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A new example of a uniformly 
Levi degenerate hypersurface in C 3 

Herv~ Gaussier and Jo~l Merker 

A b s t r a c t .  We present  a homogeneous  real analyt ic  hypersur face  in C 3, twomondegene ra t e ,  

un i formly  Levi degenera te  of rank  one, w i th  a seven-d imens ionM C R  a u t o m o r p h i s m  group such  

t h a t  the  isotropy group of each poin t  is two-d imens iona l  and  commuta t ive .  The  classical t u b e  F c  

over the  two-dimens iona l  real cone in R 3 is also homogeneous  and  has  a seven-d imens iona l  C R  

a u t o m o r p h i s m  group.  However, our  example  is n o t  biholomorphic  to the  t ube  over the  real cone, 

because  the  two-dimens iona l  isotropy g roups  of F c  are, in cont ras t ,  n o n c o m m u t a t i v e .  

1. I n t r o d u c t i o n  

In the paper Uniformly Levi degenerate CR manifolds: the 5-dimensional case 
[E], Peter Ebenfelt presented the tube Fc :=C+iR3cC 3 over the real two-dimen- 
sional cone C:={(Xl, x2,x3):x21+x~-x~=O}cR 3 as a standard model among the 
class of uniformly Levi degenerate, two-nondegenerate real analytic hypersuffaces 
M in C 3. Following the t~lie Caftan algorithm to solve the equivalence problem, 
Fc is characterized by the vanishing of some curvature in [E]. It is also proved that 
the isotropy subalgebra AutcR(M, p) of a point pE M, namely the Lie subalgebra of 
infinitesimal CR automorphisms K E AUtcR(M) defined in a neighborhood of p in M 
and vanishing at p, satisfies d i m R  AutcR (M, p) < 2, implying d i n l  R AutcR(M) < 7. 
As it is known that Fc is homogeneous and that dimRAutcR(Fc,p)=2 for every 
pEFc (see [E]), one might ask whether the standard model Fc is characterized by 
the maximal dimension of its isotropy CR automorphism subalgebras. However, we 
present here a simple example of a homogeneous hypersurface M0 in C 3, having two- 
dimensional isotropy subalgebras~ which is not locally biholomorphically equivalent 
to Fc. In fact, the isotropy subalgebras AutcR(Mo,p) are commutative whereas 
the corresponding AutcR(Fc,p) are noncommutative. Analogously, the sphere is 
not the unique flat standard model among Levi nondegenerate hypersurfaces in ca~ 
since there is also the quadric Im w= [zl [2_ [z212, see [CM] and [M]. 
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2. C o n s t r u c t i o n  o f  t h e  e x a m p l e  

2.1.  P r e l i m i n a r i e s  

A real analytic tLvpersurface M of C "+l is .uniformly Levi degenerate of rank 
r at p if the Levi form is of constant rank equal to r < n  over M. To study the 
geometry of M, higher order nondegeneracy conditions are then necessary. Let 
M={zCCn+X:~(z,2)=O} with 0 real analytic and dgr on M. Let pEM. 

Definition 2.1. ([BER]) The hypersurface M is finitely nondegenerate at p if 
there exists a positive integer k such that  

(2.1) span{L~Vg (p,/5) : a  c N n and lal ~ k} = c '~+~. 

where V0 is the holomorphic gradient of o. (L 1,-.- �9 L.,,) is a basis of CR vector fields 
near p a n d / , ~  = / Z  1 ... L,~". 

The smallest integer k=:Ip satis~'ing this condition is a local biholomorphic 
invariant called the Levi type of M at p (we put lp=OC if no finite k satisfies (2.1)). 

We recall that  M is called holomorphieally nondegenerate if there is no nonzero 
holomorphic vector field tangent to an open subset of M. It  is known (see, e.g., 

[BER]) that  if M is connected and holomorphically nondegenerate, then there is 
a biholomorphie invariant lM called the Levi type of M with l<<_lM<_n--1, and a 
proper real analytic subset E of M such that  M is lM-nondegenerate at each point 
of M \ E .  

Hence there are three different types of (connected) real analytic hypersurfaces 
in C 3 at a generic point: (A) the holomorphically degenerate ones. which are locally 
biholomorphie to a product  N x A. where -Y is a real hypersurface in C ~ and A is 
the unit disc in C; (B) the Levi nondegenerate ones. whose Levi type equals one: 
and (C) the two-nondegenerate ones which are uniformly Levi degenerate of rank 
o n e .  

2.2. G e n e r a l  f o r m  o f  a t w o - n o n d e g e n e r a t e  h y p e r s u r f a c e  in C a 

Let now M be a small piece of a rigid real analytic hypersurface passing through 
the origin in C a given by 3 l = : { ( z l ,  z2, w):w+~=F(z ,  z)}. where z=(zl: z2). As- 
sume that  M is uniformly Levi degenerate of rank one, namely that the Levi form of 
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54 has exact ly one nonzero eigenvalue at every point. So 3 J = :  {(z~, z2, w ) : w + w =  
- o o  k zlzl  +Y~'~k=3 F (z, 5)}, locally at the origin, where F ~" is a homogeneous polynomial  

of degree k with respect to z and 2, and the Levi deternfinant  of 5 i  must  vanish 
identically: 

l + V ' ~  Fk ~ : - 3 F ~ 2 ~ - 0 .  (2.2) ~ k = 3  zl~ 
~k~C=zFk ~-~ ~= 3 Eli2 ~:2 z 1 Z 2  

In  part icular  F a ~ - 0  in a ne ighborhood of the origin, so there are four complex 

constants  a2100, a20m, a u l o  and a0120 such tha t  F3(z, 2)=a2100z2121+a2001z252+ 
- 2 -  - - 2  - = 2  - ~ ~ = - 2 al110Z1Z2Z1 na ao120z2 Zl q-a2100ZlZl -I- a2001 z2~1 + 01110~1 ~1 ~2 4-ao120ZlZ2. 

The t ransformat ion  z ~ y = (Yt, 92) :=  (Zl 2 2 +a2100Zl +alllOZlZ2+ao120z2, z2) is a 
local biholomorphic  map  at the origin. In the (91,92, w) coordinates  M is repre- 
sented by 

{/ 1 M =  yl ,y2,w :w+w=ylfll+a200xY 2 -1- a2001 92-t- k(y, , 
k =4 

where G k is a homogeneous polynomial  of degree k with respect to y and ~. As- 

suming tha t  M is two-nondegenerate  it follows tha t  a2001 # 0  and so by a rescaling 
of the Y2 axis we may  write 

(2.3) M =  ( ~ z , y 2 , w ) : w + e = y ~ , + y ~ y ~ + ~ + ~ G k ( y , ~ )  �9 
k=4 

2.3. C o n s t r u c t i o n  of  the  example  

Coming back to the previous nota t ion  z instead of y in (2.3), the vanishing of 

the Levi de terminant  (2.2) is now equivalent to the following equations:  

(2.4)4 -G 4 -  ~ 4z151 
Z 2 Z  2 ", 

(2.4)5 G 5 -  = 2  z 5 - 5 z2z2- (1Gzl~2+zlGz2~l), 
k--2 

(2.4)k G k - - 2@ .-,k-1 . - .-,k-1 G j _ ~ k + 2 - j  ~ =  ~ l ~ - z ~ 2 ~ - z l l - ~ ) + y ~  ~ l ~ z ~  
j=4 

for every k _> 6. 

--4 -- T h e  i n t e g r a t i o n  of (2.4)4 gives G 4 (z, 2) = 4z 12" 1 z2 z2 + ~4  (z, 5), where  Gz2 ~2 = O. Vv~ 

set G 4 - 0  for the construct ion of a part icular  hypersurface denoted by M0 in the 
sequel. 



88 Herv6 Gaussier and 3o61 Merker 

Similarly, the integration of (2.4)5 gives GS(z, 5)=4(z~z22~+2~z~22)+GS(z, 2), 
~5 - where ~ : = 0 .  We set Gs=-0 and subsequently Gk-0  for every k>_6, so we obtain 

the following expansion for the defining equation of Mo: 

( z5 )  m 0 =  , 
k=0 

and Mo is uniformly degenerate. By the change of variables zF-+ (Zx, 2z2) we obtain 
the final form of Mo. More precisely we denote by Mo the connected piece passing 
through the origin with Iz2t < 1: 

2zl ~1 + z~ 52 + 5~ z2 } 
(2.6) Mo= (zl,z2, w):w+V:= 1-z252 :lz21<l " 

2.4. G e o m e t r y  of  Mo 

The (1, 0) vector fields tangent to Mo are generated by 

0 2~1 +2z122 0 
(2.7) L1 := ~ - +  and 

ozl 1-z252 Ow 
0 (Z1-1- Zl z2) 2 0 

Lz := ~z-~zz + (1__Z222) 2 0 W "  

The kernel of the Levi form is generated by the vector field 

~.lq-ZlZ 2 0 0 (Z.I-I-Z1Z2) 2 0 (2.8) T : =  
I--Z2Z: OZl OZ2 (1--Z252) 2 0 W "  

Indeed, we compute 

(2.9) [L1,T]-  1 - - L  1 and [L2,T]-  ZI-[-ZIZ2 L1 
1--z2~ (1-z2~2) 2 

Finally, according to a theorem of Freeman [F], M0 is necessarily foliated by complex 
curves. In fact, 214o is foliated by the complex lines Zl:=Z0-5oG z2:=~ and w:= 
Zo2o+iA-~202, where z0EC, AER and where ~EC satisfies ICI<I. 

3. B iho lomorphic  inequivalence  of  r c  and /14o 

The inequivalence of Fc and 510 is based on the comparison of the isotropy 
subalgebras of two reference points for these hypersurfaces. In the next two subsec- 
tions, we determine the Lie algebra of the infinitesimal CR automorphisms of Fc 
and of M0. 
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3.1. G e o m e t r y  of  Fc  

The tube P c  is invariant under translations in the tube directions, dilatations 
and automorphisms of the real quadratic form 2 2 2 x l + x  2 - x  3. The infinitesimal gen- 
erators KI , . . . ,  K7 of these seven independent transformations form a Lie algebra 
and are the real parts of the holomorphic vector fields 

(3.1) 

X l  . 0 X 4  0 0 0 

= = a 7  +2:2 0z-7 oz3  

X ~ = i  0 , X5 = 0 0 
z ~ - 2 : ~ - ~ z  2 ' 

X3 0 X6 0 0 
= i - - ,  = Z3 ~Zl -{- 2:1 

OQZ3 " 02'  3 ' 

0 0 
X T =  _ _  

2:3 0Z  2 -l- Z2 02:3" 

The transformations K1,.. . ,  Kr exhaust the infinitesimal CR automorphisms of Fc .  
Indeed, let p E F c  outside the singular locus. One can prove that  any biholomorphic 
local self-map of F c  defined in a neighborhood of p must be affine of the form 
C3~ Z~-~ ~(Z)+ibE C a, where bE R 3 and �9 is a linear mapping with real coefficients 
which stabilizes C near Rep. Then �9 is necessarily a dilatation or an automorphism 
of 2 2 2 x i + x 2 - x  a (see [P] for the study of global biholomorphisms of tube domains or 
[E] for the local study). 

Since P c  is homogeneous, we can study its local geometry in a neighborhood 
of the point po:=(1, 0, 1). The (1, 0) vector fields tangent to F c  are then generated 
near Po by 

0 xi 0 0 z2 0 
(3 .2 )  Ll:=~1z1+oCa0Z3 and L2:=~z2+xaOz  a. 

Furthermore, the vector field T:=xl  (O/Ozi) +x2(0/0z2)-{-xz(0/0z3) spans the ker- 
nel of the Levi form, because [L1, T ]=  1- ~Li and [Le, T ]= �89  Also, the regular 
locus of F c  (cf. [F]) is globally foliated by the complex lines zl :=(r+is)cos0+iA, 
z2:=(r+is) sinO+ip and z3:=r+is. Also, computing (2.1), it is easy to check that  
F c  is two-nondegenerate at every point. 

Finally, the isotropy Lie algebra Au tcR(Fc ,  Po) is generated by the two vector 
fields K s = K 4 -  K6 and Kg=K5+ K7. 

We observe that  [2/(8,2K9] =2/(9.  Since the regular part of F c  is homogeneous, 
it follows that  the isotropy algebras Au tcR(Fc ,p )  are all noncommutative. 
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3.2. C o m p u t a t i o n  of  the  Lie algebra of  ]14o 

The computat ion of the Lie algebra of AutcR(310) at the origin is based on 
the Lie theory of the prolongation of vector fields (see [O1] and [02]) and on the 
fundmnental observation by A. Sukhov in [S] that  the Segre varieties are solutions 
of nonlinear systems of partial  differential equations. We would like to mention that  

the direct computat ion of this Lie algebra, using only the tangency condition for an 
infinitesimal CR automorphism of 3I.  invoh,es the resolution of a huge system of 
approximatively sixty linear partial differential equations. Using the Lie theory we 
restrict the study to a much simpler system of only nine linear partial differential 
equations. 

Let us write (Xl, x2, u, Xl, ~e, ~) instead of (Zl, z2, w, Zl, z2, w) and let us con- 
sider u, Xl and 5c2 as complex parameters,  Xl and x9 as two independent variables 
and u as a dependent variable, i.e. as a function of Xl and x2 in the defining equation 
(2.6) of M. Then the two differential terms 

_ 02// 222 Ou 2(21+x122) and u o . -  - 
(3.3) ux~ . -  Oxl  1 - x 2 x 2  zy Ox 2 1 - x 2 x  2 

are sufficient to express any partial  derivative u ~..~ �88 
d:lZ 2 

(3.n) 

i~/2 

__ I 2 
U r l a , : :  2 - -  :~Ux i  U x  1 , 

__1 2 

u:~ = O. 

1 2 
u~:~: 2 = 5uz~, 

1 U l/2 

1/xa = 3/12 /12 g x~ ~ -  

Let us denote by J231(C)  t h e  jet space of partial  derivatives up to order three of 
one function u depending on the two complex variables Xl and x2, equipped with 
the coordinates 

(3.5) (Xl ,  X2, U, U 1, U ? ,  u2 rr2 U 2 U 3 U?.l .2 ' U 3 -3 ~1.1,  'J 1.2" 2.2" 1.1.1' 1.2,2~ U2.2.2) �9 

To the system (3.4) corresponds the following complex submanifold of J3.1(C): 

(3.6) 

711 12 

U~. 2 ! r r l r r2  = 2'-'1 Ul , l~  

U2.2 1 {Trlh2TT2 

U131.1 = 0. 

Ua 1 frr2 ~2 
1.1.2 = 2 \ ~ 1 . 1 /  

g 3 i f r l  r2 2 
1.2 .2  = 5 ~ 1 ( L ' 1 . 1 )  , 

,3 3 T1)2(U2 ~2 
~ 2 . 2 . 2  = ~ ( 5 1  1.1J �9 
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The computation of the Lie algebra AutcR(Mo) is based on the following three 
observations: 

(1) The solutions of the system (3.4) are exactly the Segre varieties of M0. 
(2) Every local biholomorphic map stabilizing M0 maps every Segre variety 

onto another one and hence is a symmetry of the system (3.4). 
(3) Since M0 is holomorphically nondegenerate, it follows from [C, pp. 30321 

that the group of CR automorphisms of M0 is a maximally real subspace of the 
symmetry group of the differential system (3,4). 

It remains to determine the symmetry group of (3.6). using the following cri- 
terion. 

Lie c r i t e r ion ,  ([O1]) A vector field y=Q1 (O/Oxl)+Q2(O/Oz2)+R(O/Ou) is 
an infinitesimal symmetry of the system (3.4) if and only if its third prolongation 
ya is tangent to the complex manifold defined by the equations (3.6) in J~n(C).  

The third prolongation of Y can be written (cf. IS], [GM]) 

2 2 2 
(3.7) Y~ = r +  Z R' 0 0 R~ 0 

j l = l  21 j l . j2=1 .jl.j2.j3 =1 

where the terms R13~' Rja,j~,2 t~33~,3~.9a,, ji =1.2.  are computed bv~ induction. 

2 

RII = D j ~ ( R ) - ~  Dj~(@)~..  
k=l  

2 

(3.8) R~,j~ = Dj:(R}~)- E DJ~ (Q~')/~52~ .k' 
k=l  

2 
2 D k ,3 R3~,,~ ~ = Dj~(nj, 52)- ~ j~(Q )cj~ ~ k, 

k=l  

using the operators of total derivative for j = l .  2.3, 

0 1 0  2 2 U2 0 O 
3.21,J2 0U~21 

j l = i  Jl j t  ,J2=l ,j2 

For instance, the expression of R131.1 is 

"t~31,1,1 =R :~+ [3R~ ,~  ' ~  1 u l - r  ,,n2 1U~+f3R~,~,._3Q~=~](U~)2 
2 1 1 [Ru3_aQ~ ' U 1 3 3 2 +[-3Quz~]UI U2 + ] ( 1 )  -'~[-- Ou2xl](U~)  2crl 

+[_Qla](U~)a+[_Q2u3](U))aU~ +[3R,,z _~,,~I 1U2 ,2 owx~j 1.1+ [-2Q~]~;~.~ 
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(3.10) +[3R~2 1 1 2 _L_[ ~/'~2 ] U 1 U  2 , r 6.-~2 1U1U2 -9Quz~]UiUl,l-t-.,.~ux~l 2 1.1~-[  - ~'~uxl] 1 1,2 

+[_6Q~:](U~)2U~,I + 2 1 2 2 2 1~fl  U 2  [-3Qu2J(UI) u1.2+[-3Qu2]u1 2 1,1 

3Q1 U 2 2 , , + [ -  ~](1 ,1)  +[-3Q~]U211U~2+[R,, 3FI1 ]U3 --  'q~xlJ 1.1.1 

5 2 U 3 1 11T3 , r 5 f ~ 2 1 U 1 U  3 - - r _ f ) 2 l U l r r 3  + [ - Q z , ]  1 . 1 . 2 q - [ - 4 Q u ] U I ' - ~ I . I , I - P [  - WuJ 1 1.1.21-L 'aCuJ 2 'J1 .1 ,1  - 

The Lie criterion is equivalent to saying that  the following equalities are satisfied 

on the variety defined by (3.6): 

(3.11) 

.t1:~1 ~ 1 / ) 1 / / ' 1  
~ 1 ' ~  1 

R 2 1 2 1 1 2 
1,2 = ~ ( R I , I U 1  + R 1 U I , 1 ) ,  

R 2  l l :21rr lrr  2 •  lrrl)2 
2,2 : 2 ~ l U l V l , l T 4 ~ t l . l \ C ' l  

R 3 = 0. 1.1,1 

R3 ~2 rr2 
1,i,2 ~ XVl. I ~ I . I ' .  

3 l i ~ l ( r T 2  ~2_~R2 1U11. 
/~1.2.2 = 2 ~ 1 \ ~ ' 1 , 1 ]  , - 
R 3  3 1 1 2 2 2 1 2 2 

2 . 2 . 2 - -  ~ R 1 U I ( U I . 1 )  - t - R 1 , 1 ( U 1 )  U I . I "  

Substituting the explicit expressions of the R terms, we get a system of linear 
partial differential equations. We extract the following ones, which are sufficient to 
determine Y completely: 

constant term in R 1 

(3.12) 

U 1 term in R~ 

(U1) 2 term in R~ 

(Ur in R 1 

(U~) 4 te rm in R 1 

(Ull) 2 term in R 2 1,2 

(U~) a term in R~, 2 

constant term in R3ad 

2 2 R3 (Ula) te rm in 1,1,1 

: Rx~ = 0, 

- O~ -- - ~ R ~ ,  
1 Q 2  I 1 1 

: a x2 = 2 Q x l - ~ R u ,  

1 i i 2 
: ~ Q u = - g Q x l ,  

1 2 : ~ Q .  = o .  

1 1 ( R u x l  2 1 (2RUXl  1 - Q ~ )  = ~ -%~) ,  : - Q ~  + 

1 2 1 1 : ~ ( R ~  1 

: R ~  = 0, 

~Q2 -3Q~ =0. : - - ~  xl 

The resolution of these nine linear partial differential equations gives the fol- 
lowing general form for a generator of the symmetry  group of the system (3.4): 

(3.13) 

6 0 v =  (~+ x l+o /2+~xlx2)b-~  +( ,+(2d+~)x.+3x~)  o 
�9 , C~X2 

+ (A- 2~x, - ~- /3x~)  ~ , 

where a , /3 ,  % 5, c, A and # are complex constants. 
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A basis of the infinitesimal CR automorphisms of M0, expressed in the coordi- 
nates (zl, z2, w), is given by the real parts of the following linear complex combina- 
tions of the seven generators given by (3.13) [c, pp. 30-32]): 

(a.14) 

0 X 1 = l -  
Ow ' 

X2 0 0 

X 3 = i ( z l ~@1-[- 2 z 2 ~@2 ) , 

0 0 
X 4 = ( z 2 - 1 ) ~  Z -2z1 

Ow' 

OZl Ow / 
0 2 0 0 

= z l  + ( - ' 

( O + ( z ~ + l ) ~ z 2 _ Z 2  0 ) X 7 ~- i \ z I  Z2-~Z 1 10tgJ" 

3.3. Local biholomorphic inequivalence of Fc and Mo 

The isotropy algebra AutcR(M0, 0) is generated over R by the real parts of 
X 2 and X 3 and hence is commutative since [X 2,X3]=0. On the contrary the 
isotropy algebra AutcR(Fc,Po) is generated by the vector fields Ks and /s (see 
Subsection 3.1), satisfying the condition [2Ks,2K9]=2Kg. This implies that Fc  
and Mo are locally biholomorphically inequivalent. 

Open question. It would be of great interest to provide a complete classification 
of real analytic homogeneous hypersurfaces in C 3, in the spirit of l~lie Cartan's list 
in dimension two [C]. 
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