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Hl-boundedness of Riesz transforms 
and imaginary powers of the 

Laplacian on Riemannian manifolds 

Michel Marias and Emmamml  t/uss 

Abstract .  We prove that the linearized Riesz transforms and the imaginary powers of the 
Laplacian are Hi-bounded on complete Riemannian manifolds satisfying the doubling property' 
and the Poinca% inequality, where H 1 denotes the Hardy" space on M. 

1. I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  t h e  r e s u l t s  

Let M be a complete,  noncompac t  Riemannian  manifold. We denote by d the 

geodesic distance on M,  by dx the Riemannian  measure, by V the Riemannian  

gradient  and by A the Laplace B d t r a m i  operator .  For all xEM and all r > 0 .  let 

B(x, r) be the open geodesic ball of radius r centered at x and V(x, r) its volume. 

Say tha t  M satisfies the doubling proper ty  if there exists a positive constant  

C such tha t  

(1.1) V(x,  2r) _< CV(x, r) for all x E 3 I  and r > 0. 

If (1.1) holds, one easily sees tha t  there exist C. D > 0  such tha t  for all xC3I, 
all r > 0  and all 0>1 ,  

(1.2) v(x, oF) <_ coDv(x. ~). 

Say tha t  the uniform L2-Poinca% inequality holds on 3 I  if there exists a posi- 

tive constant  C such that ,  for all xEM and r > 0 .  

(1.3) ~(~,,.) lf(x)-fu(x,,.)l 2 dx<<_Cr 2 fu(:,..2,.)llVf(x)ll2 dx 

for all fcC~(B(x,  2r)),  where 

1 f f(y) dy. 
fB(x .~)  - V ( x .  r) JB(.,:.,-) 
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t t  is well known (see [18]) that  the conjunction of (1.1) and (t.3) implies the so- 
called Neumaml-Poincar~ inequality': there exists C > 0  such that .  for all x r  M and 
r > 0 ,  

(1.4) s If(x)--fB(x.~)12dx~Cr2/ IlVf(f)ll2 dx 
(x:~9 g u(z.,.) 

for all fEC~(B(x,r)). 
Since M satisfies the doubling property (1.1), it is a space of homogeneous 

type. One may therefore consider the Hardy" space H 1(31) as defined in [9]. We 
briefly recall how H i (A4) is defined. Sa.v that  a complex-valued function a on ~I  is 

an a tom if it is supported in a ball B(yo, r) and satisfies 

1 /, 
(1.5) Ilal]2_< V.(y0,~.)l/2 and I Cl(2c) d x = O .  

A function f on M belongs to H 1 (My if there exist (A,,),~eN ~ 11 and a sequence 

of a toms (a~)~eN such that  

(1.6) f - -  
hEN 

where the series converges in L l (3 l ) .  The norm ]]f}lttl(M ) is the infimum of 

~ r  IA~I over all such decompositions. 
A function u on k~/ is said to be harmonic if A u = 0  on 1f. For d = l , 2 , . . . ,  

denote by ~td(M) the space of harmonic functions on M of growth at most d. 
This means that  u E ~ a ( M )  if u is harmonic and there exist C > 0  and poEM so 
that  lu(x)l<C(l+d(x,po)) d for all xCM. Notice that  the celebrated conjecture of 
Yau, which states that  Jtd(AI) is finite dimensional, is solved by Li and Tam for 

d = l ,  [19], in the case when M has nonnegative Ricci curvature, and by Colding and 
Minicozzi for all d_> 1 on manifolds satisfying the doubling volume property' and the 

Neumann-Poincar6 inequality, [10], Theorem 0.7. 
The Riesz t ransform on M is the operator  R = V A  -1/2. For u E ~ l ( 3 l ) ,  we 

define, as in [22], the linearized Riesz transform R .  by 

(1.7) H~(f ) (x)  = (t~(f)(x), Vu(x)) = (VA-1 /2 f (x ) .  Vu(x))  

for all fEC~(M) and all xCM, where ( . . .  > is the Riemannian inner product on 
tile tangent space of M at x. 

Our first result deals with the H I (M)-boundedness of R~. 
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T h e o r e m  1. Let M be a complete noncompact Riemannian manifold satis- 
fying the doubling property (1.1) and the Poincard inequality (1.3). Then for any 
uC~I (M) ,  R~, extends to a bounded operator on Hi (M) .  

Our next result is about  imaginary powers of the Laplace-Bel trami operator. 
For a l l /3ER,  the operator  A i3 is defined via spectral theory, it is L2-bounded and 
one has 

II/vsIl>,2 = 1. 

The following s ta tement  holds. 

T h e o r e m  2. Assume that M is a complete noncompact Riemannian manifold 
satisfying the doubling property (1.1) and the Poincard inequality (1.3). Then, there 
exists C > 0  such that, for all 3ER,  A i3 is Hl(M)-bounded and 

II  ' IIH  H1 ~ c(1+ ~x/~e<~l/2). 

We first say a few words about  the geometric context of these two results. 
Assumptions (1.1) and (1.3) are satisfied when M has nonnegative Ricci curva- 
ture. Indeed, by the Bishop comparison theorem (see [5]). M satisfies the doubling 
property. Also, in [6], P. Buser showed that  these manifolds sa t i s~  the Poincar~ 
inequality. Recall that  both  (1.1) and (1.3) remain valid if 3 I  is quasiqsometric to 
a manifold with nonnegative Ricci curvature, or is a cocompact covering manifold 
whose deck transformation group has polynomial growth. [12]. Note that there exist 
manifolds satisfying (1.1) and (1.3) and whose Ricci curvature is not nonnegative. 

First considered in R n, the issue of Riesz transforms on Riemannian manifolds 

has been raised in [32]. Note that  Riesz transforms have been studied in vari- 
ous geometric contexts, such as Riemannian manifolds (see [20], [3]), Lie groups 

(see [21], [271, {1]), discrete groups (see [17]) and graphs (see [25], [26]). See [2] 
for an extended bibliography on the subject. Here. we concentrate on the case of 

Riemannian manifolds. Under very weak assumptions on 3I  (namely, under (1.1) 
and an on-diagonal upper bound on the kernel of e-t~), it is proved in [11] that  
[~7/~-1/2[ is LP-bounded for all 1<p_<2 and weak (1, 1). When M has nonnegative 

Pdcci curvature, the Riesz transform is LP-bounded for all l < p < + 2 c  ([3]). Its H 1- 
L 1 boundedness is proved in [7] on Riemannian manitolds with nonnegative Ricci 
curvature, and in [26] under the assumptions of Theorem 1. 

If one looks for an Hl-boundedness  s tatement  for Riesz transforms on mani- 
folds, a new difficulty appears. Indeed, ~7A-1/2f is a vector-valued function, and it 

is not clear how to define a vector-valued H 1 space in this context. To overcome this 
difficulty, we take the scalar product of the Riesz transform with the gradient of a 
function in 7-/1 (M). Thus, one obtains a scalar-valued operator,  called the linearized 
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Riesz transform, which was first introduced in [22], where the Ha-boundedness of 
the linearized Riesz transform on Riemannian manifolds with nonnegative Ricci 

curvature is established. 
In the Euclidean setting, the operators A i3 are H~-bounded, (this is a con- 

sequence of the classical Calderdn-Zygmund theory, see e.g. [31]). When M is a 
Riemannian manifold, a universal multiplier theorem of Stein ([30], Corollary 4. 
p. 121) shows that  A i'3 is LP(M)-bounded for all l < p < + ~ c .  The H1-L 1 bound- 

edness of A i~ on Riemannian manifolds with nonnegative Ricci curvature is shown 

in [23]. For other geometric settings, see for example [8] and [29]. 
The proofs of Theorem 1 and Theorem 2 are similar. They go through a duality 

argument,  which we quickly explain for R~,. In fact. to prove the Hl-boundedness  
of R~, it is enough to show that  there exists C > 0  such that .  for all a toms a and 

O~Cc(M), 

(1.8) ~I  R,,a(z)o(:c) doc <_ C[[O[[BMO, 

(see Section 2.2 for the definition of BMO and further explanations). 
To prove (1.8), one first introduces a t runcated version R ..... e>0 .  of R,, and 

proves that,  for all atoms a and all g>0.  R~,.~aELI(3I) and R,,.~a has integral 
0 over M, which is a consequence of the harmonicity of u. Then. thanks to the 

L2-boundedness of R~.~, weighted L2-estimates for the gradient of the heat kernel 
(see Section 2.1) and some classical estimates for BMO fimctions, one proves (1.8) 
with R~,e instead of R~, with a constant C > 0  independent of ~. Letting s go to 0 

yields (1.8). 
The paper  is organized as follows. In Section 2. we recall some known facts 

about the heat kernel of ill (Subsection 2.1) and the BMO space on eli (Subsec- 
tion 2.2). In Section 3. we first prove that  R,.~a has integral 0 and then that  (1.8) 

holds true. Finally, Theorem 2 is proved in Section 4. 
Throughout  this article the different constants will ahvays be denoted by the 

same letter C. When their dependence or independence is significant, it will be 

clearly stated. 

2. P r e l i m i n a r i e s  

2 .1 .  H e a t  k e r n e l  e s t i m a t e s  

In the sequel, we denote  by Pt the heat kernel on 3I .  i.e. the kernel of e - tA .  

Moreover,  if y and Y0 are two fixed points  in 3I .  define, for all xE3l  and all t > 0 ,  

qt (x) = > (~, y) - >  (x. yo). 
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When _~I satisfies (1.1) and (1.3), it is proved m [28] (see also [16]) that there exist 
c~, C1, c2, C2 > 0 such that. for all z, y E 3I  and all t > 0. 

Cl e-Cld2(x.y)/t <_pt(x,  9) < V ( c t ~ )  e -c2d2(Jcy)/t. (2.1) V(z, ~ )  

Moreover, the parabolic Harnack inequality holds on 3I (actually, it is proved in [28] 
that  the conjunction of (1.1) and (1.3) is equivalent to the parabolic Harnaek in- 
equality on g,I, which is itself equivalent to (2.1)). As a consequence of this inequal- 
ity, one easily obtains that  Pt is H61der continuous (see [26]). 

L e m m a  1. There exist c3, Ca>O and 2. E]0.1[ such that, for all x.g, yoE~J 
and all t > 0  satisfying d(y, Yo)<_,~, 

( d(> yo) T 
Iqt(z)l < v(z,  x/t) \ ~/~ ] 

As a consequence of Lemma 1, we have proved the following estimate in [26]. 

L e m m a  2. For any c~<2c3, there ezists C[~ >0 such that, for all y, goEM and 
all t>0  satisfying d(y, Yo) <_ x/t, 

< 1 (d (~ t t  9))2~' C'~ . 

Recall (see [11]) that, as a consequence of the upper estimate of Pt in (2.1), one 
also has the following estimate. 

L e m m a  3. There exists d>0 such that, for all I lEM and all t>0 .  

I IV*Pt(a:'Y)tl2eaa~(x"J)/t da: <_ tV(g.  x/l)" 

2.2.  A f e w  facts  a b o u t  B M O  

Say that  a locally square integrable function o on 3I  is in BMO(M) if 

(2.2) ,2 1 s 12 II011gx~o = sup V-7~ Io (x ) -oB dz < +~c, 

where V(B)  is the volume of the ball B and the suprenmm is taken over all the balls 
of M. Since gJ satisfies the doubling property (1.1), M is a space of homogeneous 
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type and the general theory of BMO developed in [9] holds. Using (2.2), one proves 
the classical inequality 

IOB-o=BI <_ CIIollBvo. 

which yields, as in [14], p. 142, that there exists C > 0  such that. for all oEBMO(III), 
all k >_ 1 and all balls B C M, 

(2.3) i ~ io(x)_OzBlZdx<Ok211oll~x,o 

Define VMO(M) as the closure in BMO(3I) of Cc(3I), the space of continuous 
functions on M with compact support. In the sequel, we also use the fact that  the 
dual of Hi(M) is BMO(M) ([9], Theorem B. p. 593) and that. as a consequence, 
H~(M) itself is the dual of VMO(M) ([9], Theorem 4.1). The duality implies the 
following characterization of HI (M) :  fEH~(3I), if fEL~(M) and if there exists 
C > 0  such that, for all functions OEC~(M), 

J(~I f(X)O(X) dx <_ CIIollBvo. 

Furthermore, in this situation, 

Ilfllm(.~/) ~ KC. 

where K > 0  only depends on M. 

3. H l - b o u n d e d n e s s  of  R~ 

For all c>0,  define the truncated operator R~.~ by 

l f l/~ dt R~,ef(x) = ~ (Vxe-tnf(x), Vu(x)} 7 '  

The following holds. 

L e m m a  4. For all fEC~:(M), 

lira R~,.~ f = R~, f in L2(3I). 
r 

f E C~ (:I). 
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Proof. The proof relies on H :~ calculus for A (see [24] and [331). Fix pr  1 
and set 

F ,  = {z E C : [ arg z[ <p} .  

For all z E F ,  and all e>0,  define 

1 /1/~ e-t'~z 1/2 dt 

For any function gETP(A 1/2) and all e>0.  define 

1 fl/~e_tAA1/2g dt 

so that 

Observe that  

lim ~,~ (z) = 1 
r 

uniformly on all compact subsets of F , .  By H ~ functional calculus for A one 
therefore has 

lira I IA1 /2~ -A1 /2g l I2  = 0. 
~--+0 

The L2-boundedness of VA -1/2 yields 

lim [IVu~ -VgI[2 = ! ~  ] ] V A - 1 / 2 A 1 / 2 U s - V A - 1 / 2 A 1 / 2 g [ [ 2  
s-+o 

< C lira NA1/2u~ -A1/2gt12 = O. 
s-+O 

Applying this with g=A-1/2f,  one obtains 

/ 1/~ VA-1/2f  2 lira 1 V e_t& f dt = o .  

which proves the claim. [] 

Observe that  the kernel of R~.~ is given by 

I f l/~ dt v~  <Vxp,(x.y).W,(.~)> ~ .  

As in [26], the L2-boundedness of R~,.~, Lemma 3 and Lemma 2 show that,  for all 
r  and all atoms a, R~,~aELI(5.I). The computations are analogous to those 
in [26], except that  the integrals with respect to t are computed on ]~, l / c [  instead 
of ]0, +oc[ .  

Using the fact that  u is harmonic, we prove the following result. 
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P r o p o s i t i o n  1. For any atom a and any z>O, 

(3.1) J~M R, ~a(x) dx =0.  

Proof. The proof follows tim lines of the one of the corresponding statement 
m [221, Section 4, and we give it for the sake of completeness. Let us assmne that  
a is supported in B(yo,r). For K_>2, let OK(X) be a C ~ function on M with 
0_<0K_<I, which is equal to 1 in B(yo.K-1) and to 0 outside B(yo, K+l), and 
satisfying II V0K II ~ -< C, where C > 0 is an absolute constant. Define 

I= ~s ,a(y), fl/e~l~ ~ [(V,,pt(x. y). Va,(x))[ IoK(.r)l dx ~ dy. 

By the boundedness of rVu] and the Le-estimate of V~p~(x, y) given in Lemma 3. 
one has, for all yEM and all t>0.  

p(v~> (~, dx 

_< cIIIV~lll~ [%.p,(x, ~)12 dz V1/2 (~/0, /s X) 
(y0,K+l) 

\i/2 

< ClllWlll~ ___(/~(~o.K+~)~dl~"~)~/r '~)[~ &) V'/2(Y~ K + 1) 

_< ClllW Ill ~ ( '~/<~-~t ~) ) 1/2 
This estimate and the fact that Ilalll<i yield 

L /U~(V(g~ ~/2dt 
I < CltlVulll~ la(Y)l - /~o.,-) v ( >  ~ )  V dy 

(3.2) 
- dt _<Cmax{l ,  ( K+~]+r) D},I, Vu,,,~ /B(uo.,') ,a(y), ~1/= T dy < +::~c" 

By the harmonicity of u and the Fnbini theorem, applicable by (3.2). one obtains 

i f 1:.'- 

(3.3) = 1 a(y) dx ~ dy 
I 

1/~ dt -- ; ~ia(lj).~ 'jf3i(VoK()j).V~l(2t))p,(gc.~l)dz ~d~. 
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Proposition 1 will therefore be a consequence of 

(3.4) lira [ la(y)l I(VxOK(X).Vu(x))lpt(x,y)dx~dy=O. 
K-+ + :,c J M �9 I 

Indeed, if (3.4) is proved, then, since R,~:aELI(3I). (3.3) and (3.4) yield 

~ R~.~a(x) d:c = 
I 

To prove (3.4), set 

lim ~ O K ( X ) R u . ~ o ( x ) d x = O .  
K--++~c 1 

123 

IK = la(y)l I(VxO~(x). W(X)> IP,(~, Y) dx ~ dy. 
I . I  

By the boundedness of [Vu t and [VoK[. the fact that  ot< is equal to 1 on B(yo, K- 1) 
and the upper bound in (2.1), one has 

IK <C ]a(y)[ p~(x.g)dx dt 
- f (~jo.K+l)\u(~,io.K- t) ~ dg 

<_C/i I ,a(y), ~ 1/~-~(K-l ")2/tV(y~ t-7-~.~)) Vr-z'dY 

CIIclll  I e - c ( K - I - r ) 2 / t  Hlax 1, ~k ~ ] J V '  

which goes to zero when K goes to +~c by the dominated convergence theorem. [] 

Proof of Theorem 1. Let a be an a tom supported in B = B ( y 0 ,  r) and consider 

CECc(M) such that  It011BMO_<I. Proposition 1 yields, ior all c>0,  

~ R,,.~a(x)(@r)dx= ~ R~,.~a(x)(o(x)-o2B)dx. 

Decompose 0 - 0 2 B  as 

r162 = (e--,O2B)X2a+(O--O~S)X(2e)c = ol +02. 

and write 

(3.5) ~,, Ru,ea(x),(x)dx= ~i Ru.ea(x)ol(x)dx+ fdM R.,.,a(x)o2(x)dx= El+E2. 
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By Cauchy-Schwarz and (2.2), 

j~ IR~,~a(x)l Ir d~ < IIR,,.~all~ll(o-o2BDx2~ll2 < IIR~,.~alI2V(2B) ~/2. 
I 

We now deal with the term involving 02 in (3.5). Observe that, since a has meat] 
value zero, one has 

~ a(y)<Vj:pt(x, y), Vu(x)} dy= ~ a(y)<Vzqt(x), Vu(x)) dy, 

with qt(z)=pt(z, y)-pt(z, Yo). Write 

E2 = ~s R~,,~a(x)o2(x) dr 

= k~> l f~.+l Bk2,.B R".~-a('v)O2('v) d:c 

= 1 02(,) (Vxp,(x, y), W,(x)>~(y) @ ~ dx 
k+lB\2kB _ 

+-~1 "+'B\2"B 02(*') ~ <V,qt(x), Vu(x)>a(y) dy --~ dx 

k_>l k > l  

Fix k > l .  When yEB(yo, r) and 2kr<d(x, yo)<2~+lr, one has 2k-tr<d(x.y)< 
2k+2r, which implies 

_< C ~ f  IIkl /2 102(x)l/ JB I<Vxpt(x,y),Vu(x))tla(~)l@-~dxdt k+lB\2kB 

/B ~r2j~2k--lr~d(x.y)<2k+2r dt _< cIIIWlll~ I~(y)l IV~pt(a, y)110~(x)l dx -~ @. 

The Cauchy Schwarz inequality, Lemma 3, (2.3) and the doubling property yield 

~ _,~<_a(x,~)<2,.+~, IVxpt( x, Y)I Io~(x)l dx 

,,1/2 
~-- (~ '~Tzpt(x, ~l)'2edd2(x'y)/t dx) k-lr<d(x.g)<2k+ir 

X (~22~. lr<d(x.y)<2k+2r'O2(X)[2r 1/2 
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< C(k+2)  V1/2 (~], 2k+2r)e_~22(~,-~),z/2 t 

- ~ /~v (~ , ,  ~ )  

C (2k+2r \ D/2 - -  ) e--522(~-l)r~/2t < ~ (k+2)\ ,fi 

C' (k+2)e_222kr2/t < _ ~  , . 

Therefore, 

1.2 F2 

k--lr~_d(x,y)<2k+2 r -- t 

~ + ~  dt 
< C k  e - 3 t  - -  < C k 2  -2k  
- -  2 k  t - -  

which shows that 

y-~ I_rkl _< C, 
k> l  

since I lall l < 1. 
The treatment of Jk is similar. One has 

fB fl/~f IVq~(x)IIo2(x)Idx dt IJ~l-<ClllWlll= la(y)lj?`2 J2k-'~<_d(x~)<2k+2?̀  ~dy.  

When t_<22k+4r 2, use Lemma 2; (2.3) and the doubling property to write, for an 

O~C3, 

jf2k lr<_d(x,y)<2k+XrlVqt(x)l t r  ld3g 

c(k+2) ( , - )= .,._,2/~ ,/~ k+~ 
_< v/tv( y, ~ )  ~ ~ - ~ k  " v (~,2 ) 

D / 2 e _ o 2 2 ( k -  , ) r  2 / t  

. _< ~ (,~+2) ' 32~,-~/~ 
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When t>22k+% 9, just write that V(y.2k+2r)_<V(y. ~/t) and the result still 
holds. 

As a consequence, 

f l /~ f 
2 ,]2 k l<d(x,y)<2k+2 r 

IVq,(m)1102(x)ldx ~ < C(#+2)  e _ 3 2 ~ / e  r dt 
- 2 7 -  

22~ 

_< C(k+2)2 -~~ f e-3~'v -'/'e-1 dv 
.JO 

j o 
<_ C(k+2)2 -~,~' e-3~'v ~/2-1 dr. 

Thus, 

~-~ la.I <_ c. 
k.>l 

u s i n g  the fact that Ilalll <_ 1 again. 
Finally, we have proved that. for all functions oCC~(3I), 

(3.6) ~ I  Ru.ea(x)O(x) dx, < litzlu.ea{{2V (2B) I/2IIO{{BMO § 0 

for all ~>0. Since R,,..=a converges to R~,a in L2(M) when z goes to 0, (3.6) yields 

Z~ R~,a(x)o(x) dx ~ IIR, alI2V(2B)I/211OIIB_x~O+CIIotlB.VO ~ CIIoIIB.x~O. 

In the last inequality, we use the L2-boundedness of R~,. (1.1) and the fact that  
[]aI[2<_V(B) -1/2. Therefore, (1.8) and Theorem 1 are proved. [] 

4. I m a g i n a r y  powers  of  t h e  Lap lace  o p e r a t o r  

We now prove Theorem 2. The argmnents are analogous to those used in the 
proof of Theorem 1. 

For all ,gER, set T~=A ~9. For all ~>0. define 

1 f l / s  t-i3-]e -tA dt. 
A 

For all ,fEL2(AI), T2.ef converges to T3f in L2(3I) by H x functional calculus. 
Fix 3 c R .  One first proves the following result. 
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P r o p o s i t i o n  2. For all c > 0 .  T3.~ is HI(3I)-LI(M) bmmded. 

Proof. Let  a be an a t o m  s u p p o r t e d  in a bal l  B=B(yo, 7"). Then.  since e -tLx is 

a Markov  semigroup,  i.e. 

(4.1) fM Pt (z, y) dx = 1 

for all y E M  and  all t > 0  (see [15]), one has 

1 

< c I,(y)l p,(x..v) d.~. dy 
- -  I J a  31 Y 

(4 .2 )  c ~/-~ 1 
dt 

< _ C / ' / ~ d t  

: c (~ )  

by the fact that Ila111<_1. [] 

We now state the following cancellation property (cf. Proposition 1). 

P r o p o s i t i o n  3. For all ~ > 0  and all atoms a 

~ T3.~a(x) dx =0. 
I 

Proof. Let  us assmne  t h a t  a is s u p p o r t e d  in a ball  B=B(yo. r). From (4.2) we 

have t h a t  

,/s la(Y)' /U~ fA[ pt(x. y) dx d-f dY < + ~c. 

This  allows us to  app ly  Fubin i  and  get 

1 

- r(-i3) ~(y) dx d~ dt 

- F ( - i ~ )  dt a(y)  dy  

~ 0 ,  

since (4.1) holds  and a has mean  value 0. [] 
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Proof of Theorem 2. It is enough to show that there is a C>0,  such that for 
all CECc(M) and all atoms a, 

Lr~a(z)r dx c < - -  II011BMO- 
- I F ( - i 3 ) I  

Let a be an atom supported in B=B(yo. r) and oEC,:(M). Write 

r  -~- ( ~- -O2B )X2B-[-( O--O2B )X( 2B) c = O1 +02 ,  

Then, for all r 

L T~3,~a(x)r LBT3.~a(x)Ol(x)dx+ f2B)~ T3.~a(x)o2(x)dx=El+E2. 

The Cauehy Sehwarz inequality yields 

]Eli <-- _..Le ITa.~a(x)ol(x)l dx < NT3.~aN21Ir 
(4.3) 

<_ IlZ~,~all2Vl/2(2B)llollBxlO. 
We now treat the term involving 02. %Ve write 

E2 = ~2B) c T,3,ea(x)O2(x) dx 

t-i3-1 .i,~ pt(x, y)a(y) dy dt dx 1 o2(x) f ~  

1 

= 1 E(ik+jk)" 
V ( - i ~ )  k>l 

By the estimates (2.1) of pt(x,y) we obtain that for all k > l .  all yEB and all 
O < t < r  2, 

e-cd(x.y)2/ t  
_ c . I o 2 ( x ) l  dx 

< c [  , _ l o ~ ( ~ ) l &  

k+2 
V(y 2 r )  0 BMO < C(k+2)  ~ --c22~'r2/t 

- / Y ,  ) 

< - c ' 2  ~-t r 2/t 
_ C( ]~  -{- 2 )  e IIoll g.klO, 
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where the last line follows from the doubling property. Thus 

l&l < Ir(-i3~c l(k+2)lloliB.~.~ ~ la(y)l dy _ -e-~:it r /~ dt 

/ r2 1 c22~r2/t 
< C ~  k-I- 2 II(~llB.~[O ( ) l l l l  __{ l  at (4.4) 
- I r ( - i ~ ) l  ~ t 

C 
-< Ir(-ig)l (k+2)212kllOIIBM~ 

where C > 0  only depends on M. 
Let us now deal with Jk. Since a has mean value 0. one has 

When d(y, Yo)<_ x/t, Lemma 1 yields 

r 1 e_cd2(x.yo}/t" 
[qt(x)[ < C -~ ~(Y0, x / / ) � 9  

So, when r < x / t  _<2kHr, one has 

C y e -c22kr2/t 

( ~" x.) l(2221")'2/t V(2~--~].B ) _< c(~-+l)l ~ )___ e V(yo, 7/)IIOIIBMo 
Q r )h (2k+lr)D -c22kr2/t 

_<C(k+l)  ~ \ ~ e llollBxlo 

) (@tt ~ el~:~kr~/~ll II _< C ' ( k + l  O B.xio. 

When x/t _>2kHr, just write that V(2kHB)<_V(yo, vq) and the result still holds. 
Therefore, 

C tJ~l< - -  Ir(-ig) l 
C < _ _  

(k+l)ll011Bx.~olIall~j~ R ~  T 

(k+l)2-k~:ll011BX~O, 
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which, combined with (4.4), gives, 

(4.5) ~ IZkl§ < o IIo11~:,~o ~"~(h2-21"§ < c 
k > l  --Ir(-i3)~ - I r ( - i3)~ IIoIIB-',,O. 

_ J,.>l 

From (4.3) and (4.5), it follows that,  tbr all ~>0. 

fa~ T~%~,Xx)o(x)d~ < CllT~.~allCr*/2(2B)lloll 
C 

Since T2,~a converges to Tsa  in L~(M) when ~ goes to 0, IIrjII2-~2=1 and Ilalt25 
V(B) 1/2, one obtains 

fMTza(z)O(z)d.r <_C(1-~ IF(li3)I)IIOHBMO . 

which completes the proof of the Hl-boundedness  of y~. 

Finally, recall that ,  for 3 E R.  

7r 

Ir(-i3)l = 3 s i n h ~ r 3  " 

see [13]. Therefore, 
IIAi~IIH1---~H 1 ~ C ( l + ~ e ~ ' ! ~ l / 2 ) .  

which colnpletes the proof of Theorem 2. [] 
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