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Sobolev spaces in several variables in L 1-type 
norms are not isomorphic to Banach lattices 

A leksander Petczyfiski(1) and  Michat Wojciechowski(1) 

Abstract. A Sobolev space in several variables in an Ll-type norm is not complemented in 
its second dual. Hence it is not isomorphic as a Banach space to any complemented subspace of 
a Banach lattice. 

1. I n t r o d u c t i o n  a n d  r e s u l t s  

K. Borsuk  essential ly observed tha t  Sobolev spaces in one variable are isomor-  
phic as Banach  spaces to  the  corresponding classical Banach  spaces LP=LP(O, 1) 
and C = C ( 0 ,  1) (cf. [B], [PS] and  [PW2]). The  s i tuat ion is more  involved for 

Sobolev spaces in several  variables.  For the  definit ion of Sobolev spaces see Sec- 
t ion 2. If  l < p < c ~  then,  under  mild condit ions imposed  on the  domain  ~ C R  n, 
the  Sobolev space L~k)(12 ) is still i somorphic  to LP(0, 1) for k = l , 2 ,  ... ; n = 2 , 3 ,  ... 

(cf. [PS] and [PWl]) .  However  this is not t rue  in the  limit cases p = l ,  p - - c o  and 
c(k)(~). Assume tha t  

(,) ~ c R  n is a n o n - e m p t y  open set, k =  1,2, ... ; n = 2 , 3 ,  . . . .  

T h e n  the  spaces C(k)(f l)  and  L~)(f~)  have the  following propert ies:  (a) they  are 
not  i somorphic  to  quot ients  of  s  in par t icu lar  they  are not  isomorphic  
to C and L ~ ,  respectively;  (b) they  fail to  have lust (cf. [DJP], p. 345 for the  

definition), in par t icu lar  they  are not  i somorphic  to any complemen ted  subspaces  
of  Banach  lat t ices (cf. [Gr], [H], IS2], [Kwe] and  [PW2]). S. V. S i s lyakov  [K1] (cf. 
also [PW2]) has  discovered t ha t  if ~ ,  k and n sat isfy (*) then  there  exist bounded  

non- two-summing  opera to r s  f rom the Sobolev spaces L~k ) (~)  and BV(k)(~)  into a 
Hi lber t  space. Hence these Sobolev spaces as Banach  spaces are not  i somorphic  to 
s  in par t icu lar  not  to the  Lebesgue spaces L 1(#). 

(1) Both authors were supported in part by the Polish KBN grant 2P03A 036 14. 
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In the present paper we establish another invariant which distinguish the spaces 
L~k ) (i2) from the Lebesgue spaces L 1 (#). Our main result is the following theorem. 

T h e o r e m  1.1. If  f~, k and n satisfy (*) then the space L~k)(12 ) is uncomple- 
mented in its second dual. 

We identify here and in the sequel a Banach space X with its canonical image 
in its second dual X**. 

Note that  L~k ) (f~), being isomorphic to a subspace of L 1(#) for appropriate # 

(cf., e.g. [PW2]), contains no subspace isomorphic to co. Thus combining several 
facts on Banach lattices ([LT], vol. II, Proposition 1.c.6; Proposition 1.a. l l  and 
Theorem 1.b.16) with Theorem 1.1 we get the following corollary. 

C o r o l l a r y  1.2. I f  [2, k and n satisfy (*) then L~k)(~ ) is not isomorphic to 
any complemented subspace of any Banach lattice. 

The space BV(k)(~/) is a dual Banach space (cf. Section 6). Thus BV(k)(f~) is 
complemented in its second dual (cf. [D]). On the other hand, the canonical image 
of a Banach space X is complemented in X** if and only if X is isomorphic to a 
complemented subspace of a dual Banach space (cf. ILl, p. 540). Thus Theorem 1.1 
yields the following corollary. 

C o r o l l a r y  1.3. I f  f~, k and n satisfy (*) then L~k)(f~ ) is uncomplemented 
in BV(k) (f~). 

The Lebesgue decomposition provides the natural projection from the space 
M(12) of all scalar-valued Borel measures on f~ with finite variation onto L 1 (i2)-- 
the Lebesgue space on f~ with respect to the n-dimensional Lebesgue measure. Thus 
Corollary 1.3 roughly speaking says that  there is no counterpart  of the Lebesgue 
decomposition theorem for Sobolev measures. 

Our proof of Theorem 1.1--presented in Section 4--uses the technique devel- 
oped in [KaP] for translation invariant subspaces of LI(G) on a compact abelian 
group G spanned by the complement of a Sidon set. The method goes back to 
Lindenstrauss [L]. On the "abstract side", our proof uses the Lindenstrauss lifting 
principle (see Section 3, and [KaP]). The main analytic tool is Peetre's theorem 
(cf. [P]) on the non-existence of the right inverse for the Gagliardo trace (cf. [G]). 
In Section 5 we present an alternative proof of Peetre 's theorem. Section 6 contains 
some facts about the space of Sobolev measures BV(k)(gt). Using the fact that  the 
latter space is a dual space, we outline a variant of the proof of Theorem 1.1 which 
does not use the Lindenstrauss lifting principle. 
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2. P r e l i m i n a r i e s  a n d  n o t a t i o n  

By Oaf and D~f we denote the ~th  partial derivative and the a th  distribu- 
tional partial derivative of a scalar-valued function f in n variables corresponding 
to the multiindex n ,~ ccEZ+:=yI j= l{{0}uN }, where N:={1 ,2 ,  ...}. For open i t c R  n 
we denote by :D(f~) the space of infinitely differentiable scalar-valued functions r on 
f~ with compact support, 

supp r = {x E it :  r  r 0} C it. 

Here and in the sequel fi~ stands for the closure of a subset A o f R  n and bd A : = / I \ A  
stands for the boundary of an open set A. Recall that  given a scalar-valued function 
f defined on an open set i t c R  ~ (respectively a Borel measure # on it) a function 
g on Q (respectively a measure u on it) is called the c~th distributional derivative 
of f (respectively of #), in symbols g:=D~f (respectively v = D ~ # )  provided 

]~ fO~r fflgCdx (respectively fflO~r fncdu) 

for CE79(it). For the multiindex a=(c~j)~= 1 the quantity I~l:=~j~l ~j is called 
the order of the derivative D ~. (We also denote by txl the absolute value of a scalar 
x; it will be clear from the context each time which of these we have in mind). For 
a = 0 : = ( 0 ,  ..., 0) we admit for convenience D~ and D~ The symbol f ... dx 
denotes the integral against ,k,~--the n-dimensional Lebesgue measure on R n. By 
LP(it) we denote the Lebesgue space L p on i t c R  n with respect to )~,~. By M(i t )  
we denote the space of all scalar-valued Borel measures on it with bounded total 
variation, with the total variation (of the measure) of it as the norm. The field of 
scalars is either the real number s - -R- - ,  or the complex numbers- -C.  Our definition 
of spaces of continuous functions is "unorthodox". For open i t C R  n, by C(it)  
we denote the space of uniformly continuous scalar-valued functions on it which 
vanishes at infinity. (The latter condition is meaningful only for unbounded fL) 
Each fEC(it) uniquely extends to ~; we shall identify f with its extension to Q. 
We equip C(it)  with the usual sup norm, Ilfllc(n)=SUpx~n If(x)l �9 

Let l<_p<_oo, k=0,  1,.. . ,  and n = l , 2  . . . . .  The Sobolev space L~k)(it ) is the 
Banach space of scalar-valued functions f on open f2CR n such that  D'~f exists 
and belongs to LP(f~) for I~1 ___k, equipped with the norm 

/ (El~l<_k IID~flIPL,,(a)) lip for l _ <p <  oc, 
IlfllL~'~)(a) 

t maxl(,l_<k IID~flIL~(m for p = co. 
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By BV(k)(Q) we denote the space of measures #EM(Q) such that  Da#  exists and 
belongs to M(Q) for la l<k,  equipped with the norm 

II~llBv(~)(n)-- ~ IID~ll~,(~) - 
I~l_<k 

Note that  L~k)(f~ ) can be identified with a subspace of BV(k)(Q) consisting of # 
with all distributional derivatives of order _<k absolutely continuous with respect 
to An. If #EBV(k)(Q) then D~# is absolutely continuous with respect to An for 
Ic~[<k. For k = l  this follows by eonvolving/~ with a C a approximate identity, and 
applying the Sobolev embedding theorem (cf. [M], Theorem 1.4.3); the case k > l  
follows by induction. 

By C (k) (Q) we denote the space of all scalar-valued functions f on Q with 
derivatives 0 ~ f E C(f~) for [~] < k, equipped with the norm 

By C0(k)(Q) we denote the subspace of C(k)(Q) being the closure of Z)(Q) in 
the norm [] �9 ]lc(~)(a). Clearly C(k)(Q) can be regarded as a subspace of L~()(Q); we 

have L~) (Q) DC(k)(a ) DC(ok) (12). 

Warning: According to our definition of C(f~) we have C (k) (Rn)=c0(k)(Rn). 
By T)(~) we denote the space of functions being the restrictions to Q of func- 

tions from :D(Rn). Recall (cf. [A], Chapter 3, Theorem 3.18) the following lemma. 

Densi ty  l e m m a  2.1. The space D(Q) is dense in the space LP(k)(~) in the 

norm [[ �9 I[L~k)(~ ) for l<__p<co, and in the space C(k)(Q) in the norm II . llc(k)(~), 

provided ~ has the segment property, i.e. every x E b d Q  has an open neighborhood 
[Ix in R n and there exists a non-zero vector Yx such that for every zCQNU~ one 
has z+ty~ EQ for O<t<  1. 

3. Preparation for the proof  of  Theorem 1.1 

3.1. Lindenstrauss lifting principle 

Recall (cf., e.g. [KaP] for the proof) the following principle. 

Lindenstrauss lifting principle. Let Q: X-+ Y be a bounded linear surjec- 
tion (X,  Y Banach spaces). Assume that ker Q is complemented in its second dual. 
Then for every f~l-space L, every operator T: L-+ Y admits a lifting, i.e. there is an 
operator T: L-+ X such that T = Q T .  
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Recall that  an operator S: Y--~X is a right inverse of an operator Q : X - + Y  
provided Q S = I d y ,  where Idy denotes the identity on Y. Clearly an operator which 
has a right inverse is a surjection. Specifying in the Lindenstrauss lifting principle 
L = Y = L  1 and T=IdL~ we get the following corollary. 

C o r o l l a r y  3.1. If Q: X-+L 1 admits no ,'ight inverse then ker Q is uncomple- 
mented in (ker Q)**. 

3 . 2 .  A p r i o r i  i n e q u a l i t i e s  r e l a t e d  t o  t r a c e s  

We need some properties of traces of functions in L~a ) (D) in the particular case 
where 12 is a halfspace. Representing R n = R n-  1 x R for x E R n we write x = (y, Xn) 
with y E R  n 1 and xnCR. We identify R n-1 with the hyperplane {(y, xn)ERn: 
x~=0}. We put 

R~_:={(y , x , , ) eRn:x ,<O}  and R+:={(y,  x n ) ~ R " x ~ > O } .  

Each CET)(R.n_) uniquely extends onto R.~, hence it can be regarded as infinitely 
differentiable function on ~ n .  In particular the restriction 0~r is well defined 
for each multiindex aEZ~.  For brevity we put r176176 ..... 0,s)r and r 
0(~ ..... ~_~,s) for ~3-(13 -~-1 ,-1 -~  3Jy=1 cZ+ and for sEZ+. To define a surjective trace onto 
L I ( R  n-x) we need two a priori inequalities. The first is well known (cf. e.g., [Ko], 
proof of Proposition 3.2). 

L e m m a  3.2. Let k--=l,2,...; n- -2 ,3 , . . . .  Let r Then 

(3.1) llr176 IIL,(R"-,) --< llr 

Proof. We have r 0 ) : f o c ~  r S) ds. Thus 

[{r176 H/,(R--~)--JR~_I 1/_ L r176 

J JR/I {r s)] ely ds <_ ]ICH L~k) (R ~ - )- [] 

The second lemma insures the surjectivity of the trace. 
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L e m m a  3.3. Let k=1,2, ... ; n=2,3, .... Then there exists C=C(k) such that 
for every gCD(R n- l )  there exists r such that 

(3.2) r IR,~_l ---- g; 

(3.3) / f k > l  then r176 for s=O, . . . , k -2 ;  

( 3 . 4 )  IIr -< CIIglIL'(R~-')" 

Proof. If 9=0  we put  r  If i f#0 then O<c=max{llO~ffllL,(Rn-,): I~l<k}. 
Pick hEI)(R) such that h(k-1)(0)=l and if k > l  then h(S)(0)=0 for s=0, . . . ,  

k -2 .  For sufficiently small t>0, which will be chosen later, we put 

~)(y, Xn):=tk-lh(~)g(y),  y e a  n-l, Xn ~O. 

Then for s=O, 1, ..., and for/~EZ~ -1 one has 

(3.5) ~)(f~'S)(y, Xn)----tk-l-sof~9(y)h(S'(~ ) n-I , y c R  , x~_<0. 

In particular for s = k - 1 ,  /~=0:=(0,...,0), xn=0 we get (3.2). Similarly (3.5) 
yields (3.3). Specifying in (3.5), s=k and/3=0 we get 

f . IR.-,  ]g(Y)] dy 

= Ih(k)(x~)l dx~llgllLl(a~-,). 
O O  

If O<_s<k and I~[<_k-s then, for 0 < t < l ,  (3.5) implies 

t k-s o h (~) IOZg(y)ldy o xo xof 

/o 
= t k-s Ih(~)(xn)t dxnllO%llL,(R~-,) 

f_ _< t lh(~)(z,OI ax,~llo%llL~(R~-~). 

Thus setting 

(cN t=  max f _o Ih(~)(xn)ldxn IIglILI(R~-I) ' 
\ O<s<kJ_~ 

where N is the number of elements of the set of multiindices, {(/3, s):l/~ I +s<_k}, we 
C 0 get (3.4) with = f _ ~  Ih(k)(xn)ldxn+l. [] 

L 1 { R n ]  By the density lemma 2.1, ~(R=)  is a dense linear manifold in (k)~ _j and 
Z)(R n- l )  is dense in LI(R~-I) .  

Thus Lemmas 3.2 and 3.3 imply the following result (cf. Gagliardo [G]). 
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C o r o l l a r y  3.4. Let k=l ,2 , . . . ,  and n=2,3, . . . .  Then there is a surjection 
Tr(k):L~k) (Rn)-+ L I (R n-~) which is the unique continuous extension of the map 

r162176 

3.3. Peetre 's  t h e o r e m  on  non -ex i s t ence  o f  right inverses of  some  traces 

The next result discovered by Jaak Peetre [P] provides the crucial ingredient 
of the proof of Theorem 1.1. 

P e e t r e ' s  t h e o r e m  3.5. There is no right inverse of Tr(1):L~I)(Rn_)-~ 
L I ( R  n - l )  for n=2, 3, .... 

In Section 5 we present a proof of Peetre's theorem and some of its counterparts 
for the n-dimensional torus. Here we state only a simple consequence of it which 
we need for the proof of Theorem 1.1. 

C o r o l l a r y  3.6, Let k = l , 2 , . . . ;  n = 2 , 3  . . . . .  Let X be a subspace of L~k)(R~_) 

such that Tr (k) maps X onto LI(Rn-1) .  Then Tr(k)lx admits no right inverse. 

Proof. If S: LI(Rn-1)-+X were a right inverse of Tr(k)]x then I(k)JxS would 

be a right inverse of Tr (1). Here Jx: X-+L~k)(R~-) denotes the inclusion map and 

I(k):/~k)(R~-)-+L~I)(R~-) is defined by I(k)(f)=D (~ ..... 0,k-1)f for f~/~k)(R~_). [] 

4. P r o o f  o f  T h e o r e m  1.1 

We begin with the special case ~ t=R n. 

P r o p o s i t i o n  4.1. The space L~k)(R n) is uncomplemented in its second dual. 

Proof. It suffices to exhibit a complemented subspace of L~k)(R '~) which is 

uncomplemented in its second dual. Let eL~k ) (R n) (respectively ~ ) (Rn)) denote 

the subspaces of L~k ) (R '~) consisting of the functions which are even (respectively 

odd) with respect to the variable xn. The subspace is complemented in L~k ) (R n) via 

the projection f ~ - ~ f  (respectively f~_+of), where ef(y, xn)=�89 X,~)+ f(y,--Xn)] 
(respectively Of(y, Xn)= �89 If(y, xn) - f ( y ,  -xn])  for a.e. (y, xn) e R  n-1 x R. 

Next we define a subspace Xk of L~k ) (Rn) by 

{ for k= 1,2, 
X k =  cl{r162176 for 0 < s <  � 89  for k = 3 , 5 , , . . ,  

cl(r : r 176  ~ 0  for l<_s<�89 for k - - 4 , 6 , . . . .  

Here cl stands for the closure in the norm II - IIi~k)(R-_). 
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It follows from Lemmas 3.2 and 3.3 that  Tr(k) lx k :Xk--+ L 1 (R ~- 1) is a surjection 
which, by Corollary 3.6, has no right inverse. Hence, by Corollary 3.1, ker(Tr(k)lx~) 
is uncomplemented in its second dual. To complete the proof we shall show that  
(here ~ stands for "is isomorphic to") 

(4.1) 
lOLl  [][2tn~ ker(Tr(k)lxk ) '~ ( k ) ~  j for k odd, 

eL1 (l~n'~ (k) t*~ J for k even. 

We verify (4.1). First consider the case k odd. Pick fEker(Tr(k)[xk). Then there 
exists a sequence (@)IeNCXkNI)(R n) such that  limt~or IIf--@llL~k)(a~)=0. The 
existence of such a sequence for k--1 is a consequence of the density lemma 2.1, 
and for k=3,  5, ..., it follows from the definition of Xk. Thus remembering that  
f Cker(Tr(k)]x k), we have 

= lira II Tr(k)(f--@)llLX(R'~-~) =0. lim IIr176 l - ~  l--+~ 

By Lemma 3.3, there exists a sequence (r CZ)(R. n-) such that,  for l =  1, 2, ..., 

IIr ~ CI[ Tr(k)(r Tr(k)(r =Tr(k)(r 
~/,(0,~) 

if k >  1 then wt (.,Xn)=_Ofors=O . . . . .  k - 2 .  

In particular 

r CXk and e l - e l  C ker(Tr(k)[xk) for l =  1,2, ... lira H~/)/tlL~k)(R--) = 0 .  
l--4OO 

Put  f t=@-r and define ]l: Rn--+C by 

(4.2) fl(y, Xn):(  fl(y, Xn) for Xn < 0, 

-ft(Y,-Xn) for Xn >0. 

Since fl belong to Z)(R.~) and have pure right derivatives with respect to xn of even 
order < k - 1  identically equal 0 on the hyperplane xn=O, we easily verify that  
is odd with respect to x,~, belongs to C(k)(R n) and has compact support. Thus 
fl e ~ ) (Rn). Clearly, by (4.2), 

II~--~'IIL~)(R~)~211f~--f~'IIL~)(R~) for l,l'~N. 

Since l i m z ~  IIf~--fllL~k)(a~) =0, we infer that  the sequence (fl)teN is a Cauchy se- 
L 1 ,~ - quence in (k ) (R) .  Thus there is fe~ n) so that  l i m t ~  [Ift--fllL~k)(rt~)=O. 
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Clearly ]]f]l/~k)(R~)<__[]j~l]//k)(Rn )_<2]]f]]/Ik)(R~). It is easy to verify that the map 

f~-~] is linear. Hence it is an isomorphism from ker(Tr(k)]xk) into ~ ). 

To complete the proof in the case k is odd, we show that the map f ~ + ]  is onto 
~ 

Let ((I)t)lcN C Co (k) (R  n) n~ n) be an approximate identity for L 1 (R  ~) con- 
sisting of functions symmetric with respect to the coordinate x~. Then, for each gE 
OL~k) (R~), the convolution g. ~t e C(o k) (R n) A~ n). Thus (g* (I)z)(~ ( . ,  0) ~ 0  

for s=0,  ..., �89  1). Moreover liml_+~ tlg--g*~lllLlk)(R,)=O. Pick T/C/)(R n) such 

that ~l(y,x~) depends only on y for ]z~]<l  and 7/(0,0)=1. Let rl~(X)=71(x/n ) 
for xERn;  nEN.  Put  gz=(g.a2z)rlm. If the sequence (nt)~eNCN sufficiently 
rapidly tends to infinity then l i m t ~  ]]g--gl]]Ll,)(Rn)=O (cf. [S], Chapter V, w 

proof of Proposition 1 for details). Obviously gl ET)(R n), and g[0,2~) ( . ,  0)--0 be- 
cause in the neighborhood of R n-1 the function 7/m depends on the variable y 
only. Let r Then r  and lim~_~ ]]f--r for 

some f c k e r ( T r  (k)[xk). Clearly ]=g. 
The case k even is proved similarly. Instead of (4.2) we define j~ by 

{ fz(y,x~) for x~_<0, 
]~(y,x~)= f~(y,-x.) forx~>0. [] 

Proof of Theorem 1.1. Every non-empty open f ~ c R  n contains an open cube 
U with edges parallel to the coordinate axes. There is a linear extension operator 
from L~k)(U ) to L~k)(Rn). (This is a very special ease of Stein's extension theo- 
rem (cf. [S], Chapter VI); this case can be proved in an elementary manner (cf., 
e.g. [PW2], proof of Theorem 57.) Thus it follows from [PW1], Theorem 1, that 
L~k)(U ) is isomorphic to L~k)(Rn). On the other hand, the existence of a linear 
extension operator in question implies the existence of a linear extension operator, 
say s ) (because V c ~ c R n ) .  Thus L~k)(U ) is isomorphic to a 

complemented subspace of L~k)(12); the subspace is s the projection is 

given by f~+$(f]v) for feL~k)(f~ ). Thus, Llk)(~ ) is uncomplemented in its sec- 
ond dual because, by Proposition 4.1, it has a complemented subspace with this 
property (cf. [L], p. 540). [] 

5. P r o o f  o f  P e e t r e ' s  t h e o r e m  a n d  its  re la t ives  

To make the paper self-contained we present a proof of Peetre's theorem. Our 
argument uses some ideas of the elegant proof of Brudnyi and Shvartsman (cf. 
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[BS], Theorem 5.5). However we derive the theorem from its counterpart for the 
two-dimensional torus. 

Let In:={x=(xj)~_lERn:txj t< 1 for j = l , . . .  ,n} and I=~:=R~NI n. We iden- 
tify I ~-1 with the set {x=(xj)~_leRn:x~=O}. Clearly L~k)(I n) can be identi- 

fied with {flln :fEL~k)(R~)}. Similar identifications hold for p n L(k)(R+). The n- 

dimensional torus T n is identified with the cube I '~ with the boundary points iden- 
- -  n n .  tiffed coordinatewise modulo 1. We let T~:-{t=(t j ) j= 1GT . •  and we iden- 

tify T n-1 with the set {t=(tj)~=~eT":t,=O}. For k=0,  1,...,  the Sobolev space 
L~k)(W n) can be regarded as the subspace of L~k)(I n) generated by the characters 

{exp 27ri( -, m) :mEZn}.  For k=0  we have LP(Tn)=LP(In). The space LP(k)t/Tn+J ~ is 

defined to be the subspace of P L(k)(I+) consisting of the restriction to I~_ of func- 

tions from L~k)(W~). For k = l ,  2, ..., we define the trace tr(k): L~k)(In)-+Ll(I n-l)  

by t r (k)g=(Tr (k) f)ll--1, where fEL~k)(R~_) satisfies fl1~_ =g; we further define 

~(k):  L~k)(wn_)_+Ll(Wn_l ) as the restriction of tr (k) to L~k)(Tn). To prove the 

surjectivity of the trace Tr (k) we need to change the proof of Lemma 3.3 slightly. 
We have to assume additionally that  we pick h E D ( R  n) to be symmetric with re- 
spect to 0; we fix a one-periodic function p (in the variable x,~) such that  gllEl)(I) 
and p(0)=l .  After constructing CE/) (R ~) as in the proof of Lemma 3.3 we replace 
it by 0r Thus if we started from a one-periodic gET)(R n - l )  then we can regard 
0r as a function in L~k)(T n) which satisfies It0r162 where the 
positive constant C depends only on the sup norms of 0 and its partial derivative 
of order _< k. Thus we have the following result. 

P r o p o s i t i o n  5.1. The traces tr(k): L~k)(I~)-~ LI(I  n-l)  and Tr(k): L~k)(W~)-+ 

L 1 (T n - l )  are surjections (k= 1, 2, ... ; n=2, 3, ...). 

Now we show that  Peetre's theorem reduces to the case of the two-dimensional 
torus. 

L e m m a  5.2. (i) If for some n=2 ,3 , . . . ,  there exists a right inverse of 
tr(1):i~l)(I~_)--~il(I n-l) then there exists a right inverse of Tr(1):/~l)(a':_)-~ 
LI(Rn-1) .  

(ii) If for some n=2 ,3 , . . . ,  there exists a right inverse of Tr(1):L~I)(R~)-+ 

L I ( R  n- i )  then there exists a right inverse of Tr(1): LI(T~)--+LI(Tn-1). 

(iii) If for some n=3 ,4 , . . . ,  there exists a right inverse of Tr(1):Lll (Tn)--~ ()  - 

LI(T n-l) then there exists a right inverse of Trr(1): L~I)(T2_)-+LI(T). 
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Proof. (i) For - - ~  1, - *~ -1  n-1 �9 , n ~  we put I~n = / n - l + m C R ~ - l ;  the shift operators 
am:LI(Rn-I) -+LI(R n-l)  and T(m,O )." L(1)1 (Rn)_+L11- ( ) (R  n)_ induced by translation 

by m, and (m, 0), respectively, are defined by a m ( f ) ( y ) = f ( y - m )  for An_l-a.e. 
y E R  ~-1, and T(m,0)(g)(x)=g(y--m, xn) for An-a.e. x=(y, x~)ER~_. Let ~: R n-1 --> 
[0, 1] and r R--~ [0, 1] be infinitely differentiable functions such that 

suppr E Crm(~b)-- 1 
mE�89 n-1 

r -- 1; r  ~ 0 .  

(the sum is locally finite); 

Let Mr162 L~I ) ( I  ~)-+L~I ) (R~) be the operator of multiplication defined by 

S r162 xn) for A~-a.e. (y, xn) E In_, 
( O, otherwise. 

We assign to a bounded linear operator S#:L 1 (in--l)_+L~I ) (In) the bounded linear 

operator S: LI(R '~-I ) -+L~I)(R n) defined by 

S(f)= ~ (T(o_m)Mr 
mE�89 ~-1 

It is not hard to verify that if S # is a right inverse of tr (1) then S is a right inverse 
of T r  (1) . 

(ii) Let S: LI(Rn-1)-+L~I) (R~)  be a right inverse of Tr 0). Let r be 
a fixed function in the variable xn such that 

1 (5.1) r 1 8 8  and r  

Then there is a constant C > 0  depending only on the sup norms of r and its partial 
derivatives of order _<k such that ]ICFIIL~,)(R~)<CIIFIIL~,)(R~) for FEL~I)(R~_). 

Let e > 0  and ~/>0. Let (hk)keN be a Schauder basis for LI(In-1)=LI(Tn-1).  
We regard functions in L ' ( I  n-  1) as functions on R '~- 1 extended by 0 on R '~- 1 \ i,~-1. 
Remembering that :D(R.n) is dense in L~I)(R~), for k = l , 2 , . . . ,  we choose FkE 

:D(Rn) so that  IiFk--ShkIIL~k)(R, ) <2-k~]/C. Put  q~k=r and gk=q2kii--~Zy_ ~ . Then, 

remembering that supp hk C I n-1 and applying Lemma 3.2, we get 

(5.2) 
Iihk--gkNLl(Rn i) ~ I ihk-Tr (1) tI/kiiL,(R,,_, ) = II Tr(1)(OShk--~2k)ilL'(Rn-') 

< IIr < ~12 -k. 
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Pick e E I ) ( R  "~-l) such that r  for yEI  n-1 and s u p p r  ~-i. Let A =  

{mEZ n-1 :I ~-1 +mMI "~-1 #0}. Clearly A is a finite set, more precisely it has 3 n-1 
elements. Let us observe that the properties of ~b imply that for every F E L~I ) (R ~_ ) 
the function (b (F) :=~mez ,_~  r(m,o)(r is one-periodic in each of the variables 
Xl, ..., xn-1. It follows from the previous observation and (5.1) that (I)(~k)=(I)(r 
extends to a function in L~I ) (R ~) which is one-periodic with respect to each of the 

variables xl,  ..., xn; equivalently ~(kOk) E L~I ) (T ~_). Since (~b(m,0) (~k0k))II--1 = 0  for 
m r A, we have 

Tr(1) (~(q2k))---- tr(1)((I) (lI/k)lI~ )= tr(1)( ~ T(rn,O)(r 
"mEA / 

: ~ tr(1)(T(m,O)(r Z T(m'O)(Vq2k)lln-l' 
mEA mEA 

k = 1,2, . . . .  

Therefore, remembering that 0 < r  and dJk]l,~-I :gk ,  we get 

IIgk -T-rr(1)r (~ k)II L, (Tn-,) = fi,,_ 10~mEA T(rn'O)(~)~k) d'Xn-1 

<J~t ~ Iv(re'~ (r dan-1 
n-i O#mEA 

= / r t  I Tr(U(r dan-1 n--l\In--1 

--< fR ]Tr (1) qYk] d.Xn-1 

--Ilgk--TF(I) qJkllL'(rt=-l)- 

Combining the latter inequality with (5.2) we get 

Hgk--~(1)(O(kOk))iiLl(Tn-~) <7/2 -k+l for k---- 1,2,.. . .  

It follows from the Krein Milman-Rutman standard perturbation argument (cf. 
[LT], vol. I, Proposition 1.a.9) that  if we choose ~>0 sufficiently small for given e, 
C>0 ,  and IISII then (gk)kEN is a basis for L I (T n - l )  and there is a unique bounded 
linear operator S~:LI(Tn-1)--~L~I)(Tn_ ) such that S~gk-=kOk and IiidLI(T,-1)-- 

Trr(1)oScli<e for k- - I ,2 , . . . .  Thus the operator Tr(1)oS~: i l ( T n - 1 ) - + L i ( T n - 1 )  is 

invertible for e < l .  Hence S~(Tr(1)oS~) - l  is a right inverse for Tr (1). 
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(iii) If S: L1 (T'~-I)-+L~I)(T~) is a right inverse for ~(1):  L~I)(Tn)_+L, (Tn_I)  

for some n > 2  then PSJ is a right inverse for Tr(1): L~I)(T2_)-+LI(T), where J and 
P are defined by 

gf(tl, . . . ,  t~-l) = f(tn-l)  for f E L 1 (T); 

PF(tn-l,tn)=/T.../wF(tl,...,tn)dtl ...dtn-2 for FEL~u(T~_).  [] 

Next we need the following variant of the Gagliardo trace theorem. For slE 

T_ define Rs,: L(1)I (T2)_+LI(T)_ by Rs, F=Tr<I)(F*,[T:_) for FeL~I ) (T2) ,  where 

F* denotes an arbitrary extension of F to a function in L~I)(T 2) and F*,(t,s)= 
F*(t, s - g )  for A2-a.e. (s, t). It is easy to see that the function Rs, F is independent 
of the particular choice of the extension (cf. [S], Chapter VI for the existence of an 
extension). 

L e m m a  5.3. For every FcL~I ) (T~)  one has 

(5.3) (RsF)(t) = F(t, s) for A2-a.e. (t, s); 

~" dt ds , ~ ' / T  s" (5.4) IIRs'F-R~,,FIILI(T)<_ IVF(s,t)[ FEL~I)(T~_), g,  E T _ .  

Proof. If F c D ( T  2) then (5.3) holds for every (t,s)CT2_. For FEL~I)(T~ ) 

there exists a sequence (Fn)neNCD(T~) such that l im~++ IIF,~-FIIL~)(T2_)=O. 
In particular l im~++ IIF,--FHLI(T2)=O. Thus, passing to a subsequence if nec- 
essary, we may assume that limn_~+ F~(t,s)=F(t,s) for A2-a.e. (t,s). Thus, by 
the Fubini theorem, there is a set A with AI(T_ \ A ) = 0  such that, if sEA then 
lim~_~+ F,~(t, s)=F(t, s) for Al-a.e. t .  It follows from the definition of the trace 
tha t  for every sET_  there is a subsequence, say ink)kEN of the indices such that 
limk-~o~ Fnk(t,s)=R~F(t) for Al-a.e.t .  Thus if sCA then F(t, s)=R~F(t) for AI- 
a .e . t .  Applying the Fubini theorem again we get (5.3). 

It suffices to verify (5.4) for FED(T2_). For such an F we have the identity 

(Rg F)(t)-(R~,, F)( t )  = F(t ,s ' ) -F(t ,s")  = ~,i' O F(t' s) ds. 

Integrating the latter identity against dt, putting properly absolute values, and 
remembering that the gradient satisfies the inequality 

II IIVFIIL,(~r• 2 =~8 Ll(T• 

we get (5.4). [] 
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We also need the following embedding lemma (cf. [BIN], Theorem 10.1; Theo- 
rem 10.2 in the English translation of the first edition). 

L e m m a  5.4. One has 

T L1 IT2 ~ (5.5) esssuplF(t,s)lds< _ IIFIIL~>(TL), F E  (1)~ -)" 
_ tET 

Proof. Since the norm fT_ ess suPtET IF(t, s)lds is complete in the appropriate 

function space on T 2 and D(T2)  is dense in L~u(T2_ ), it is enough to verify (5.5) 

for FE:D(T2_). For fixed s E T _  let suPtET IF(t, s)l be attained at the point t=t(s). 
Thus for arbitrary ~ E T we have 

I/t(~) 0 s)dt +]F(~,  sup IF(t, s)l < IF(t(s), s)-F(~, s)l + IF ( f ,  s)l = -~F(t, s)l. 
tET 

Integrating against ds and d~ we get 

suplF(t,s)lds< J~ -~F(t,s) dt@ds+llFllL~(T~_) 
ET_ tET ET- ET 

< ~sET_ ~tET ~E_T 0-~F(t, s)ld~dtds+iiFiiLl(T2 ) 

---- O F  L'(T :-)+IIFIIL'<T=-) <-IIFIILh,<T=)" [] 

Now we are ready for the next proposition which combined with Lemma 5.2 
completes the proof of Peetre's theorem. 

P r o p o s i t i o n  5.5. There is no right inverse for Tr(1): L~I)(T2_)-+LI(T). 

Proof. Let {Uh}heW and {Vh}heW be the representations of the circle group 
T in the spaces of bounded linear operators on LI (T)  and L~I)(T2_), respectively, 
defined for b e T  by 

Uh(f)(t) = f(t+h) for )q-a.e. t E T; 

Vh(F)(t,s)=F(t+h,s) for A2-a.e. (t ,s)  E T  2. 

Obviously the family {Rs}sET_ (defined before Lemma 5.3) consists of operators 
which intertwine with the representations, i.e. 

RsVh=UhRs, s E T _ ;  h E T .  
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Assume on the contrary that  there is a right inverse for R0=Tr  0), say S: Lt(T)--+ 
L~I)(T2_). Then there exists another right inverse, say S, which intertwines with 

the representations {Uh}hEW and {Vh}heT, i.e. SUh=VhS for hET.  We put 

s:= fT VhSU   dh. 

The representations are continuous in the norms of the corresponding Banach spaces 
of operators. Thus the integrand is a continuous function on T. The integral exists 
in the Riemann sense. Hence S is a right inverse for Ro being a norm limit of convex 
combinations of right inverses VhSUh I . 

Clearly RsS is, for every sET_,  an invariant operator on LI(T),  i.e. it com- 
mutes with every Ut for tET.  Thus (cf. e.g. [SW], Chapter VII, w Theorem 3.4) 
there is a complex valued Borel measure ps on T with finite total variation IIpsll 
such that  

RsSf=f*#~; IIRsSll=ll~sll, s E T _ .  

Here * stands for convolution. Let (r be an approximate unity for LI (T)  
consisting of bounded functions with IIr for n = l ,  2, .... For every sET_  
put 

a(s) := nlirn IIr * #s IIm = l i r n  II RsSCn II oo, 

where (for f measurable) IIfiim=esssuptEw If(t)I; the latter for some f may be +c~. 
Clearly a(.  ) is a positive measurable function which may take the value +oc. Since 
(Ca)heN is an approximate unity for LI(T) ,  we have 

S lies II~, if ~s = r 43,1 for some ~s E n I(T),  
a ( 8 )  I co, otherwise. 

Therefor, taking into account the Fatou theorem, (5.3) and (5.5), we get 

fseT a(s) ds<liminf { IlCn*tzsll~ds=liminf f IlRs(SCn)ll~ ds 
n-->~ J s E T _  n - ~  J s E T -  

= liminf { esssupISr IISr <_ IISIt. 
n-~cxD J s E T _  tCT  

Thus #s=Cs dA1 with r  for Al-a.e. sET_.  
Let (Sk)kENCT- be an increasing sequence tending to 0, such that  #sk is 

absoluteJy continuous with respect to ~1 for k = l ,  2,.. . .  By (5.4), for f E L l ( T ) ,  

O O  

E II~:sk * f - r  *fIIL'(T) --< IISflIL~)(T~_) -< IlSll IlfllL'(T)- 
k=l  
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Putt ing the approximate unity (q~n)neN in place of f and passing with n to infinity, 
we get 

k=l 

Hence there exists CEL~(T) such that  l imk-,~ IIr162 =0. On the other 

hand R o S f = f  and, by (5.4), for every fEL~(T) ,  

= lim I IR,kSf -RoSf l IL , (T)=O.  lim II(r k-~ k--+(x~ 

Thus r  for every f E L 1 (T), a contradiction because the algebra L 1 (T) with 
convolution as multiplication has no unit. [] 

Proposition 5.5 combined with Lemma 5.2 in fact gives the following corollary. 

C o r o l l a r y  5.6. The traces Tr (1), tr (1) and Tr (1) admit no right inverses. 

6. S o m e  r e m a r k s  on  BV(~)(l~) 

6.1. P r o o f  o f  C o r o l l a r y  1.3 

As indicated in Section 1 to derive Corollary 1.3 from Theorem 1.1 it is enough 
to prove the following result. 

P r o p o s i t i o n  6.1. For every open non-empty f ~ c R  n the space BV(k)(E~) is a 
dual Banach space, k , n = l ,  2, .... 

Proof. For a positive integer N let l~ denote the space of scalar-valued se- 
quences x=(xj)N_l equipped with the norm 

{ (~-1  IxjlP) 1/p for 1 ~p<cx~, 

IxlP = max Ixjl for p = c~. 

Since the spaces l~ and l~  are in duality, it follows from the Riesz representation 
theorem that  the vector-valued space M(ft;  l~v ) can be identified with the dual of the 
space C0(~t; l~) .  The latter is the closure in the sup-norm of /~-valued continuous 
functions with compact support in ~. Now let N = N ( k ,  n) be the number of all 
multiindices corresponding to all partial derivatives in n variables of order _< k. Then 
the map J:  BV(k)(~)-+M(f~; l~), defined by 

(6.1) J (# ) - -  (D~/z)0<l~l<_k for # E BY(k)(12), 
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is an isometrically isomorphic embedding of BV(k)(f~) into M(gt; fly ). Clearly 
J(BV(k)(it)) is a subspace of M(~; /~)  which is closed in the weak* topology 
(=C0(f~; l~) topology of M(ft; 11)). The verification of this fact is routine and 
follows from the definition of distributional partial derivatives of measures. Thus 
J(BV(k) (it)) can be identified with the dual of the quotient C0(it; l~)/BV(k)(12)• 
where 

BV(k)(it)•176176 Z /f.d(D'#)=Ofor.EBV(k)(it)}. 
O<_lal<_k 0 

This completes the proof of Proposition 6.1. [] 

6.2. An alternative proof of  Proposition 4.1 

We outline how one can use Proposition 6.1 to obtain Proposition 4.1 and 
therefore Theorem 1.1 without making use of the Lindenstrauss lifting principle. 

Denote by xx :X-+X**  the canonical map. For k--0,1,..., let us define 
L(k):L~k)(R'~)-+BV(k)(R n) by ~(k)(f)=fAn for fE/~k)(R" ). Put t=t(0). Note 
that t(D~f)=Da(~(f))  and II~(D~f)IIM(R,)=tID~flILI(R ~) whenever O a f  exists 
and belongs to LI(R").  Thus t(k): L~D(R")---~BV(k)(R'~) is an isometrically iso- 
morphic embedding, k=0, 1, .... 

Proposition 6.2. Let k=0, 1,.... There exists an isometrically isomorphic 
embedding �9 , 1 , ** ~(k).BV(k)(R )-~L(k)(R ) such that 0(k)(BV(k)(Rn)) is a comple- 
mented subspace of L~k ) (Rn) ** and 0(k)Ot(k)-----XL~k)(R~ ). 

Proof. For simplicity we identify BV(k)(R") with J(BV(k)(R")), where J is 
defined by (6.1), and we identify 1 n i(k)( R ) L(k )(R ) with its image via t(k). Thus 1 n 

can be regarded as the subspace of L 1 (R"; l~v ) defined by 

{(fc~)o<[c,l<_kGLi(Rn;ll):fc~=D'~f for 0<  [~[ _<k and for fEL~k)(Rn)},  

where N = N(k, n) is defined in the proof of Proposition 6.1. The dual of L 1 (R n; l~v) 
can be identified with L~(R" ;  l~). Thus, by the Hahn-Banaeh extension princi- 

1 n * ple every z*EL(k)(R ) has a norm-preserving extension to some (r 
L~176 Now let (G~)~>0 be a Ca-approximate identity of La(Rn), for in- 
stance Gc(x)=~-"G(x/e) for xCR", where G(x)= (2~r) -"/2 exp( -  1 ixl~). 

Let us denote the operator of convolution with G~ by ~ ,  i.e. (I)E(u)(z)= 
fl:t'~ G~(x-y)u(dy)  for a~-a.e.x. Then (I)e(BV(k)(Rn))CL~k)(R n) for k=0, 1,..., 
and 

(6.2) e-~01im J R "  f f (x )du  for f e D ( R " )  and u e M ( R " ) .  
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Given uEBV(k)(R ~) we define 0(k)(u) by 

0(k)(u)(z*)=LIM ~ s 
e ---} 0 n 

O_<l,~l_<k 

(I)~ (D~u)r "] dx tL1 r forz*C~ (k)t JJ , 

where L IM~ 0  denotes a generalized (Banach) limit (cf. [DS], Chapter II.3, (23)). 
Hence 

10(k)(~)(z*)l _< I1r IIr 
e:>O 

Thus It follows from (6.2) and the density of 

7P(Rn;l~) in L ~ ( R n ; I ~ )  in the weak* topology induced by LI(R~;I}v) that the 
latter inequality becomes equality. Hence 0(k): BV(k) (R n)--+L~k ) (R~) ** is an iso- 
metric embedding. 

If u=L(k)(f) for some fEL~k)(R" ) then D'~u=(D'~f))~. for 0<l~l<k,  and for 
every C E L ~ ( R  n) one has lime-~0 frt.  (be(D'~f))~nCdx=fR.(D'~f)r dx" Thus, for 
every z* E L~k ) (R")*, 

O(k)(f)~n)(z*) =~-.01im y~. fR- (P~((D~f))%)r [~*] dx=z*(f). 
O_<l~l<k 

Therefore O(k) oL(k) ---- X L ~ : )  (R ,~ )  . 

The desired projection from L 1 r onto 0(k)(BV(k)(R~)) is the opera- (k)~ -~ J 
tot O(k)oU* where U*: L~k)(Rn)**--+BV(k)(R '~) is the adjoint operator to the iso- 
metric embedding U: Co(Rn;l~)/BV(k)(R'~)• L~k ) (R'~) * defined as follows. Let 
g=(g~)0_<l~l_<k be a representative of a coset [g]. Then U([g])en~k)(Rn) * is defined 
by 

u([g])(u)= ~_, fR god(D~'u), , eBV(k)(R~) .  [] 
O<_l,~l<k 

Now we are ready for the alternative proof of Proposition 4.1. 

Outline of an alternative proof of Proposition 4.1. For simplicity we consider 
the case k=l. By Proposition 6.2 it is enough to exhibit a subspace, say X of 
BV(I)(Rn), such that XDL~D(Rn ) but L~I)(R n) is uncomplemented in X. We put 

f - :=f lR"_;  f+:=flrt~_ and X:={f:R'~--~C:f+eL~I)(R~:)}. 
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To see that  X c B V 0 ) ( R  ~) fix r E X .  Note that  if the multiindex a corresponds 
to the partial derivative O/Oxj for j = l , . . . , n - 1 ,  then ( D ~ f ) I R ~ = ( D ~ f •  and 
(D~f) IR~- I=0 ,  while for a= (0 , . . .  ,0, 1) corresponding to the partial derivative 
O/Oxn we add the one-dimensional measure concentrated on R n - l ,  DaflRn-~ = 

(Tr(1) f+ -Tr(1)  f - ) ~ - l ;  we define Tr 0) f+=Tr (1) f* ,  where ] * ( x ) = f ( - x )  for x e  
R ~. With the help of Lemmas 3.2 and 3.3 we infer that  f E L ~ I ) ( R  ~) if and only if 

Tr (1) f + - T r  0) f - ~ 0 .  

Assume on the contrary that  there is a projection, say P,  from X onto L~I ) (R~). 

Then for each h E L  I ( R  ~-1) there would exist a unique f[h] E ( I d - P ) ( X )  such that  
TrO)(f[h])+-TrO)(f[h])_=h.  Now for heLl(R ~-1) put S(h)=(f[h]*-f[hl)lR.. 
Then S: LI(R~-I) - -~L~I)(R?)  would be the right inverse of Tr (1), a contradiction 
to Peetre's theorem. [] 
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