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Continuity of weak solutions of 
elliptic partial differential equations 

Visa Latvala 

A b s t r a c t .  T h e  cont inui ty  of weak solut ions  of elliptic par t ia l  differential  equa t ions  

div A(x ,  Vu)  = 0 

is considered unde r  m i n i ma l  s t ruc tu re  a s sumpt ions .  T h e  ma in  result  gua ran tees  the  con t inu i ty  at  

the  poin t  x0 for weakly mono t one  weak solu t ions  if the  s t ruc tu re  of .4 is controlled in a sequence  

of annul i  B(xo, Rj)\B(xo, r j) with  uni formly  bounded  rat io  R a / r j  such  t h a t  l imj ~ac  Rj  =0 .  As 

a consequence,  we ob ta in  a sufficient condi t ion  for the  cont inu i ty  of m a p p i n g s  of finite dis tor t ion.  

1. I n t r o d u c t i o n  

This note deals with the continuity of weakly monotone weak solutions of the 

elliptic partial differential equation 

(1.1) div A(x, Vu) = 0. 

Here A: R n x R ~ - + R  ~ satisfies 

 (z)l l p <_ A(x, <_ 3(x)l F 

for some l<p<_n and for some measurable functions a, 3: f~-+R+. We do not a 

priori make any integrability assumptions on 3/a or a -1. We do not even require 
in Section 3 that a > 0  a.e. in fL The lack of these assumptions is replaced by the 

assumption that u is weakly monotone. In fact. our main result (Theorem 3.1) 

shows that weakly monotone weak solutions of (1.1) are continuous at the point 

x0 E f~ whenever there exists a sequence of annuli Aj = B(zo. Rj) \ B(xo, rj) shrinking 

to the point x0 such that s < OL < ~<s i n  Aj for some constants e~,j, s2,j >0 with 

finite supremums sup/(Rj / ry)  and supj (e2.y/et.j). The proof of this result is based 

on Harnack's inequality only. Theorem 3.1 is improved in Section 4 under the 
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additional assumptions that n- l<p<n,  the function 3 is bounded, and c~>0 a.e. 
in ft. 

The equation (1.1) is considered in [9], where the authors obtain among other 
things that  weak solutions of (1.1) are weakly monotone in the sense of [12] if 
/3EL~(f t )  and a > 0  a.e. in f~. Thus by the known properties of weakly monotone 
functions [12, Theorem 1], any weak solution of (1.1) has a representative which is 
locally bounded and continuous outside a p-polar set, whenever n- l<p<n.  For 
p>_n weakly monotone functions always have a continuous representative. There 
are examples of non-continuous weakly monotone functions for p<n. In the case 
l < p _ < n - 1 ,  the author is not aware of any general regularity results for weakly 
monotone functions. 

Our ideas have a relation to the theory of mappings of finite distortion. This 
class of mappings has been intensively studied quite recently, see e.g. [1], [4], [5], [6], 
[7], [8] and the references therein. The continuity and monotonicity of mappings 
of finite distortion are studied in [5], where the authors prove continuity under the 
additional assumption that the distortion function is exponentially integrable. We 
comment on the continuity of mappings of finite distortion in Remark 3.2. 

This paper is an improved version of the preprint [11]. In [11], Theorem 3.1 
was proved by obtaining an annulus version of the well-known De Giorgi method. 

Acknowledgement. A part of the research was done when the author was vis- 
iting the Mittag-Leffler Institute. The author wishes to thank the Academy of 
Finland and the Mittag-Leffier Institute for the support. 

2 .  P r e l i m i n a r i e s  

We assume throughout that  f ~ c R  r' is an open set for n>2 ,  x0cf t ,  and u is a 
weak solution of (1.1) in Q in the sense of Definition 2.1. 

Our notation is fairly standard. The n-dimensional Lebesgue measure is de- 
noted by l" I and 1" I1 denotes the I-dimensional Lebesgue measure. We write 

osc v = s u p  v -  i n f  v 
E E E 

for the oscillation of a real-valued function v defined on E C R  n. The boundary of 
an open euclidean ball B(x, r ) cR  '~ is denoted by S(x, r). 

Recall that  the Sobolev space uEII.~ao~(ft), p >  1. consists of functions u in f~ 
which are locally LP-integrable in ft and whose distributional gradient Vu is locally 
LP-integrable in ft. 
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Weak so lut ions  of  ell iptic partial differential equat ions  

Let l < p < o o  and let c~, ~: f~---~R+ be measurable functions such that  

0 <_ c~(x) <_ ,'3(x) < ec for a.e. x E ft. 

Suppose further that  .4: R n x  R ' ~ - + R  n satisfies the following assumptions: 

(A1) the mapping x~-+A(x, ~) is measurable for all {EI : t ' ;  
(A2) the mapping @-+A(x, ~) is continuous for a.e. xERn ;  

(A3) A(x,~).~>c~(x)I~I p for all ~ E R  ~ and a.e. x E R " :  

(A4) IA(x,r p-I for all ( E R "  and a.e. x E R  '~. 
The reason why assumptions (A1) and (A2) are required is that  they ensure the 
measurabili ty of the composed function x~--~A(x.v(x)) for all measurable func- 

tions v. Assumptions (A3) and (A4) describe the elliptic s tructure of A. 

Definition 2.1. W'e call u a weak solution of (1.1) in f~ i f  U~It/llo'cP(a) and 

f f  A(x, Vu(x)) .Vr  for all o~cT(~). 

Weakly m o n o t o n e  functions 

Weakly monotone functions were introduced in [12] as follows. 

Definition 2.2. A function uEWlloPc(f~) is weakly monotone, if for every rel- 
atively compact  subdomain fF of f~ and for every pair of constants m<_M such 
that  

and 

we have  

§ e p ( a ' )  

m < u < ~ ' ~ l  a.e. inf~' .  

If ~ is bounded in f~ and c~>0 a.e. in fL then a simple approximation argument 
shows that  one can as well test with all functions O E I I ' I P ( f ~ )  whose support  is 

compactly contained in f~ ([3, Lemma 3.11]). In this case we have the following 
result [9, Lemma 2.7]. 

L e m m a  2.3. Weak solutions of (1.1) in f~ are weakly monotone if 3EL~(f~) 
and a > 0  a.e. in fL 
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The uniformly bounded case 3EL~(~..), a-l~L~C(f~),  is studied in the cel- 
ebrated paper [131 by Serrin. In this case non-negative solutions of (1.1) satish" 
Harnaek's inequality and the (local H61der) continuity follows by the standard iter- 
ation argument. 

3. Harnack's inequality 

In this section we prove our general sufficient condition for the continuity of 
weakly monotone weak solutions of (1.1). The proof of the result is based on a 
modification of Harnack's inequality. We consider an arbitrary exponent l < p < ~ c  
in this section. 

T h e o r e m  3.1. Let Aj=B(xo,  Rj)\B(Xo. rj) be a sequence of open annuli with 
the properties 

(i) l im j+~  Rj =0, 

(ii) supjcN(Rj/r j )=:s<oc.  
(iii) a l , j < a < 3 < e 2 4  in Aj for some positive constants el.j and e2.j with 

supjcN (e2,j/el,j) = :t < oc. 
Then each weakly monotone weak solution u of (1.1) in B(xo,R1) has a represen- 
ter@e, which is continuous at Xo. 

Pro@ Define u pointwise by 

(3.1) u ( z ) = l i m i n f - - 1  ~ udx for a l l z ~ f ~  
IB( ,r)l <..,.> 

and let 

Aj B(xo, R j -  ri)) \D(x0.  r j +  ~ ' =  (nj- 

]~j ~ sup ~/, 
B(zo.�89 +,-~)) 

mj = inf u. 
B(zo.�89 

We are free to assume that R j + l < r j  for all j .  First. notice that u is bounded 
in B(zo, �89 by the weak monotonicity. In fact. since u is a solution 
of (1.1) in Aj in the sense of [13]. u is continuous in Aj. Hence (u--suPA } u) + 

belongs to W~'P(B(xo, �89 and Definition 2.2 implies that u<_suPA, j u a.e. 

in B(xo, ~l(Rj+rj)). The pointwise definition (3.1) guarantees that ~<sup~}_ . u 

everywhere in B(xo, 7l(l~j+rj)). Since the lower bound can be treated similarlv.~ 
we conclude that  the numbers 3Ij and rnj are finite. Consequently, vj-~u--rrlj 
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is a non-negative solution of (1.1) in B(xo. Aj+I). By [13]. cj satisfies Harnack's  
inequality 

sup vj <_ C inf cj 
B 

for all balls B such that  2 B c A j + I  We mav cover S(xo, 1 . ., ~(Rj+I+rs+I) ) by balls 

with r a d i u s  I ( R j +  1 - r s + l )  such that  the number of balls in the covering only de- 
pends on s and n. A repeated application of Harnack's  inequality yields 

sup IJj < C inf v s- 
s(~0,�89 s'(~-o. �89 (R~§ ~ +~-~+ ~ )) 

Here C depends only on n, p, s, and t. Using the weak monotonicity as above, we 
infer 

sup vj _< C inf u s 
B(xo,�89 B(xo.�89 

with a constant C depending only on n, p, s. and t. For shortness, we rewrite this 
inequality in the form 

(3 .2 )  M j  + ~ - m s  _< C (ms  + ~ - m s ) -  

We now proceed in essentially the s tandard way. Let .k=(C-1) /C.  where C > I  is 

the constant of (3.2). Since O < A < I ,  it suffices to show that  

M j + ~ - m s + ~  _< , x ( M ~ - m s )  for all j .  

Suppose that  mS+~-mj<_C-~(AIs-rrb). Then by (3.2). 

]~lj-[-1 --  m j + l  : ~l - j+  1 --  m j  -[-,m s -- m j + l  5 ( C -  1) (H~j+  1 - 17ij ) ~ ~(:]I j  - m j ) .  

The case m j + z - m j  > C  -1 ( M j - m s )  is obvious, since then 

5:tj+ ~ - ' ~ 5 + a  -< Mj - m j  - ( ' t J+~ - m j) 

< M j - . ~ . , - c - ' ( a ~ - m , )  : x ( . % - m 3 ) .  [] 

Remark 3.2. The proof of Theorem 3.1 only requires the weak monotonicity 
on B(xo, Rz) and Harnack's  inequality in annuli Aj for balls B such that  2BCAj.  
The constant in Harnack's  inequality should be independent of j .  We next discuss 
a special case, which has some interest from the point of view of mappings of finite 
distortion, see [5]. By definition, a mapping f :  9 _ ~ R "  is of finite distortion in .q 
if the components satisfy r1.1 fkEl,I lo c (~) and there is a measurable function K(z)>1 
such that  for a.e. a E f t  

IDf(x)l '~ < K(x)J(x.  f). 
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Here Df(x)  is the a.e. defined derivative matrix and J(x, f )=det  Df(x)  is the 
Jacobian determinant. If moreover K:=ess  sup~(~ K(x) <~c and fk ~Wlloc~(~), the 
mapping f is called K-quasiregular in ~. 

Let l < p < n  and let f :  f t - + R  ~' be a mapping whose coordinate functions fk, 
1,p k = l , . . .  ,n, belong to Wlo ~ (fl) and are weakly monotone. Let x0~Q and assume 

that Rj >rj >0 are radii with the properties 
(i) limj--+ec Rj =0; 
(ii) supj~y(Rj/rj)<~c: 
(iii) f is K-quasiregular in each annulus Aj=B(zo.  R j ) \B(zo ,  rj) with K in- 

dependent of j .  
Then f is continuous at m0. The claim follows from Theorem 3.1,  since the co- 
ordinate functions fk satisfy Harnack's inequality in annuli Aj with a constant 
depending only on n and K,  see [3, pp. 269-271] and [13]. 

4. T h e  case  n - - l < p < n  

In this section we prove a sphere version of Theorem 3.1 under the additional 
assumptions that  n - l < p < n  and 3EL~:(ft). The idea of the proof resembles the 
one in Theorem 3.1, but we need more complicated arguments to obtain the sequence 
of Harnack's inequalities. 

We assume throughout this section that n - 1  < p < n .  the function 3 is bounded, 
and o~>0 a.e. in f~. Let 

z2 = ess  s u p  3(x). 
xCf~ 

In this case each solution of (1.1) in f~ is weakly monotone (Lemma 2.3) and we are 
able to use the following special properties of weakly monotone functions obtained 
in the proof of [12, Theorem 1]. 

L e m m a  4.1. Let p > n - 1  az~d let t'EI'l'llo)P(~) be a weakly monotone function 
in f~ defined pointwise by 

v ( z ) = l i m i n f - - 1  JB vdx for all zEt2. 
, -~0 I B ( z ,  r ) l  (~,.) 

Then for any B(xo, R)Cf~ there is a set EC(0 ,  R) of linear measure zero such that 
v is continuous in S(xo, r) and 

osc v =  osc v for a l l rE (O .R) \E .  
B(xo,,') S(xo.r) 

Moreover, oscs(,o,~)v is non-decreasing in (O, R) \ E. 



Continuity of weak solutions of elliptic partial differential equations 101 

Proof. The  pointwise definition of v guarantees  tha t  v is p-quas icont inuous  in f~ 
[2, pp. 161-162] and tha t  

e s s o s c v =  osc v for all balls B(xo, r ) ~ f L  
B (xo , r )  B (xo  ,r) 

Hence the  assert ions hold by the proof  of [12. Theorem 1]. [] 

L e m m a  4.2 .  Let u be a non-negative solutio~ of (1.1) in f~ and assume that 
there are numbers el > 0  and 0 < ~ < 1  together with radii Rj and measurable subsets 
Aj of ]0, Ry[ such that 

(i) l i m j ~  Rj =0;  

(ii) IAj[x >_6Rj; 
(iii) c t>c l  in U~.cAj S(xo,r). 

Then there is a sequence of radii rj El0, Rj [ such that 

sup u < C  inf u for all j = l. 2 .... .  
H( xo , r  j ) B (  xo "rb ) 

The constant C depends only on n, p, 6. and the ratio c2/~1. 

Proof. I t  is enough to prove the  assert ion for a rb i t r a ry  v = u + l / k ,  k = l .  2 .... , 
if only the choice of the  radii rj is independent  of k. To do this, we first imi ta te  a 

s t anda rd  trick. Let  Rj be such tha t  B(xo. 2Rj) ~f~ and let c'j EI,I~ 'P(B(x0,  2Rj) )  be 
a Lipschitz funct ion with  the  proper t ies  0 < wj <<- 1, wj = 1 in B(xo, R j), and ]VFj I -< 
2/Rj.  We choose ~j=r 1-p as a test  funct ion for v in f~. Then  

so t ha t  

(p-1) L v-P ~PA(x, Vv). Vv dx <_ p L ~,p- lva-PA(x. Vv). ~7 (:j dx. 

By the s t ruc ture  assumpt ions  (A3) and (A4), we obta in  from H61der's inequali ty 
t ha t  

(p_l) f c~v-p~ylVvf dx<pL ,p-lo,z-p a x Vv ~'j v ~ ( ,  )JjV~'jldx 

<pc2 L ~-lvX-plVvlP-llW'Jt dx 

<,~ (f~ ,Vvl,v-,~f dx)('-l)/' (s ,w,~r dx) 1/'. 



102 Visa Latvala 

It follows that  

(/B(xo,Rj)alVlogvlPdx)(/B(.,:o.lb)lVlogvlPdx) (1 P)/P 

< P - 2 2 . ( / B  ,Vu, j,Pdx) t/p. 
- p -  1 (zo.2Rj) 

Assume that  ]V log v t takes positive values in a set of positive measure in B(xo, 1~j). 
Then (4.1) implies IV log v[ ELP(B(xo, Rj)). This holds trivially if IV log v t =0  a.e. 
in B(xo, Rj). Hence we may apply [9, Lemma 2.13] to conclude that logv is weakly 
monotone in B(Xo, Rj). 

Define v pointwise by 

v(z) = lira inf - - 1  / 3  t, dx for all z E -Q. 
, . - - ,o  IB( , 

Then by Lemma 4.1, there is a set EC(0 .  R1) of linear measure zero such that logv 
is continuous in S(xo, R) for all RE(0. R1)\E, oscs(.,.0.R)logv is non-decreasing in 
(0, R1)\E, and that  

(4.2) osc l o g v =  ose logv for RE(O. R1)\E. 
S(xo.R) B(~:o.R) 

\Ve are free to assmne that E is independent of k and that Sobolev's inequality in 
spheres holds for all RE(0, R1)\E, that is 

(4.3) 
f 

osc (logv)P<c(n,p)R p ('-1) I IVlogt, lr'dS. 
S(xo,R) J s(:ro.R) 

Letting 

it follows from (4.1) that  

s(&)= U S(xo,,) 
z'E Aj 

(4.4) JfS(Aj) IV l~ vlP dz < - -  t3 s n - p ps2 [Vujl pdx < c(n,p):--Rj . 
( p - 1 ) e l  (xo.2Rj) - :1 

By assumption (iii), there is rj  E [�89 Rj] \E  such that 

1]rj. Rj[nAjll _> ~6Rj. 
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Hence integrating (4.3) over the set [rj. R:/]~Aj yields 

\S(XO.rj) J[rj,Rj]C1Aj kS(XO "t) / 

<f[(  ( osc logt')Pdt 
5/2)Rj ,Rj]nAj kS(x0,/) 

<_ c(n, p) f[(a/2)~ ,&>A, 

< c(rt, p)Rj p+I-" ~(Aj)  

tP+l-n (~.(xo.e) 

IV log vl v dx. 

]V log v] p dS) dt 

Here dS refers to integration with respect to the surface measure on S(xo, t). We 
arrive at 

1 p n {  
( osc logv) p <c(n,p)~Rj-  Js [Vlogt, I vdx. 
\S(xo,r'~) - -  (,45) 

which together with (4.2) and (4.4) gives 

(o c 
\B(x0.rj) \S(xo.rs) / - -  OE 1 

Hence 

log (supB(~c~ !_v ~ = log V < c0Lp) \~-77 . 
\ i n f B ( ~ o . , ~ )  v / B(~o.r~> --  

T h e  assertion of the theorem follows by exponentiating the last inequality. [] 

The continuity of u at x0 follows essentially the same way as in Theorem 3.1. 

T h e o r e m  4.3. Let u be a solution of (1.1) in 9.. such, that a satisfies the 
assumptions of Lemma 4.2 at Xo. Then u is continuous at xo. 

Proof. Using Lemma 4.2, we are able to proceed inductively and find a sequence 
T vc ( J)j=l decreasing to 0 such that 

sup u -  inf u < C (  inf u -  inf u~ 
B(xo.~'~+~) g(xo,~j) kB(xo.~'i+~) B(.,'o.r o) / 

for all j=1~2 .... .  In fact, we may first choose any 7"1>0 such that B(Xo.2rl) 
is compactly contained in ~2, and apply Lemma 4.2 to the non-negative solution 
u-infs(xo,m) u of (1.1) in B(x0.r l ) .  By Lemma 4.2. there is a radius rg<r l  such 
that  

sup u -  inf u < C (  inf u -  inf u). 
B(m0.r2) B(.'c0 .,"i ) --  \B(Xo,:'2) B(.CO,rI ) 

We may continue this procedure step by step under the assumptions of Lemma 4.2. 
Now the continuity of u at x0 follows in the same way as in Theorem 3.1. [] 
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R e m a r k  4.4. The  local condit ion of Lemma 4.2 yields the following global con- 

dit ion in terms of the p-fine topology, see [3, Chapte r  12]. Suppose that  a is p-finely 

lower semicontinuous and satisfies a >0  everywhere in fL Then  the assumptions  of 

L e m m a  4.2 are satisfied for a at each point of fL see e.g. [10, Lemma 2.16] or [11]. 

Hence u is continuous in f~ by Theorem 4.3. 
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