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On a problem of Griffiths: an inversion of 
Abel's theorem for families of zero-cycles 

Bruno Fabre 

A b s t r a c t .  Th i s  paper  gives a par t ia l  answer  to a p rob lem raised by Griffi ths in [4], which 

is a kind of converse of Abe l ' s  theorem.  

Let Y be a smooth irreducible surface of degree five in the projective space Pa. 
Let us consider the lines At of the equations y=ax+b and z=a~x+b t, with t =  
(a, at, b, bt). For a generic t0EC 4, we can define five analytic maps Pi:U--~Y, 
i = 1 , . . . ,  5, in a neighborhood U of to, such that  A t N Y = ~ = :  Pi(t). By Abel's 

5 theorem, we have ~ i = :  P*(aJ)=0 on U for any holomorphic two-form co on Y. In 
his article, Griffiths asserts (without giving a proof) the following converse: 

Let U be an open subset of C 4, Ui, i=1 ,  ..., 5, be five disjoint open subsets of 

Y and Pi: U-+Ui be five open holomorphic maps. If ~ = :  P/*(a~)=0 on U for every 
5 holomorphic two-form a~ on Y, then for every tEU the zero-cycle 5-]i=: Pi(t) can be 

writ ten as A t N Y  , where At is a straight line. 

He concludes tha t  this result may be part  of a more general picture. 

We did not succeed in proving this assertion without some "uniform position" 
assumption, defined later; but with this uniform position assumption, we prove an 
analogous theorem for hypersurfaces of degree d_> N +  2 in P x for any N_> 2, after 
an introduction stating the generalized Abel 's theorem for families of zero-cycles. 
In the case N = 2 ,  i.e., for a family of zero-cycles on a curve, the family is abelian if 
and only if the corresponding subset in the symmetric  product y(k) is contained in 
a linear series. So in this case, we show the "general picture", restating Ciliberto's 
classification of linear series of maximal  dimension on plane curves by the use of 
Gruson-Peskine 's  numerical character. 
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skine for their remarks during my Ph.D. studies. I am also grateful to T. Ekedahl for 
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some interesting discussions after my studies, and to the T M R  Research Network, 
who made  this possible(i) .  

O. General izat ion  of  Abel 's  theorem  for families of  zero-cycles  

Let Y be a reduced analytic space of pure dimension n. We know the sheaves 

f~q of holomorphic  q-forms on Y. and j ~ -  of meromorphic  q-forms on Y. For 

a meromorphic  form w on Y, we let Pola:  denote the closed subset of w E Y  such 

tha t  cc~ftq,w; we identify w, with its restriction to any dense Zariski open subset 

of Y. The  polar locus of c~,, Polar'. is thus the smallest closed subset F such tha t  w' 

is holomorphic on Y \ F .  We also have Barlet ' s  sheaves ~'~ of meromorphic  forms 
co for which the principal value current [a~.] is c~-closed (see [1] for definitions and 

properties).  Finally, we have the sheaf s  of meromorphic  forms a~, whose pull-back 

is holomorphic  for some desingularization of Y (a desingularization is a proper  map  

from a non-singular Y to Y, one-to-one over RegY) .  Then  we know tha t  it is 

holomorphic  for any desingularization of Y. 

Definition 0.1. Abelian forms are the sections of a~'q; abelian one-forms on 

curves are called abelian differentials. Finite forms are the sections of s  

Let T be a reduced and irreducible analytic space, I be a reduced analyt ic  

space of pure dimension dim T. and ~: I -+T be a proper  morphism. 

Definition 0.2. The proper  morphism re is a ramified covering if there is an 

analyt ic  subset SCT,  without  interior point, such tha t  re': rr-~(T\S)--+T\S is an 
analyt ic  covering, and moreover such tha t  r r - l (T \S )  is dense in I .  The  constant  

cardinal of the fiber rc- l ( t ) ,  t E T \ S ,  is then called the degree of the ramified cover- 
ing rr. 

Let  rr: I--+T be a ramified covering and let us consider the set Z of parameters  

t ET over which re1 l(t) is not  zero-dimensional (and thus Z C S). 

Let us observe the following fact. 

Lemma 0.3.  The set E is an analytic subset of codimension at least two in T. 

Pro@ Let I ' c I  be the set of points z such tha t  the fiber 7rll(Tr~(z)) at z 
has dimension > 1. Then  we know from Remmer t  [9] tha t  I '  is a closed analytic 

subset wi thout  interior point. Since 7rl is proper,  still by Remmert ,  7 r l ( I ' ) = E  is 

an analyt ic  subset of T. Let us assume tha t  E has an irreducible component  T ~ 

of codimension one in T. Since the fibers over T '  are disjoint of dimension >1,  

(1) TMR Research Network, ERBFMRXCT 98063. 
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we deduce that 7r{-l(T r) must have dimension > _ d i m T ' + l = d i m I .  Thus it must 

contain an irreducible component of I. But the assumption that rc~ 1 ( T \ S )  is dense 

in I gives us a contradiction. [] 

We will use the following lemma of Henkin-Passare [6]. 

L e m m a  0.4. Let T be a reduced and irreducible analytic space of pure dimen- 

sion. Let co be a meromorphic q-form on a dense Zariski open subset T ~ of T. We 

know from [7] that w defines a "principal value current" on T', denoted Jail. Then 

w is meromorphic on T if and only if there exists a current # on T such that the 

restriction to T'  is equal to [w]. Moreover, if p is O-closed, then ~ is abelian on T 

(i.e., the current [w] associated to co as a meromorphic fo~wt on T is O-closed). 

Let us again consider a ramified covering o: I -+T.  Let co be a meromorphic 

q-form on I; we consider the current # on T defined by #=o.([aJ]). Then p is a 

current on T of bidegree (q, 0), and it is c~-closed on a dense Zariski open subset 

T r of RegT,  and thus can be represented on T ~ by a holomorphic q-form a/, by 

the Dolbeault-Grothendieck isomorphism. From the lemma of Henkin Passare, we 

deduce that J is a meromorphic q-form on T. 

Definition 0.5. This meromorphic q-form is called the trace of the meromorphic 

q-form co for the ramified covering p: I -+T.  and is denoted o,(~'). 

Since co is holomorphic on r -1 (T \o (Po l  ~')) and thus c~-closed, we deduce that 

O, (co) is c5-elosed over T \ o ( P o l  co), and thus holomorphic over T \  (Sing TU0(Pol  co)). 

In particular we deduce that Pol ~, (co) C Sing(T) U0(Pol a:). 

L e m m a  0.6. Let 0: I--+ T be a ramified covering. Then the trace of an abelian 

form a~ on I is abelian on T. 

Pro@ In fact, this follows from the lemma of Henkin-Passare, and from the 

fact that  on a dense Zariski open subset of Y the current defined by the trace 
coincides with r [] 

Let Y be a reduced analytic space of pure dimension. Let us recall that  an 
analytic family of zero-cycles on Y is a holomorphic map o: T - ~ Y  (~), where y(k) 

is the quotient of the cartesian product yA- by the finite group ak permuting the 

points. Now we will consider an analytic subset I of the cartesian product T x Y, 

with the morphisms Pl: I--+T and P2: I - + Y  induced by the canonical projections 

and such that Pl is a ramified covering. 

Definition 0.7. The set I is a meromorphic family of zero-cycles on Y. The 
degree of the family is the degree k of the ramified covering 7r: I -~T .  The family is 

called open if moreover Pt is open. 
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Let us recall the following definition of a meromorphic map from [9] (from 
which a meromorphic function can be viewed as a meromorphic map into P l ) -  

Definition 0.8. A map 0: X--+Y defined over a dense Zariski open subset X \ S  
of X is a meromorphic map from X to Y if the adherence of the set G =  { (x, r  
x E X \ S } c ( X \ S )  x Y  is an analytic subset G ( C ) c X  xY,  with a proper projection 
Pl: G(0)--+X (so that  the graph G(0) of ~ is a meromorphic family of degree one). 

Remark 0.9. Notice that  another equivalent definition is the following: there 
exists a proper modification #: X ' - + X  of X and a morphism 0': X'--+Y such that  

0'=0o~. 

Let I c T x Y  be a meromorphic family of zero-cycles. Then the morphism 
p l : p l - I ( T \ S ) c I - + T \ S  is an analytic covering. From this we deduce a holomor- 
phic map Or: T\S--+Y (k). We have the following lemma. 

L e r n m a  0.10. The map 01 i8 a meromorphic map from T to y(k). 

Pro@ Let ~ri:Yk--+Y, i = l , . . . , k ,  be the natural  projections. Then we con- 
sider the analytic subset a ~1i=1 (IdT x 7ri)- 1 (I)  c T  x yk .  This analytic subset defines 

a ramified covering with critical locus contained in S. Let I '  be the union of the 
irreducible components for which the k points of Y are generically distinct. This 
analytic subset is invariant under the action of the finite group on T x y k  permuting 
the points of yk ,  thus it defines an analytic subset T c T x Y  (k) of pure dimension 
dim T, with a proper natural  projection p'I:T--+T. Since p~ is a ramified covering, 

the adherence of the graph of 0I: T\S--+Y (k) is equal to T. Thus 0/  is meromor- 
phic. [] 

Definition 0.11. The map 01: T--~Y (a) is the meromorphic map associated with 
the meromorphic family I C T x  Y. 

Remark 0.12. Since I is the closure in T x Y of p~ 1 (T \S ) ,  we can recover the 
family from the associated map ~I. Moreover we see that  the natural  morphism 

r 5~---~Y (k) is an analytic family of zero-cycles. 

Now we will define, for a meromorphic family I c T x Y ,  the Abel t ransform 
.di(w) of a meromorphic q-form w on Y whose polar subset P is such that  T x P  
contains no irreducible component  of I.  

Now let I C T  x Y be a meromorphic family, with Pl: I--4T and P2: I -+Y  being 
the natural  projections. Let w be a meromorphic q-form on Y, such that  T x Pol w 
contains no irreducible component  of I.  Then we make the following definition. 
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Definition O. 13. The Abel transform is defined by Az (w) = (Pi).  (P~ (w)). 

Let us consider a meromorphic map r X - + Y ,  with graph G ( r  • Y. We 
define the pull-back r of a meromorphic form w on Y, under the assumption 
that  r  ~) does not contain X, as the meromorphic form r162 

L e m m a  0.14. Let t oET \S .  Then we define k holomorphic inverses Pi.i, 
l <i<k, of pm in a neighborhood U of to, and then k holomorphic maps Pz(t)= 

P2(pl,i(t)): U-+Y, l< i<k .  We then have Az(~)=~ik=l  P*(~') on U. 

Proof. By the definition of the trace (Pi).,  we have .A~(~)=~/k=i p~.i(p~(w)), 
k . , . 

which equals ~ i = i  P*(~)  since pl.~op2=(p2~Pi.i) . [] 

Let us consider a meromorphic family of zero-cycles I c T •  We consider 
a "meromorphic change of parameters", i.e., a meromorphic map r T'--+T, with 
T '  irreducible, and r  not contained in the critical locus S c T .  We consider a 
corresponding holomorphic map r T"--+T, with r T"-+T'  being a proper modi- 
fication and r162162  Let I ' C T I x Y  be the set of pairs (tl,p) for which we have 
(r  for some tI 'ET" with r  Then we can define k holomorphic 
functions P((t ')=Pi(r i =  1, ..., k, on a dense Zariski open subset of T'.  We can 
check that  I'  defines a meromorphic family of zero-cycles of the same degree k. 

Definition 0.15. The analytic subset I '  is the meromorphic family obtained by 
the change of parameters r TI--+T. 

Let w be a meromorphic q-form on Y such that TIxPol~, does not contain 
any irreducible component of 1 I. Then T x Pol ~' does not contain any irreducible 

k / * component of I. Since we have Ai , (w)=~i=l(P~)  (w), with P[(t')=Pi(r on a 
dense Zariski open subset of T', and k . A z ( w ) = ~ i = i  P~ (~), we obtain the following 
proposition. 

P r o p o s i t i o n  0.16. We have Az,(~)=r 

Remark 0.17. From this we deduce another way to compute the Abel transform 
of a meromorphic family I c T  x Y of degree k, with Y irreducible. Let us consider 
the "universal family" of zero-cycles of degree k defined by (t, p)E y ( k ) . y  if and only 
if pEt,  with y(k) as parameter space, and with the analytic subset y ( k ) , y  c y(k) x Y 
as incidence variety. Thus we associate to any meromorphic q-form w on Y a form 
cV=.dr(k),r(aJ ) on y ( k )  which can also be computed in the following way. The 
quotient morphism 7r: yk__+y(k) is a proper surjective finite morphism of degree 
k!, and thus 7r* defines an isomorphism between meromorphic forms on y(k) and 
the ak-invariant meromorphic forms on y k  (with inverse (1/k!)Tr,). Then we have 

k . c5 = (1/k!)Tr. (co), with ~-=Y~i=i 7ri (a~), 7ci, ..., 7rk being the natural projections from 
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y k  to Y. From this computation,  we deduce that  if cc is abelian, then ~ is abelian 
on y(k).  Now let us consider the map or: T--+Y ~" associated to the family. It  can be 
considered as a meromorphic change of parameters.  Thus, the preceding proposition 

gives us that  A i ( w ) = r  on T \ S .  

Now we will show the following result. 

P r o p o s i t i o n  0.18. I f  aJ is finite, then AI(a,') i8 finite. 

C o r o l l a r y  0.19. Let us consider a meromorphic map o: X - + Y ,  with X irre- 

ducible and qS-l(SingY)giX.  Let a; be a finite form on Y .  Then the meromorphic 

form r (w) is finite on X .  

Pro@ We consider the graph G ( o ) C X x Y .  Then the corollary follows from 

the identity r162 [] 

For the proof of Proposition 0.18 we will need the following lemma. 

L e m m a  0.20. Let X be an analytic subset in the reduced analytic space Y .  I f  
no component of X is contained in Sing Y ,  then the restriction of a finite form on 

Y to X is a finite form on X .  

Proof. This can easily be shown if we assume the existence of a desingulariza- 
tion Ox: X ' -+  X of X,  induced by some desingularization ov:  Y ' -+  Y, with X '  C Y'.  
In fact, r is then holomorphic on Y'.  and thus the restriction to X '  is holo- 

morphic on X ' .  But this is equal to O*x(a:lx). Thus ~'lx is finite on X. The proof 

is given without this assumption by Kaddar  in [8]. [] 

Proof of Proposition 0.18. Let us consider a desingularization r  of T. 
Then from this change of parameters  we have the new meromorphic family I ' C  

T '  xY ,  with the projections p~: I ' + T '  and p~: I ' -+Y .  Let a,' be a finite form on Y. 
Then co canonically defines a finite form on T '  x Y. whose restriction to I '  is finite by 
Lemma 0.20. But this restriction is precisely (p~)*(~c), which is thus finite, and thus 

/ I * 6-closed, on I ' .  Then the trace (Px)*((P2) (co)) is abelian, and thus holomorphic, 
on T ' .  Thus Av(aa)=r  is holomorphic on T ' .  and thus Ai(co) is finite 

on T. [] 

Remark 0.21. The trace of a meromorphie form by a ramified covering 0: I -+T,  
is the Abel t ransform of the meromorphic family I ' = { ( o ( x ) , x ) : x C I } c T x I .  In 
particular, we deduce from the proposition that  the trace of a finite form by a 
ramified covering r X - + Y  (with Y irreducible and X of pure dimension dim Y) is 

finite on Y. 

Let us observe tha t  the Abel t ransform of an abelian form is not necessarily 
abelian, even for an open meromorphic family I c T x Y .  The simplest example is 

the following example. 
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Example 0.22. Let ~: Y--+Y be a desingularization of an irreducible singular 
reduced analytic space Y. We consider the family I c Y •  defined by (t,O(t)). 
Then the Abel t ransform is just r If the abelian form ,~ is not finite, then 

AI (cJ) is not holomorphic, and thus not abelian on Y. 

We will introduce some supplementary conditions on the meromorphic family, 
which will imply that  the Abel t ransform of an abelian form is abelian. We need 
the following definition. 

Definition 0.23. The morphism o:X--+Y is a submersion if for every point 
p C X  there is an open neighborhood Up of p and an isomorphism ~: Up-+FpxVp. 
with Vp=O(Up)CY, such that  if P2 is the natural  projection from Fp x Vp to Vp, we 
have ~b=p2or 

Remark 0.24. If X and Y are smooth, this coincides with the classical notion 
of a submersion (the rank of the differential is maximal) in the holomorphic sense. 

Then we have the following lemma from Schwartz [12]. 

L e r n m a  0.25. I f  the morphism O: X--+ Y is a submersion, then there is a pull- 
back of currents O* from Y to X ,  commuting with 6, extending the usual pull-back 
on smooth forms. Moreover, for a~' meromorphic on Y ,  we have o*([w'])=[0*(a.')]. 
In particular, if a~, is abelian, then O*(a~') is abelian. 

Then we have the following result. 

P r o p o s i t i o n  0.26. Let I C T x Y  be a family such that P2: I - + Y  is a submer- 
sion. I f  cv is abelian on Y ,  then the Abel transform ,4i(,~') is abelian on T. 

Pro@ Let ~ be abelian on Y. From the preceding lemma, the meromorphic 
form p~(aJ) remains abelian on I.  Thus, from Lemma 0.6. the trace (pl),(p~(aJ)) is 
abelian on T. [] 

Now let I c T  x Y be a meromorphic family of zero-cycles of degree k: we thus 
have the associated meromorphic map  0I: T--+Y (k). We define a family (Tp)pe Y 
of analytic subsets on T by p~l(p)=Tp • {p}. At a point t o C T \ S ,  we thus have k 

analytic subsets Te~(to), i=1 ,  ..., k, through to, locally defined by P~(t)=P~(to). We 
define Ti(to) to be the irreducible component  of TP~(t0) containing Pi(to). Then, 

we have seen tha t  p [  I(T~ (to))C I defines a meromorphic family of zero-cycles, with 
a fixed point ~( t0 ) .  We denote by I~(to) the family obtained by removing the 
component  Ti(to) x {P~(to)} from p~l(Ti(to)).  We catl I~(to)CT~(to) x Y  the family 
obtained from I by fixing the point Pi(to). For this family we have the following 
lemma. 
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Lemma 0.27. If  w is holomorphic at P~(to), then MS(to)(w)=At(~V)lT~(to). 

Proof. Let w be a meromorphic form on Y, holomorphic at Pi(to). In a neigh- 

borhood of to, the Abel t ransform of w for I can be computed as PI* (w)+.. .  + P~ (w); 
but since Pi(t)=Pi(to) on Ti(to), the restriction of At(w) to Ti(to) is ~ j r  Pf(w),  

which is precisely equal to MS(to)(W). [] 

In the sequel we will consider an algebraic subvariety Y C P N  of pure dimen- 
sion n. We need the following definition. 

Definition 0.28. The meromorphic family I c T x Y  is abelian if Mi(w)=O for 
every abelian q-form w on Y, q_>l. It  is finite if .A1(w)=0 for every finite q-form w 
on Y, q > l .  

From the preceding results it follows that ,  if I c T  x Y is a meromorphic family 
and T has no non-zero finite q-forms, q>_ 1, then I is a finite family. Moreover, if 
P2: I -+Y  is a submersion and T has no non-zero abelian q-forms, q_>l, then I is an 
abelian family. Furthermore, it follows from the preceding lemma that,  if I is an 
abelian family, then the family obtained from I by fixing a point on Reg Y remains 
abelian. 

We will give two major  examples of abelian families of zero-cycles. 

0.1. The  comple te  intersect ions  of  a fixed mul t idegree  

Let (kl , . . . ,  kn) be a fixed multidegree, with n = d i m  Y. We consider the param- 
eter space T=PN1 x ... x PN~, where PN~ is the projective space parametrizing the 
homogeneous polynomials of degree ki; we denote by Qt, = 0  the equation associated 

to ti E P N~ . 
Then, we define the family I c T •  by saying that  ( t , p ) E T x Y  belongs to I 

if and only if Qt~ (p)=0,  ..., Qt,~ (p)=0,  where t=(t l , . . . ,  t,~). It  is easy to check that  
Pl: I -+T is a ramified covering, and thus defines a meromorphie family. Moreover 
we have the following result. 

Pr op os i t i on  0.29. The above family of zero-cycles I c T •  is abelian. 

Proof. Since T has no non-zero holomorphic q-forms, q > l ,  it suffices to show 

that  P2: I -+Y  is a submersion. This can be done as follows. At any point Po~Y, 
we consider an open neighborhood Upo of P0, and a holomorphic map 51: Upo-+ 
GLN+I(C) such tha t  M ( p 0 ) = I d  and ]ll(p).po=p. Then, let us consider the trans- 
formation (Qt~,..., Qt~) ~+ (Qtl ~ M(p),  ..., Qt,,~ M(p)). This transformation, by pro- 
jeetivization, defines an isomorphism from p~Z(p) to p~l(po). More precisely, we 
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have an isomorphism r p21( Upo ) C T x Upo ---~ To x Upo , with To=pl (p21(po ) ), com- 
muting with the projection on the second factor. It  is defined by O(t,p)=(to 
M(p),p), where toM(p) is the projectivization of (Qtl oM(p), ..., Qtn oM(p)), con- 
sidered as an n-tuple of homogeneous polynomials. In particular, P2:I--+Y is a 
submersion. [] 

0.2. T h e  p r o j e c t i v e  transformations of  a f ixed s u b v a r i e t y  

Let Z C P N  be a fixed irreducible subvariety of codimension n. Let further 
P ( M N + I ( C ) )  be the projective space associated with the non-zero (and possi- 
bly non-invertible) projective transformations. We consider the open subset T of 
P (MN+ 1 (C)) given by the condition that  t E P (.~-~+ 1 (C)) belongs to T if and only 

if t is well-defined on Z (this means tha t  if t is an associated matr ix  and Z the cone 
over Z, then 2nKer~={0}). 

Then, we consider the following family I c T x  Y defined by the condition that  
(t ,p)CI if and only if pEt(Z). 

Propos i t ion  0.30. This family of zero-cycles is abelian. 

Proof. First, since the complement of T in P ( M N + I ( C ) )  has codimension at 
least two, T has no non-zero holomorphic forms. Moreover, the same reasoning as 
in the previous example allows us to show that  p2: I -+Y  is a submersion. Thus. the 
Abel t ransform of an abelian q-form, q>_ 1. is abelian, and thus zero. [] 

0.3. Rational families of  zero-cycles 

Two effective zero-cycles F and F'  on Y of the same degree k are effectively 
rationally equivalent if there is a morphism 0 :P I - -+Y (k) such that  0 ( 0 ) = F  and 
6 ( 1 ) = F  ~. They are rationally equivalent if there is some zero-cycle F" such that  
F + F "  and F ' + F "  are effectively rationally equivalent. Let us make the following 
definition. 

Definition 0.31. A meromorphic family of zero-cycles I c T x Y  is of rational 
equivalence if two generic zero-cycles of the family are rationally equivalent. 

It  follows from the definition that  if T is a smooth compact rationally connected 
variety, then the family is of rational equivalence. Moreover we have the following 
result. 

Propos i t ion  0.32. If  T is rationally connected, then any meromorphic family 
I C T x Y  is finite. 
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Proof. In fact, we know that T has no non-zero holomorphic q-forms, q> 1. and 

moreover the Abel transform of a finite form on Y is finite on T. [] 

Remark 0.33. We do not know if any family of rational equivalence is finite, if 

Y is of dimension greater than two. 

Now we will introduce a notion of uniform position, which generalizes the notion 

of uniform position for curves ([2]). 
First, let us define the dimension of the family. Let us consider the meromorphic 

map r  T--+Y (k). Then on a dense Zariski open subset of T. the fiber 071(0i(t)) 
has a constant dimension s. We define the dimension of the meromorphic family as 

dim T -  s. Thus, a generic to E T \  E has an open neighborhood U) o over which we can 

define k analytic maps P,: Uto-+Y, i=1  ..... k. and such that {(Pl(t), ..., Pk(t)):tE 
Uto} is an analytic subset of yk  of dimension s. and moreover Ti(t)•Uto is defined 

by Pi(t')=Pi(t). Then, for a finite subset I={i l ,  .... il}C{1, ..., ~'}, we define h i ( t ) =  

codimt ~ieI Ti(t). 

Definition 0.34. Let I c T  x Y be a meromorphic family of zero-cycles of degree 

k and dimension s. Then I is in uniform position if at a generic point toET\S ,  i~ I  
and n/(to) < s imply that niu{i} (to) > ni (to). 

We have the following proposition. 

P r o p o s i t i o n  0.35. The family I c T x Y  of complete intersection zero-cycles 
of multidegree (km, ..., k,~), with T=PN~ x ... xPx , , ,  is in uniform position.. 

Proof. In the case of curves (n= l ) ,  this can be shown in the following way. 

First, let us show that if Y c P x  is non-degenerate (and thus of degree d>N), then 

any N points on a generic hyperplane section Y N H  generate H. 
Let us define the map o from y X  to the linear subspaces of P x ,  which maps N 

points to the linear subspace they span. Let us consider a point P1EY. and define 

recursively, for i<_N, Pi EY not in the vector space generated by PI, ..., Pi-1. Thus 

we see that  r defines an analytic map frorn a Zariski open subset of Y'~' to P~v. We 

see that this map is defined by a meromorphic map, and thus by an analytic subset 
I cyNXP*N,  with pl : I -+Y :v and p2:I-+P~,. If S is an analytic subset of y X  
containing the critical locus, then we define the analytic subset S' =p2 (P]-I(s))UY* 

of P~v, where Y* is defined as the hyperplanes which cut Y in less than d points. 

Let tCP*N\S'. Then HtNY is the set {P~(t), .... Po(t)} of d distinct points. We can 

choose a loop in P~v\S '  such that if we follow the loop analytically, then the points 

Pi(t) and Pj(t) are exchanged. But we know that any t E P ~ . \ S '  is in o(YX\S ) ,  
and thus the hyperplane generated by the N corresponding points is in o(YX\S ) .  
By monodromy, we see that for any t E P ~ \ S ' ,  any N distinct points in HtAY 
generate Ht. 
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In the general case for curves, we reduce to this case by immersing Y into some 
projective space Ply,, via the linear series defined on Y by the sections with degree 
k hypersurfaces. 

Now we consider the case where Y has arbi trary dimension. Then we consider 
the parameter  space T=PN~ • ... •  At a generic to, Ti(t0), l<i<_kd, define kd 

linear subspaces of codimension n. Let us assume that  for some I ,  nx( t0 )<s  and 

nzv{~l(to)=n~(to) with i r  The existence of a loop in T permuting the points 
P~(to) (and thus permuting the leaves T~-(t0)) would then imply that  we also have 

niu(y i ( to)=n:( to)  for any j ~ I ,  and thus nl( to)=n{1 ..... kdi(t0), which contradicts 
nr(to)<S. [] 

1. I n v e r s i o n  o f  A b e l ' s  t h e o r e m  for a 
h y p e r s u r f a c e  and  t h e  fami ly  o f  l ines  

Let Y c P ~ + I  be a hypersurface of degree d. 

T h e o r e m  1.1. Let I C T x  Y be an open abelian family of zero-cycles of de- 

gree d and dimension 2n, in uniform position. Then the generic zero-cycle Ft= 

P~(t)+. . .+ P d ( t ) E Y  (d) is the intersection of Y with a line A t. 

We will use the following lemma, whose proof has been given to me by P. Mazet. 

L e m m a  1.2. Let E be a vector space of dimension d. and E1 .... , E d be d 
vector subspaces of E.  To have a basis d (ei)i=l of E satisfying eiCEi,  it is necessary 
and sufficient to have 

dim E1 _> k = 4PI 

for every k such that l <<_k<d, and every choice o fk  distinct integers I={i~: ..., i~-}C 
{1, ... ,d}, where E~=Ei l  +...+E~ k . 

Pro@ The necessity is obvious. For the sufficiency, let N = ~ d _ l  dim E i .  \�89 

will make induction on N. Let us observe that  each E~ must be non-empty. First 
assume that  there exists k < d  and k distinct integers {ix, ..., ik} = I c  {1, ..., d} such 
that  dim E i = k .  By the induction assumption, we can find 

eil E Eil , ..., ei~, E Ei~. , 

giving a basis of E i .  Moreover, let { j l ,  ... , j d - k }  be the complement of I = { i l ,  ..., ik} 
in {1, . . . ,d},  and 

E 
~__ / !  z - -  

E l  ' 
E'  Ej~ E'- Ej~ 

3~ = -~1'  ""' )~-k ~ El  
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Then the induction assumption applies also to E '  and Ej~, ..., Ej~_k. We can thus 

obtain a basis of E ' ,  

e '  E~ ' E '  31 E 31 ~ ...~ e jd_k  E j a_~ .  

We can then find for each e ~. ' j, E E}~, 1 < l < d -  k, some ej, C Ejt, and then (el, ..., ed) 
is a basis o r e  with eiCE,,  l < i < d .  

It  remains to investigate the case when dim(Ei~+.. .+Eik)>k for every k, 
l<_k<d and every choice of integers {il, ... , i k } = I c { 1 ,  ..., d}. Let us replace E~ 
by some one-dimensional F1 cE1. We then obtain a new family of subspaces F1, 
F2=E2, ..., Fd=Ed. Then for I={ i l ,  ..., ik} let us denote by I '  the subset obtained 
by taking away 1 from I.  If I'  is non-empty, then dim FI >d im FI, = d i m  EI, >~I'>_ 
# I - 1 ,  and thus d i m F i _ > # I .  If  I '  is empty, we still have dim FI_>CPI. Then, since 
F1 is strictly included in El ,  we can apply the induction assumption, and get a 
basis d (ei)i=l of E with e i E F i C E i .  This concludes the proof of the lemma. [] 

To prove Theorem 1.1. we will use the following definition and the following 

classical lemma. 

Definition 1.3. Let F = P I + . . . + P a  be a zero-cycle with distinct points on Y. 
The matr ix  Mr=(mi(Pj ) ) ,  where (mi) are the monomials of degree <_d-n -2  in 
some aifine chart containing F, is called a Brill-Noether matrix at F. 

L e m m a  1.4. The function Or(l) is a strictly increasing function of lEN,  until 
it is equal to deg F. 

Proof of Theorem 1.1. The first step is to show that  the Hilbert flmction of F. 
at a generic zero-cycle of the family, is the same as the one of A, the intersection 
of Y with a generic line. Let t oET \S ,  with the above defined d holomorphic maps 

Pi: U--+Y in an open neighborhood U of to: we put Ft =P1 ( t)+. . .+Pal( t) .  We choose 
an affine chart containing Ft. Let us show that  the last d - n  columns of a Brill- 

Noether matr ix  Mr~ are linearly dependent. 

We know that  on Y, abelian n-forms are in correspondence with polynomials of 
degree < d - n - 2 ;  more precisely, any abelian n-form can be expressed in the form 

w=(p(xl ,  ... , Xn)/ fy) dxl A...AdXn, with f ( x l ,  ..., x,~, y)=0 being the equation of Y 
in some a n n e  chart containing Ft. Let us denote the abelian n-forms obtained by 
taking the monomial mi instead of p(xl, ..., x,~) in the above expression by wi. 

Then we consider the relations 

d d 

P; = Z ) P;(dx  A.../,dx.) = O. 
j = l  j = l  fY (PJ)  
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I t  suffices to choose a matr ix  (Xki) in 

dzk = f i  )~kiP~ (dxi), 1 _< k < n, 
i=1 

such that 

dz~ A... Adz,~ A P2+ ~ ( dXl A... Ad:c~ ) r O. 

The existence of the matr ix  (,kki) is a consequence of the preceding lemma, from 

which it follows that,  by the uniform position assumption, if 

E = Span{Pf(dx i )  : 1 < i < n and 1 _< j ~ d}, 

Ej = Span{P~ (dxl) , . . . ,  P~ (dx,)}  C E.  

we can take a basis of E/En+I by taking dzl EEl , . . . ,  dz~ ELF,. 
Since the choice of the columns is arbitrary, we conclude that  the matr ix  Mrt  

has at most d - n - 1  linearly independent columns, and thus rkMr~ < _ d - n - 1 .  
But this means that  the Hilbert function or~ ( d -  n - 2) of F t = P1 (t) +.. .  + Pd (t) 

at d - n - 2  is less or equal to d - n - 1 .  Since Or, (1) is a strictly increasing function 
of I before reaching the constant value d e g F t = d ,  we deduce that  Oft (1)_<2; this 
means that  Ft lies on a line. [] 

C o r o l l a r y  1.5. Let Y and Y '  be two hypersurfaces of the same degree d> N + 2 
in PN,  N>_2. I f  6: Y--+Y' is an isomorphism, then it is induced by a projective 
transformation. 

Proof. In fact, the isomorphism 6 induces a map on zero-cycles; and the d 
points of a generic line section of Y must t ransform into the d points of a line 

section of Y',  by the preceding theorem. Thus. we can define (at least locally) a 
map of the grassmannian of lines into itself: and moreover the lines through p E Y  
t ransform by this map into the lines through o(p). But then we know that  this map 
is induced by an automorphism of the grassmannian, which itself must be induced 
by an automorphism of the ambient projective space. Notice that  another proof is 
given in [5]. [] 

Remark 1.6. By a slight variation of the proof, we could show the following: if 

there is an open subset U of Y,  containing a line section, and a morphism O: U--+Y', 
such that  for every abelian aJ on Y~, 0* (~') is abelian on Y. then 6 can be extended 
to the entire variety Y (and is induced by an automorphism of the projective space). 
We do not know if the assertion would remain valid if we remove the assumption 
that  U contains a line section. 
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Remark 1.7. We can show, using a Brill Noether matrix and Lemma 1.2, the 
following statement:  Let Y c P x  be a non-degenerate smooth algebraic variety of 
PN of dimension n, degree d = ( N - n ) ( n + l ) + 2 ,  and moreover canonical, so that  
the canonical bundle of Y is isomorphic to Oy (1) (we call such varieties Castelnuovo 
canonical varieties, since they are of maximal geometric genus with respect to their 
degree). Let I C T  x Y be an abelian family of zero-cycles of dimension greater than  
nm in uniform position. Then the generic zero-cycle Ft of I is contained in a linear 
subspace of dimension N - n .  

2. T h e  case  o f  c u r v e s  

2 .1 .  G e n e r a l  r e s u l t s  

Let Y be an irreducible algebraic curve of degree d in P x .  Let o: Y--+Y be 
the desingularization of Y. Let 7c be the dimension of the C-vector space of abelian 

differentials on Y (i.e., global sections of-:{z). 
We will identify zero-cycles with support  in the regular part  of Y, with the 

corresponding zero-cycles on Y. \Ve know that  two zero-cycles F, F ~ R e g ( Y )  (k) are 

rationally equivalent if there is some rational function r such that  the associated 
zero-cycle in Y is (r)=(r)o-(r)~c=F-F' .  Then we will say that  F and F'  are 
linearly equivalent if moreover this rational function r is holomorphic at the singular 

points of Y. Let FEReg(Y)  (k). Then the following lemma is a corollary of the 
theorem of Abel-Rosenlicht ([11]). 

L e m m a  2.1. Any zero-cycle rationally equivalent to F is contained in the 
fiber ~-1(r at F of the classical Abel-Jacobi map O: Y(k)--~ J (Y )= J (Y ) ,  given 
by integration of finite abelian differentials. Any zero-cycle linearly equivalent to 
F is contained in the fiber ( 0 ' ) - l ( d ( F ) )  at F of the generalized Abel Jacobi map 
r Reg(Y)(k)--+ J' (Y), given by integration of abelia~ differentials. 

We call the fiber r  the complete rational family through F. We call 
the fiber ( r162  the complete linear series through F, and let us denote it 

by [F[. The we have the following lemma. 

L e m m a  2.2. A family I c T •  is finite (resp. abelian) if and only if the 
range of the corresponding map Os: T-+Y (k) is contained in a complete rational 
family (resp. a complete linear series). 

Proof. Let us consider a basis ("-h, .--, ~'g) of the finite differentials, and let 
us complete it with ( ~ g + l , . . . , ~ . )  into a basis of the abelian differentials. In a 

neighborhood of some zero-cycle with distinct points P1 +. . .+Pk~Y(k)  the fiber 
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of the classical (resp. generalized) Abel-Jacobi map is defined by" zi=Cte, with 

l<i<g (resp. 1<i<7c), where z i = ~ = l  f~/~,i .  Thus, the condition that the range 
is contained in the fiber of the classical (resp. generalized) Abel Jacobi map is 
equivalent to the conditions d(z~o@i(t))=O with 1<_i<_ 9 (resp. l< i<z r ) ,  which can 

�9 k also be written as ~ _  ~ P3* (w~) = 0 for 1 <_ i _< g (resp. 1 < i < 7r), where the Pj, 1 <_ j < k, 
are the locally defined maps over a generic tcT .  But these last conditions mean 
that  I is a finite (resp. abelian) family. [] 

Remark 2.3. For singular curves, we can geometrically describe the difference 
between complete finite families of zero-cycles (or complete rational families), and 
complete abelian families (or complete linear series) in the following way. Let k be 
a sufficiently great integer (such that  the curve is l-normal for l>k). Let H be a 
hypersurface of degree k, containing F. and not meeting SingY. If Y N H = F + F ' ,  
then the complete linear series through F can be obtained by taking the residuals 
of F' in the intersections of Y with the hypersurfaces of degree k containing F'. 
To obtain the greater family of zero-cycles rationally equivalent to F. we must 
take some hypersurface meeting every singular point Pi, with some multiplicity 
at Pi (such that  any holomorphic function annihilating Pi with this multiplicity is 
holomorphic at Pi). Then we obtain some zero-cycle F ~ (considered as a zero-cycle 
on the desingularization of Y) such that  H N Y = F + F ,  and the complete rational 
family through F is obtained by taking the residual of F ~ in the intersections of Y 
with the hypersurfaces of degree k through F'. 

Now for a zero-cycle FEReg(Y) (k) (with support in the regular part of Y), we 
say that  the abelian form aJ annihilates F if a,'EH~ Then the dimension of 
the vector space of abelian differentials which annihilate F gives the dimension of the 
complete linear series at F, by the following lemma, which is a reformulation of 
the generalized Riemann-Roch theorem [10]. 

L e m m a  2.4. We have d i m l F l = k - z r + h ~  

Let us recall that  a zero-cycle F~Reg(Y) (k) is special if the dimension of the 
complete linear series through F is greater that the one at a generic F cReg(Y)  (k). 

We could explicitly describe the abelian differentials on Y as meromorphic 
differentials on the desingularization Y' (el. [11]). From this we see that the degree 
of the poles (i.e., the sum of the order of the poles at the different poles) of an 
abelian differential is bounded; let d be this bound. Since the degree of the zero- 
cycle on Y' associated to an abelian differential on Y is the constant 2 g - 2  (where g 
is the genus of Y'), we see that an abelian differential cannot annihilate a zero-cycle 
on Y of degree greater than 2 9 - 2 + d .  Thus we have the following lemma. 
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L e m m a  2.5. At a zero-cycle FEReg(Y)  (k) of degree k > 2 9 - 2 + 5 ,  we have 
dim IFl=k-Tr .  

Now we ask the following question: Which conditions on Y imply that  the hy- 
perplane sections define the unique linear series on Y of degree d and dimension N? 

To have uniqueness, the linear series defined by hyperplane sections must be 
special, and thus d<_2g-2+5. Moreover the curves have to be linearly normal (i.e., 
the linear series defined by hyperplane sections have to be complete). The following 

example shows tha t  some additional conditions on Y are necessary. 

Example 2.6. Let Y be a smooth Castelnuovo curve of degree d>_2N and genus 
7r(d, N)  in PN,  N_>4. Then the sections of Y by hyperplanes give a complete and 
special linear series of degree d and dimension N (which is maximal for linear series 
of degree d), and moreover the unique linear series of degree d and dimension N by 
Ciliberto [2]. Now take a point P0 c Y  and let Y'  be the projection of Y on a generic 
P N - 1  from the point P0. The curve Y',  isomorphic to Y, is smooth of degree d -  1. 
The sections of Y'  by hyperplanes in P N - 1  still give a complete and special linear 
series of maximal dimension on Y'.  but it is not anymore unique. In fact, for each 
PEY, we obtain, by taking the hyperplanes through P,  such a linear series on y / ,  
and they are distinct for each P.  

Ciliberto in [2] gives a sufficient condition for uniqueness, as an inequality on the 
genus of the curve with respect to the degree. In another paper  with Lazarsfeld ([3]), 
he showed that  we have uniqueness if the curve is a smooth complete intersection 

in P3 of bidegree r (2, 2). 

Remark 2.7. Another formulation of the uniqueness of linear series of degree 

d and dimension N on the curve Y C P N  of degree d is that  the curve has a unique 

embedding into PN,  up to projective transformations.  

2.2. P l a n e  c u r v e s  

Let Y be a plane irreducible curve of degree d in P2. We first introduce the 

numerical character of a group of points F c Y :  we then show how we deduce the 
classification of Ciliberto on linear series of maximal dimension on plane curves from 
this numerical character (in our s tatement we do not assume that  Y is smooth). 

Let (Yo:YI:Y2) be homogeneous coordinates such that  the point (0:0:1) does 
not belong to Y. We can then choose affine coordinates (x, y) with x=Y1/Yo and 
Y=Y2/Yo. The equation of the curve can be writ ten f(x,y)=ye+al(x)ya-l+...+ 
aa(x) =0,  with ai(x) being a polynomial of degree _<i. Then the abelian differentials 
on Y can be writ ten explicitly as a3=(p(x, #)/cgyf)dx, with p being any polynomial 
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in (x,y) of degree < d - 3 .  A point PCY outside infinity is singular if Oyf(P)=O. 
Thus an abelian differential is finite at such a singular point P if moreover p(P)=0 
in such a way that  p/~yf remains finite on Y at P. 

Let A=C[Y0, Y1, Y2]. We denote by Iy  (resp. I t )  the polynomials which an- 
nihilate Y (resp. P), and let A y = A / I y  (resp. Ar=A/Ar).  Since IyCIp, we have 
the natural surjective map Ay--+Ar; we denote its kernel by Ir/y.  

Let R=C[Y0, Y1] be a graded ring. The graded rings Ar and Ay can be consid- 
ered as graded R-modules in a natural way. Then { 1, d-1 �9 -', Y2 }, with Y2 =Y2 mod Iy ,  
is a system of generators of the R-module Ay. The surjective morphism 

d - 1  

G --+ 
i = 0  

is an isomorphism of graded R-modules from Hilbert 's syzygies theorem. 
The morphism 

d - 1  

~: Ay ~-- 0 n[-i] ~ Ar 
i = 0  

defined by 

p(ao(Yo, }11), ..., ad-l(Yo, Y1)) = ao+alx2+...+ad-1 xd-1 

is thus a surjective morphism of graded R-modules. with x2=y2 modI r /Y .  The 
kernel Ir/y of this morphism is thus generated (as an R-module) by" elements of 
the f o r m L i = 2 J  -1 ~x J = ijY2. Still from Hilbert 's syzygies theorem, we can choose these 
generators in a way such that  there are no relations between these generators in the 
R-module Ay. We then have the exact sequence of graded R-modules 

d - 1  d - 1  

o r G R[-i] 
i = 0  i = 0  

~Ar ~0 

in which the first morphism is given by the matrix (Oti.j). From this exact sequence 
we deduce the Hilbert function of F, 

d--1 

Or(l) = E ( l - i+l )+-( l -m~+l)+,  
i = 0  

with s+=s if s>O, and 0 otherwise. 
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Definition 2.8. The sequence of integers (rn0, ..., m~t-1) (put in increasing or- 
der) is called the relative (to Y) numerical character of F. 

Remark 2.9. We call it "relative" (to Y), because the definition of Gruson- 
Peskine (not our definition) assmnes that Y is a curve of minimal degree contain- 

ing F. 

L e m m a  2.10. The relative numerical character (too .... , m~-l) of F satisfies 
d--1 the two conditions ~ = 0  ( m ~ - i ) = a  and m,+~_<m~+ l (it is "without gaps"). 

Pro@ The first condition comes from the fact that for l>>0 the Hilbert function 
of F equals deg F, and one has from the preceding exact sequence 

d - 1  

Or(1) =~-~. ( l - i + l ) + - ( l - m ~ + l ) + ,  
i = 0  

d--1  and thus 0r(1) is constant, equal to ~ i=0  (mi - i ) ,  when l>_md-l--1. 
The second condition can be shown as follows. The nmltiplication by Y2 in Az 

defines an endomorphism of I r /y  and thus we can write 

d - 1  

Y2 .Li = ~ aijLj, 
j:O 

with c~ijER(rni-mj+l).  Suppose for instance that mi+ l_<mi+l  for i<k and 
r n k + l > m k + l ,  with k<_d-2. Then Otij=O for 0 < i < k  and j>k:  thus, the sub- 
R-module of I r /y  generated by L0, ..., Lk is stable with respect to multiplication 
by y~. By the Cayley-Hamilton theorem, if P is the characteristic polynomial of the 
matrix k (c~ij)i,j=0, which has degree k + l .  we nmst have P(y2)Li=O, 0 < i < k .  Since 
Y is irreducible, we deduce that P(y2)=0.  But this impossible, since k + l _ < d - 1  
and 1, Y2, ..., yd-1 are independent on R. 

Thus the sequence (m0,.. . ,  rod-l)  is without gaps. [] 

"l" ,--,d-1 ( 1 - i + l ) + - ( 1 - m i + l ) +  we deduce that r From the expression e r r  ) = ~ i = 0  
is the area between the graphs of j ( i ) = m i  and of j '(i)=i, under the horizontal line 
j = l + l .  Thus the monotony of Or implies the third property 

mi >i. 

with equality if and only if F is empty. 
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Remark 2.11. If mo>_d, then the relative numerical character is the same as 
the "absolute" numerical character of Gruson-Peskine.  If m0<d,  we obtain the 
absolute numerical character from the relative numerical character, in the following 
way: In the set of integers (m0 .... , md-1) (which is without gaps), we remove (one 
time!) the integers too, ..., d -  1. It  can be seen that  mo is the minimal degree of 

a curve containing r and not Y. Moreover. if rod-1 >d,  then rod_ 1 is the minimal 
integer such that  Cr is constant from r o d - 1 - 1  onwards. 

L e m m a  2.12. Let F and F' be two groups of points on Y,  residual to each 
other with respect to a curwe of degree k, i.e. such that ['+ F '=H N Y, with H being a 
curve of degree k which does not meet Sing Y. Then between the relative numerical 
characters mi and m{ of F and F', we have the relation rn~l_l_i+m'i=k+d-1. 

Proof. Let us consider the exact sequence of graded Ay-modules  

0 ~ I r / v  > Av  > Ar ~ O. 

Apply the fnnetor HOmAy ( . ,  I ( r + r , ) / f )  to this exact sequence. We have I ( r+r , ) /Y 

A y [ - k ] .  Furthermore, HOmAv ( / r /Y,  I (r+r ' ) /v )=Ir ' /v ,  nomAy (Ay; I ( r + r , ) / y ) =  
Ay [-k] ,  and HOmAv (At,  I(r+r,)/y)=O. We thus obtain the exact sequence of Ay-  
modules 

O---~ Av[-k]-----~ Ir , /v  > Ex t~ , (Ar ,  I(r+r,)/v)--+O. 

The module EXtlAv(Ar,I(r+r,)/y) is exactly the dualizing module ~ r [ - d - k + 3 ]  
of Ap (because I(p+F,)/y~--A Y[-k] and wy ~-Af[d-3]). We thus obtain 

O-----~ Av[d-3] ~ Ir,/v[k+d-a]---~:r---+O. 

We can also consider the exact sequence of graded R-modules 

O---+ I r / v  > Av  > A r - - + O .  

d--1 d--1 with Av~-(~i o R[-i] and I r / y ~ i = o  R[-mi]. If we applv~ H o m R ( - , R [ - 2 ] )  to 
this exact sequence, we obtain 

d--1 d - 1  

i = 0  i = 0  

since E x t ~ ( A r , R [ - 2 ] ) ~ - w r .  We can thus express the Hilbert function of wr in 
two different ways, in terms of r n i - 2  and in terms of k+d-3-m~d_l_i .  Moreover. 
two distinct sets of integers {m~:i=0 . . . . .  d - l }  define two distinct Hilbert func- 
tions. Thus the sets {m~-  2 : i=0,  .... d -  1} and { k + d -  3 -  m~_~_~ : i=0,  ..., d -  1} 

d--1 {ml,~d--1 are equal, and since the sequences (m~)i= 0 and ~ ~Ji=0 are in increasing order, we 
obtain the relation mi+m~d_~_i=k+d-1. [] 
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For any group F C P N  of points, we have the exact sequence of sheaves 

O ---+ Zr (l) ---+ Op ,. (l) ~Or(1)  ~0 

from which we get the exact sequence 

O----> H~ H~ ) H~ HI(ZF(1)) )0 

and thus Or (l) =deg F -  h 1 (Zr (1)), with Or (1) =d im Ar (1) (the Hilbert function of F) 
and h I (Zr (1)) --dim g 1 (~Z" F (1)). 

NOW let FEReg(Y)(~); we identify F with the associated group of points. 

L e m m a  2.13. The number a - O r ( d -  3)=h l(27r(d-3)) is precisely the dimen- 
sion of the complete linear series IFI through F, where Or is the Hilbert function 
o fF .  

Pro@ From the (generalized) Riemann-Roch theorem, we have dim I F l = a -  
rk Mr,  where Mr is a Brill-Noether matrix at F. By the explicit expression of the 
abelian differentials given above, rk 511- is also the dimension of the C-vector space 
of polynomials in (x,y)  of degree _<d-3 on F. and thus rkMv=or(d -3 ) .  Using 
Or(1)=degF-hl(Zr(1)) we also get d i m [ F l = h l ( Z v ( d - 3 ) ) .  [] 

Let c~=kd-r, with r<d. Let A be the residual of r aligned points in the 
intersection of Y with a curve of degree k (e.g., take d - r  points on a generic linear 
section, and ( k - 1 ) d  points on the section of Y with a generic curve of degree k - 1 ) .  

A oc Let A = ~ i = 0  AA(i) be the homogeneous ring of A. and OA its Hilbert function. 
We have the following theorem. 

T h e o r e m  2.14. (1) We have 

oA(z) 5 or(l) for all I. 

(2) If  
Ozx(l)=or(l) f o r a l l l .  

then F is as A the residual of r aligned points in the intersection of Y with a curve 
of degree k. 

(3) If CA(i)=r then 
(i) i f i<_k+d- r -3 ,  then 

*~(J)=or(J)  for all j <_i; 
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(ii) if  i = k + d - r - 2 ,  then either 

r  for all j < i  

O r  

CA(j) = Or(j)  

(iii) if i > k + d - r - 1 ,  then 

for all j > i; 

Czx( j )=Qr( j )  for all j > i .  

Pro@ The relative numerical character (no, . . . ,  r i d - l )  of  A satisfies no=k, be- 
cause A is not contained in a curve of degree less than k. Moreover, by the preceding 
lemma we have n d _ l = k + d - 1  if r=0 ,  and n d _ l = k + d - 2  if r>0 .  We obtain, from 

d--1 the two conditions ~ = 0  (n i - i )=c~  and ni+l <_ni+l that 
(1) if ct=kd (i.e. r=0 ) ,  then 

no=k,  .... nd-l = k + d - l :  

(2) if r>0 ,  then 

n o = k ,  n l = k + l ,  . . . ,  nd_r- l=k+d-r  -1, 

n d - r = k + d - r - 1 ,  nd-r+l  = k + d - r ,  .... rid-1 = k + d - 2 .  

d - 1  From these values of ni and from the conditions ~ i=0  ( m i - i ) = a  and rn~+l < 
m i + l  we deduce that  mo>_k=no, and if rni<ni, then rnj<rlj for j>_i. 

From the explicit expression of the Hilbert functions of F and A we get 

d - 1  

= + 1)+ 
i=0  

This equation means that  Cp(/)-OA(1) is the area between the graphs of j r ( i )=mi  
and of jzx (i) =hi ,  below the horizontal line j = t + 1. As mo _> k = no (from the degree 
of F), and since mi<ni  implies that  mj <_no for all j>_i, the difference Cp(/)--~A(/) 
is first zero (until l=k- -1) ,  then increasing and then decreases to zero. Thus we 
have 

• r for all i. 

More precisely, if the two hmctions O r ( i )  and o~(i) are not equal, the set of 
integers i for which C p ( i ) - - r  is connected. 
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Let us assume that  i<<_d+k-r-3.  We can then see that  if the graph of j r  goes 
strictly under the graph of jax before i. it must stay strictly under the graph at i +  1, 

and thus we would have Or ( i+  1)< o= ( i+  1), which is impossible. Thus we have 

C a ( j ) = o r ( j )  f o r a l l j _ < i .  

Let us next assume that  i>>_d+k-r-1.  Then if the graph of j r  goes strictly 
under the graph of jA after i, it must stay strictly under the graph at i+1 ,  and 

thus we would have C r ( i +  1)< OA ( i+  1), which is impossible. Thus we have 

~A(j)  = ~)F(J) for all j _> i. 

Let us finally assume that  the two graphs coincide everywhere. Then F is 
contained in a curve of degree k. We deduce from the value of rod-1 that  the 
residual P'  of P is contained in a line, by Lemma 2.12. This concludes the proof. [] 

This allows us to restate the classification of Ciliberto [2] for linear series of 
maximal dimension on plane curves in the case of singular curves. Let us recall 
the classification, which we state as a corollary of the above theorem on Hilbert 
functions of a group of points. 

C o r o l l a r y  2.15. Let Y c P 2  be art irreducible algebraic curve of degree d, and 
F E Y  (~*) be a zero-cycle of degree c~<d(d-3 )  supported on RegY.  We denote by 
s(oe) the maximal dimension of a linear series of degree a, and by IFI the complete 
linear series through F. Let a = k d - r ,  with r<d.  

T h e n s ( ~ ) = � 8 9  i f r _ < k + l ,  a n d s ( a ) = � 8 9  if r > k + l .  More- 
over the following are true: 

(1) I f  r<_k, then d imlF]=s(c~)=�89  if and only if F is contained in 

a curve H of degree k, i.e. if there exists (a unique) F' of degree r such that IF] 
is the residual linear series of F' with respect to the curves of degree k through F'. 

Then ]F] has no fixed point. 
(2) I f r = k + l ,  then we have dim IF]=s (a )= �89  in (only) two cases. 

The first case is when F contains the intersection F'" of Y with a curve of degree 
k - 1 .  In this case, the fixed part of [F[ is F " c F ,  the residual of F"' in F. 

The second case is when F is contained in a curve H of degree k, i.e. if there 
exists a non-aligned F' of degree r = k + l  (which is then unique) such that ]F] is the 
residual linear series of F' with respect to the curves of degree k through F'. In this 
case, ]F] has no fixed part. 

_ F F ' " + F "  (3) / f r > k + 2 ,  then d imIF l=s (o_ , )= �89  ) if and only if  = 
where F"' is the intersection of Y with a curve of degree k -  1, and the fixed part of 
Irl is r " c r  
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Pro@ Let us assume that dim IFl=dim IAI. Then from Lemma 2.13. we have 

C r ( d - 3 ) = r  Assume that r_<k+l .  Theorem 2.14 allows us to conclude 

that Cr (k)=r  for k<_d-3 by the assumption. Thus mo=k and F is contained 

in a curve X of degree k. We can thus write X • Y = F + F ' ,  with F' being a group 
of points of degree r on Y. 

The fact that  IFI has no fixed points if r_<k comes from the fact that any group 

of points R of degree < k + l  defines independent conditions on curves of degree k. 
Thus F ' + P  defines independent conditions on curves of degree k for any point P 

of F, and this means that  a curve of degree k passing through F' can be disjoint 

from P. 

If r > k + l ,  let X be a curve of degree m0 through F. and let X N Y = F + F ' .  

By Theorem 2.14, we must have that m( t_ l=n~_ l=d+k-2 .  By the Gorenstein 

property, we deduce that the numerical character of F' satisfies m ~ = m 0 - k + l ,  and 

that F'  is contained in a curve of degree m 0 - k + l .  But we have m 0 ( m 0 - k + l ) <  

d e g F ' = d ( m o - k + l ) - ( d - r ) ,  and we deduce that the curve X '  of degree m~ con- 
taining F'  and X have a common component. By repeating the argument after we 

have taken out this component, we obtain that X '  is contained in X. We deduce 

that F contains the intersection of Y with a curve of degree m 0 - m ~ = k - 1 ,  and 
that the complete linear series IF[ must contain the d - r  other points of F (which 

are contained in Y N X ' )  as fixed points. Note that mo=k if and only if rn~=l .  

Let us finally assume that r = k + l .  There are two possibilities according to 

Theorem 2.14. If the Hilbert functions are equal after d - 3 ,  the theorem implies 

that F contains the intersection of Y with a curve of degree k - 1 .  If the Hilbert 

functions are equal before d - 3  but not after, F is on a curve of degree k and the 

residual F' of F with respect to this curve is not aligned. Thus 0 r ,+p (1 )=3  for any 

point P of P. Since the Hilbert function of a group of points increases strictly until 

it is constant, we nmst have Or,+e(k)>_k+2=r+l. Thus. for each point P of F, 
F ' + P  defines independent conditions on curves of degree k. and this implies that 

IFI has no fixed points. [] 
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