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A non-existence theorem of 
lacunas for hyperbolic differential 

operators with constant coefficients 

Motoo Uchida 

A b s t r a c t .  We prove a t heo rem on non-exis tence  of l acunas  of t he  f u n d a m e n t a l  solut ion for 

hyperbol ic  differential  opera tors  wi th  cons t an t  coefficients. 

I n t r o d u c t i o n  

In [ABG], Atiyah, Bott  and Ggrding clarified and even generalized the Petrov- 
skii theory [P] of lacunas for hyperbolic differential operators. Their theory allows 
us to draw some conclusions on (non)-existence of lacunas of fundamental  solutions. 
For example, it is proved in [ABG] (Theorem 7.7 of Par t  II) that  the fundamental  
solution of a hyperbolic operator P(D) in n variables has no strong lacunas if n_<3. 
(We say tha t  the fundamental  solution has no strong lacunas if its support  is equal to 
the propagation cone.) It  follows also from the theory of [ABG] (by Theorem 8.9) 
that ,  for any fixed strictly hyperbolic homogeneous operator P,~(D) of order m, 
there is an open dense subset U (which is in fact Zariski open) of the complex 
affine space of polynomials in D of order less than m such that ,  if Q(D)EU, then 
the fundamental  solution of a hyperbolic operator  P , ~ + Q  has no strong lacunas. 
However, this open set U is not given in any explicit way. 

It  seems up to now that  any explicit theorem on (non)-existence of strong 
lacunas for hyperbolic operators in n variables, n_>4, is not known. (The local 
lacunas for hyperbolic operators are studied in several papers. For a recent study, 
see IV] and the references cited there.) 

In this short paper, based on the Atiyah Bott  Os theory, we shall give 
a criterion of non-existence of lacunas for hyperbolic differential operators in n 
variables, n_>4, in a simple explicit form (even in weakly hyperbolic cases). The 
main result is Theorem 1.1 in the next section. The proof is very short and even an 
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application of the existing theory, but this result will be the first that  referred to an 
explicit relation between strong lacunas of the fundamental solutions and the total 
symbols of hyperbolic operators. (Note that  only the principal symbols of operators 
are concerned in the theory of Petrovskii [P] and Atiyah Bott  Garding [ABG].) For 
example, by this theorem, we can finally understand a result of Mathisson [M] as 
a part of general theory. In fact, for any homogeneous hyperbolic operator P(D) 
and a non-zero constant C, the absence of strong lacunas for P(D)+C follows from 
Theorem 1.1. (See the note referring to Mathisson's result on p. 175 of [ABG, 
Part II].) 

We also establish, in Theorem 1.1, an equality in the general inclusion WF (E) c 
W (see Section 1 for the notation) on the singularities of fundamental solutions. The 
singularities of fundamental solutions are studied in full detail by HSrmander [H2] 

in the case of at most double characteristics. 

1. M a i n  r e s u l t  

Let n be a positive integer, and let D denote (D1, ..., D,~), where D ,  denotes 
the symbol of partial differential -iO/Oz, on R ~. 

Let 0 E R ' \ { 0 } .  Let P(D) be a differential operator on R ~' with constant 
coefficients (i.e., a polynomial in D), and assume P(D) to be hyperbolic in the di- 
rection 0 in the sense of Ggrding. Let K be the propagation cone of P with respect 
to 0 (see (3.55) of [ABG, Part  I]), and let 

W={(cc',~)ET*R~'~lxEK~, ~ r  

where K~ denotes the local propagation cone of P at ~ (i.e., the propagation cone 
of the locaiization P~ of P)  with respect to 0 (see (3.61) of [ABG, Part  I]). Let E 
be the fundamental solution of P(D) with support in {xlz0>0}. It is known in 
general that 

s u p p E c K  and WF(E)  C W F A ( E ) c W ,  

where WF(E) (resp. WFA(E)) denotes the C ~ (resp. analytic) wave front set of E. 
(For the latter inclusion, refer also to Theorem 12.6.2 of [HI]. See also Example 3.2.3 
of [SKK, Chapter I].) 

Let _P(z) be the polynomial in z, z=(zl, ..., zn), that  corresponds to P(D) by 
z~D. Let V(P) denote the closed algebraic set in C n defined by P ( z ) = 0 .  
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T h e o r e m  1.1. Assume that V(P)  is irreducible and everywhere non-singular. 
Then we have 

(1.1) supp E = K 

and 

(1.2) WF(E) : WFA(E) = %7. 

This theorem is a special case of the following more general result. 

T h e o r e m  1.2. Let b(s) be the Bernstein-Sato polynomial of P(z) .  I f  b(s) has 
no integer roots except s = - l ,  we have (1.1) and (1.2). 

Since b(s)= ( s+  1 ) ( s+n /2)  if P is homogeneous of degree 2 (n being the rank of 
the quadratic form P),  we have (1.1) and (1.2) for such P if n is odd or n=2 .  This 
explains, in a clear way, the absence of strong lacunas for the d'Alembert operator 

P(D)  2 2 - D ~  = D 1 +...+D,~_l 

in even space dimension (i.e., in the case where n - 1  is even). 

2. P r o o f  o f  T h e o r e m  1.2 

Theorem 1.2 follows from the main result of [ABG] (Theorem 8.9 of Part  I or 
Lemma 9.5 of Part  II) and the existence of the Bernstein Sato polynomials. For 
the latter, see [B1], [B2]. We follow the notation of Section 1. 

Let us first recall Lemma 9.5 of [ABG, Part  II]. 

L e m m a  2.1. ([ABG]) Let P(D) be a hyperbolic &?ferential operator with con- 
stant coefficients. For k E N ,  let Ek denote the forward fundamental solution of 
P(D) ~ with respect to 0. For/~>>1, we have 

(2.1) s u p p E k = K  and W F ( E k ) = W .  

The fundamental solution E~ is given by 

(2.2) , ,  e 

with t>>0. The right-hand side of (2.2) is regarded as the (inverse) Fourier transform 
of P({ - i tO)  -k  as a tempered distribution on R ~. On the other hand, by the 
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theory of Bernstein-Sato polynomials, we can find a polynomial Q(s; z, Dz) in s 
with coefficients in C[z, Dz] (i.e. the ring of differential operators with polynomial 
coefficients in z), and a non-zero polynomial b(s) so that  

Q(s; z, Dz)P(z) s+l = b(s)P(z) ~. 

(The monic polynomial of the minimum degree of such b(s) is called the Bernstein- 
Sato polynomial.) Hence, by (2.2), we have 

(2.3) b(-k)Ek(x) : Qv ( -k ;  x, Dz)Ek-1 (x), 

where QV(s; x, Dx) denotes the formal Fourier transform of Q(s; z, D~): 

Qv(s;x'Dx)= Z skCk~D~(--x) ~, if Q(s;z,D~)= Z skCk~/~z'~D~. ~ 

By (2.3) a lacuna of Ek-1 is also that  of Ek (and the wave front set of Ek-1 
contains that  of Ek) provided that  b(-k)r Hence Theorem 1.2 follows fl'om (2.1) 
and (2.3). 

Remark (added in the revised version). For a differential operator P(D) with 
hyperbolic principal part, even if it is not hyperbolic in the sense of Ggtrding, we are 
able to construct its forward fundamental solution E as a hyperfunction by defining 

C e/x( z (x ) :  d<, 

where C is the cycle given by (----~-iR(l+l[l)ao, with parameter ~ E R  n, for some 
positive number a < l  and R>>I. The right-hand side defines a hyperfunction on 
R ~ supported in the propagation cone K of Pro(D) and satisfies 

P(D)E(x) = (~(x). 

For this hyperfunction fundamental solution, we are also able to prove Theorem 1.2 
for the support equality (1.1). For the proof, we need an analogue of the support 
part of Lemma 2.1 for hyperfunction fundamental solutions. In order to prove this 
generalization, we have only to notice that  the hyperf'unction fundamental solution 
defined above belongs in fact to a space of Gevrey ultra-distributions �9 ~) for 
~/=l/a (see [K]). Then we can use the topology of ultra-distributions and reduce 
the support equality for Ek, k>>l, in Lemma 2.1 (for differential operators with 
hyperbolic principal part) to the case of homogeneous hyperbolic operators by the 
following lemma which can be easily proved. 

L e m m a  2.2. Let Pro(D) be the principal part of P(D) (which is hyperbolic 
with respect to 0 by assumption), m = o r d P .  Let F(x) be the forward fundamental 
solution to P,~(D). Then 

t . . . . .  E ( t x )  F ( x ) ,  as t O, 

in �9 
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