  f(ti)) = X~-Sl ( f )X~ ' - l  § 
i - -1  
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We have tha t  s~(X), ..., s,~(X) are the elementary symmetric  functions s~, ..., s~. 

Let S~ IX] denote the polynomial ring in the variable X over the ring of symmetric  
functions. The element A , ~ ( X ) = [ I ~ I ( X - t i )  is, when writ ten out, a polynomial 
in the variable X, with coefficients in the ring of symmetric  functions S~. 

2.2. T h e  h o m o m o r p h i s m  UF 

Let F(X)=X'~-ulXr~-z+...+(-1)"Zu,,~cA[X] be a monic polynomial of de- 

gree n. We define an A-algebra homomorphism 

(2.2) UF: S~ > A, 

by sending si~+ui for each i=1 ,  ... ,n. The coefficients of A,~(X) are then mapped  
to the coefficients of F(X)  by the homomorphism Up, hence 

SAn [X]/ (A ~ (X) ) |  s ~A~A[X]/(F(X))= 

P r o p o s i t i o n  2.1. Let M be a square matrix having coefficients in a commuta- 
tive ring A. Assume that the characteristic polynomial PM (X) = Hin l ( X -  ai) of M 
splits into linear factors over A. Then for any polynomial f ( X )  in A[X] the matrix 
f ( M ) has characteristic polynomial P f ( M) ( X ) = Hi 'L1  ( x -  f (ai ) ). 

When A is a field, the result is known as the Spectral Theorem. A proof of the 
theorem over general commutat ive rings can be found in [8]. 

T h e o r e m  2.2. Let F be a non-constant, monic polynomial in A[X]. Denote 
with n the degree of F. For any element f in A[X] we let #F(f)  be the A-linear 
cndomorphism on A[X]/(F) given as multiplication by the residue class o f f  modulo 
the ideal (F). Then the characteristic polynomial of PF(f) is 

X ~-uv(sl( f))x~'-x+., .+(-1)~'uF(s,*(f)) .  

In particular uF( f (h) . . ,  f(t,~)) is the determinant of #F(f) .  

Proof. For any f in A[X] we let #(f)  be the S~-linear endomorphism on E =  
S~A[X]/(A~(X)) given as multiplication by the residue class of f in E.  Let up: S~A-+ 
A be the A-algebra homomorphism determined by F in A[X]. We have that  the 
induced A-linear endomorphism # ( f ) |  oil E ~s~ A -~ A[X] / (F )  is #F (f). Hence to 
prove our theorem it suffices to show that  the endomorphism # ( f )  has characteristic 
polynomial 

(2.3) X n - s 1 ( f ) X  n-1 +... + ( -  1)n sn (f). 



192 Roy Mikael Skjelnes 

Note that  S~CA[t~, ..., &] is a subring and that 

(2.4) E@s~ A[tl,...,tn] ~- A[tl, . . . , tn ,X] / (An(X)) .  

By ring extension we consider #( f )  as an A[&, ... , &]-linear endomorphism on 
(2.4). Since A ~ ( X ) = I ~ _ I ( X - t i )  splits into linear factors over A[&,...,t,d the 
theorem is proven if we show that  >(X) has characteristic polynomial A~(X).  In- 
deed, it then follows from Proposit ion 2.1 that  >(f) has characteristic polynomial 

I ~ i ~ l ( X - f ( t i ) ) ,  which writ ten out is (2.3). Thus what remains is to compute the 
characteristic polynomial of the particular endomorphism >(X). 

Let x be the residue class of X modulo the ideal (A~(X))  in A[&,..., tn, X]. 
We have that  1, x , . . . , S  ~-~ form an A[ts,...,t~] basis for (2.4). The matr ix  M 
representing the endomorphism >(X), with respect to the given basis is easy to 
describe and is called the companion matrix of A~,~(X). In general, if F ( X ) =  
X ~ - U l X ~ - l - . . . - u ~  is a monic polynomial, then the companion matr ix  of F(X)  
is the matr ix  /io 

0 ... 0 u~,-1 

M r =  1 ... 0 "u.~- 2 . 
: " . .  : : 

0 ... 1 us 

Note that  the matr ix  obtained by deleting the first row and the first column of ME, 
is the companion matr ix  of G ( X ) = X  n-1 --ulX~-2--.. .--Un 1. It  follows readily by 

induction on the size n of ME, that  the determinant  d e t ( X I - M F ) = F ( X ) .  Thus 
the matr ix  M representing the endomorphism #(X)  with respect to the basis 1, 
x , . . . ,  x n-1 has characteristic polynomial An(X) .  [] 

P r o p o s i t i o n  2.3. Let F in A[X] be a monic polynomial which has positive 
degree n. Let UC_A[X] be a muItiplicatively closed subset. The following three 
assertions are equivalent: 

(1) The canonical map & Y ] / ( F ) - ~ A [ X ] u / ( F )  is an isomorphism. 
(2) The resultant de t (pF( f ) ) cA  is a unit for all f in UC_A[X]. 
(3) The A-algebra homomorphism Up: S~--+ A factors through the fraction ring 

(S~)u(~), where 

U(n) = { f ( t l ) . . .  f ( tn)  l f ~ U c_ A[X]}. 

Pro@ First we show tha t  Assertion (1) is equivalent to Assertion (2). The 
fraction map A[XJ/(F)--~A[X]~/(F) is an isomorphism if and only if the class of 
f in A[X]/(F) is invertible for all f in the multiplicatively closed set UC_A[X]. 
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The residue class of f modulo the ideal (F)C_A[X] is invertible if and only if the 
endomorphism l~LF(f) on A[X]/(F) given as multiplication by the residue class of f 

is invertible. The endomorphism # v ( f )  is invertible if and only if its determinant  
up( f )  EA is a unit. We have shown that  Assertion (1) is equivalent to Assertion (2). 

Tha t  Assertion (2) is equivalent to Assertion (3) follows from Theorem 2.2 
and the universal property of fraction rings. Indeed, we have that  d e t ( # F ( f ) ) =  
nF( f ( t l )  ... f(t~)),  and consequently the elements of U(n) are mapped  to invertible 

elements by up if and only if the resultants de t (#F( f ) )  are invertible. [] 

C o r o l l a r y  2.4. The fraction map 

(S~A)u(~)| > (S~)u(~)|  

is an isomorphism. 

Proof. The (S~)u(,,o-module E=(S~)u( ,o |  is free of rank n. 
For any element f eA[X]  the multiplication map  gives an endomorphism it(f) of E. 
The endomorphism f is invertible if and only if the determinant de t (# ( f ) )  is a unit 
in (S~)u(~)- As shown in the proof of Theorem 2.2 the determinant of # ( f )  is 
f(t~) ... f( t~).  If f E U  then the fraction map  of Corollary 2.4 inverts the residue 
class of f in E,  which however already must  be invertible in E since the determinant  
has already been inverted by the very definition of (S~)u(.n). [] 

3. Hi lbert  scheme of  points  on fraction rings 

We will in this section use Theorem 2.2 to describe the Hilbert scheme parame- 
terizing n points on Spec(k[X] u), where k [X] u is any fl-action ring of the polynomial 
ring in one variable X over a commutat ive and unitary base ring k. 

Pr op os i t i on  3.1. Let IC_Ru be an ideal of a fraction ring Ru of an A- 
algebra R. Assume that the residue class ring R u / I  is finitely generated as an 
A-module. Then there exists a unique ideal JC_R such that the canonical map 
R/J- -+Ru/ I  is an isomorphism. 

Proof. Let J = R N I .  Since any ideal in a fraction ring Ru is the extension of 
some ideal in R, it follows that  J R u = I .  In particular the canonical map 

(3.1) R/J ~ Ru/I 

is injective. We will show tha t  (3.1) is surjective by passing to the stalks. Let P be 
a prime ideal of R/J .  The map (3.1) is a fraction map hence the extension of P is 
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either a prime ideal or the unit ideal. If  the extension of P is a prime ideal then 
the induced map of stalks (R/J)p--+ (Ru/I)p is an isomorphism, and in particular 
surjective. If the extension of P was the whole ring Ru/[,  then since R~/ I  is 
a finitely generated A-module, it follows by Nak~vama's  lemma that  the finitely 
generated (R/J)p-module (Ru/I)p is zero. In either case we see that  the map of 

stalks induced by (3.1) is surjective for all prime ideals P of R/I.  [] 

C o r o l l a r y  3.2. Let R=A[X] be the polynomial ring in the variable X over A, 
and let ICA[X]u be an ideal such that the A-module A[X]u/I is flee of rank n. 
Then there ezists a unique monic polynomial F E A[X] such that 

A[X]/(F) > A[X]~/I 

is an isomorphism. 

Proof. By the proposition there exists an ideal JCA[X] such that  the canonical 
map A[X]/J-~A[X]u/[ is an isomorphism, and we need to show that  J is generated 
by a monic polynomial F of degree n. The variable X gives an endomorphism of 
the free A-module A[X]/J. Let F be the characteristic polynomial of a~+aX. By 
the Cayley-Hamil ton theorem we have a smjective map A[X]/(F)-+ A[X]/J of free 
A-modules of rank n, hence an isomorphism. The uniqueness of F is clear. [] 

Definition 3.3. Fix a fraction ring k[X]u of the polynomial ring in the vari- 
able X,  over a commutat ive ring k. Let A be a k-algebra, and let Hilbn(A) denote 
the set of ideals [C_AQ~k[X]u such that  the residue class ring A@k k[X]u/I is 
locally free of finite rank n as an A-module. Then Hilb n becomes in a natural  way 
a covariant functor from the category of k-algebras to sets. 

Remark 3.4. One could replace the definition above and consider the set of 
ideals IC_A| such that  the residue class ring M=A| is a flat A- 
module with constant fiber dimension n = d i m ~ ( p ) M |  for all prime ideals 
PC A. I t  can be shown (see e.g. [6], Theorem 3.5) that  such a module must nec- 
essarily be finitely generated since A| is an A-algebra essentially of finite 

type, hence M is locally free of rank n. 

P r o p o s i t i o n  3.5. The Hilbert fanctor Hilb ~ of n-points on k[X]u is repre- 
sented by the fraction ring H=(S~)u(n)=k[sl, ..., S,,]g(n), where 

U(n) = { f ( t l ) . . .  f(t~) ] f E U C_ k[X]}. 

The universal family is the ideal generated by A n ( X ) E H |  
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Pro@ We have by Corollary 2.4 that  the ideal generated by A,~(X) is an 
element of Hilb~(H).  To prove the claim we need to show that  the morphism 

of functors Hom~_~lg(H,-)--+Hilb ~ induced by the H-valued point (A,~(X)) is an 
isomorphism. Let A be a k-algebra, and let IEHilb~(A)  be an A-valued point of 
the Hilbert functor. We have that  A| is the localization of A[X] =A| 
with respect to the image UA of the multiplicatively closed set UC_k[X] by the 
natural  map  k[X]--+A| Then by Proposition 3.1 there exists an ideal YC_ 
A[X] such tha t  

(3.2) A[X]/ J--+ A | k[X]u / I = A[X]U A/ I 

is an isomorphism. The A-module A[X]/J is locally free of finite rank n, and 
it is easy to see that  the A-module A[X]/J must be fi'ee. Indeed, locally the 
A'=Af-module A[X]/J@AA' is free of rank n, and it foUows by Corollary 3.2 that  
1, x , . . . , x  ~-1 is an At-module basis. Then we get that  the classes 1, x , . . . ,  x ~ x 
form an A-module basis of A[X]/J, and consequently A[X]/J is free. By Corol- 

lary 3.2 again, there exists a unique monic polynomial FcA[X] that  generates J, 
and hence generates I .  The element FEA[X] determines an A-algebra homomor- 
phism uF: S~--+A. The isomorphism (3.2) and Proposition 2.3(3) shows that  the 
homomorphism UF factors via the fraction ring (S~)aa(n). Clearly we have that  

A| and we obtain a map H=(S;)u(~)-+A that  sends the co- 
efficients of An(X)  to the coefficients of FeA[X]. It  is clear that  the constructed 
map of sets Hilb"(A)--+Homk_~lg(H, A) is functorial in A, and inverse to the natural  
t ranstbrmation induced by A,~(X). [] 

Remark 3.6. It  is clear that  the functor 7-t from the category of k-schemes to 
sets sending a k-scheme T to the set of closed subschemes ZC_TxkSpec(k[X]u) 
such tha t  the projection map Z--+T is finite and locally trivial of finite rank n is 
represented by an affine scheme whose coordinate ring is H=(S~)u(,,~). We call the 
scheme Spec((S~.)~(,~)) the Hilbert scheme of n-points on Spec(k[X]u). 

Example 3.7. The Hilbert scheme of points on the aJfine line. When U={1}C_ 
k[X] is the trivial subset we have that  Spec(k[X]c;)=A~ is the affine line over k. The 
Hilbert scheme of n-points on A~ is then Spec(S~), where S~ the ring of symmetric  
functions of k[tl, ..., t~]. Hence the Hilbert scheme of n-points on the affine line A 1 
is simply the affine n-space A~ over k. Note that  the only assumptions on the base 
ring k is that  k is commutat ive and unitary. 

Example 3.8. The Hilbert scheme of points on open subsets of the line. Let the 
multiplicatively closed subset U be given by multiples of an element f in k[X], that  
is U={fm},m>_o . Then Spec(A[X]rT)=D(f) is a basic open subscheme of A~, the 
affine line over k. 
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The Hilbert scheme of n-points on D(f) is then the spectrum of (S~)g(n), 
where U(n)={(f(tl). . .  f(t~))~r~},~>0. Hence we have that  the Hilbert functor of 
n-points on a basic open subscheme D(f) of the line is represented by a basic open 
subscheme D(f(tl)  ... f(t~)) of the Hilbert scheme of n-points on the line. 

Example 3.9. The Hilbert scheme parameterizing finite length subschernes of 
the line with support at the origin. Let the base ring k be a field, and let UC_k[X] 
be the set of polynomials f such that  f ( 0 ) r  Thus k[X]~=k[X](x) is the local 
ring of the origin on the line, and the Hilbert functor parameterizes the length n 
subschemes of Spec(k[X](x)). There is only one closed subscheme of Spec(k[X](x)) 
of length n, namely the scheme given by the ideal (Xn)C_k[X](x). The Hilbert 
scheme of n-points on Spec(k[X](x)) is given as the spectrum of (S~)u(~), where 
U(n) is the product f ( t l ) . . ,  f(tn) for all f (X)ck[X] with f(0)~k0. See also [7]. 

Remark 3.10. Inverse limits. A consequence of the explicit description given 
in Proposition 3.5 is that  the Hilbert f'unctor parameterizing points on the line, 
commutes with inverse limits. Let D(f~) be a basic open subscheme of the line 
Spec(k[X]), and let Hilb~ denote the Hilbert scheme of n-points on D(fo). Fur- 
thermore, let {D(f~)}~c~4 be a collection of open sets that  form a directed set by 
intersection. The inverse limit l im~D(f~) is clearly the affine scheme given by the 

+___ 

fraction ring k[X]uA, where U~t is the multiplicatively closed set { ]~} ~A .  We 
have by Proposition 3.5 that  the Hilbert scheme of n-points on the inverse limit 
Flmm~D(f~)=Spec(k[X]u(.a)) is given by Spec((S~)u~(n)), which is the correspond- 

ing inverse limit of Hilbert schemes lim~Hilb2. 
+____ 

Ezample 3.11. A Hilbert scheme without rational points. Assume that  the base 
ring k is an integral domain. Let UCk[X] be the set of non-zero polynomials. We 
have that  k[X]~=k(X) is the function field of the line. Clearly, since k(X) is a field, 
the Hilbert scheme of n-points on Spec(k(X)) has no k-valued points. By Proposi- 
tion 3.5 we get that  the coordinate ring of the Hilbert scheme is the fraction ring of 
the symmetric functions S~ with respect to the set U(n) of products f ( t l ) . . ,  f(t~) 
for any non-zero fEk[X]. We will below compute the relative dimension of the 
Hilbert scheme. 

Assume that  k is an algebraically closed field. Since the ring of symmetric 
functions S~ is the polynomial ring k[sl,..., s,~], and in particular finitely generated 
as a k-algebra, we get that  the maximal ideals of S~ correspond uniquely to the 
set of k-rational points of S~. Since the fraction ring (S~.)~(~) has no k-rational 
points, being the coordinate ring of the Hilbert scheme of n-points on Spec(k(X)),  
we get that  the Krull dimension of (S~)~7(~) is strictly less than n, the dimension of 

= k [ < ,  . . . ,  
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Let Q_c S~ be the prime ideal generated by the elementary symmetric  functions 
sl,  ..., s~ - l .  The dimension of the local ring (S~)Q is n - 1 .  To show tha t  the fraction 
ring (S~)u(n) has dimension n - 1  we need only show that  Q does not meet U(n). 

We will consider S~ as a graded ring by letting deg(s i )= i .  

Let f be a non-zero polynomial in the variable X. Let m be the degree of f 

which we may write as f=aX '~+g(X)  with a t ;0 ,  where d e g g ( X ) < m .  We may 
assume that  m > 0 .  Then we have that  f ( t l ) . . ,  f ( tn)=a~t~ ... t~+G, where G =  

, ...tm--s ( x m ~ - -  G ( t l , . . .  tn) is symmetric  but of lower degree than the degree of t ~  ,~ -- ~ j - -  
(s~) 'L The elementary symmetr ic  functions s l , . . . ,  s,~ are algebraically independent 
over k. Hence the residue class of (sn) "~ modulo the ideal Q is non-zero. Since G is of 
less degree than  (Sn) m it follows tha t  the residue class of a~(sn)'*4-G=f(tl).., f(t~) 
is non-zero modulo the ideal Q. We have shown that  the intersection QnU(n) is 
empty. 

The fact that  we need an ( n -  1)-dimensional scheme to parameterize the empty  
set of closed subschemes of Spec(k(X))  of finite length n, shows that  one should 
take care when only considering rational points of the Hilbert functor. 

Example 3.12. Hilbert schemes of one point. Let the fixed integer n = l .  For any 
multiplicatively closed subset U C_ k[X] we have that  the scheme Spec(k[X] u) itself 
is the Hilbert scheme of one-points on Spec(k[X]u). See also [5] (Corollary 2.3 of 
Proposition 2.2, p. 109) where Kleiman proves that  for any S-scheme X the functor 
Hi lb~/s  is represented by the scheme X,  and where the universal family is given 
by the diagonal in X x s X .  

4. Symmetr i c  products  

The purpose of this last section is to show that  the universal family of n-points 
on C=Spec(k[X]u) is isomorphic to S y m ~ - l ( C ) x k C ,  as is the case when C is a 
smooth curve [4]. 

4.1. Set up 

Let t l ,  . . . ,  t n ( T t > 0 )  be independent variables over A, and denote the elemen- 
tary  symmetric  functions in tl, ... ,t,~ by sl,~, ..., sn,~. The elementary symmetr ic  

functions in the ( n -  1)-variables tl ,  ..., t ~ - i  we denote with sl,n 1,-.., sn 1,~-1. Let 
X be an additional variable and define the A-algebra homomorphism 

an: S [X] -l[x] 
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by sending si,,~-~si,~_l+si_l,~_lX (here s0 .,~=1 and s~,~ z=0) for i=1 ,  ... ,n, and 
X~-+X. We define recursively an A[X]-algebra homomorphism 

s?, -l[x] s [x] 
by letting p~(Si,n-1) = s i , ~ - p , ( s i  1,~ 1)X for i=1 ,  ..., n -  1 and where p~(s0,~,_l)= 
p , , (1 )= l .  The variable X is mapped to X. 

L e m m a  4.1. For all positive integers n > 0  the following three assertions hold: 
(1) We have that p,  oa,(si,~)=si,~ for all i= l  .... , n - 1 .  
(2) The composite map a~op,~ is the identity map. 
(3) The kernel of an is generated by A,~(X)=I]~* l (X- t~) .  

Proof. The first assertion follows immediately from the identity 

Pn ~ =pn(si,n-1)+Pn(Si-l,n-1)X 
=s~,n-p~(s~ 1,~ 1)X+p~(s~ 1,n-~)x=s~,~ 

that  holds for each i=1 ,  ..., n - 1 .  To prove the second assertion it is enough to 
show that  the composition a,~op~ acts as the identity on the elementary symmetric  
functions sl,n-1, ..., s,~-l,,~-t. We prove this by induction on i. For i = 1  we get 
by definition that  a~op~(sl,,~ 1)=a,~(sl, ,-X)=Sl,~ 1. Assume as the induction 
hypothesis that  anop~(s~,.~_l)=s~,~ 1 for i>1 .  We then get that  

anOpn(Si+l,n_l) ~--ar~(Si+l, n-pn(si,n 1) X )  

= Si+l,n-l+Si,r~-lX-an~ = si+l,n-1- 

Thus we have proven Assertion (2). To prove the last assertion we first show tha t  
A,~(X) is in the kernel of a,~. We have that  

7% 
an(An(X))=Xn§ ~,~,~X'~ i 

(4.1) i - - 1  
T~ 

n i n - - i  = X  - t - Z ( - - 1  ) (si,n_lq-Si_l,n_lX)X . 

i--1 

By definition we have tha t  s0,~ 1 =1  and that  s , , ~ - i  =0.  Thus it follows from (4.1) 
that  A~(X)  is in the kernel of an. It  follows by Assertion (2) that  we get an induced 

surjective map gt~:S~[X]/(A~(X))--+S~-I[X]. To prove Assertion (3) we need to 
show that  ?~,~ is an isomorphism, or equivalently that  the induced map/Sn: S~ 1 [X]---> 

S" A [X]/(A~(X)) is smjective. It  follows by Assertion (1) tha t  it suffices to show that  
the residue class of s~,,~ in S'A[X]/(A,,(X)) is in the image of ~5~,. Since the residue 
class of s~,,~ modulo the ideal (A~(X))  can be expressed as 

( -  1)n- 1 s,~,~ = X ~ _ S l , , o , X  ~ - 1  J F . . . J F ( - - 1 ) n - - l S n _ l , n X  , 

the result follows. [ ]  



Resu l t an t s  and  the  Hi lber t  scheme of poin ts  on the  line 199 

P r o p o s i t i o n  4.2. The Hilbert scheme of n-points on C=Spee(k[X]u) is iso- 
morphic to the n-fold symmetric product Sym'~ (C). The ur~iversaI family of n-points 
on C is isomorphic to S y m ~ - l ( C ) •  

Proof. By Proposition 3.5 the Hilbert scheme of n-points on C is affine and 
n given as the spectrum of H=k[s~,~,...,s~,.~]u(~o. Let @k k[X]cr denote the n- 

fold tensor product of k[X]~ over k. The symmetric  group C of n-letters acts 
on @~ k[X]a by permuting the factors. By definition we have that  Syrup(C) 
is the spectrum of the invariant ring (@k k[X]u) ~ To prove the first claim we 
must show that  the invariant ring (@~ k[X]u) ~ equals H=k[sl ,  ..., s,~]u(n). It  is 

7~ clear tha t  we have a natural  identification (@k k[X]u)=k[tl, ..., tn]u(n), and that  
k[s~,,~, ..., s~,n]v(~0 is a G-invariant subring of k[t~, ..., tn]~7(~). We must show that  
a G-invariant element F of k[tl,...,t,~]u(~) is in k[Sl,,~,...,s~,~]r7(~). Let F be a 
G-invariant element, and write F = f / g ,  with fEk[tL,... ,t,~] and gEU(n). Since F 
and g are G-invariants we get for each a E G  that  F = F r  Thus ( f - F ) g ~ = O  
in k[t~, ... ,t~], for some g~EU(n). Let gc=I]~eag~.  It  follows that  the element 
fga  in k[tl, ..., t,~] is G-invariant, hence f gc  is in k[s~,,~, ..., s,~,~]. Then finally we 

have that  F=f /g=fgG/ggG,  hence F is in k[Sm,n, ..., sn,n]u(~) and we have proven 
the first claim. 

We next prove the second claim. By Lemma 4.1, Assertions (2) and (3), we 
get that  the sequence of S~i[X]-modules 

(4.2) 0 >0 

is exact. Write S~[X]=S~  | Clearly we have that  a~(f(tl) . . ,  f ( t ~ ) ) =  
f ( t l )  ... f(t,~ m)| for all fEA[X].  Thus when we localize the sequence (4.2) 
in U(n) we get that  

oAA[X] . 

Specializing to the case A=k, and recalling that  we have already proven that  
Spec((S A )cz(~_l ) )=Sym~-l (C) ,  the result follows. [] 

Remark 4.3. The Hilbert scheme of smooth curves. It  was pointed out by 
Grothendieck ([3], p. 275) that  by generalizing the concept of norm one could 
identify the Hilbert scheme of n-points on a family of smooth curves C--+S with 
Sym~,(C). A generalized norm on a k-algebra A is a homogeneous rnultiplicative 
polynomial law of degree n, and parameterized by a gamma-algebra  F~A (see [9] 
or [2]). In [1] (pp. 431 437) Deligne explains the connection between the Hilbert 
scheme of points on smooth curves C-+S and the scheme parameterizing general- 
ized norms Sym} (C), where the latter scheme is given as the spectrum of the sheaf 
of gamma-algebras  on C. 
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In a more  res t r ic t ive  se t t ing,  bu t  more  concre te ly  in t e rms  of coord ina tes ,  

Iversen identif ies  in [4] the  H i lbe r t  scheme of 7~-points of a s m o o t h  fami ly  of irre- 

ducib le  curves as the  n-fold s y m m e t r i c  p roduc t .  
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