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Dynamics of polynomial automorphisms of C k 

Vincent Guedj and Nessim Sibony 

Abstract. We study the dynamics of polynomial automorphisms of C k. To an algebraically 
stable automorphism we associate positive closed currents which are invariant under f, considering 
f as a rational map on pk. These currents give information on the dynamics and allow us to 
construct a canonical invariant measure which is shown to be mixing. 

I n t r o d u c t i o n  

The dynamics of polynomial automorphisms of C 2 has been studied quite in- 

tensively in the past decade. We refer to the survey articles by Bedford and Smil- 

lie [BS3] and the second author [S] which contain a quite extensive bibliography. 
We recall a few basic facts. 

The algebraic structure of the group Aut (C k) of polynomial automorphisms 

of C k is well understood when k=2.  Any polynomial automorphism is conjugate 
either to an elementary automorphism 

e(z, w) = (az + P(w), /3w+-'/), 

where P is a (holomorphic) polynomial, or to a finite composition of Hdnon maps 
hj defined as follows 

hj(z, w)= ( e j ( z ) - a j w ,  z), 

where Pj are polynomials of degree dj > 2. We denote by 7 / the  semigroup generated 
by H6non maps (see [FM]). 

It is clear that  only the elements of 7t are dynamically interesting. If  hE7-/is 
of degree d, then hn=h ... . .  h is of degree a m. One can define the Green function 

G+(z,w)= lim l l o g + l l h n ( z , w ) l l ,  
n--++c~ d n 
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and the associated current T+ =ddCG +, where dC=i(O-O)/27r. There are similar ob- 
jects G-  and T_ associated to the inverse map h -1 and one can define a probability 
measure #:=T+ AT_. Here are some important  properties of these objects. 

�9 The function G + satisfies the invariance property G+of=dG +. It is H51der 

continuous and {plG+(p)=O} = K  + :={Pl (h'~(P))~-o is bounded}. 

�9 The support of T+ coincides with the boundary of K +, which also equals 
the Julia set of h (i.e. the complement of the largest open set on which the family 

n o o  ( h ) n = 0  is equicontinuous). 

�9 The current T+ is extremal among positive closed currents in C 2 and i s - -  
up to a multiplicative cons tant - - the  unique positive closed current supported on 
K § [VSl]. 

�9 The measure # is invariant and has support in the compact set ogK, where 

K={p~C21(h"(p))~___oo is bounded}. 
This type of properties has interesting dynamical consequences: connectedness 

of OK + [BS1], density of stable manifolds in O K  + [BS1], miyang of p [BS2]. 
The measure # has been studied by Bedford-Smillie-Lyubich [BS2] and [BLS]. 

They show in particular that  # maximise entropy and is well approximated by Dirac 

masses at saddle points. 

Much less is known in the study of the dynamics of polynomial automorphisms 
of C k, k>_3. Indeed the algebraic structure of Aut(Ck),  k>_3, is poorly understood. 

Bedford and Pambuccian [BP] have introduced the class of shift-like maps 
in C k. A shift like automorphism of type ~E{1, ..., k - 1 }  has the form 

f (Zl  . . . .  , zk) = (z2 .... , Zk, P(zk-~,+l)--azl).  

They introduced the corresponding currents T+ and T_ and constructed the invari- 
ant measure # = T ~ A T  k-~. 

Coman and Fornaess [CF] have studied the Green function of interesting classes 
of polynomial automorphisms of degree 2 in (23. They study in particular the rate 
of escape at infinity of orbits. 

In this paper we consider polynomial automorphisms of C k as rational maps 
on pk .  The behaviour under iteration of the hyperplane at infinity plays a central 
role. Before describing the results we obtain, we first recall a few notions. For more 
details, we refer to IS]. 

Let f =  ( f l , . . . ,  fk) be a polynomial map in C k. Let d---tied f : = m a x j  deg f j  > 
2. We denote by End(C k) the space of maps of generic rank k. We denote by 
z= (z l , . . . ,  zk) the coordinates in C k and [zl:..-:Zk :t] the homogeneous coordinates 
in pk.  So the hyperplane at infinity is identified with {[z:0]}. 
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We consider the extension ] of f to pk  as a rational map. In homogeneous 
coordinates 

f[z: t] = [F1 (z, t) : ... : rk(z ,  t ) :  td], 

where Fj(z, 1)=f j ( z ) .  The mapping f has an indeterminacy set I which is an 
analytic subset of codimension _>2 contained in {[z:0]}. Let In denote the inde- 
terminacy set of f'~. When f is an automorphism we denote its indeterminacy 
set by I +, and I -  denotes the indeterminacy set of f - 1 .  Similarly d + = d e g f  and 
d_ =deg f -1 . 

We will say that f is algebraically stable if and only if f '~({[z:O]}\In) is not 
contained in I for any n>O. This is equivalent to the fact that  d e g f ~ = ( d e g f ) ' L  

Elements of 7 / a re  algebraically stable. When f is algebraically stable, one can 
associate to f a Green function 

G(z) = lim l l o g  + ilfn(z)ll. 
n--+q-oo a , ,  

If we define T=ddCG, one can show that  T is a non-zero positive closed current. 
More precisely if w denotes the standard Fubini-Study K~hler form on p k  then 
T=lim(fn)*w/d ~ is a positive closed current on pk  of mass one which gives zero 
mass to the hyperplane {[z:0]} (Theorem 1.8.1 IS]). So T = T l c k  has mass one in C k. 

From now on we identify f and f .  If f E E n d ( C  k) is algebraically stable we 
define inductively the analytic sets Xj by 

Xl:f({[z:O]}\I), Xj+l=f(Xj\I). 

The sequence is decreasing, Xj is non-empty because f is algebraically stable. Hence 
it is stationary. Let X be the corresponding limit set (when fEAut(Ck), we denote 
this set by X+). Replacing f by an appropriate iterate, we can always assume that  
X = f ({  [z:O] } \ I) .  In the automorphism case, the notation is X + if f is algebraically 
stable and X -  when f - 1  is algebraically stable. Observe that  X is always contained 
in the hyperplane at infinity. 

For an algebraically stable endomorphism of C k, we define U to be the basin 
of attraction of X, i.e. 

U={zEC k] lim f~(z) EX} and t C : = c k \ u .  
n--~+oo 

In Section 1 we explore the first properties of algebraically stable endomorphism 
of C k. We show that  one can define a Green function G and prove that  {Pl 
G(p) >0} C U. In particular U is of infinite Lebesgue measure and has non-empty 
fine interior (Theorem 1.7). 
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In general the function G is not continuous (Example 1.11) and/CC {p[ G(p)=0} 
is different from the set K + of points with bounded forward orbit. 

We say that  an endomorphism is weakly regular if XAI=O. This is the case 
of the elements of 7-/in C 2. We show (Theorem 2.2) that  for a weakly regular en- 
doraorphism {Pl G(p) =0} =K;, b--~n{[z:0]} = I  and d i m / + d i m  X = k - 2 .  The proof 
uses heavily the theory of positive closed currents. 

The rest of the paper is concerned with algebraically stable automorphisms. 
When f is such an automorphism, we define U + ={zll imn-~+~ f : n ( z ) E X + } ,  1C ~= 
c k  \ u :~ and 

K s = {z E C k [ (f+n(z))~= 0 is bounded}. 

In general K + is not closed and could be empty (Example 1.5). We always have 
X + C I  - and X - C I  +. Chapter 2 of IS] is devoted to the study of regular auto- 
morphisms, i.e. automorphisms such that  I + N I - = 0 .  Here we study more gen- 
eral cases and find results that  are new even for regular automorphisms. Let 
T+=lim(l/d~_)(fn)*~ and T_ =lim(1/d~)(f-'~)*w. Set 

r = d i m X + + l  and s = d i m X - + l ,  

when f and f - 1 ,  respectively, are algebraically stable. 
Assuming that  f - 1  is weakly regular ( I - N X -  =0) and that  I -  is attracting for 

f ,  we show (Theorem 2.13) that  K + is the complement of the basin of attraction of 
I - ,  that  K = K + N K  - is compact and W ~ ( K ) = K  +, W~'(K)=K -, where W s and 
W ~ denote the stable and unstable sets, respectively. In particular when f and 
f - 1  are both weakly regular without being regular and I -  is f-attracting,  then the 
basin 13(I+OI -) of I+OI - is not empty. 

When f is an algebraically stable automorphism, the current T+ is extremal 
in the cone of positive closed currents of bidegree (1, 1) on pk (Theorem 3.6). 
This property is crucial to establish dynamical properties of f .  When dim X + =0 
and f is weakly regular, then the support of T+ is equal to OK: + and any positive 
closed current supported on/~+ is proportional to T+ (Theorem 2.4). This implies in 
particular that  OK: + is connected. When dim X +---r- 1, the current T~ is supported 
on OE +. 

In Section 3 we construct a dynamically interesting positive closed current 
supported on K +. More precisely if f - 1  is weakly regular and I -  is f -at t ract ing 
then the sequence 

1 

d~s(fn)*(wk-s), d i m X -  = s - l ,  

converges to a positive closed current a~ supported on K + (Theorem 3.1). Moreover 
a~ satisfies f*a~=d~_a~. This allows us to construct an interesting invariant proba- 
bility measure lZ=asAT~. When f is regular then s+r=k,  dS=cff+ and a~=T+ IS]. 
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We show that  when s = l  (i.e. d imX-- -0 ) ,  then any stable manifold of dimen- 
sion 1 is dense in the support of ~1 (Corollary 3.8). We show in Section 4 that  the 
measure # is mixing (Theorem 4.1). We also give another construction of as using 
a partial Green function (Theorem 4.5). Under appropriate assumptions, there is a 
function h on the support of T~ defined by 

d S  

h(z) = l i m  log + Ilfn(z)ll, 5= ~++ > 1. 

The function h satisfies the functional equation 

hof(z)  =hh(z) 

and describes the rate of escape to infinity in B(I+AI-) .  The measure # can be 
constructed using the function h in that  case (Theorem 4.6). 

In Section 5 we give examples where the non-trivial hypotheses we make axe 
satisfied: when is I -  an f-at t ract ing set (Section 5.2), and estimates on the growth 
of f on K:+NIC - (Section 5.3). 

It is clear that  we axe concerned with the first steps of the dynamics of poly- 
nomial automorphisms in C k, k>3,  and that  the subject will be developed in the 
future. 

We end this introduction with a list of the most frequently used notation: 
- z:=(Zl,  ..., zk)= the canonical coordinates in Ck; 
- [z:t] := [Zl :...:Zk :t]= the homogeneous coordinates in pk; 
- {[z:0]}:= the hyperplane at infinity in pk; 
- End (C k) := the set of polynomial endomorphisms f = ( f l , . . . ,  fk) of C k; 
- Aut(C k) := the set of polynomial automorphisms of Ck; 
- deg( f ) :=  degree of f - -maxl<j<k  deg(f/) when fEEnd(Ck) ;  
- d+:=deg(f)  when f e A u t ( C  k) and d_ :=deg(f -1) ;  
- algebraically stable: see Definition 1.1; 
- weakly regular: see Definition 2.1; 
- q-regulax: see Definition 2.6; 
- G+(z):= the Green function of feAut(Ck)=l im(1/d+)log + IIf'~(z)ll; 
- G+(z, t):-- the homogeneous Green function =G+(z/t) +log Itl; 
- T+:= the Green current of f (it satisfies T+=dd~G + in ck) ;  
- as :----- the f*-invariant current supported on K + (see Theorem 3.1); 
- #:=asAT_~= the invaxiant measure (Section 4); 
- I + :--- the indeterminacy set of f - -{pE { [z:0]}[f is not holomorphic at p}; 
- X + : =  the limit set of f at infinity=fk({[z:O]}\If,); 
- U+:= the basin of attraction of X+={pECk]limn_~+~ fn(p)EX+}; 
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- /C+:=Ck\U+; 
- K+:={zECkI(fn(z))~_O is bounded}C/C+; 
- g:={zeCkl(fn(z))~=_o~ is b o u n d e d } c g + ;  
- r : = d i m X + + l ;  
- s:=dimX-+l;  
- / ' :=dim I++1;  
- / : = d i m I -  +1; 
- q:=dim(I+~I-)+l. 

1. A lgeb ra i ca l ly  s t ab le  endomorphisms 

Let fEEnd(Ck) .  We still denote by f the rational extension of f to pk,  in 
homogeneous coordinates F =  (F1 (z, t ) , . . . ,  Fk(z, t), t d) in C k+l. Let I denote the 
indeterminacy set of f at infinity, this is the set of points [z:0] in {[z:0]} such that  
F1 (z, 0) . . . . .  Fk (z, O)=0. Let In denote the indeterminacy set of f'~. 

Definition 1.1. We say that  f is algebraically stable if and only if for all n>0 ,  
fn({[z:O]}\In) is not contained in I.  

Let f be an algebraically stable endomorphism of C k of degree d>2. We 
define G(z)=limd -nlog + Ilfn(z)ll. The existence of the log-homogeneous Green 
function G(z,t)=limd -n log IIFn(z, t)l I was shown in [S]. It satisfies G(z, 1)=G(z), 
GoF(z,  t)=dG(z, t) and is not identically -oc .  The current T=ddCG is well defined 
on pk and satisfies f*T=d.T. 

Remark 1.2. One should observe that  the notion of algebraic stability is not 
invariant under conjugacy. It also might happen that  ] is not algebraically stable 
but f2 is (see Example 1.4.6.2 in IS]). But clearly the dynamical consequences that  
can be deduced from the study of T are invariant under conjugacy. When a power 
of f is algebraically stable, we only consider iterates of that  power. This does not 
change the dynamical behavior much. 

In this section we show that  the set {plG(p)>O} of orbits converging to in- 
finity with maximal speed is rather big (Proposition 1.3) and consists of orbits 
attracted by the limit set X of f at infinity (Theorem 1.7). In contrast with the 
two-dimensional situation, the set K + of points with bounded forward orbit is not 
necessarily closed (Example 1.5) and the Green function G + is not necessarily con- 
tinuous (Example 1.11). 
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P r o p o s i t i o n  1.3. Let f E E n d ( C  a) be an algebraically stable endomorphism. 
Let G denote the Green function associated to f . Then 

lim sup G(z) 
I z l ~  log Izl = 1. 

Moreover the set {PiG(p)>O} is an F ,  set, connected and of infinite measure on any 
complex line where G is not identically zero. Therefore the set {zl l im f n ( z ) = c ~ }  is 
of infinite measure. 

Proof. The Green current T associated to f does not have mass on the hyper- 
plane at infinity {[z:0]} (Theorem 1.8.1, p. 22 [S]). Assume there is e > 0  and C > 0  
such that  

G(z) <_ ( l - e ) l o g  + Izl+C. 

Then the plurisubharmonic log-homogeneous Green function will satisfy 

G(z, t) = log [ t l+a( z / t  ) <_ ( l - e )  max{log Izl, log Itl}+e log Itl+C. 

Thus T will have mass at least e on the hyperplane {[z:0]}, a contradiction. We 
also know [S] that  G(z)<_log + ]z]+O(1), so we have proved that  the l imsup cannot 
be strictly less than 1. 

We assume, for simplicity, that  G(0)=  1 and that  G is not identically zero on 
the line L={(~ ,0 ,  ... , 0 ) ] (EC} .  Let re(r) denote the Lebesgue measure of the set 
{ei~176 0, ..., 0)> 0}. By the submean value property, 

l = G(O) <_ l ~o2~ G(rei~ O, ... , O) do <_ l (log+ r +C)m(r ) .  

So the measure of {~]G(~,0 , . . . ,0 )>0} is infinite. It is crucial in this argument 
that  G is of slow growth. The claim of connectedness of {pIG(p)>0} follows easily 
from similar statement for subharmonic functions in C not growing too rapidly, 
see [He]. [] 

P r o p o s i t i o n  1.4. Let f E E n d ( C k ) .  Define 

g + = {z E C ~ I (fn(z))~=0 bounded}. 

The set g + is an F~ set (not necessarily closed). I f  f E A u t ( C  k) and a=iJac  f l  7 t l  
then K + is of zero or infinite measure, both cases occur. 

Proof. For M > 0  define K ~ = { z ] l f ~ ( z ) l < _ M ,  n >0 } .  Then K + = U M > o K ~  
so K + is an F~ and an increasing union of polynomially convex sets. The set K + 
is clearly invariant under f .  

When f E A u t ( C k ) ,  we let A(K +) denote the Lebesgue measure of K +. We 
have ~(K+)=iai2k~(K+).  If laiTtl, this implies that  )~(K +) is zero or infinite. [] 
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Example 1.5. There are algebraically stable biholomorphisms of C 3 with one 

of the following properties: 
(1) K + is empty; 
(2) K + is non-empty and non-closed with K + = C 3 \ U  +, where U + is the basin 

of a t t ract ion of an at tract ive fixed point at infinity. 
We consider an algebraically stable biholomorphism of C a constructed from a 

H6non map in C 2. Define for d_>2, h(x,y)=(xd+ay, x). Consider 

f(x,  y, z) = (xd +ay, X, A(x) + y+ z), 

where A is a polynomial of degree d. We have I + =([0:y:z:0]},  X r =f((iz:O]}\I+) = 
[1:0:(~:0], c~#0, thus X+nI+=O. Hence f is algebraically stable. Similarly 

f - l ( x , y , z ) =  (y, l (x--yd),z--A(y)--l  (x--yd)), 

thus I-={[x:O:z:O]}, Z----f-l(([z:O]}\I-)=[O:l:ac~+l:O] and f -1  is also alge- 

X r braically stable. If  ( n, Yn)n=o denotes the orbit  of (x, y) under h in C 2, then 

/ n - 1  )) 
I S ( x ,  y, z)  =  xn, yn,  z +  �9 

\ j = o  

Let bounded}. I t  is easy to check tha t  X § is an at t ract ive 

fixed point for f .  Let U + denote the basin of at t ract ion of X § Then C 3 \ U  + :=/C + = 
K~" x C .  I t  is known [FM] that  the orbits of points in K~" cluster on Kh=K~ClK[~ 
which is compact  in C 2. If  ReA_>c>>l on Kh then clearly K + is empty  and in 

particular f has no periodic point. 
We now show tha t  it is possible to choose the polynomial A so that  K + is dense 

in K: + a n d / C + \ K  + is also dense in K +. Let p be a saddle fixed point for h. Assume 
lal=JJfl>l and that  Q(x,y)=A(x)+9 vanishes at p. Let W'(p) be the stable 

manifold at p, which is dense in + + K h =OK h [BSI]. Then WS(p) x C is dense in ~+ and 
n X n n j is contained in g +. Indeed ~j=o IQ( j, xj-1)l<- C ~j=o I(xJ , YJ)-Pl <-C' ~-~j=o e , 

where e < l .  I f p  ~ is another saddle fixed point of h where Q(p')~t0, one checks that  
no point in W s (pr)x C is in K +. Observe tha t  there is a constant C such that  for 

any (x, y, z) E ]C + one has Ifn(x, y, z)l<Cn. 

Remark 1.6. I t  is easy to check for the previous example that  

G + (x ,  z)  = (x ,  u) .  

Observe that  {piG + (p)=0} =K: + might be different from K +. Note also that  deg f =  

deg f -  1. 
For an algebraically stable endomorphism f of C k, we define 

} 
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T h e o r e m  1.7. Let f E E n d ( C  k) be algebraically stable. Then 

c {p I G(p) = 0}. 

In particular U is of infinite measure and of non-empty fine interior. 

Proof. Define ~= logmax j  IRj] 1/D, where Rj are homogeneous polynomials of 
degree D such that  X- -Nj  R~-I(0). Since Xc{[z:O]}, we can fix Rl=t D so that  if 

we identify C k with {[z:l]}, we get ~--~]o~ >0. 
Recall that  that  the Green function G is the decreasing limit of d -n log IIFnll, 

where F: C k+l -+C k+l is a homogeneous representative of the extension of f to pk,  
normalized so that  [[F(Z)[I <_ IIzll d. Since d -1 log IIFII has positive Lelong number 
at every point of ~-1( i ) ,  so has G. Hence there exists 0<3`<<1 such that  G <  
~/~ in a neighborhood of ~r-l(I\B(If~X,~))~cgBk+l. Here B(INX,~)={pEPkl 
dist(p, XMI)<r and Bk+l denotes the unit ball in C k+l. Since log IIZII is smooth 
outside the origin, we get from the log-homogeneity of C, that  

(*) G_< 3`~+(1-3 ') log ]]ZH+Cv in 71"-l(ve), 

where V~ is a neighborhood of I \B(IMX, r in pk.  
We can assume that  ~_<log tlZI[, and thus the sequence d-n~oF '~ is uniformly 

bounded from above by log [I Z][. Thus we can extract a subsequence which converges 
towards a function ~2 which is either identically - o o  or pturisubharmonic (see [H6]). 
Since ~=~[ok  _>0 we get ~d~-cx~. We infer from the logarithmic growth of ~ that 
~b=~[ck < G  in C k. Now we claim that  G_<~b on ]C. Indeed let pE]C. If (fn(p))~= o 
admits a bounded subsequence, then G(p)=g,(p)=O. Therefore we can assume 
that  f~(p)--->oo. Since pE]C, fn'(p)--+I\X for some subsequence ni-->c~. Thus 
f~(p)EV~ for r small and i large enough. Hence (*) yields 

" Cv 
G(p) = ~---~Go fn'(p) <_ 3  ̀d---ff-(ipo fni(p)+(1-3`) d-j~- ( log + [[fn,(p),,q d hi" 

Thus G(p) <r 
We show hereafter that r  + [[z[[+C for some constants C > 0  and 

0 < a < l .  Assuming this we obtain, since ]C is f-invariant, that  

1 
Go n _< [[f~(p)[[+C foreverypE/C.  a(p) = f (p) log + 

Hence G(p) < (1 -a )G(p) ,  i.e. G(p) =0. 
It remains to show that  ~ < ( 1 - a ) l o g  + [[z[[+C in C k. By a result of Siu [Si], 

this is equivalent to saying that the current S defined by ~ on pk has positive 
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mass on the hyperplane at infinity {[z:0l}. Now S=l imd-n ' ( fm)*(a) ,  where a is 
the current defined by ~. Note that  the Lelong number v(a, q) is positive at every 
point qEX.  It is a well-known (and simple) fact that  Lelong number increase by 
taking pull-back (see e.g. [Fa]). Without loss of generality we can assume that  
f(([z:0]} \ I )  c X ,  thus 

t/(f*(a),p) >__ v(er, f(p)) > 0 at every point p E {[z: 0]}\I .  

Since codimo I1>2,  we infer that  d-lf*(a)=a'+a[{z:O}] for some 6>0 .  The in- 
variance f*[{z:O}]=d[{z:O}] thus yields S>a[{z:O}]. 

We just showed that  {p[G(p)>O}CU, so Proposition 1.3 says that  U is of 
infinite measure. [] 

C o r o l l a r y  1.8. Let f E E n d ( C  k) be an algebraically stable endomorphism. The 
basin of any attractive fixed point has complement of infinite measure which is open 
in the fine topology. When f is a biholomoTThism, such a basin is biholomorphic 
to C k. 

Proof. Such a basin is contained in /C, and hence in {piG(p)--O}. The set 
{piG(p)>O} is open in the fine topology and has infinite measure. [] 

Remarks 1.9. (i) When X is an attracting set then U is its basin of attraction, 
and hence is open. This happens e.g. when XMI=O ( f  is "weakly regular") and in 
this case U={PiG(p)>O} (see Theorem 2.2). Note however that  {piG(p)>O} might 
be different from U (see Example 1.11 below when Ibl>l). 

(ii) The set X is not necessarily attracting: f(0,  y, 0)=(0, by, 0) in Example 1.11 
below, thus i={[x:y:O:O]} is not attracting if Ibl<l. 

There might be unbounded orbits in K: (see Example 1.5). However they have 
slower growth. Moreover in the biholomorphism case we have the following result. 

P r o p o s i t i o n  1.10. Let f E A u t ( C  k) be an algebraically stable biholomorphism. 
Assume that f -1  is weakly regular (i.e. that X - M I - = 0 ) .  Then ] ( I + \ X - ) c I  - and 
unbounded orbits cluster in {{z:0]} only on I - .  

Proof. Let zn -4pEI+\X  - be such that  f(zn)-+q, as n-+oc. If q~I - ,  then 
z ,~=f - l ( f ( zn) ) -+X -, a contradiction. So f ( I + \ X - ) C I  -. 

Similarly, if zn,=f~'(z)-~q~{[z:O]}\I  -, where z ~ C  k, then z n _ l - 4 f - l ( q ) E  
X - .  Now X -  is an attracting set for f -1  since X-MI-=O,  so z=f-n~(zn,)--~X -, 
a contradiction. [] 
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We now give an example where G + is discontinuous on a thick set of C 3. 

Example 1.11. Let P(x, y) be a homogeneous polynomial of degree d>  2. Define 
f(x, y, z)=(xP(x, y)+z, x d+l +by, x). Then 

f - l (x ,y ,z)= (z, 1 zd+l),x--zP(z,b-l(y--zd+l))) 

If deg u P=d then d + = d + l ,  d_--d2 +d+ l, I+={[O:y:z:O]}, X+=I - ={Ix:y:0:0]} 
and X-={[0:0:1 :0]} .  If Ibl>l, then I -  is an attracting set for f (see Lemma 5.8). 
Consequently the map f - 1  is normal in C 3, the function G-  is Hhlder continuous 
(Theorem 1.7.1, p. 115 [S]) and K-={plG-(p)=O} (recall that  a map g is normal 
at a point p, if there is a neighborhood V o f p  such that  Un>og'~(V)NIg=O). 

The action of f on X + is given by fo[x:y]=[P(x,y):xa]. We choose P such 
that  the Julia set for fo coincides with p1 (take e.g. P(x, y)=(x-2y) d in which case 

the map f0 is subhyperbolic [CG]). For such a choice we get E + --{[z:0]}, where E + 
denotes the closure of I + :=U~-I  I f j .  

Let { q } = I + n I -  = { [0:1: 0:0] }. The preimages of q are dense on the hyperplane 
at infinity, and hence the log-homogeneous Green function G+ is equal to - c o  on a 
dense subset of { [z:0]}. Let p-- [x0 :Y0:0:0] be a periodic point for fo, it is repelling 
in one direction and the other eigenvalues are zero so the stable manifold is two- 
dimensional. The restriction of G + to W 8(p) has to be pluriharmonic as it is the 
case on any complex manifold M where f " lM is equicontinuous (see [FS2]). The 
local stable manifolds are graphs over (z, t), we can get a sequence Mj of such 

graphs converging to a graph M0 through q. If G+ were continuous then G+IMj--+ 

G+ IMo and the function G+ ]Mone~ would be pluriharmonic. This is impossible since 
a pluriharmonic function on a two-dimensional shell extends as a pluriharmonic 
function in the ball, but we know that  G+(q)=-c~. 

We get that  G+ has a point of discontinuity in any open set intersecting {[z:0]} 
and actually in any shell of f-J(Mo). Observe also that  the set of points of dis- 
continuity of G + is totally invariant because G+of=d+G +. However since G + is 
a non-negative upper semicontinuous function, it is continuous at any point where 
G + vanishes, for example on (0,y,0).  Note that  { (0 ,y ,0) lyEC* } is in the basin of 
attraction U + of X + when ]b I > 1, thus G + might vanish in U +. 

When Ibl>l, the set of periodic points in C 3 is not empty. We also have in 
this case that  the map f is volume expanding so for any open set V, Un>0 fn(V) 
clusters on {[z:0]}=E +. Hence for such a map the set of normal points is empty. 
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2. W e a k l y  r e g u l a r  e n d o m o r p h i s m s  

In this section we introduce the notions of weakly-regular endomorphism (Def- 
inition 2.1) and q-regular automorphism (Definition 2.6) and derive properties of 
their Green currents (Theorem 2.2 and Proposition 2.9). When I -  is assumed to 
be an f -a t t rac t ing set (a non-trivial hypothesis which we check on some exam- 
ples given in Section 5), we get a good understanding of the sets K +, K -  and K 
(Theorem 2.13). 

Definition 2.1. An endomorphism f E E n d ( C  k) is called weakly regular when 
XAI=O. 

It follows from the definition that  a weakly regular endomorphism is alge- 
braically stable. Moreover X is an attracting set for f ,  i.e. there exists an open 
neighborhood V of X such that  f ( V ) ~ V  and ~=1 f J ( V ) = X .  It is enough to 
compute the derivative of f around X. 

T h e o r e m  2.2. Let f E E n d ( C  k) be a weakly regular endomorphism. Set r= 
dimo X + I  and l ' = d i m c  I + 1 .  Then the following are true. 

(i) We have ]C={piG(p)=O }. The Green function G is continuous in C k. 
(ii) The current T ~ is supported on O]C and O-~M{[z:O]}=~M{[z:O]}=I. The 

current T r is of total mass in C k. For j<r ,  f*TJ=dJT J. 
(iii) The numbers r and l' satisfy l ' = k - r  so 

dimc X + d i m c  I -- k - 2 .  

(iv) The current TT+I=0 in C k+l, more precisely s u p p T T + l = I .  
(v) When f e A u t ( C k ) ,  then d r <d k-~ 

Proof. We already know ]Cc{PiG(p)=O} from Theorem 1.7. Let V be a small 
neighborhood of X which does not intersect I. There exists a constant Cv > 0 such 
that  

log + [zI-Cv < G(z) <log + [z[+Cv in VMC k. 

Indeed G is bounded near X,  so we only use log-homogeneity. Therefore G > 0  in 
U and it follows from the upper semicontinuity that  G is continuous, even HSlder 

continuous in U, since U is a normal component IS]. 
As X is an attracting analytic set of dimension r -  1, it follows from Lemma 2.3 

below that  T~--0 in U. So T ~ is supported on OK: and GT~=O in C k. Hence T ~+1 =0  
in C k. 

Since IMX=O in {[z:0]}=P k-1 we get ( r - 1 ) + ( l ' - l ) < k - 2 ,  so r+l'<k.  The 
current T admits continuous potentials out of I. Since I has dimension l ' - 1 <  
k - ( r + l ) ,  the currents TJ are well defined on pk  for j<_r+l (see Corollary 3.6 
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in [FS3]) and satisfy f*TJ =dJT j. Moreover T r has no mass on I [HP], and hence is 
of total mass in C k. The current T r+l has support in I. It follows from the support 
theorem of Federer (see [Fe]) that  dim I > k -  (r + 1). Consequently r + l' = k. 

We have G < d  -1 log IF[ and rc-l(I)={plF(p)=O} in C k+l. Hence the current 
T k-l'+l has some mass on each branch of I. Therefore T k-l'+l - -T  r+l is an R-cycle 

whose support is I.  This proves that  any point of I is a limit of points in OK:. 

Observe that  f*(w r) has no mass on {[z:0]} since d i m I = k - r - 1 .  Thus if 
fEAu t ( C k) ,  we get 

d + = / e  f* (wr )Awk-r=/ckWr  A( f -1)*(wk-r )<dk-r .  fq 

L e m m a  2.3. Let A c  {[z:O]} be an analytic subset of dimension a - 1 .  I rA  is 
attracting for f ,  then T a = 0  in the basin of attraction of A. 

Proof. Assume that  {z E A lZl . . . . .  Za =0} =0,  then, in these coordinates, 

G =  lim 1 10 + n2  + n 2  n ~ + ~  g (Ifal +.- .  I f ~ l ) -  

The convergence is locally uniform in the basin of attraction of A, therefore T a--0 
(see Theorem 2.5.2 in [S D. [] 

The rest of the paper is concerned with polynomial automorphisms. If f E 
Aut(C k) is weakly regular, we have just seen that  G + is comparable to log + Izl in 
U + and G+=O on KS +. This allows us to show a convergence result towards T+ 
similar to Theorem 2.2.12 of IS]. This yields in particular a rigidity property of/C+. 

T h e o r e m  2.4. Assume that f E A u t ( C  k) is weakly regular. 
If  there exists a non-trivial positive closed current S of bidegree (1, 1) on pk  

whose support is contained in ~+, then S is proportional to T+. In this case r=l .  
Conversely when r= l ,  T+ is the only positive closed current of bidegree (1, 1) 

and of mass 1 with support on ~+. 

Example 2.5. Consider f (x ,  y, z)=(yxd + z, yd+l +X, y). Then f E A u t ( C  3) with 
X+={[x:y:O:O]} and I+={[x:O:z:O]}. So f is not weakly regular since X + A I  +-- 
{[1:0:0:0]}#0. On the other hand f - l (x ,y , z )=(y- -za+l , z ,x - -z (y- -zd+l)d) ,  sO 
X -  = { [0: 0:1: 0] } and I - -- { Ix: y: 0: 0] }. Hence f - 1 is weakly regular. 

Note that  X+fqI + is a (super)attractive fixed point for fo:=flx+. 
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Definition/Notation 2.6. Let f E A u t ( C  k) be an algebraically stable biholomor- 
phism such that S-1 is also algebraically stable. We set 

d i m X  + - - r - l ,  d i m / + - - l ' - l ,  d i m I + n I  - = q - l ,  

d i m X - = s - 1 ,  d i m I - = l - 1 .  

We say that f is q-regular if X + N I •  and 

cod imI+NI  - - - c o d i m I + + c o d i m I  - in {[z:0]}, with d i m ( I + n I - ) = q - 1 .  

So in this case we get the relations 

r + l ' = s + l = k  and q + r + s = k .  

Remarks 2.7. (i) With the convention dim q}=-l ,  0-regular biholomorphisms 
are precisely the "regular automorphisms" studied in IS]. Observe that  f is q-regular 
if and only if f - 1  is q-regular. 

(ii) If I -  is biholomorphically equivalent to p / -1  (or to any compact com- 
plex manifold whose cohomology is one-dimensional) and X + N I  + =0, then X + and 
I + n I  - are disjoint analytic subsets o f / -  _~p/-1 so dim X + + d i m ( I + n I  -)  ~ l - 2 ,  and 
hence r+q<_l. This yields r + s + q < k  if X - n I - = 0 .  Now T+ +1 AT_ ~ is a well-defined 
current with support in I + n I  - (see [FS3] and Theorem 2.2) so d i m ( I + n I - ) >  
k - ( r T s + l )  by the support theorem [Fe], i.e. r+s+q~_k.  So in this case the con- 
dition codim{[z:0]} I + n I  - =codim([z:0]} I+ +codim{[z:0]} I -  of Definition 2.6 is auto- 
matically satisfied. We do not know any example of an automorphism f E A u t ( C  k) 
such that S and f - 1  are weakly regular and for which I + n I  - does not have the 
expected dimension. 

Examples 2.8. (i) Let f ( x , y , z ) = ( x d + c ~ y d + z , x d + y , x ) .  Then f E A u t ( C  3) 
with f - l ( x ,  y, z)=(z ,  y - z  d, x - - zd- -a(y- -zd)d) .  If ~ # 0  we obtain I+NI  - =0 so f is 
0-regular, while f is 1-regular if ~=0 .  

(ii) Consider f ( x ,  y, z, w)=(h(x ,  y), g(z, w)), where h, g: C2--+C 2 are H6non 
mappings. Then f E A u t ( C  4) is 0-regular if deg(h)=deg(g)  and 2-regular if deg(h) 
deg(g). 

P r o p o s i t i o n  2.9. Let f E A u t ( C  k) be a q-regular biholomorphism. Define G= 

max{G+,G - } and let T be the current defined by G on pk .  Then 
(i) (ddCG)r+8=Tr+8-:T~AT ~_ in Ck; 
(ii) supp T r+s+l = I  + N I -  ; 

(iii) the current T r+s =T~AT2 is of total mass in Ck; 

(iv) O]C+MO]C-N{[z:O]}=I+NI-; 
(v) if  I -  is an attracting set for f ,  then dr+ <d ~_ <d q+~. 
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Proof. Note that  G + and G-  are continuous (Theorem 2.2). Since (ddCG+)r= 
0 in U+={piG+(p)>O} and (ddCG-)8=O in V-={PiG-(p )>O}  (by Theorem 2.2 
again), the first claim is a consequence of Lemma 2.12 below. 

Since f is q-regular, I + N I -  has dimension q - 1  = k - ( r +  s ) -  1. So T ~+~, which 
clusters only on I+NI - in {[z:0]}, has total mass in C k (see [HP]). The current 
T ~+~ is supported on/(:+ n / ( : -={Pl  G(p)=0}, therefore (ddCG) ~+~+1 =0 in C k. Since 
{[z:0]}\I  + CU + and {[z :0]} \ I -  c V - ,  it follows that  T r+~+l is supported on I+NI -. 
Now G<max{d+ 1 log IF], d_ -1 log IF-11} in C k+l, so T ~+~+1 has some mass on each 
branch of I + n I  - . Therefore every point of I + n I  - is a limit of points in 0/C+ o0/C - . 

Assume that  I -  is f -at t ract ing,  i.e. there exists C > I  such that  l + l l f ( z ) l l >  
C(l+]]zi]) for every point z in a small neighborhood V of I -  with f ( V ) ~ V .  Thus 
the function log + ]]f(z)]] grows at least like log + ]]zi] in V. We recall here below 
(Lemma 2.11) a comparison principle for plurisubharmonic functions with logarith- 
mic growth. Since log ]if if ~ l o g ( l +  Ilzll ) on the support of T+AT_ 8 and since T ~ A T  ~ 
puts no mass on {[z:0]}, one gets by Lemma 2.11 that  

1 <  l + / \ l Z A J  W = (f-1)*(T~+AT~)Aw k-~-~ d~ 
- ~ ~ d r +  " 

There might be equality as follows from Remark 1.6. The last inequality follows 
from Theorem 2.2(v): if X - n I - = 0 ,  then d ~ < d  k-~ [] 

Remark 2.10. When q=0 (i.e. f is a regular automorphism), then I - = X  + is 
always an attracting set for f and we get d~ = d  ~ _ (see also Proposition 2.3.2 in IS]). 

When q > l ,  then OK:+ROK: - is not compact. We give examples in Section 5.2 
such that  I -  is an attracting set for f .  Observe that  if IIf(p)ll>_C(l+llpll) ~ for 
IIPll>>I on 0/C+R0/C - , then since T~AT2 is supported on 0/C+N0/C - ,  we get with 
the same proof that  ds This is of interest when ? > 1  (see Remark 3.2). 

L e m m a  2.11. ([W]) Let S be a positive closed current of bidimension (s, s) 
in C k. Let u and v be locally bounded plurisubharmonic functions in a neighborhood 
of suppS  in C k. Assume that v > 0  and u(z )<v(z )+o(v(z ) ) ,  IIzll--++oc. Then 

/ c  SA(ddCu)~ <_ /ckSA(dd~v)~.  

The corresponding lamina when s=k  is given in IT], p. 322. The proof is an 
integration by part argument. 

L e m m a  2.12. Let u and v be continuous non-negative plurisubharmonic func- 
tions in C k such that (ddCu)~=O in {piu(p)>O} and (ddCv)s=O in {plv(p)>O}. 
Set w=max{u ,v} .  Then 

(ddCw) r+~ = (ddCu) ~ A (dd%) ~. 
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Proof. Fix ~ and consider u e = m a x { u + e , v }  and ve=max{u,v+E}. Since ue 
and ve decrease toward w as e-+0, we have 

(ddCue) ~ A (dd~v~)~ -+ (dd~w) ~+~. 

We can assume without loss of generality that  r>s. We have (dd~v)~=O in {Pl 
v(p)>u(p)+E}c{plv(p)>O }. Moreover v~=_v+e near {pIv(p)=u(p)+e} and v>0,  
therefore (dd~v~) ~ = (dd~v) s =0 near {Pl v(p) =u(p) +c}.  Thus (dd~u~) ~ A (ddCv~) ~ has 
support in the open set {ptv(p) <u(p) +e}.  Hence 

(ddCu~)r A (ddCve)S -= (ddCu)~ A (dd~vE)S. 

Now supp(ddCu)~ C {plu(p)=0}, thus v e - v + e  near supp(dd~u) ~, which yields 

(ddCu~)r A(ddCv~) s = (ddCu)r A(ddCv) ~. [] 

T h e o r e m  2.13. Let f E A u t ( C k ) .  Assume that f--1 is weakly regular and I -  
is an attracting set for f . Then the following holds: 

(i) f - 1  is normal on C k and K--=lC-=(pIG-(p)-=O } is closed in Ck; 
(ii) K + = c k \ B ( I  -)  is closed in C k, where B( I - )  denotes the basin of attrac- 

tion of I - ;  K+M{[z:O]}=X-=OK+M{[z:O]}; 
(iii) K :=K + ~ K  - is a compact polynomially convex subset of C k which con- 

tains the non-wandering set of f; 
(iv) W S ( K ) = K  + and W ~ ( K ) = K  -. 

Proof. That  I -  is at tracting for f means that  there exists a neighborhood 
Y of I -  in pk  such that  f ( Y \ b ) ~ Y  and N ~ = l f J ( V \ I p ) = - I - "  It follows that  

if xp---~xEC k, f-n~(Xp) cannot cluster on I - .  Hence f - 1  is normal. Since an 
unbounded orbit for f - 1  cannot approach I - ,  it is necessarily in U- ,  the basin of 
X -  which is attracting for f - 1  since I -MX-=O.  Therefore K - ~ - ~ . - : c k \ u  - is 

closed. The fact that  K-={Pl  G-(p)=0} follows from Theorem 2.2. 
Let x E C k \ B ( I - ) .  If fn j  (x) clusters at infinity, it has to avoid a neighborhood 

of I - .  Hence f - n j  is well defined and x = f - n J  ( f ~  (x)) is arbitrarily close to X - ,  a 
contradiction. So K + = c k \ B ( I  -)  and it is closed. Since {[z:0]}\I  + is sent by f into 
X + C I  - which is at tracting for f ,  K + can cluster only on I +. I f p E I + \ X  - then the 
blow-up f (p)  of f at the point p is an analytic subset of {[z:0]} which is included in 
I - ,  otherwise f - l ( f ( p ) \ I - ) = p  should belong to X - .  Therefore pEl3(I-)  and g + 
can only cluster on X - .  On the other hand, we will show hereafter (Theorem 3.1) 
that  there exists a non-zero positive closed current as of bidimension (s, s) with 
support  in OK +-here  dim X -  = s -  1. Moreover as A { [z :0] } is a well-defined current 
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of bidimension ( s - 1 ,  s - 1 )  (see Theorem 3.1) which has support on X - .  Since X -  
is irreducible, we have X - C s u p p a ~ .  Hence OK + clusters at every point of X - .  

Similarly K -  clusters on I - ,  and hence K ~ - K + M K  - is compact. The polyno- 
mial convexity of K follows from the fact that Hn :=max{log + Iif n II, log + Iif-niI } is 
bounded exactly on K.  

We now prove that  the stable set W s (K) := { z E C k I limn-~+o~ fn  (z) E K} equals 
K +. Indeed for x E K  +, G- ( fn (x ) )=dS-nG - (x) so if Xo--lim fn~ (x) then G-(xo)=0 .  
Thus x o E K - M K + = K ,  i.e. W S ( K ) = K  +. 

Similarly let x E K - .  Assume f - ' ~  (x)--~y. For any neighborhood U of y, f~ '  (U) 
contains x, so yg~B(I-).  Therefore y E K  + and W U ( K ) - ~ K  -.  [] 

Remark 2.14. The hypotheses of the theorem axe satisfied in Example 1.8 when 
]b]>l. We give other examples in Section 5. 

C o r o l l a r y  2.15. Assume that f and f - 1  are weakly regular and I -  is f -  
attracting. Then either f is a regular automorphism (i.e. I+ A I  --=0), or O~+ \ K + 
is non-empty. In the latter case, the basin B(I+MI -)  contains t: + \ K +, and hence 
f is not normal. 

Proof. We know from Theorem 2.2 that  O~+M{[z:O]}=I +. On the other hand 
K+N{[z:O]}cX - by Theorem 2.13. Since X - M I - = O ,  this yields that  if X - = I  + 
then f is regular, and if X - r  + then Ot~+\K + is non-empty. Proposition 1.10 
implies that  orbits in E + \ K  + cluster only on I+MI - .  Hence K:+\K + is in the basin 
B(I+MI -)  of I+NI  - .  [] 

3. Currents  suppor ted  by K + 

In this section we construct, under suitable assumptions, a canonical current 
as which is invaxiant by f and supported on K + (Theorem 3.1). This shows in 
particular that  K + is non-empty (compare with Example 1.5). When T ~ is an 
extremal point in the cone of positive closed currents of bidegree (s, s) on pk,  we 
show a strong convergence result towards a8 (Theorem 3.4) which can be thought 
of as a "mixing property" of as. We prove the extremality of T_ (Theorem 3.6), so 
everything works fine when s--I :  we obtain as a consequence the density of stable 
manifolds of dimension 1 in the support of a l  (Corollary 3.8). It is an interesting 
open problem to show extremality of currents like T2, s > 1. 

T h e o r e m  3.1. Let f E A u t ( C  k) be such that f - 1  is weakly regular and I -  
is f-attracting. Then K + does not carry any non-zero positive closed current of 
bidimension ( s + l ,  sT1) ,  where d i m X -  = s - 1 .  
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However there is a positive closed current a~ of bidimension (s, s) supported 

on K + which satisfies f ' a s  =dS_as and 

f p  O'sAW k-s = f GsAOJ k-s = 1. 
k jC  k 

More precisely, if d s - Jk-s -1  
_ ~a+ , then 

in the weak sense of currents. Moreover for any smooth closed form O ~ w  k-s,  

1 
d? s (fn)* (O) --+ as. 

Proof. Assume that  S is a non-zero positive closed current of bidimension 
( s + l , s + l )  with support  in K +. Then SA{[z:0]} is well defined and non-zero 
(this follows from [FS3], p. 412), since K + A { [z: 0] } = X -  is of dimension s -  1. The 
current SA{[z:0]} has support in X -  (Theorem 2.13) and is of bidimension (s, s), 
this is impossible since d i m X - ~ s - 1 .  

Define R~=(1/d~*)( f~)*(wk-s) .  The current Rn is positive, closed, of bidi- 
mension (s, s) and with mass 

The last equality holds since d i m I - = k - s - 1  (Theorem 2.2) so ( f -n)*(ws)  has no 
mass on I - .  We still denote by P~ the trivial extension to pk.  Since I -  is an 
attracting set for f ,  any cluster point of (Rn)n~__l has support in K + = C k \ B ( I  - )  
(we can argue as in Lemma 2.3 since I -  is at tracting and of dimension k - s - 1 )  and 
is of total mass 1 in C k since d i m X - = s - 1 .  If we take a limit point of a CesAro 
sum, we get the invariant candidate because f* is continuous on currents in C k, 
and the limit current cannot have mass on X -  whose dimension is only s - 1 .  

Consider now O being a smooth closed form cohomologous to w k-s whose 
support does not intersect I - .  This is possible since d i m I - = k - s - 1 ,  so we can 
find a linear subspace L of dimension s in pk which does not intersect I -  and 
regularize the current of integration [L]. Define 

01 := ~_ (f*O)lCk. 
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The current 01 is closed and positive in C k. The mass of O1 is 

1 = 1  1 /C k O1AcMs= k OA(f-1)*(~  -_/lak Ot(f-1)*(~ 

since I - N s u p p  0 = 0 .  We still denote by O1 =d-_Sf*O the trivial extension to pk.  
Observe that  since f - l({[z:O]}\I-)cZ-,  we get 

supp 01N { [z: 0]} C X - .  

So O1 is cohomologous to O and it is smooth in p k \ x - .  Hence 

1 
-d-~ f*O = O+ dd~( S), 

where S is a current of bidegree ( k - s - l , k - s - 1 )  which is smooth in pk \X - .  
Replacing S by S - A w  k-s-l, we can assume further that  S<_0 in P k \ V ,  where V 
is a small neighborhood of X - .  We can iterate the previous equation and get 

1 
d~8 (fn) *0 = O+dd~(Sn), 

where 
n--1 

j=0 

is a decreasing sequence of negative currents in P k \ V ,  since we can assume that  
f - I (V)~V.  Fix C > 0  so that  -Cwk-8-1<S<O on p k \ v .  Then 

-C  (fJ)*(wk-S-1)~_-~s(fJ)*(S)~_O in P k \ V .  

Then 
-- [ 1 \ k - s - 1  

l ~d~++~ (fJ+n)*w ) in p k \ v ,  O <_ S,, - Sn + p < C ~ -~ 

. _  s d k - s - 1 -  1 where 5 . - d /  + >1. This shows that  (Sn)nCr converges towards a current S ~  
in P k \ V ,  and hence in P k \ X - ,  since V was an arbitrarily small neighborhood 
of X - .  Thus 

1 
dn~ (fn)*O-~O+dd~Sn-+a~ :=O+dd~S~ in p k \ x - .  
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Now c% extends trivially through X -  for dimension reasons (Harvey 's  theorem). I t  
follows from the discussion above tha t  the invariant current a~ has support  on K + 

and is of total  mass 1 in C k. 
Note tha t  if O' is a smooth form cohomologous to O, then O' =O+ddCa ,  where 

a is a smooth form of bidegree ( k - s - l ,  k - s - l ) .  Now II(f~)*(a)ll=O(d2(k-s-~)), 
so d-_~s(fn)*(~)--~O since d ~ - ~k -~ - I  -~s ~ , , _ > a +  . Therefore d_ ( f )  (O)--~as ,  in particular 

Remarks 3.2. (i) When f is 0-regular, we have ~+'4k-l-s<dk+-S=dS._ In this case 

I - = X  + is f -a t t rac t ing  and as =Tk+ -s  (see IS]). 
(ii) When f is q-regular with 5=d~/d~+ > 1, then for as we can consider a clus- 

ter point of the sequence N -1 ~N=IT~AS-J ( f J )*W k-~-s.  This will allow us to 

construct an invarimat measure which does not charge pluripolar sets in Section 4. 
The  next result uses the Cauchy-Schwaxz inequality in the style of Ahlfors- 

Beurling (see [A]) to show convergence of t runcated currents towards closed currents 

(see [BS1] and [S] for similar results in the context of complex dynamics).  

P r o p o s i t i o n  3.3. Let f E A u t ( C  k) be such that d ~_ >d k-s -1  for some integer 
s<<k-1. Let r be a test function with support in a ball B of C k. Let ul, . . .  ,uz 
be continuous plurisubharmonic functions in B.  Then 

1 (f_n).(~bwS)AddCulA...AddCu t S (t) := dnS 

is a bounded sequence of positive currents. Moreover IIdS(~011, IlddCS(~011-~0. So any 
cluster point is a closed positive current of bidegree ( s + l, s + l ). 

Proof. We first consider the sequence Sn :=S(~ ~ =d7nS(fn)  * (r I t  is clearly 
bounded. Let 0 be a (0, 1) test form on C k. We have 

/C  ~ ( f - n ) *  (a~AwS) AOAwk-s-1 = /C~ O~bAwS A (fn)*OA ( fn )*wk-s -1  

<_(s 1/2 
- , 1 / 2  

\JC k / 

_< O(d2(k-s-1)/2)O(d?S/2). 
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The mass IIdSnll of the currents dSn thus satisfies 

iidSnll =o( ( dk+ 

Similarly one gets IlddCSn II =O( (dk+-s-1/ds- )n)--~O. 

Consider now S (1) =d2 n~(fn)* (r Add%~. 
inequalities, replacing w k-~-1 by dd~ul Aw k-~-2. 
O((dk-~-l/d~)n/2) if we show that  

We can use exactly the same 

So we have again IIdS(1)ll-- 

~supp ~b ~)s+l A(f,) ,(ddCul Awk-s-2) = O(d~(k-s-1)). 

Note that  we can assume without loss of generality that  Ul ~0 on B. So Ul:-- 
max{u1, A log IIzll} defines a plurisubharmonic function in C k, where A is chosen 
large enough so that  ~1=-Ul in a neighborhood of supp~ and g l -Alog l l z l l  near 
OB={z  I INI=I} .  We infer that  

upp ~b (Ms'l-1/~ (fn)* (ddCul Awk-~-2) <_ s  w~+l A (f'~)* (dd~l  Aw k-~-:) 

= A r c  k ws+l A(fn)*(w k-~-l)  < Ad'~ (k-~-l)" 

Thus [[dS(~l)l[-~0. One gets similarly that  [[dS(l)[[, [[ddCS(Z)[I--~O for all 1. [] 

T h e o r e m  3.4. Let f E A u t ( C  k) be such that X - A I - = O  with I -  being f -  
attracting. Assume that k-s-1 s d+ <d_, where s - l = d i m X - ,  and T ~_ is extremal in 
the cone of positive closed currents of bidegree (s, s). Let R be a positive closed 
current of bidimension (s, s) in C k. We assume that R is smooth or R=ddCulA 
...AddCuk_s, where uj are continuous plurisubharmonic functions. Let ~>0 be a 
test function. Then 

1 
d~S (fn)*(VR) -~ cos, 

where C= f c  k ~oRATS. 

Proof. It is enough to show convergence on a generating family of test forms 
r ~, with c~ being d, de-closed and strictly positive and 0_<r 1. For simplicity we 
only consider Cw s. 
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The sequence S~ = dZ n~ ( f - n ) .  (ewe) is bounded and all cluster points are closed 
(Proposition 3.3). We compute the mass of S~. We infer from Theorem 3.1 tha t  

/pk ~n A Wk- s = ]Ok s 1 ~ A~- ~ (fn)*(~k-s) -~/c~ r  =: cr 

Let S be a limit point of (S~)n~__l. Clearly 0 < S < T  ~. Now T ~ is extremal  thus 
S : C c T ~ ,  so the sequence (S,~)~__1 actually converges towards Cr Therefore if 
R is smooth then 

and thus R~=dZns(f~)*(~R)-+ca~,  with c={~R,  T~). 
When R = ddCul A... A dd~uk_ ~, where the uj are merely continuous plurisubhar- 

monic functions, we need to go step by step using Proposition 3.3 (as in the proof of 
Theorem 7.1 in IS]). We first show that  S~ A ddCul converges towards C C T  ~ A dd~ul. 
Let 0 be a test  form of bidegree ( k - s - 1 ,  k - s - 1 ) .  We have 

( SnAddCul , O} = (ddC( SnAO), ul) = ( SnAddCO, Ul} + 2(dO AdC Sn, ul) + (O AddC Sn, ul). 

The first te rm converges towards ( C c T  ~ AddCO, ul } = (C~T ~_ AddCul, 0), since ul is 

continuous. The last two terms converge to 0 since IIdS, ll, IlddCSnlt-+O (Proposi- 
tion 3.3). 

Now set S(~ j) =SnAdd~ul  A...Add~uj. I t  then follows from Proposition 3.3 tha t  

IIdS(J)ll, IlddCS (j) II--+O. So using that  uj+l is continuous, we get by induction tha t  

S(J)--+C~T~ AddCul A...Add~uj. For j = k - s  this yields tha t  Rn-+Cas. [] 

Remarks 3.5. (i) When f is 1-regular, we have k - 1 - s = r ,  thus the hypothesis 
dk- l -S<dS is equivalent to d+<d s Since I -  is f -a t t rac t ing ,  we have showed that  + - -  _ ,  

d+ <d ~ - always (Proposition 2.9) and d+ <d ~ - if IIf(z)ll>(l+llzll) 1+~ on 0K:+N0~ - 
for Ilzll large (Remark 2.10). 

(ii) When T ~ is merely extremal in the cone of positive closed currents S of 
bidegree (s, s) which satisfy ( f - 1 ) .  S =  d ~_ S, then the same proof shows convergence 

of ( l / n )  ~_l (1 /dJ_S)( fJ )*(~S)  towards cas. 

When s =  1 the next theorem asserts that  T_ is extremal. So our assumptions 
become that  I -  is f -a t t rac t ing  and d_ >d+ if k--3.  The latter is necessary to ensure 
non-trivial dynamics as follows from Example  1.5. 
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T h e o r e m  3.6. Let f E A u t ( C  k) be an algebraically stable biholomorphism. 
Then T+, the Green current of f ,  is extremal in the cone of positive closed cur- 
rents of bidegree (1, 1). When r=l ,  i.e. d i m X + = 0 ,  then OIC + is connected. 

Proof. Let S be a positive closed current of bidegree (1, 1) on pk  such that  
S<T+. We want to show that  S=aT+, where 0 < a < l .  Denote by Sn the trivial 
extension through {[z:0]} of the current d'~(f-n)*SIc k. Since d'~(f-n)*T+--T+ in 
C k, we have Sn<T+ on pk.  

Set now S~=d+n(fn)*s~. Clearly S ' - S  in C k and 

1 n * T  s"  < ) § 2 4 7  

Since T+ has no mass on the hyperplane {[z:0]}, neither have S" and S, and hence 
S~n-S on pk.  The next lemma yields that  S=S~--+aT+, where a=]]SI]=IIS~II. 

When r - - l ,  T + has support equal to OK: +. Hence extremality of T + implies 
the connectedness of 0/C + in C k. [] 

(7  c ~  L e m m a  3.7. Let ( n)n=l be a sequence of positive closed currents of bidegree 
(1, 1) and constant mass c~E[0, 1]. If an<_T§ then 

1 

Proof. Set ' -  an-T+ - a n ,  a positive closed current of bidegree (1, 1) and of mass 
1 - a  on pk.  Consider the potentials ~,, and ~ of an and a"  in C k+l such that  
G+ =~n  +qPtn, 

(1) ~a~(z,t)<_alogll(z,t)l] and ~a~(z,t)<(1-a)logll(z,t)ll.  

Set vn:=d-~n~noF n. Then (vn)~~ 1 is a sequence of potentials of d+n(fn)*a~. It 
follows from (1) that  (Vn)n~=t is locally uniformly bounded from above. We can 
extract a convergent subsequence, vnp-+v. Since 

= ___ a §  (1-, )log I1( , t ) l l ,  

we get vn>_G+-(1-~)d+nlog IIFn(z,t)ll. Hence v>_aG + is not identically - c o .  
Now ~ <_alogll(z,t)l I gives v<aG +, so v=e~G +. [] 
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C o r o l l a r y  3.8. Let f E A u t ( C  3) be such that f -1  is weakly regular with I -  
being f-attracting and d_ >d+. Let p be a periodic saddle point of type (1, 2) (one 
eigenvalue has modulus <1, and two have modulus >1).  Then the stable manifold 
WS(p) is dense in the support of al. 

Proof. Let D be a holomorphic disk through p in the stable direction. L e t  
[ D ] = f  R;[D] dO, where Ro are rotations around p in a cone, such that  for each 0 in 
the parameter space, f -n(R~D)  converges to the stable manifold. Moreover we can 

assume that  the local potential for [/9] is continuous except at the point p where 
it has a logarithmic singularity. Let ~ be a positive test function. We infer from 
Theorem 3.4 that  

d - ~ ( f  ) (~[D])-+ ca, ,  

where c = f  ~[b]AT_ (the proof of Theorem 3.4 goes through with minor modifica- 
tion in the presence of an isolated logarithmic singularity). 

We claim that  c>0.  Otherwise G-  would be harmonic and non-negative on 
WS(p)-~C, and hence G-Iw~(p)=_O by the minimum principle. Now WS(p)CK + 
which clusters on X -  at infinity. Since X -  is disjoint from I - ,  there exists C > 0  
such that  

log + ]z[-C-<G-(z)  <log  + Iz l+C on K +. 

Thus G-  is unbounded on WS(p), and hence non-constant. Therefore c>0,  so 
W 8(p) is dense in the support  of hi.  [] 

Remark 3.9. When f c A u t ( C  k) is as in Theorem 3.4 and p is a periodic saddle 
point of type (s, k - s ) ,  we can similarly show that  the stable manifold o f p  either is 
dense in supp as or does not intersect supp as. 

4 .  I n v a r i a n t  m e a s u r e  

Let f E A u t ( C  k) with f - s  weakly regular, I -  being f -a t t rac t ing  and d~_> 
dk+ -s-1. We set #:=asATS_, where as and T2 are the invariant currents defined 
by Theorems 3.1 and 2.2. The wedge product is well-defined since T_ has locally 
bounded potential near K +. 

We show in Section 4.1 that  p is mixing if T_ s is extremal (Theorem 4.1). In 
Section 4.2 we give, for some q-regular biholomorphisms, an alternative construction 
of/~ in terms of a partial Green function. As a simple application, we show that  # 
does not charge pluripolar sets (Theorem 4.6). 
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4 . 1 .  M i x i n g  

T h e o r e m  4.1. Let f E A u t ( O  k) be such that X -MI -=O with I -  being f -  
attracting and dS_>dk+ -s-1. Then #:----asAT_ 8 is an invariant probability measure 
with support in the compact set K={pECki  (fn(p) )~=_~ is bounded}. 

If  T 8_ is extremal then p is mixing. 

Proof. The current T_ ~ has support  in K-=]C- by Theorems 2.2 and 2.13, 
and as has support  in K + by Theorem 3.1, therefore # has support  in the set 
K = K + N K  - which is compact  (Theorem 2.13). Tha t  p is an invariant probabili ty 
measure follows from the corresponding invariance of T ~ and a~. 

Let ~ be a test function. Assuming that  T s is extremal  and d s >d k-8-1 _ _ + , w e  

want to show 

(Fof-nr~_Aa~ = ( f -n )* (~T~)Aa~  -+ c~T_ ~ A s, 

where c~ = f ~ d#. 

Assume without loss of generality that  0 < ~ < 1. Let R~ =dZ "~ ( f - n ) .  (~T_S). 
This is a bounded sequence of positive currents. Any cluster point R is closed 
(Proposition 3.3), with 0 < R < T  ~. So R=cT ~_ with 

c=lim(Rn, O) =lim(~T~_, ~--~-j(f~)*O), 

where O is as in the proof of Theorem 3.1. Since d~-n~(f')*O converges to as in 
the sense of positive currents and since T_ s =(ddCG -)8 with G -  continuous, one can 
show, in the style of Proposition 3.3, tha t  

~ ~T_ ~, ~ ( f  ) O ~ (~TS,as)  = c ~ .  

R Thus c=c: is independent of the cluster point, and hence ( n)n=l and actually 
converges towards c~T_ ~. 

We now need to show tha t  R,~Aas--+c~T~Aas. Let r be a test  function. Recall 
from the proof of Theorem 3.1 tha t  as =e-Fdd~S~. Thus 

<R.Aas, ~,) = <R., r162 S~). 

The first te rm converges towards (c~T~Ae,  r since e is smooth, the second can 
be decomposed as An + B ~  +C~,  where 

An-=(R,~,ddCCAS~), B~=2(dR~,dCr Cn=(dd~Rn,r 
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We are going to show that  

An -+ c~(Ts_ , ddCtASoo) = c~(T s_ AddCScr r 

and Bn, C,~-+0. This will yield the desired mixing property (see [W]). 
Recall from the construction of a~ (Theorem 3.1) that  Sor162 SN out 

of a neighborhood of X +, with SN smooth in C k. Out of a small neighborhood of 
X +, we have 

o~ 1 
_ _ _  c + k - - s - -1  o<sN-s  < F_,  (dd % , , )  , 

j = 0  

where Gj+-d+- - j  log + []fJ [[ _<log + IIz[[ is locally uniformly bounded. As SN is smooth, 
we have the desired convergence when replacing S~  by SN. So we need to get a 
control on (Rn, ddCr A (S~ -SN) )  that  is uniform in n. Now this is a straightforward 
consequence of (~), 

cllr 1/ u r A ̂ (ddCa'N)k-s-1 l(Rn,dd~r 5-----~--- -~ 
j = 0  pp ~b - 

and it follows from Chern-Levine-Nirenberg inequalities that  the integrals are all 
bounded by 1. Therefore 

C'  
[(Rn,dd~r _< ~-~. 

This estimate allows us to show that  An has the right convergence. We show 
similarly that  Bn and C~ both converge to 0 using the fact that  [[dR~ II, [[dd~Rn [[ ~ 0  
(Proposition 3.3). [] 

P r o p o s i t i o n  4.2. Let f 6 A u t ( C  k) be such that f -1  is algebraically stable. Let 
~>_0 be a test function in a ball B of C k. Let R be a positive closed current of 
bidimension (s, s) and ul, ..., uz be continuous plurisubharmonic functions in B. 
Set 

1 ( fn) .  (~R) Add~ul A... AddCul. R~ ) := dn9 

Then (R~))n~=I is bounded, IIdR~)ll=O(d -n/2) and Ildd~P~)ll=O(d-_n ). 

Proof. The proof is very similar to the proof of Proposition 3.3, and we therefore 
only treat the case l=0.  Recall that  dl-n(f-n)*w=dd~G~ in C k, where 0<G~ < 
log + Ilzll +O(1). Hence G~ is locally uniformly bounded in C k. Therefore 

-~9 ( f  ) (qo ),w ~ = @R, (dd~G~)') <_ II~RII IIG;~II~(B), 
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by Chern-Levine~Nirenberg inequalities. This shows that (R~))~=I is bounded. 
Now let 0 be a (0, 1) test form. We have 

/ck(fn)*(OqoAR)AOAw s - l =  /Ck OqoARA(f-n)*OA(f-n)* ws-l[ 

<(/ckRAO~A~A(f-n)*ws-1)l/2 

X(fckRA(f-n)*(OAOAwS-1))l/2 

<_ 

So IldRnll=O(d:n/2) O. Similarly, one shows that IlddcRnll=O(d-_ ). [] 
Recall that the volume-entropy of f is defined as 

H ( f ) = l i m i n f  max t~ 
n--+cx~ l < j < k  n 

where 0j(f) denotes the degree of f 'L, more precisely 

,j(:) = fo. = fo. 
where L is a generic linear subspace of codimension j in pk. DYiedland has shown 
that H(f) always dominate the topological entropy of f and conjectured that they 
actually coincide (see [Fr]). 

L e m m a  4.3. Let fEAut (C  k) be such that f-1 is weakly regular and d s_>> 
dk+ -~-1. Then H(f) =log d~. 

Proof. The j th  dynamical degree of f is defined as 

Aj(f) := l im~f  ~j ( f , ) l /n .  

Clearly Aj (f) =Ak-j ( f - l )  for every 1 < j  < k -  1 (the kth dynamical degree is nothing 
but the topological degree of f which equals 1). Now 

Al(f -1) =d_ < A2(f -1) = d  2_ <... < A~(f -1) =d~_, 

because (f-J)*(o; I) has no mass at infinity if l<s. On the other hand 

Aj(f-1)=Ak_j(f)<dk-J<clk-s-l<d s _  _~+ _ _ fors+l<j<k.  

This yields that H(f)=logd~_. Iq 

Remark 4.4. We can actually show that the measure # has maximal entropy 

hz(f) = htop(f) = H(f) = log d~_. 

A proof of this fact will appear elsewhere. 
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4.2. Part ial  Green  funct ion  

We now give an alternative construction of the current as and the invariant 
measure /~=as  AT_ ~. I t  relies on a control of the growth of f on supp T~+ which needs 
to be established (see Examples 5.3), but allows us to get extra  information on the 
invariant measure #. 

T h e o r e m  4.5. Let f E A u t ( C  k) be a q-regular biholomorphism such that if:= 
d s r _ / d + > l .  

(1) Assume that on s u p p T : ,  

(1) I I f(p) l l -< C~llpll ~ for Ilpll >> 1. 

Then (~-nq(fn)*wq AT+ and d-_"s(fn)*w k-~ converge to the same limit as which is 

a positive closed current of bidimension (s, s). Moreover f*as=dSas  and 

O's = (ddCh)qAT+,  

where h = l i m ~ _ ~  5 -n  log+ ilfnll is defined on suppT+.  The current a8 is of total 
mass 1 in C k and has support in K,+ if  I -  is an attracting set for f . 

(2) Assume moreover that in a neighborhood of I+NI  - on suppT+,  we have 

(2) IIf(p)ll _> c2 Ilpll '~. 

Then h is continuous and a8 has support in the set {Plh(p)=O}. 

h ~r Proof. Set hn(p)--~ -n log  + Ilfn(p)lt. We see from (1) tha t  n+~-~j=n+l C1/(~j 
is a decreasing sequence on supp T~. Let h be the limit, it clearly satisfies ho f=hh .  
We have 

Sn = ~-~q ( fn)*wq AT~+ = ( ddChn)q AT+. 
t 

Since hn decrease towards h>O, we get by induction on q tha t  the sequence (S,~),T__ 1 
has a unique limit as which satisfies a~=(dd~h)qAT:. Set R n = d - " ~ ( f n ) * w  k-~. 
Then 

1 n .  1 n *  ~ 1 n *  

where (T~)~~162 is a bounded sequence of positive closed currents of bidimension 
( s + l ,  s + l ) .  Since the potentials of d+n(f'~)*w uniformly converge towards G + on 
compact  subsets of C k, we infer tha t  R ~ -  S=--+0. The functional equation satisfied 

by as follows from f*Sn=d~Sn+l  (or equivalently from the invariance of T+ and 
the identity hof=hh) .  
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When I -  is an attracting set for f ,  it follows from Lemma 2.3 that  a~ has 
support in K +, and hence it is of total mass in C k. Note that in this case we 
recover the situation of Theorem 3.1. 

When the second inequality (2) holds, we easily get that  

c 
]hn+l-hn[_< ~ near I + N I  - on suppT+. 

So h is continuous in a neighborhood W of I §  - on supp T~ and there exists C > 0  
such that log + [[p[[-C<h(p)<log + [[p[[+C in W. 

Condition (2) implies that  I + n I  - is an attracting set for f]suppT~. Denote by 

B(I  + N I - )  ---- U~--0 f - j  ( w )  its basin of attraction. We claim that  supp T~_ \ B ( I  + n I - )  
c K  +. Indeed if (Sn(p))~= o is unbounded, then it cannot cluster on X -  which 
is at tracting for f - 1 .  So it clusters on q E I + \ X  - (recall that  suppT~ intersects 
{[z:0]} exactly along I + by Theorem 2.2(ii)). Now the blow-up S(q) of f at q 
is included in I -  (otherwise f - l ( f ( q ) k I - ) = q e X - ) ,  so q is sent by f[suppT~_ in  

I + O I - .  In other words, we have shown the inclusion I + \ X -  C Y(I + O I - ), so forward 
unbounded orbits on suppT+ actually converge towards I + n I  - .  Clearly h = 0  on 
K+NsuppT+ and h > 0  in B ( I + N I  - )  by the functional equation hoS=hh.  Thus 
h is continuous, since it is upper semicontinuous, non-negative and continuous in 
{plh(p) > 0 } = B ( I  + h I - ) .  

It remains to check that  a8 = (ddCh) q ATe+ has support in {pih(p) =0} c K +. This 
follows from'an argument similar to Lemma 2.3, using that  I + n I  - is an attracting 
set for fisuppT~ with d i m I + n I - = q - 1 .  [] 

T h e o r e m  4.6. Let f E A u t ( C  k) be a q-regular biholomo~phism which satisfies 
(1) above with 5:=dS /d~+ > l.  Then # : = a s A T  s_ is an invariant probability measure 

with compact support in K which does not charge pluripolar sets. 

Proof. Since as = (ddCh) q ATe_ and T ~ have locally bounded potentials, it follows 
from the Chern-Levine-Nirenberg inequalities (and their generalization to the case 
of pturipositive currents, see [FG]) tha t  the measure # = a s  AT~ does not charge 
pluripolar sets. That  # is invariant and has support  in the compact set K - - K  + N K -  
follows from Theorem 4.1. [] 

Remark 4.7. An argument similar to that  of Corollary 3.8 shows that  any un- 
stable manifold of dimension k - s  intersecting the support  of ~r8 is dense in the 
support of T2. The crucial point here is that if A is an unstable polydisc of di- 
mension k - s ,  then as A[A] is well defined (and non-zero) since as--(ddCh)qAT~ has 

locally bounded potentials. 
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5. E x a m p l e s  

5.1.  T h e  se t s  X + and  I + 

Let f E A n t ( C  k) be an algebraically stable biholomorphism. Recall that  X~ is 
defined inductively by 

X~=f({[z:Ol}\If), X f+,=f(Xf \ I f ) .  
This is a decreasing sequence of irreducible analytic subsets. Thus it is stationary 
and we have denoted by X + the corresponding limit set. Recall also that  the 

j--1 
sequence of indeterminacy sets I p  is increasing since I / j  =Ut=0 f-t(IY) �9 We have 
denoted by I + the set If~0, where J0 is the first integer such that  X+=X~o. 

When f is 0-regular, it was shown in [S] that  X+=X~ and I+=If=X - is 
irreducible. This is not so in general. 

Example 5.1. Let f(x,y,z)=(xd+zd+y, zd+x,z). Then f e A u t ( C  3) with 

X~={[z:y:O:O]}, X~-=X+={[I:O:O:O]}, I /={[0:1:0:0]} and I/2=I+={[x:y:z:O]l 
xd+zd=O}. Note that  I + is not irreducible. 

When X + is an attracting set for f ,  the dynamics of f in U +, the basin of 
at traction of X +, is given by that  of f0 : = f i x + :  X+ --+X+- It is therefore natural to 
wonder what kind of pairs (f0, X +) arise. When X + h i  + =0,  we can find a projective 
space p r - 1  which is disjoint from I + and mapped surjectively by f onto X +. In 
this case, if X + is smooth, it follows from a result of Lazarsfeld [L] that  X + is 
isomorphic to a projective space p ~ - i  and ]0 is an endomorphism of X+-~P r-1 of 
degree d§ However it is easy to construct examples with X + non-smooth or, when 
X + A I + 50,  with X + smooth but non-isomorphic to p ~ - l .  

5.2.  W h e n  is I -  an  a t t r a c t i n g  se t  for f ?  

5.2.1. The case of q-regular automorphisms. When f is a 0-regular automor- 
phism of C k, then I -=X + is an attracting set for f (see Proposition 2.5.3 in [S]). 
We now consider biholomorphisms of C 3 of the form 

f :  (x, y, z) E C 3 , } (P(x)+A(y)+az, Q(x)+by, x) c C 3, 

where ab~O and P,  A and Q are polynomials of degree d, m and d ~. We assume 
that  d>d'>m so that  d+=d, I+={[O:y:z:O]} and X + is a point which does not 
belong to I + (and hence f is weakly regular). The inverse mapping is given by 

f - l (x ,y ,z )= (z, y-Q(z) l ( x _ p ( z ) _ A ( y - Q ( z ) ) ) )  
b 'a 

We assume that md'>d so that  d_ =rod'>d+, I- ={[x:y:O:O]} and X---{[0:0:1:0]}.  
Note that  f is 1-regular. 
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L e m m a  5.2. Assume that d>d'>m+ l >_3 and set 

max{lxl,  1 } V~:-= (x ,y , z )  E C  a lyl} > -  max{1,1zl} �9 
e 

Then there exists eo>O such that if O<e<e0,  then f(V~)cV~I2. Therefore I -  is an 
attracting set for f .  

Proof. Pick (x, y, z) EV~ and set (x', y', z') =f(x ,  y, z). 
If Ixl =max{Ixl ,  lyl}, then 

ly't  : IQ(x)+byl >_ C~lxl d'-blyl >_ �89 d' for 0 < e < e l .  

Since d'_>2, we get ly'l_>2/e for e I small enough. Moreover Iz'l=lxl<�89 so 
x '  ' z " -V~ ,Y , )~  el2. 

We assume now that  ]yl=max{lx],  l y l }> l / e .  Suppose first that  Ix] d'_>lyl l+t 
where O < t <  1 will be chosen later. In this case 

t,l>_C lxld,_blxld,/O+O> lxl d, 2 _ > lyl l + t > -  f o r 0 < e < e 2 < < l .  
e 

Moreover 
Iz'l 2 C~ 
ly'l < Cllxl a'-I <- lYl (1+t)(1.1/d')" 

We choose t > 0  so that  d '>l+t>d ' / (d ' - l ) .  This is possible since we assumed 

that  d'>_a. The first inequality will be used below, the second one ensures that  

(l + t ) ( l -1 /d ' )>  l. Therefore Iz'l< �89 Hence (x',y',z')eV~/2. 
Finally suppose Ixt d' <_tyl TM. We have no clear control on ]y'h however we can 

control Ix'l. Indeed observe tha t  I P(x)l< C2 max{ Ix I, 1 }d ~ C2 lYl (l+t)d/d' �9 T h u s  

_• 2 
[x'[ = IP(x )+A(y )+az l  ~ C31Ylm-C2tyl o+od/d'-elal lYl ~ lYl m > - 

e 

for O<e<e4<<l ,  since d(l+t)<md'.  Moreover 

Iz'l 21xl 2 1 2 < - - <  < - .  
Ix'l C31yl m -  Ca lyl m-o+~)/d' 

The lat ter  inequality follows from our choice of t: we have indeed m - ( l + t ) / d ' >  
2 - ( l+ t ) / d '>  l. This shows that  (x',y',z')EV~/2. [] 

Remark 5.3. (1) More generally, the set I -  is f - a t t r ac t ing  for mappings of 
the form f = (x d +ym + B(x, y) +az, Q(x) + by, x), with appropriate  conditions on the 
degrees of the mixed terms in B. 
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(2) If the leading term in y depends on x or if r e = l ,  then some hypothesis 
on b has to be made to ensure that  I -  is attracting. Consider for instance f =  
(Xd+xPym+az, xd+by, x), where d>m+p and p>_l. Then f is still 1-regular and 
I -  is f -at t ract ing if and only if Ibl > 1. The proof of this fact is left to the reader 
since it is very close to that of Lemma 5.4 below. Observe that  d_ =md+p. 

5.2.2. Other examples. Consider f (x, y, z) = (xP(x, y) + az, x d+ 1 + by, x), where 
P is a homogeneous polynomial of degree d_> 1 and abr We assume that P(0,  1 ) r  
0. Then f E A u t ( C  3) is an algebraically stable biholomorphism such that d_ =are+ 
d+l>d+l=d+.  Observe that  f is not weakly regular but  f - 1  is, since I - = { [ x :  
y:0:0]} and X-={[0 :0 : I :0 ]} .  The following lemma completes the assertions of 
Example 1.11. 

L e m m a  5.4. Fix A such that 0 < A < l / ( l + d )  and set 

v~= {(x,y,z)eC a I max{Ixl, lyl} > max{ 1, Alzl} }. 

Assume that I b l = l + 2 t > l .  Then there exists e0>0 such that if O<e<eo, then 
f(Ve)cVe/(l+t). In particular I -  is an attracting set for f .  

Proof. Pick (x, y, z) EV~ and set (x', y', z') =f (x ,  y, z). 
If Ixl=max{Ixl, lyl}>l/E,  then ly'l=lxd+l+byl<_llxld+l<_(l+t)/e and 

Iz'l< 2 ( e )', 
ly'l - ~ < i - ~  for 0 < e < e l  <<1. 

Thus (x', y', z ')e V~/o+t ). 
Assume now that ]yl=max{Ixl, ly l}>l /e .  If Ixld+l<tlyl, then ly'l>(l+t)lyl> 

( l + t ) / e  and 

I z ~ l < l x l <  C ( e ) x 
ly'l (l+t)ly~----i - lyl 1-1/(d+1) < ] ~  for e small enough. 

Similarly if Ix[ a+l >2[b[ [y[, we obtain that  (x', y', z')eV~/(l+t) by considering [y'[. 
On the other hand if tlyl<lxl d+l <2[b I lYl, then IP(x,y)l>__Clyl d for some constant 
C > 0. Hence 

Ixq ~ Clxl IP(x, y ) l - l a l  Izl ~ C'M d+l/(l+d) -lale~lyl ~ c"lyl d+l/(l+d). 

Therefore Ix ' l>( l+t) /e  and Iz'l<_(E/(l+t))~lx'l . In all cases, we get (x' ,y ' ,z ')E 
V~lo+t ). [] 



Dynamics  of polynomial  au tomorph i sms  of (:7 a 239 

5.3. Growth  of  f on supp T~ 

We continue our analysis of the mapping f (x,y,  z)=(P(x)+A(y)+az, Q(x)+ 
by, x) and show that they satisfy the growth conditions of Section 4.2. 

Propos i t ion  5.5. Let f be as in Lemma 5.2. Set 5=d_/d+ =md~/d> l. Then 
there exists C>O such that 

c IIpll ~ ~ Ill(p)It <- CIIpll ~ fo~ all p E Veo nsupp T+, 

where c0>0 is chosen small enough. 

Proof. It follows from Lemma 5.2 that S(V~)C V~/2. Since supp T+ is completely 
invariant, this yields that f(V~ nsupp T+) C V~/2 nsupp T+. Note that V~ nsupp T+ is 
a neighborhood (in suppT+) of the point I+nI-=[O:l:O:O]. Thus 

V~ nsupp T+= {(x,y,  z)Esupp T+ lay ] >_le max{l, Iz]} and Ixl<c(e)ly I }, 

where c (e )~0  as E-+0. 
Fix (x, y, z)EV~nsupp T+ and set (x', y', z')=S(x, y, z). To simplify the no- 

tation, we assume that P, A and Q are unitary polynomials. We claim that 
]xld>_�89 m if e is small enough. Otherwise Ix'l=lxd+ym+...+azl>llYlm and 
ly'i=iQ(x)+byI <Colyl md'/4. Hence 

Ix' l> 1 , 1 
ly'---[ - Trig0 lYlm(1-d/d)  -> 4-- o ' 

contradicting that Ix'I <c(�89 
Similarly one gets that Ixld<2ly] m in Vd~suppT+. This shows that ]y]~/C1 <_ 

d ~ I x] <CllyI ~ for some constant C1 >0. Since 5=md~/d>l, this yields that 

1 
~IY] ~-- ly ' l=lQ(x)+byl <--Cly] ~. [] 

5.4. Various examples  

5.4.1. We here give examples of algebraically stable biholomorphisms SE 
Aut(C 3) such that G+>O on an open set which is attracted by a point of inde- 
terminacy m E I + n X +. 
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P r o p o s i t i o n  5.6. Consider f (x ,  y, z) =(yxd-{-az, yd+l +bx, y), where d> 3 and 
abr Set 

Wt,R,R' :=  {(X, y, Z) �9 0 3 I R < Ixl < R ' ,  R < lYl < tlxl and Izl < tlyl}, 

where R ' > R > I  and O < t < l .  F/x 6>0  such that ( l + E ) / ( 1 - e ) < t  -1.  

Then there exists Ro > 1 such that 

R > t~ ~ f (Wt,R,R,  ) C Wtd-l,(l_g)Rd+l,(1Te)(R')d+l- 

In particular fJ (Wt,R,R')-+ [1:0:0: 0] = X  + AI + and G + (p) >0 for pE Wt,R,R'. 

Proof. Pick (x, y, z) E Wt,R,R, and set (x', y', z') = f (x ,  y, z). Then 

Ix'l ~ lYl Ixld+lal Izl ~ (I+~)IYl Ixl d, if R is large enough, 

Similarly Ix ' l>(1-~)lyl Ixl ~ and (1--~)lyld+~<_}y'l<(l+~)lYl d+'. Therefore 

lz'L < i ! < t~- l ,  
ly'l - 1+6 lyl d 

if R is large enough, 

and 

lY'~ < I+____EE lYl d < t d _ ,  
Ix'l 1 - 6  Ixl d 

since ( l + e ) / ( 1 - e ) < t  -1. As a consequence fJ(Wt,R,R,)--+[I:O:O:O]=X+AI + if R >  

R0 >> 1. Moreover for any p E Wt,R,R', we can find M > 1 such that  It f j (p) ll_> M(d+l)~. 
Thus G +(p) >0. [] 

5.4.2. Let f E A u t ( C  3) be such that  X - A I - = 0  with d_ >d+. Assume that  I -  
is an attracting set for f .  Note that  X -  is a point ( s = l )  since otherwise d im l f -2  -- 
d i m I - - - 0  so f would be regular with d+=d2_, contradicting our assumption. We 
have constructed, in Theorem 4.1, an invariant ergodic measure #--cq AT_. It is 
expected that  periodic saddle points of type (1, 2) are equidistributed with respect 
to the measure #. A first glimpse of the importance of these points was given in 
Corollary 3.8 (resp. Remark 4.7), where we showed that  the stable (resp. unstable) 
manifolds of such points are dense in the support  of a l  (resp. T_). The following 
example shows that  one cannot expect similar properties for the periodic points of 
type (2, 1). Indeed we obtain an unstable manifold of dimension 1 which is closed. 
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Example 5.7. Consider f(x, y, z) = (xy d +az, x d+l +by, x), where d_> 1 and ab~ 
0. Then f E A u t ( C  3) with 

y_zd+ 1 x--b-dz(y--zd+I) d) 
f - l ( x , y , z ) =  Z, b ' a " 

We easily obtain that  X+={[x:y:O:O]}, X-={[0:0:I :0]},  I+={[O:y:z:O]} and I -=  
{[x:y:0:0]}. Note that  X-n I -=O and I+=Ip=I+U{[x:O:z:O]}. 

We can check that  I -  is an attracting set for f if [bt>l. Since d_=d2+d+l> 
d+  l=d+ ,  we are in the situation described above. Observe however that  0 is a fixed 
point with eigenvalues b, v ~ and -x/~.  So 0 is a saddle fixed point of type (2, 1) if 
la l<l .  Since f (0 ,y ,0)=(0 ,by ,0) ,  we get that  the unstable manifold of 0 is exactly 
the line {(0, y, 0)}. 

5.4.3. It is interesting to point out that  our main results apply to biholomor- 
phisms f c A u t ( C  k) which are not necessarily algebraically stable. Consider e.g. 

f(x,  y, z) = (z, y - z  d, x+y 2-2yz d) with d > 3. 

We have If={(x,O,z)}U{(x,y,O)} and f({[z:Ol}\Iy)=[O:O:l:O]EIy, so f is not 
algebraically stable. More precisely fJ  is never algebraically stable (j > 1). 

L e m m a  5.8. The first dynamical degree is given by A1 (f) = �89 (d+ ~ ) .  

Proof. One easily gets by induction on j that  the dominating term in fJ  
arises on the third coordinate as cjy~zZr where c~j and /3j satisfy c~j+l=/3j and 

/3j=d(c~j+/3j). We infer that  d e g ( f J ) = c ( � 8 9 1 8 9  
where c and c' are constants with c>0. This yields )~l(f)=limj_~+~ deg(fj)l/J= 
!(d+ [] 

On the other hand f - l (x ,  y, Z)=(x2d--y2+z, xd+y,x) is weakly regular with 
I-={[O:y:z:O]}, X-={[l :0 :0:0]}  ( s = l )  and d_=2d>d+=d+l. One can check in 
this case that  I -  is an f-at tract ing set, this ensures the existence of the invariant 
current hi.  

Remark 5.9. It is interesting to note that  for every j > l ,  fJ  is not even con- 
jugated to an algebraically stable biholomorphism. This is clear since Al ( f J )=  
(�89 [d+ ~ ] )J ~ N. There are polynomial automorphisms g of C 3 with interest- 
ing dynamics such that g is not algebraically stable, but g2 is 0-regular: consider 
e.g. g(x,y,z)=(xd+ym+z, xd'+y,x) with d'>max{d,m}. Then g2 is regular, so 
Xl (g)----- ~ = V f ' ~  7 . 
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