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Interior regularity of solutions to a 
complex Monge-Amp??re equation 

Bj5rn Ivarsson(1) 

A b s t r a c t .  We give interior estimates for first derivatives of solutions to a type of complex 
Monge-Amp~re equations in convex domains. We also show global estimates for first derivatives 
of solutions in arbitrary domains. These global estimates are then used to show interior regularity 
of solutions to the complex Monge-Amp~re equations in hyperconvex domains having a bounded 
exhaustion function which is globally Lipschitz. Finally we give examples of domains which have 
such an exhaustion function and domains which do not. 

1. I n t r o d u c t i o n  

Assume that  # is a positive Borel measure on a domain ~C_C n, n>2 ,  and 
some function on the boundary of ~. Central to pluripotential theory is the study 
of the Dirichlet problem 

{ (ddCu) "~--# in ~, 

u = ~ on 0n.  

Here d~=i(O-O) and note that  if uEC2(~)  then 

n 02u 
(ddCu)n=4 n { d e t ( ~ ) d V ,  

1 . n  where d V =  (3,) dzl/~d51 A... A dzn A d2n is the volume form. It is possible to define 
(dd~u) "~, the complex Monge-Amp~re operator, for more general plurisubharmonic 
functions. How to define this operator on continuous plurisubharmonic functions 
was explained in [2]. It should be noted that  Cegrell, see [9], recently has given 
a definition of (ddCu) ~ which has the optimal domain of definition. In both cases 
(dd~u) ~ is defined as a positive Borel measure on ~. In this paper we shall always 

(1) The author was partially supported by the Royal Swedish Academy of Sciences, Gustaf 
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have # = f d V ,  where f is a function. We shall be considering the question of how 
regularity of f implies regularity of u. In general solutions to (ddCu) n =0 can be 
irregular. One realizes this by thinking about a plurisubharmonic function which 
depends on n - 1  variables only. However, if one demands that  the boundary data  
be continuous then it can be proved in certain domains, as it was by Walsh in [15], 
that  the solution is continuous. Put  

PB~(z) = s u p { v ( z ) ; v  E 7)87/(1]) and l imsupv(z) < ~(z0) for all z0 E 0f~}. 
Z - - + Z  o 

It had been observed by Bremermann in [7] that  if the problem 

{ (ddCu) n=O in f~, 

u = ~ on 0f~ 

is solvable, then the solution is the Perron-Bremermann envelope 

(PB~)* (z) = lim sup PB~(~). 
~-+z 

The result Walsh obtained is the following. 

T h e o r e m  1.1. Suppose that f~ is a bounded domain in C n and ~oEC(0fZ). 
Assume that 

l iminfPB~(z)  = l imsupPB~(z)  = ~(z0) for all zo E 0~. 
Z--+ Z o  Z --+ Z 0 

Then PB~EC(~) .  

Higher order regularity is harder for the equation (ddCu)n=O as the example 

u(zl, z2)=m x { Izll 2 - 3 ,  Iz2l 2 - 1 , 0 }  2 shows. This function is smooth on the bound- 
ary of the unit ball, meets (ddCu) 2 =0 but is not smooth. For more examples of lack 
of higher order regularity see Bedford's and Fornmss' paper [1]. The first result on 
higher order regularity was obtained in 1985 by Caffarelli, Kohn, Nirenberg and 
Spruck in [8]. The positivity of f is crucial in view of the example above and those 
given in [1]. 

T h e o r e m  1.2. Suppose that ~ is a bounded, strongly pseudoconvex domain in 
C n with smooth boundary. Let f E C ~ 1 7 6  x R) be a strictly positive function which 
is increasing in the second variable. Suppose that ~oEC~176 Then the problem 

02 u 
d e t ( ~ )  = f ( z , u ( z ) )  in fl, 

u = ~ on 0~, 

u �9  ,sn(n)nc2( )nc(fi), 

has a unique solution. Moreover uEC~176 
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Remark 1.3. When we say that  a function g: R - ~ R  is increasing we mean a 
function with the property that  x<_x ~ implies that  g(x)<_g(x~). If x < x  ~ implies that  
g ( x ) < g ( x  t) we say that  g is strictly increasing. Finally smooth will always mean 
C~ 

Remark 1.4. Actually Caffarelli, Kohn, Nirenberg and Spruck proved a more 
general result than stated in Theorem 1.2. One can in fact allow the Monge-Amp~re 
mass of u to depend on the gradient of u in a certain way. For details on this see [8]. 

A domain f~ in C n is called hyperconvex if it admits a weak plurisubharmonic 
barrier at every boundary point, that  is, for every zoEOl2 there exists vET~ST-l(12) 

such that  v < 0  and limz-~o v(z)=0.  Kerzman and Rosay showed in [13] that  
for bounded domains it is equivalent to say that  there exists a smooth bounded 
strictly plurisubharmonic exhaustion function ~ in f~. This was improved upon 
by Btocki in [4] so that  we can choose a smooth plurisubharmonic p satisfying 
limz~zoe0~ p(z)=O and 

02Q 
d e t ( ~ )  _> 1. 

If we do not demand that  the solutions should be smooth we can get the following, 
which was proved by Btocki in [3]. 

T h e o r e m  1.5. Let f~ be a bounded, hyperconvex domain in C n. Assume that 

f is nonnegative, continuous and bounded in f~. Suppose that ~ is continuous on 

Of~ and that it can be continuously extended to a plurisubharmonic function on f~. 

Then there exists a unique solution to the following problem 

(ddCu) n = f ( z )  in f~, 

u = qo on Of~, 

u ~ ~s~(~)nc(fi). 
Btocki has also given a sufficient condition for smooth solutions in convex do- 

mains in [6]. This result has also been announced in [5]. 

T h e o r e m  1.6. Let • be a bounded, convex domain in C n. Assume that f is 

a strictly positive, smooth function in f~ such that 

l O S " ,  ,[ sup ----x--- (z) < cr 
z ~ [  oxt 

Then there exists a unique solution to the following problem 

. f 02u 
det ~ k ) - - - - f ( z  ) i n a ,  

lim u(z) = 0 for all Zo E 0~ ,  
Z ----) Z 0 

u ~ p s ~ t ( ~ )  n o  ~ (Q). 
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Note that  a convex domain is hyperconvex since convex functions are plurisub- 
harmonic and also that  a hyperconvex domain is pseudoconvex since the function 

~(z) = -  log( -o(z ) )  is plurisubharmonic and limz-~o ~(z)=co.  

Definition 1.7. We say that  a hyperconvex domain fl satisfies the nonprecipi- 
tousness condition, or for short the NP-condition, if we can find a smooth plurisub- 

harmonic function Q satisfying limz-,zoeOfl Q(z)=O and 

d e t (  02Q \ ~ ]  ~ 1, 

and the condition 

sup (z) ; z E l 2 a n d j = l , . . . , 2 n  <o0. 

In Section 5 we shall prove Theorem 5.1, which is an extension of Theorem 1.6 
to hyperconvex domains satisfying the NP-condition. In Section 2 we collect two 
comparison principles which will be used throughout the paper and in Section 3 
we prove an interior estimate for first derivatives in convex domains which the 
author thinks is interesting in itself. In Section 4 we give a global estimate of first 
derivatives in arbitrary domains. This estimate is then used to prove Theorem 5.1 
in Section 5. In Section 6 we give examples of hyperconvex domains which satisfy 
the NP-condition and hyperconvex domains which does not. Finally, I would like 
to mention that  this paper is an expanded version of my licentiate thesis [12]. 

2. Comparison principles 

We shall need the following two comparison principles, the first of which was 
proved by Bedford and Taylor in [2]. 

L e m m a  2.1. Suppose that 12 is a bounded domain in C n and v, wEC(O)N 
PST-I(~). Assume that (ddCv) n > (ddCw) n. Then 

min(w(z ) -v ( z ) )  = rain ( w ( z ) - v ( z ) ) .  
zEfl Eo~ 

The following lemma is sometimes useful. 

L e m m a  2.2. Let ~ be a bounded domain in C n. Assume that f E C ( 1 2 x R )  
is a nonnegative function which is increasing in the second variable. Suppose that 
v, w E C ( ~ ) n P 8 ~ ( ~ ) .  Then 

(ddCw) n <_ f ( z ,  w(z)) ,  f ( z , v ( z ) )  < (ddCv) n 

and v<_w on 012 implies that v<_w in 12. 
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Proof. Put  V(z )=v(z ) -w(z ) .  We want to show that V_<0 and do this by 
contradiction. Therefore assume that  there exists zoE~ such that V(zo)>0. Define 
~={zEf~;V(z)>O}. By assumption ~ is nonempty. Let ~20 be the component of 
that  contains z0. In f~0 we have 

(ddCw) n <_ f ( z ,  w(z)) < f (z ,  v(z)) < (dd%)', 

since f is increasing in the second variable. We have v=w on the boundary of f~0 
and an application of Lemma 2.1 tells us that v=w in f~0, which contradicts our 
assumption. [] 

3. I n t e r i o r  e s t i m a t e s  for  f i r s t  d e r i v a t i v e s  in  c o n v e x  d o m a i n s  

We now prove the following proposition, which is an extension of an estimate 
of Btocki, [6, Theorem 2.1]. 

P r o p o s i t i o n  3.1. Assume that f~ is a bounded convex domain in C a and 
that K is a compact subset of fL Let ~: Of~-+R be a nonpositive function and gE 
C~176 x R)  be a strictly positive function which is increasing in the second variable. 
Assume that weC~(~)npS?-l(f~) is a solution of 

. { 0 2 w \  
det - -  ina, 

w ( z )  = ~ ( z )  o n  0 ~ .  

Let D be the diameter of 12, 

C = sup{ Ogl/a " - ~ x  {z, t ) ;  (z,t) Ef~x [~nfw(z) ,0]  and l= 1 , . . . ,2n}  

and 

i - z + d n ( z ) e l  
M = s u p  mm 0 , -~u( i  ) "~E0~ ,  z E K ,  u= 

' 14- z+dn (z)el [ 

where el, . . . ,  e2n is the standard basis in R 2a. Then 

supKl~xt(Z) <- 2supzeKIW(Z)[+2SUpze~ da(z) +CD2 

for l= 1,..., 2n. 

and l = 1, ... , 2 n / ,  
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Proof. Take zoEK. After a translation we may assume that zo=O. We can also 
assume that gcC~(C n • R). Put f~ =f~-~el and assume that c>0  is such that 0E 
~ .  Now choose al such that f~leCatf~. We can always choose at=(dn(O)+c)/dn(O) 
and we see that the choice is independent of 1. Thus we put a=(dn(O)+r 
Now suppose that Wz is a solution of 

. . [  o2w~ "~ 
in 

Wt(z) = ~(z +eet) on 9f~. 

The functions Wl are translations of w. We see that Wl(z)=w(z+eet). Super- 
additivity of the operator 

d [ 02 u \l/n 
e t ~ ( z ) )  

on plurisubharmonic functions u gives 

d ,  / ' 0 2 ( V 1 - [ - 7 3 2 ) ,  ","~ e ~  ~ tz)) > (~b~/n(z)+!l~/n(z)) n 

if 
[' 0 2 v l  , ,'~ 

det ~ [ z / ) _ >  @(z), / =  1,2. 

Define w~(z)=a2w(a-lz). We have 

[, Oq2Wa \ l /n  . [, 02 w (a_lz)Xl/n) 
det ~ ( z ) )  - - - - d e t ~  

.~ ff(oI--l z, w(oL--1Z) ) 1In 

= g(c~-~ z, a-2w~( z) )l/" 

~ g(ot-l z, ~o~(Z) ) 1/n 

g(Z, Wol(Z) ) 1In --C[oL-I z-- zl 

> g(z+eet, w~(z)) 1 /n-Cla- lz-zI-Ce.  

Below we shall modify w~ to a plurisubharmonic function wl which satisfies 

d e t ~ t z ) )  >g(z+eet,ffJz(z)) in ft~ 

and ~z_<Wl on 0 ~ .  By Lemma 2.2 we can then conclude that t~t_<Wl in f~. Put 
v~,~,t=(-z+dn(z)et and ~,~,t=u~,~,t/[u~- l[. Let ~t=r 
and 

1 0 W  Nc~=2D(l-a-  ) sup~min~O,o~ ((t) } ; ( E 0 f ~ a n d t E [ 0 , 1 ] }  
' k I k ~,O,l 
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and 

Me,l = (a2 _ 1) suP{Iw(QI ; ~ �9 ~\oL-1 ~'~/}. 

Let C = C ( ( 1 - a - 1 ) D + r  and @~(z)=we(z)+C(H 2 - a 2 D 2 ) - / V e , ~ - M e , l .  We have 

[" 02"wl , ,'~ ( " o~'2we ,, l ln ~\n 
d e t e r ( z ) ) >  \ d e t ( ~ ( z ) )  +C)  

>_ (g(z +eet, we(z)) 1/~-C]~-l z -  z]-C~ +C) ~ 

>_g(z+eel,we(z)) 

>_ g(z+~,  ~z(z)). 

We now must  show tha t  Wl (z) > ~z (z) for every z C 0~t~. First observe tha t  if z �9 c0~t~ 
then there is ~ � 9  such tha t  z=~-Eet. We have 

W~(z)-~l(z) = Wt(z)-we(z)-~(lzl2-~2 D2)+ ge,l+ Me,t 

---- W(r ( r  (Ol 2 --  1 ) w ( o ~ - l z ) - { - N e , l - i - M e , I  

>_ w(~)-w(~-e(d~(O)-Fe)-lu;,o,,)§ Ne,, 

elur Ow 
= d~(0)+r  0~,0,  l (~) +Ne, l  _> 0, 

where ~, by the mean value theorem, is some point on the line segment 

{~t = ~ +(1-t)~(d~(O)+s)-lur ; t �9 [0, ll}. 

It follows tha t  wl _< Wl where both are defined and we have 

w(Eel) = Wt (0) _> ~l (0) = we (0) - Ca2D2 - Ne,z --Me,t 

= a2w(0) - Ca 2D2 - Ne,l - Me,z 

or, since 

. : =  (d~(o)+~ ~ 2~d~(o)+~ 
\ ~ ]=I-F d-~)~ ' 
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we get 

2 D E  w(O)-w(eel)<CD_ (dn-~+e+e)(1-~ 2edn(0)+e2~~ ] 

-t-da(0)+------~su p min 0, (~t) ; ; e 0 f t a n d t E [ 0 , 1 ]  

2edn (0) +e  2 2edn (0) + e  2 
Jr dn(0)2 sup{lw(()l ; r C ~ \ a - l i )~} - t  da(0)2 Iw(0)l 

< dn(0): 

4 dn(0--~sup~2De f m i n { O , ~ ( ( t ) }  ;,EO. 

2eda(0)+e  2 
-t da(O)2 s u p { l w ( ( ) l ; ( e ~ i d a ( 0 ) ( d n ( 0 ) + e ) - l f t t e } .  

Now let 0 and eez change roles, replace u~,z, z by u~,.,t=~-z-dfl(z)e, and 5~,~, L by 
~,~,z,~=~,z,~/l~,z,tl, and repeat the argument to get 

w(eel)-w(O) < 2edn(eez)+e2 
- dn(eet) 2 ~eKsup [w(z)[ 

+CD2(dn(~eel)+e+e)(l+ 2edn(ee')+e2"~d--~~s ~ ] 

-~dn (ee l )+esup  min O, 05~,e~,,l((t) ;le0~andte[0,1] 

2edn(eel) +e  2 
Jr da(eet)2 sup{lw(C)l;C efi\dn(eet)(dn(eel)+e)-la~}. 

Hence 

~ , - ~ l  (0) ] -< 2 SUpzeK Iw(z)t+ 2 supze0~infzeK dn (z)lqa(z)t+ 2DM +CD 3 +CD2 

or since z0 was an arbitrary point in K, 

sup w--(z)OW < 2supzcK [W(Z)I+2supzeo n [qa(z)I+2DM+CD a +CD2" [] 
z C K  O X l  - -  infzeK dn(z) 

If w--0 on the boundary of f~ then we can get a better  estimate. This is 
because the sole purpose of N~,z and Ma,l in the above proof is to make sure that  
Wl>_~l on a ~ .  If w--0 on cOf~ then we can set /Y~,l=.~a,l----0 and still be sure 
that  tvt _<0=-Wl on 0f~.  We have thus proved the following corollary to the proof 
of Proposition 3.1. 
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C o r o l l a r y  3.2. Assume that f~ is a bounded convex domain in C n and that K 

is a compact subset of fL Suppose that gEC~ • R) is a strictly positive function 
which is increasing in the second variable. Assume that wECCC(~)fq79~qT-l(f~) is a 
solution of 

/ 0 2 w  "~ 

w ( z )  - 0 

Let D be the diameter of f~ and 

Then 

in ~, 

on 0~2. 

{lOg lln, .,I [ in fw(z ) ,O]  and l 1, , 2 n )  C:sup -g- x . . . . . .  

sup ~xl  (z) 2SUpzeK Iw(z)I+CD3 Ow < 4-CD 2 for l = 1,.. . ,  2n. 
zEK -- inf~eK dn(z) 

If we also assume that  g is independent of the z-variable we get the following 
corollary. 

C o r o l l a r y  3.3. Assume that 12 is a bounded convex domazn in C n and that 

K is a compact subset of ~.  Suppose that gEC~176  is a strictly positive function. 
Assume that wEC~ is a solution of 

det \ozjOS,  k =9(w(z ) )  

w ( z )  - o 

Then 

in ~, 

on 0~2. 

Ow 
s u p - - ( z )  < 
zEK OXl 

2 sup~eK Iw(z)l 
inf~eK du(z) 

for l = 1, ..., 2n. 

4. G l o b a l  e s t i m a t e s  fo r  first derivatives in arbitrary domains  

We would like to remove the convexity condition in Proposition 3.1. This is 
possible to do. However then the estimate changes from an interior to a global 
estimate. One would think that  Proposition 4.1 is much more useful than Propo- 
sition 3.1. This is not necessarily so, since sometimes it is trivial to estimate the 
constant M in Proposition 3.1 while an estimate of SUPceon IOw(~)/Oxt] might be 
harder. It should be noted that  the estimate in Proposition 4.1 is very close to 
an estimate that  was obtained by Bedford and Taylor in [2] by more or less the 
same method. A similar estimate was also given by Caffarelli, Kohn, Nirenberg and 
Spruck in [8] using different methods. 
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Propos i t ion  4.1. Assume that f~ is a bounded domain in (Y~ and that 9E 
C ~ (~ • R) is a strictly positive function which is increasing in the second variable. 
Suppose that (yEC(0~) and that weC~ is a solution of 

. / 0 2 w ~  
d e t ~ ) = g ( z , w ( z ) )  i n n ,  

w(z) = ~(z) on 0~. 

Let D be the diameter of ~ and 

C = s u p {  OgX/n- - -~xt  ( z , t ) ;  (z,t) Eft•  [ i n f  w(z), : u p  qo(~)] and l= 1, ... ,2n} .  

Then 

< sup Sor alZz0 a o n e l = l , .  
- -  r 

Proof. Take zoEK. After a translation we may assume that z0=0. We can 
also assume that 9 E C ~ ( C  n xR).  Let el, ... ,e2~ be the standard basis in R2n~ 
C ~. Put 12~=~-ee~ and assume that e>0 is such that 0Efl~. As in the proof of 
Proposition 3.1 let Wt be the solution of 

( 02Wt ~=g(z+eet ,Wt(z ) )  in n~, 
det \ Ozj 02k ] 

W~(z) = ~(z +ee~ ) on 0 ~ .  

Study w(z) -Wt(z )  on O(~M~t~). We have 

w(~)- w~(z) = w(z) -  w ( ~ + ~ )  

>_-r ~ ;~t=z+teel ,  z e O ( ~ N ~ )  andre[O,  1] . 

Therefore, if we define 

Wt(z) = W~(z)-e sup -~xl ((t) ; (t = z +teel, zeo(nna'~) and t e  [0,11 

we have w>_~ on O(ana~). If we m o d i f y  Wz t o  ~L(z)=W~(z)+Ce(Izl 2-D 2) we 

still have w_>wt. We have 

d "  [, 0 2 ~ l  , ,~ l /n  �9 . { 02Wl  z ,~ l /n  

= 9(z+eet, Wt(z)) 1/'~ -9 (z ,  Wl(z)) 1/n +9(z, Wt (z)) 1/" 

>_ g(z, W~(z))~/"- CE 

> g(~, ~ ( z ) )  ~/"-C~ 
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02~1 O W l  deC ( ~ ( z ) ~  \ ] 2-- l/n n 

> (g(z, ~(z)) ' / " -c~+c~)  ~ = g(z, ~ ( z ) )  > g(z, ~ ( z ) ) .  

By Lemma 2.2 we see that ~l<W where both are defined and because of this 

w(O) >_ @l(O) = Wl(O)-CeD 2 

=w(ee l )_CeD2_esup{  Ow ~t -~xl( ) ;~t=z+teet ,  z e 0 ( a N a ~ ) a n d t e [ 0 , 1 ] }  

and we have 

w(eet)--w(O) <_ C~D2+~sup{ Ow ~t I -~xl( ) ;~t=z+teel ,  zE0(ftM~t~)andtE[0,1]}.  

Now let 0 and eet change roles and repeat the argument to get 

w(0)-w(~et) <C~D2+~sup{ 0w ~ , '  -~xt( ) ;~t=z+teet ,  zE0(ftM~t~) and tE[0,1]}. 

Thus we can conclude that 

-~l(0) < sup Ow (~) +CD2 [] 
- Ceo~ Oxt  

If we assume that g is independent of the z-variable we get the following corol- 
lary. 

Corol lary 4.2. Assume that ~ is a bounded domain in C n and that gEC~(R)  
is a strictly positive function which is increasing. Suppose that ~EC(O~) and that 
wEC~(fi)NPST-l(ft)  is a solution of 

/ 02w 
d e t t ~ ) = g ( w ( z ) )  in f ' ,  

w(z) = ~(z) on O~. 

Then 

  zolp< I ~EO~ OX~ 
for all zo E ~ and l = 1, ..., 2n. 



286 Bj6rn Ivarsson 

5. Smooth solutions to the Dirichlet problem in hypereonvex 
domains satisfying the nonprecipitousness condition 

Theorem 5.1. Assume that ~ is a bounded hyperconvex domain in C n and 
that f EC~176 xR)  is a strictly positive function which is increasing in the second 
variable. I f  ~t satisfies the NP-condition, see Definition 1.7, then the problem 

. / 02u \ 
d e t t ~ ) = f ( z , u ( z ) )  i n a ,  

)ira ~ u( z ) = 0 for all zo E OR, 

has a unique smooth strictly plurisubharmonic solution u, which moreover satisfies 

sup z ; z E ~ and l = l ,  ... , 2n < oc. 

Conversely, if there ~s a smooth strictly plurisubharmonic solution u to the problem 

. { 02u "~ 
(let _[ OzjO  ) = f(z, in 
lira u(z) = 0 for all Zo E 0~,  

Z - - f  g 0 

which satisfies 

~[ [ O u  2n} < sup/l~xl(Z)} ; z E f l  and l =  l , . . . ,  

then gt satisfies the NP-condition. 

Before we prove this theorem we state two propositions which we shall use in 
proving Theorem 5.1. In [14] Schulz established the following result. 

Proposition 5.2. Assume that ~ is a bounded pseudoconvex domain in C n 
and that gEC~176 x R) is an increasing function in the second variable which satis- 
fies g(z, t) >0 for all z E ~  and t e R .  Suppose that wEC~176 is a solution 
of 

. / 0 2 w ~  
(let ina,  

w(z)  =_ 0 on 0~ .  

Then for any ~>0 there is a constant C which depends only on n, e, [}w(z)Iic~(a), 
(infzet~ g(z, w(z)))  -1, Ilg(z, w(z))lIcl(~) and the diameter of ~ such that 

f o r j ,  k = l ,  ,n. 
02w C < ' 

We shall also use the following result which was proven by Btocki in [6]. 
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P r o p o s i t i o n  5.3. Let w be a C 4 plurisubharmonic function in an open set 12 
in C n and r Assume that for some nonnegative Ko, K1, 
b, Bo and B1 we have 

]]wiicl(n) _<Ko, s upAw(z )  < K1, b<~b(z) < Bo and IIr < B1. 
zEl2 

Then for any 121 ~ l~ there are two constants (~ and C where a E (0, 1) depends only on 
n, Ko, K1, b, Bo and B1, and C depends, besides those quantities, on infzen, dn(z),  
such that 

sup - -  ; j , k = l , . . . , n  <C. 
OzjO2a c,(~') 

Proof of Theorem 5.1. Assume tha t  ~ satisfies the NP-condition and let 0 
be an exhaustion function satisfying the conditions in Definition 1.7. We shall now 

construct a sequence (~2m)~=l of hyperconvex sets with smooth boundary such that  

~ 2 m ~ , ~ + l  and Um~=l g~m=~. By Sard's  theorem there is a sequence am>O such 
that  limm_+oo am =O and the sets ~m={Ze~;Om(Z)=O(z)+am<O } have smooth 
boundary and ~m~12,,+1.  Let u,~,mEN, be the solution of 

. f 02urn "~ 
d e t t ~ ) = f ( z ,  um(z)) i n u r e ,  

l im ~ urn(z) = 0 for all z0 E 012m, 

which by Theorem 1.2 is smooth. By Lemma 2.2 we have tha t  um+m'+l  _<Urn+,,, 
in ~m for m E N  and mlEZ+.  Now let BR(zo) be a ball tha t  contains 12 and put 
K = s u p z e  fi f(z,O). For v=K1/'~(lZ-Zol2-R 2) we have 

d [ 02v 
e t t ~ k )  =K,  

and Lemma 2.1 assures tha t  v<_uj on ~ j .  Suppose that  1 2 ~ � 9  There is an 

N E N  so tha t  if m > N  then ~ " ~ , , .  Put  u(z)=limm-~oo urn(z) for zEl2. This 
makes sense since U ~ = l  g~m = ~ ,  and since limz-~o v(z)=O for all zoEO~ we get 
l i m z ~  o u(z)=O for all zoEO~. Our task is to show that  the sequence (um)~=l  is 
uniformly bounded in C2'~(IT) for some a > 0 .  We have 

sup{[u~(z)[ ;z  E f~' and m E N }  < sup Iv(z)l <oo .  
zE~ ~ 

If  we let D be the diameter  of ~ and 

C = sup~ Ofl/n" o ] 
t 
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then by Proposition 4.1 we have 

0urn (:.1 
sup OUm(z) < sup --~-xt ( )+CD 2 
zE~' OXl -- CEOgtj 

Let 

for l = 1, . . . ,2n.  

6 1 - - s u p {  I flirt(Z, t)I ; (Z, t) E ~ •  [inf v(z), 0] and l =  1, ... ,2n}.  
LzE~t 

{zo+tel ; t E R}n~tmnB~(zo) 5 0 for all c>O.  

We need to pay special attention to boundary points z0 where we have 

{zo+tet ;tER}n~mnBe(zo)=0 for some e>O.  

The function um(zo+tez) is nonnegative as a function of t and zero when t=O. This 
shows that  Oum(zo)/Oxt =0 and as a result the inequality 

Oum <_ C1 ] O0 
Oxz ~zt J 

holds for all boundary points. Since ~ is assumed to satisfy the NP-condition we 
have 

OUm ~t' _ sup - - ( z )  < oc. sup --~zl(z) ; z E  and m E N  <C1 

Using Proposition 5.2 we get, for a fixed e>0,  

0272 m 

for points Zo EC~tm such that  

Then 

d" {02C1Qm { 02urn ( z ) ) ,  e~ ~ (z)),=cr f o'o~ z d e t L ~ ( ) )  >-C~ >- f (Z 'Um(Z) )=de tL~  

and hence CiQm<_u<O in gtm. If we let el, ..., e2n be the standard basis in R 2n it 
follows that  

(~Um < C1 O~o 
Oxz - oxz 



Interior regularity of solutions to a complex Monge-Amp~re equation 289 

for k , l=l , . . .  ,n. We have proven that  (Um)~= 1 is uniformly bounded in Cl(f~). It 
follows that  C <oc .  Since f Y ~ Q " ~ F t u  we have 

02um 
< lum(z)12+  < 

We can now use Proposition 5.3. All the constants in Proposition 5.3 are under 
control since inf~en, dnm (z) _>infze~, dn,, (z) >0, so we see that  (Um)~-_l is uniformly 
bounded in C2,~(f~ I) for some aE(0 ,  1). We can now use the Schauder theory 
described in Gilbarg and Trudinger's book [11] to establish that  uECCr and 
since Q~ was arbitrary we get uEC~ We also see that  in arbitrary compact fY 
we have 

O-a2-  (z) sup 00 
sup < C~ (z) < oc, 
zEfl' ~ zCfl OXl 

and again since fll was arbitrary 

Ou 

Uniqueness follows from Lemma 2.2. 
Conversely, if we have a smooth plurisubharmonic solution u to the problem 

det k. OzjO~k ] = f ( z ,  u(z)) 

lim u(z)=O 
Z - - + Z  0 

in 9t, 

for all Zo E Off, 

which satisfies 

sup (z) ;zEl2 and j =  l , . . . ,2n  < oc 

we see that  this solution satisfies all the conditions in Definition 1.7, at least after 
multiplication by a constant, and hence ~ satisfies the NP-condition. [] 

C o r o l l a r y  5.4. Let Q be a bounded hyperconvex domain in C n and fEC~ 
be a strictly positive function. I f  12 satisfies the NP-condition, see Definition 1.7, 
then the problem 

/ 02u "~ 
in Q, 

for all Zo E 0~, 
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has a unique smooth strictly plurisubharmonic solution u, which satisfies 

sup{ OU ; z E f ]  and l = l , . . . , 2 n ) < c o .  

Conversely, if there is a smooth plurisubharmonic solution u to the problem 

( o2u ) 
d e t \ 0 z j 0 2 k  = f(z)  

)ira ~ u(z)----0 

in f], 

for all zo E Of], 

satisfying 

sup z) ; z E f ]  a n d l = l , . . . , 2 n  <co, 

then f] satisfies the NP-condition. 

It would be desirable to describe the hyperconvex domains f] for which it is 
possible to solve the problem 

05 ~ 
det _ ( O z ~  ] -> 1 in f], 

l im ~ O(z) = 0 for all Zo E Of], 

sup -x - (z )  <co .  
zE~ OXl 

Btocki's result on defining functions for hyperconvex domains shows that 

/ 02Q ) 

)i_m ~ L,(z)=0 

in f], 

for all Zo E Of] 

is a natural condition. If we combine this with the condition that the defining 
function should satisfy 

sup ~-xe(Z) < 
z E ~  l 

we get an interesting class of domains which deserves study. 
If one wants existence results for 

02 u 
det - -  (OzgOSk) = f (z ,u(z) )  

li~oU(~)=o 
in f], 

for all zo E Of]. 
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in general hyperconvex domains one would need to obtain other estimates than those 
in Propositions 4.1, 5.2 and 5.3. To control the constants in these propositions we 
need global estimates of the first derivatives. Note that Propositions 5.2 and 5.3 are 
troublesome only if f ( z ,  t) really depends on the t-variable. If f is constant in the 
t-variable only Proposition 4.1 is troublesome. So in order to obtain an existence 
result we would need to get interior versions of Propositions 4.1, 5.2 and 5.3. If it 
were possible to somehow remove the convexity condition in Proposition 3.1 this 
would settle the matter when f only depends on the z-variable. 

6. Which domains satisfy the nonprecipitousness condition? 

In this section we shall give examples of domains satisfying and not satisfying 
the NP-condition. See Definition 1.7 for the definition of the NP-condition. 

Proposition 6.1. Assume that f~l, ..., ~ N are hyperconvex domains satisfying 
N the NP-condition. Then Nl=l 121 satisfies the NP-condition. 

Proof. As f~m satisfies the NP-condition we can write 12m={zEC n ;0re(z)<0}, 
re=l ,  ..., n, where ~m is a smooth plurisubharmonic function satisfying 

d e t \ ~  ] > 1  for z e ~m, 

limz-~o Om(z)=O for all zoEOl2m and 

0~0m (Z) E ~-~rn and l 2n} sup(  Oxl ; z = 1, ..., < co. 

Let f : {yCR2;y l<O,  y2<0}-+R be given by f ( y l , y2 )=max{y l , y2}  and ] be a 
smooth convex strictly negative approximation of f satisfying ](yl ,  0)=](0 ,  y 2 ) : 0  
for y l<0  and y2<0. We can choose ] so that f < ]  and O]/Oy~>O for /=1 ,2 ,  and 
we shall do so. 

We have ~lN~2={zeCn;max{01 ,02}<0} -  Put O(Z)=](Ol(z), 02(z)). This is 
a smooth plurisubharmonic function. We see that limz-,~o O(Z)=0 for z0 E 0(121Nf~2) 
and since max{01,02}<0 it follows that 

suP~tl ~0-~-~ (z)~ ;ZE~IM~2 a n d / = l , . . . , 2 n }  <co.  

We claim that ( 020 
d e t \ o ~ k  ] ~C>O in ~n~2. 



292 BjSrn Ivarsson 

One way of proving this claim is to use tha t  for a Hermitian matr ix  B we have 

(det B) 1/'~ = 1 inf Tr(AB), n AE.A 

where .4 denotes the family of all Hermit ian matrices A with det A =  1. For a proof 

of this equality see [10] or [4]. We have 

020 O] 020~ O] 0202 02]001001 
OzjO2k = Oyl OzjO2k Oy2 0zjOSk ~--~y~ ~zj 02k 

o 2] 002 ool 02] ool o~ o 21oo2 002 
Oyl Oy2 0zj OZ---k 9r OylOy----~2 0--~j 05k k Oy~ OZj 05k" 

Therefore we have 

( o20 ~ o/(  020, o/(  o'02 

(o0 o0)(o, o,)(oo o01 
051 ~ Oy2x OylOy2 Ozl "'" Ozn 

+ : i 02] 02] 002 002 
001 002 ... 
O2,~ 02n Oy2Oyl Oy 2 OZl OZn 

) 
In view of the convexity of ] we get 

n det 
020 ~1/~ 

~ J  
= inf ~ ( A (  02~ ~ 

0/ (A( 0201 ~_1_ 0/ ( ( 0 2 0 2 ) )  
> - -  inf Tr ] n f T r  A 
-- Oy 1 AeA \ \ OZjO2k ] ] Oy2 

o/ o/ 
> ~ ~ Oy2" 

Multiplying Q by a constant if necessary we see tha t  ~1N~2 satisfies the NP- 
condition. The proposition follows by induction. [] 

P r o p o s i t i o n  6.2. A strongly pseudoconvex domain ~ C  n with smooth 
boundaTT satisfies the NP-condition. 

Proof. Take a smooth plurisubharmonic defining function Q for the strongly 
pseudoconvex domain. It is a s tandard fact that  this defining function can be 

modified to a defining function which is strictly plurisubharmonic on the closure of 
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the domain and hence the domain satisfies the NP-condition. The modification is 
done as follows. Let r 2 for an A>0.  Then 

~O"L-~-Q~_ tjtk+2A ~ tj . Oz~k tjtk = (I+2AQ) ~ 2 n 
j,k=l j ,k=l  OZJOZk [~=1 

On 0ft we have 

02r - 020 tjtk + 2A E tj 
j,k=l OZJOT"k tjtk = OzjO2k ' j -1  j,k=l 

and for nonzero te{wCCn;~-~=l OQwj/Ozj=O} the first term is strictly positive 
and for other nonzero t the second term is strictly positive so if we choose A large 
enough then we can conclude that  r is strictly plurisubharmonic on a neighbor- 
hood of Oft. Now choose an E > 0 such that  ~ is strictly plurisubharmonic on the 
component of {zECn;[r which has nonempty intersection with 0f~. Call 
this component U. Suppose that  qo: R--+R is a smooth convex function satisfying 
~ ( x ) = x  if ]x[<�89 and ~ ( x ) = - s  if x_<-2s.  Let K be a compact subset of ft such 
that  {zECn;[r Now put 

S ~or  if z E ( f t u U ) k K ,  
#(z) / -~ ,  if z E K. 

This is a plurisubharmonic defining function for ft which is strictly plurisubharmonic 
near Oft. Let xEC~(ft) be such that  x - l (1 )_~f t \U .  Put  rl(z)=#(z)+SX(z)iz] 2. For 

small enough this function gives us the exhaustion function we need. [] 

Example 6.3. Now we shall show that  the bidisk D 2 = {z E C 2 ;]Zl ] < 1 and ]z2I < 
1} in C 2 does not satisfy the NP-condition. Define E={xER2;xl<O and x2<0} 

and f(xl, x 2 ) = - x l  l o g ( - x l ) - x 2  log( -x2)+(Xl+X2)  l o g ( - x l  - x 2 )  on E. The func- 
tion f is convex, homogeneous of degree 1 and zero on OE. Since f is homogeneous 
of degree 1 we have 

02/ 

This function is not quite the function we need for our construction since f is not 
globally bounded. We therefore modify it as 

{ f(xl,x2), w h e n - l _ < x l < 0 a n d - l _ < x 2 < 0 ,  

g(xl, x 2 ) =  f(xl,--1), when - 1  < xl  < 0 and x2 < - 1 ,  

f ( - 1 , x 2 ) ,  w h e n x l < - l a n d - l < x 2 < 0 ,  

f ( - 1 , - 1 ) ,  w h e n x l < - l a n d x 2 < - l .  
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Obviously g(xl, x2)---max{f(xl, x2), f(Xl, -1), f (- l ,  x2) , f(-1, -1)} and therefore 
it is convex. Now define u: D 2 - + R  as u(zl, z2)=g(log IZll,log Iz21). At points where 
u is smooth we have 

02u 1 c02g 
d e t ( ~ ( Z l , Z 2 ) ) - 1 6 l Z l ] 2 l z 2 , 2  det ( ~  (log [zl 1, log [z21)) 

we see that  

d / 02u 
et [ ~ ( z l ,  z2) ---- 0 on D2\{z E C 2 ;log Izll -- log Iz2t -- -1} .  

\ ozj ozk } 

The Monge-Ampbre mass of u is concentrated on the set {z E D ~ ;log [Zl[=log [z2[= 
-1} .  In order to use the comparison principles, i.e. Lemmas 2.1 and 2.2, we need 
to examine globally defined smooth regularizations of u. We need to conclude 
that  when we apply the Monge-Ampbre operator to these regularizations we get a 
function that  is bounded as we approach boundary points. In order to achieve this 
we need to be a little careful when we regularize u. 

Let ~ow(z) be the M6bius transformation that  is a bijection of D={zEC; [z[ < 1} 
onto itself, send 0 onto w and leaves w/Iw I invariant. It is easy to see that  

zq-w 
~w(Z) = z~+------i" 

Put  ~ow(z)=qo(z, w) and let ~=qo(z, w). For every wED there is a function r  such 
that  ~o(z, r  ~))=~. One sees this by solving 

zq-w 
z t~+ l  

for w. Taking real and imaginary parts we see that this equation has the same 
solution as the system 

{ ( 1 -  Re(z())  R e ( w ) -  Ira(z() Ira(w) = Re(~) -Re(z ) ,  

- Im(z~) Re(w) + ( l+Re(z~) )  Im(w) = Im (~ ) - Im (z )  

which is uniquely solvable since 1 - ( R e ( z ~ ) ) 2 - ( I m ( z ( ) ) 2 > 0  when z, ( E D .  Take a 

nonnegative X E C ~  (D) such that  fD X dA = 1. Write (I)(z, w) = (~O(Zx, wx ), ~(z2, w2)) 
and define 

Ux(Z) • JD2 U(r w) )X(Wl)X(w2) dA(wl) dA(w2). 

This function is globally defined. If we write ~(w, z, ()  = (r (zl, ~1), r (z2, ~2)) 
we get 

/o (0o)  ux(z)= 2u(;)X(r162162 -~ (w , z , ; )  dA(;1)dA(r 
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Now we can differentiate with respect to z without any problems and u x is smooth. 
What  remains to be shown to conclude that  ux is plurisubharmonic is the sub- 

mean value inequality. Note that ,  for fixed w--(wl, w2), the function u(~(z,w)) is 
plurisubharmonic. Because of this and ~ b i n i ' s  theorem we get, for zED 2, ~ E C  2 
and 7 E R ,  

1 ~o 2~ Ux(Z+T@ i~ dO 

= s ( 1  fo 2~ U(~p(Z+T@iO,w)dO)x(wl)x(w2 ) dA(wl)dA(w~) 

./~2 U((~(Z, W) )X(Wl)X(w2) dA(wl) dA(w2) 
=u~(z) 

for T so small that  ux(z+7@ ie) is defined for all 0E[0,21r] and we see tha t  u x is 
plurisubharmonic. 

We shall now est imate 

First note tha t  

02UX 

We have 

~2U X 
OZlOZl 

( 02ux ~ 02ux 02ux 
det \ OzyO2k ] <- OZ102------~l CqZ2C~Z2 " 

- - - - / D  ~ ( ~ U(Cp(Zl ' Wl )' CP(Z2' W2) ) ) X(wl )X(w2) dA(wl ) dA(w2) 

and similarly for 02Ux/OZ2OZ.2 . Using the chain rule we get 

02 O~ow, 2 02u 
0Z10~lU((~(Zl,Wl),~(Z2, W2) ) - -  --~--Zl (Zl) ~ ( q O ( Z l , W l ) , q O ( Z 2 , W 2 ) )  

I O~wl ,12 1 cO2g 
= - - ~ - ( z l )  41z112 0x~(log I~(zl ,wl)l , log I~(z2,w2)l) 

at points where u is differentiable, which is almost everywhere. We do not need to 
worry about  what happens when ]Zll=0 since 02g/Ox~=O when X l < - i  and since 
Xl--log [zll we see tha t  the apparent  singularity is nonexistent. 

Now let us examine which sets ~(Zl, supp X) appear  for different Zl. In order 
to make this analysis simple let us pick a X such that  suppx={weg;tw[<�89 
Obviously ~(0, supp X)--supp X- I f  zl 5 0  then we can write 

c2iarg(w'+l/zl) [Zll2--I 
~(Zl,  Wl ) -- I- 

zl  [zl12~v~+~1 " 
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When we have rewritten qO(Zl, W 1) in this form, it is possible to interpret the map- 
ping as a composition of translations, dilations and inversions in the circle. Viewing 
qo(zl, wl) in this way lets us conclude that, if we put 

2(Iz112-1) and 1 2(Iz112-1) 
a(z~) = q iZll(2+lZll) /~(z,) = IZllll[ll)r---r'+'zx"2-'z~"' 

then 

~(zl,  supp X) C {Wl E C ; ~3(zx) < IWll < a(zl)}.  

We are now ready to begin our estimation of the integral 

/D 2 ( ~U(qO(Zl, Wl), ~O(Z2, W 2 ) ) ) ~ ( W l ) ) ~ ( W 2 ) d A ( W l ) d A ( w 2 ) .  

First it is obvious that (41z112) -1 is bounded when IZll>e -1. We see that  

O~W 1 W 1 1 --]W 1 [2 

Oz: @1)= [Wl[ ( l+zllWl[)  2 

and because of this we see that  IO~o(zl,wl)/Ozll 2 is bounded when Iwll<_ 1 and 
Izll_< 1. Since also x is bounded we have established the following inequality 

s ( ~U(~(ZI' Wl)' qO(Z2' W2))) X(wl)X(w2) dA(wl) dA(w2) 

/ u  (log ko(zl, wl)1, log I~(z2, w2)1) dA(wa) dA(w2). 
02g 

< c Oz~ 
PP X x supp X 

Calculations give 

-x2/xl(xl+x2),  w h e n - l < X l < 0 a n d - l < x 2 < 0 ,  

02g 1/xl(xl - 1), when - 1  < xl < 0 and x2 < -1 ,  

Ox~ (xl, x2) = 0, when Xl < - 1  and - 1  < x2 < 0, 

0, when xl < - 1  and x2 < - 1 ,  

and the inequality 
02g Ix2l < Ix21 
0x~ (zl'z2)-< Izll IXl+Z21- Izll - - 5  

follows. Hence we have 
0 e 

qo(z2, w2)))  X(wl)x(w2) dA(wl) dA(w2) f D 2 ( ~ u @ ( z , , w d ,  
< C [ [log I~(z~, w~)ll dA(Wl ) dA(w2) 
- •  -i3g 

/ u  / u  1 dA(w~). = C Ilog I~(z2, w2)lld,X(w2) (log IcP(zi, Wl)[) 2 
PP X PP X 
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In a similar fashion we get 

02ux . f f 1 
(Zl, Z2) __~ C Jsu [log k0(Zl, Wl)[I dA(wx) [ dA(w2). 

0 z ~ 2  (log I~(z2, W2)[) 2 PP X a supp X 

Setting a=~o(zl, wl) we get 

fsuppx]log[qg(Zl,Wl)]l d~(Wl )~C~(z l , suppx ) l l og ]a [ I  d)~(a) 

<C -rlogrdr= = A(Zl). 

We also get 

1 dA(Wl) < C (log [al) 2 
ppx (log ]~(zl, wl)l) 2 - (z,,suppx) 

f~(~l) r 
<_ C./~(zl (log r)----- 5 dr 

[ 1 +21og[logrl+~(logr)]~(zl)=B(Zl), 

where ~ is a smooth function satisfying ~(0)=0. Now this implies that  

02Ux 02Ux < CA(zl)B(Zl) 
0Z10Zl 0Z20Z2 -- 

near boundary points z such that  [zl[=l.  The terms in A(zl)B(zl) that  are trou- 
blesome are 

(Og(Zl) 2 -/3(z1)2)(log [log a(zl)  [ - l og  [log jO(Zl)l) 

and 
1 1 

As we have OL(Z1)2--t~(Zl)2=(OI(Zl)..-[-~(Z1))(OL(Z1)--/~(Zl)), Ot(Zl)--~(Zl)=O([z1]-- 
1), log [log a(zl)[ =log[log [z I [[ +O(1) and log [log r =log[log [z 1 [[ +O(1), as [z 1 [ 
tends to 1, one sees that  the first term tends to zero as [Zl[ tends to 1. The second 
term is bounded since 

lim (o~(zl)2-~(Zl)  2) log/3(zl) loga(zl)  [Zl[--+I 

= lira Kl([zl[-1)2+O(([z1[-1)3) =K4 
[z1[--+1 (log [zl[+K2([zx[-1))(log ]Zx[-[-K3(]Zl[-1))-[-O(([Zl[-1) 2) 
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for some constants K1, K2, K3 and K4. Of course similar estimates with zl replaced 
by z2 holds. Thus 

lim det/~ 02ux 
~zo  \ Oz30~k / 

is bounded when ZoEOD 2. 
Let us now examine the boundary behavior of the first derivatives of u x. We 

have 

lux(z4-r = .In: lu( V(z +r w) ) -u(O(z,  w) )tX(Wl)X(W2 ) dA(Wl) dA(w2) 

= .In2 lu'(•(z' w))r w)r ) dA(w,) dA(w2)+o(lr 

_> C inf (llu'(~(z,w))ll IIr 
Iwl_<l/2 

Since we have lim~_,~ o inflwl<_l/2(l[u'(Ch(z , w))ll lie'(z, w)ll)=cr if zoEOD 2, we see 
that  limz.~o Hu'x(z)H =oc. 

Now let us compare u x with a smooth plurisubharmonic function Q: D2---~R 

satisfying limz-~ zoCO D2 Q( z )=0 and 

028 
d e t ( ~ )  > 1. 

After multiplication with a constant if necessary we can assume that  

( O~ux ~ 
detk ozjO2k ] < 1. 

Now Lemma 2.2 implies that  Q<u x and we get 

lim H~/(z)H _> lim [lu'x(z)[[=co 
Z ---> Z 0 Z-- -> Z 0 

and therefore the bidisk does not satisfy the NP-condition. 

Observe that  it is possible to use the fact that  the bidisk does not satisfy the 
NP-condition to show that  any hyperconvex domain i2C_ C 2 such that  D 2 C_i2 and 
Of~nOD 2 contains a nonempty relatively open set does not satisfy the NP-condition 
either. Assume that  f~ satisfies the NP-condition. Then there is an exhaustion 
function u for ~ such that  

---- 1 0 2  U 
dee ( ~ )  in i2, 

l im ~ u(z) = 0 for all z0 6 cOi2, 

Ou 
sup -x -(z) <o0.  
zEi2 (TXl 
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We know tha t  for D 2 there is an exhaustion function v such that  

cO2v det( ):l 
)imoV(Z)=O 

Ov 
sup - -  (z) = cx). 

zED ~ OXl 

in D 2, 

for all zo E OD 2, 

Now by the comparison principle it is clear that  u < v in D 2 and hence 

~u 
sup _-a=-(z) -- c~ 
zEfl uxl 

which contradicts the assumption tha t  i2 satisfies the NP-condition. In fact, it 
is enough to assume that  D2Cl2, O~nOD2=O~NTp(D 2) and tha t  Ol2NTpC(D 2) 

is relatively open. Here TC(D2)=(zEC2;~2=l(Ov(p)/Ozj)zj=O } and peOD2\  

{zEC2;Iz~l=lz2t=l}. 
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