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Totally real discs in 
non-pseudoconvex boundaries 

E g m o n t  Por t en  

Abs t r ac t .  Let D be a relatively compact domain in C 2 with smooth connected bound- 
ary OD. A compact set KCOD is called removable if any continuous CR function defined on 
OD\K admits a holomorphic extension to D. If D is strictly pseudoconvex, a theorem of B. J6ricke 
states that any compact K contained in a smooth totally real disc SCOD is removable. In the 
present article we ,show that this theorem is true without any assumption on pseudoconvexity. 

1. I n t r o d u c t i o n  

One of the  most  s ignif icant  differences be tween  complex  analys is  in several  vari-  

ables  and  the  classical  funct ion t heo ry  concerns  the  theo ry  of ho lomorph ic  hulls and  

removable  s ingular i t ies  of ho lomorph ic  functions.  Since the  p ioneer ing discoveries  

of F.  Har togs ,  a good deal  of the  research m several  var iables  has  been  addressed  to 

the  s t u d y  of ana ly t i c  ex tens ion  phenomena  re la ted  to the  geome t ry  of the  under ly -  

ing complex  manifo lds  only and  not  to special  p rope r t i e s  (like g rowth  condi t ions)  

of the  ho lomorph ic  funct ions  defined on them.  

In  the  last  two decades,  the  inves t iga t ion  of removable  s ingular i t ies  has  been 

sys t ema t i ca l l y  ex t ended  to the  b o u n d a r y  values of ho lomorph ic  functions.  For  a 

t ho rough  i n t roduc t i on  and  good surveys  on the  sub jec t ,  we refer to [5] and  [271 . 

T h e  no t ion  of removabi l i ty  we shall  main ly  consider  is the  following: Let  D ~ C  ~ be 

a d o m a i n  wi th  smoo th  connec ted  b o u n d a r y  OD. We call  a compac t  subse t  K C O D  

removable (for C R  funct ions)  if any  cont inuous  C t l  funct ion f on OD\K a d m i t s  

an  extens ion  fEO(D)NC(DU(OD\K)) .  Note t ha t  the  def ini t ion of removabi l i ty  

of a compac t  set depends  on the  under ly ing  doma in  D. In  d imens ion  n = 2 .  the  

dependence  on D is essent ia l  whereas  deep  resul ts  of G. Lupacc io lu  [21] show t h a t  

for n>_3 the  in t r ins ic  p roper t i e s  of K are predomina.nt  (at  least if we res t r ic t  to 

s t r ic t ly  pseudoeonvex  domains) .  
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To formulate our main result, we need some terminology. \ ~  say that  a man- 
ifold N is embedded in a manifold M if there is an injection i: N-->3I and a neigh- 
borhood U of i (N)  in M such that  i is a proper embedding of N into U. A real 

submanifold S of a complex manifold is called totally real if the tangent spaces TpS 
never contain complex lines. It is familiar that  holomorphic fnnctions defined on the 

complement extend through totally real submanifolds. In 1988, B. JSricke [13] dis- 
covered the remarkable phenomenon that  any compact subset of a totally real disc 
embedded in a strictly pseudoconvex boundary is removable for CR functions. Our 
main result shows that  this holds true without any assumption on pseudoconvexity. 

T h e o r e m  1. Let D C C 2 be a relatively corn, pact domain with smooth connected 

boundary OD and S c O D  be a smoothly embedded totally real disc. Then any corn- 
pact subset K C S  is removable for CR functions, i.e. any continuous CR function 
f on O D \ K  admits a holomorphic extension F E ( 9 ( D ) N C ( D U ( i ) D \ K ) ) .  

Some remarks about  the background of Theorem 1 are in order. 

Remarks. (1) tn the strictly pseudoconvex case. F. Forstneri~ and E. L. Stout [9] 
gave the remarkable generalization that  the result remains true if we allow S to have 
finitely many isolated complex points of hyperbolic type (see Section 3 for the def- 
inition). A little later, J. Duval [6] published an elegant alternative proof, which 

works also for certain weakly convex domains. 

(2) Also in the non-pseudoconvex case, Theorem 1 should extend to surfaces S 
containing isolated hyperbolic complex points. F. Forstneri~ made the interesting 
remark tha t  it may also be possible to admit complex points pE S. at which the local 
hull of S points out of D. For example, one may consider elliptic points contained 

in the strictly pseudoconcave part  of 0D. 

(3) Theorem 1 reflects special properties of complex dimension 2. Let us briefly 
give some indications about formal generalizations for n_>3. If one replaces S with 
a totally real ball of maximal real dimension n, removability becomes a corollary of 
more general results: For n=3 ,  it is a consequence of a theorem of JSricke [14] on real 
submanifolds of codimension two in the boundary. For dimension r~_>4, it follows 
from a result of Lupacciolu and Stout [22] about the removability of metrically thin 
singularities. Hence it seems more at tractive to look at singularities contained in a 
generic ball of real dimension 2n.-2.  But then a recent counterexample of Jbricke 
and N. Shcherbina [16] exhibits a non-removable singularity contained in a generic 
four-ball embedded in the unit sphere S 5 c C 3. 

In order to focus on the essential hypotheses, it seems appropriate  to formulate 
the main result in more local terms. So we consider a hypersurface 3 I c C  2. An 
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open subset W C C  2 is a one-sided neighborhood of 3I  if for each p E 3 I  there is 
a small ball B around p such that  at least one component  of B \ M  is contained 
in W. We call M globally minimal if any pair of points in 3 I  can be joined by a CR 
curve "~ C M, i.e. a piecewise differentiable curve 2" whose (one-sided) derivatives are 
contained in the complex tangent bundle TCSI. 

The hypersurface version of our result is the following. 

T h e o r e m  2. Let M be a smooth globally minimal hypersurface of C 2 and 
S c M  be a smoothly embedded totally real disc. Then for any compact subset K c S  
there is a one-sided neighborhood W of 31 such that any contiT~uous CR function f 
on M \ K  admits an extension F E ( 9 ( W ) S C ( W U ( M \ K ) ) .  

Finally we mention an application of our methods to the theory of singularities 
of LP-solutions of differential operators. For a general introduction to the topic, we 
refer to the articles [11] and [15], for further results concerning CR manifolds to [2], 
[18] and [24]. A closed subset A c M c C  2 is called P (Lloc, c~b)-removable if any func- 
tion f EL~oc(M ) satisfying the tangential Cauchy-Riemann equations on M \ A  (in 
distributional sense) is CR on all of M. General structure theorems of R. Harvey 

and J. Polking [11], who considered the problem for general linear partial  differ- 
ential operators, yield in our case that  any closed subset satisfl'ing "Ha-p,(A)<:x:; 
is (L[oc, c~b)-removable (for l < p < o c  and 1 / p + l / p ' = l )  and that  ~ 2 ( A ) = 0  implies 
(Llo~Cc, C6b)-removability. 

The next theorem shows that  for CR functions nmch stronger phenomena are 
true. In particular, we obtain information on L 1 removability, which cannot be 
obtained by the methods of [11]. 

T h e o r e m  3. Let M be a smooth globally minimal hypersurface of C 2 and 
S c M  be a smoothly embedded totally real disc. Then any compact subset K c S  is 

( L~oc, 5b )-removable for p>_ 1. 

For strictly pseudoconvex boundaries this result was established in [2]. In the 
general setting, very easy examples, where 3I  may be chosen as a real hyperplane 
of C 2 for instance, show that  (Llo~,0b)-removability cannot be true without any 
assumptions on the CR orbits. 

This paper  is organized as follows: In Section 2 we sketch the lines of our proof 
in the familiar strictly pseudoeonvex case and discuss the additional difficulties 
arising in the general proof. In Section 3 we collect some preliminary material  
concerning CR orbits and semi-local analytic extension including the reduction of 
Theorem 1 to Theorem 2. In Section 4 we prove Theorems 2 and 3 modulo a 
deformation lemma about  holomorphic discs, which is postponed to Section 5. 
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2. T h e  s t r i c t l y  p s e u d o c o n v e x  c a s e  

In this section we sketch a new proof of Theorem 1 for strictly pseudoconvex 
domains. Afterwards we will discuss the specific difficulties arising for arbi trary 
hypersurfaces. V~re hope that  the detours of the general proof of Theorem 2 are less 
confusing after the examination of the simplified setting. 

Proof of Theorem 1 for D strictly pseudoconvez. Given a CR function f on 
OD\K, we have to construct a holomorphic extension to D. By the Har togs-  
Bochner theorem it is enough to find a holomorphic extension F on a one-sided 
neighborhood of OD (which will of course be contained in D by strict pseudocon- 
vexity). The construction of F shall be performed in three steps. 

Step 1. Semi-local extension near OD\K. As D is strictly pseudoconvex, a 
classical local result of H. Lewy [19] allows us to extend f holomorphically to a small 
one-sided neighborhood of each point in OD\K. These extensions glue together and 
yield an extension on a one-sided neighborhood V c D  of OD\K. After deforming 
OD\K slightly into V, we m~" assume that  f is holomorphic near OD\K. 

Step 2. Constr~ction of nice holomorphic discs. In order to construct an ana- 
lytic extension of f to a one-sided neighborhood IV attached to a neighborhood of 
K in OD, we shall employ Bishop discs. In [13], a convenient family is constructed 
explicitly. With  regard to the non-pseudoconvex case, we shall instead apply the 
powerful existence theorem of E. Bedford and W. Klingenberg [3] that  every generic 
two-sphere contained in a strictly pseudoconvex boundary can be filled by a Levi- 
flat three-ball. More precisely, we will embed K in a two-sphere EcOD and remove 
K by using analytic discs glued to E and to slightly translated copies of E. 

Before proceeding, we have to recall the main ingredients of the Bedford-  
Klingenberg theorem. It  is formulated for spheres E with finitely many isolated 
complex points. As observed by Bishop [4], E may be written near a complex point 
as a graph of the form 

w = z ~ + 7 ( z 2 + ~ 2 ) + o ( I z 1 2 ) ,  
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where 7 2 0  is an invariant. The complex point is called hyperbolic, parabolic, or 
elliptic if 7 <  �89 ,.~__~,__ 1 or "y> �89 respectively. Genericalh'.. complex points are either 
hyperbolic or elliptic. Then the Bedford-Klingenberg theorem (in a refined version 
due to Kruzhilin [17]) implies that  a sphere E of class C (5 contained in a strictly 
pseudoconvex boundary, bounds a unique Levi-flat three-ball B. Furthermore B is 
foliated by a one-parameter family of analytic discs At attached to E. An anMytic 
disc attached to E is a holomorphic mapping A: D--+ C 2 which extends continuously 
to T and fulfills A ( T ) c E  (D denoting the open unit disc and T its boundary). We 
shall often write A and 0A also for the unparametrized sets A(D) and A(T) ,  
respectively. The discs At are differentiable up to the boundary and transverse to 
OD except at finitely many points where they touch E tangentially at hyperbolic 
complex points. 

In the strictly pseudoconvex case, the construction of E cO D  is straightforward. 
Let S'�9 be a disc with smooth boundary containing K.  We construct E by 
choosing a nearby almost parallel copy S"cOD\S, and gluing S' and S" along 
the boundaries. If necessary, we put E in general position by a slight deformation 
leaving S' unchanged. As the normal bundle of E in OD is trivial, the choice of a 
thin tubular neighborhood V of g = E 0  in OD will give us a foliation of V by generic 
spheres Et, - c < t < e .  

Next the Bedford Klingenberg theorem associates to every Et, a Levi-flat three- 
ball B t c D  with O B t = ~  t. Each Bt is fibered by a one-parameter family of holo- 
morphic discs At, s. By transversality, we see that the At.~ induce a foliation on 
a domain WCD containing K in its boundary. We may choose W as a one-sided 
neighborhood attached to some neighborhood of K in OD and suppose that  it is 
divided into two parts by the hypersurfaee H=IVNB0.  

Step 3. Extension to W. As already observed, it remains to extend f to W. 
Applying the continuity principle along the three-balls Bt, t r  we get a holomor- 
phic extension of f to W\H. Since S is totally real, none of the discs A0.~CB0 
has boundary in K. Indeed, we may apply the classical Poincar~-Bendixson theory 
to the foliation )c induced on E by the boundaries OA0.,. The singular points of 
b c are precisely centers at elliptic complex points and saddle points at hyperbolic 
complex points of E. If a boundary 0A0. s does not meet the complex points, then 
N\A0, s is a union of two discs, each containing at least one elliptic complex point 
of E. Being totally real, S cannot contain such a boundary. 

Hence every Ao. s passes through the region where f is holomorphic. Con- 
tracting W if necessary, we may suppose that each leaf of the Levi-flat manifold 
H=WnBo does so. But then Lemma 4.5 of [15] (see Lemma 6 in Section 4) implies 
that  f extends holomorphically to W. [] 
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Let us now discuss the modifications required in the general case. 

In Step 1 the local result of Lewy is of course no longer applicable. Instead 

standard results about CR orbits and propagation of analytic extension readily fill 

in the gap. 

As OD is no longer strictly pseudoconvex, not every two-sphere in OD must be 

tillable by a Levi-flat three-ball [7]. In order to carry over Step 2. we employ an 

additional argument: The key observation is that the squared distance function 5~. is 

strictly plurisubharmonic in a neighborhood of S. Modifying the level sets of d~., we 

shall construct a family of strictly pseudoconvex domains Gt (all diffeomorphic to 

the four-ball) such that the intersections Et =ODNi)Gt give the desired two-spheres. 

Step 3 seems to offer the most serious resistance to generalization. Indeed, 

the discs At,~ will surely not sweep out an open set. For example the presence 

of large Levi-flat parts in OD may imply that all At.~ are contained in 0D! In 

addition changes of sign of the Levi-form of OD may imply that discs At,s flip over 

to the other side of OD. Hence we cannot hope for the nice global geometry of the 

pseudoconvex case. 

Fortunately the final argument can be localized in the following manner: We 

shall replace K by the smaller compact set K '  of points where one-sided holomorphic 

extension of f fails. If K ' r  then we shall derive a contradiction by repeating the 

argmnent of Step 3 locally near a well-chosen point pEK'.  

3. S e m i - l o c a l  e x t e n s i o n  near  h y p e r s u r f a c e s  

In this section, we recall some known material on semi-local extension of CR 

functions. For the reader's comfort, we sketch proofs where the special cases we 

need are much easier than the original results in the literature. 

Let M c C  2 be a smooth hypersurface. Two points p, qE3I are contained in 

the same CR orbit O(p, M) of M if they are joined by a piecewise smooth CR curve 

") 'cM, i.e. a chain of smooth curves tangent to T~3I. Bv a fundamental observation 

of H. Sussmann [28], [14], a CR orbit is either an open subset of 21I or an injectively 

immersed Riemann surface, and the union of all CR orbits of codimension one is 

relatively closed in M. If 21.I has only one CR orbit, it is called globally minimal. We 

recall from [14] the fact which we use in the reduction of Theorem 1 to Theorem 2. 

L e m m a  1. Let DGC z be a domaiT~ with smooth connected boundary OD. Then 
OD is globally minimal. 
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Pro@ If not, then the union A of the lower-dimensional orbits would be a 

closed union of Riemann surfaces. A standard argument yields a contradiction to 
the maximum principle. [] 

Lemma 1 easily implies the reduction of Theorem 1 to Theorem 2. Theo- 

rem 2 gives an analytic extension of f to a one-sided neighborhood W of OD. We 
may choose W connected and derive Theorem 1 by an application of the Hartogs 
Bochner theorem. 

Next we look at the interplay between the orbits and the singularity sets. 

L e m m a  2. Suppose that M and K are as in Theorem 2. Then M \ K  is 
globally minimal. 

Pro@ Being contained in a totally real surface, K cannot contain CR orbits 

of M. To reach a contradiction, we assume the existence of p c M \ K  such that 

O(p, M\K)  is a Riemann surface. Obviously it suffices to show that 

O(p, M\K)  = O(p, M ) \ K  

in order to derive a contradiction to the global minimality of M. We explain how 

to reconstruct O(p, M) from O(p, M\K)  by transverse gluing along K. 

Since S is totally real, the intersection I..=TzSNT~M is a real line for each 

z E S. Integration of the line field Iz gives a foliation by curves on S. Because S is a 

disc, Poinca%-Bendixson theory tells us that no trajectory can be contained in K. 

Hence for any qEO(p, M)NK, there is a trajectory 7 connecting q with some point 

p' ~O(p, M)n(S\K). 
Near 7 we choose a non-vanishing CR vector field X tangent to S. This means, 

in particular, that  X is collinear with l~ along S. Let D be a small disc in O(p, M\K)  
around p'. There is t 0 E R  such that q=dPx.to(P'), where apX.to denotes the time- 

t0-map defined by integrating X. As ~ is a local diffeomorphism, ~x.to (D) is 
again a smooth disc. Since S is totally real. we derive that D and 4PX.to(D) are 

transverse to S. More precisely, we see that (PX.to (D)AS is contained in the integral 

curve through q. Now q~X,to (D)\S is tangent to ToM. since ~X.to (D)\S is an open 

subset of O(p,M\K).  By continuity, ~X.to(D) is tangent to TOM everywhere. 

Hence aPx,t 0 (D) is a Riemann surface. 

As ~x,to(D) is a local integral manifold of T%~I. the germ of C~x.to(D ) 
in q does not depend on the choices made during the construction. For the 

same reason we obtain globally an immersed Riemann surface O by applying the 

above procedure to every point of O(p, M)AK. By construction O is the union 

O(p, M\K)UO(p, M)AK. The very definition of CR orbits yields O=O(p, M), a 
contradiction. [] 
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4. Non-pseudoconvex hypersurfaees 

In this section we prove Theorem 2 using an auxiliary argument on deformation 

of analytic discs, which shall be t reated in Section 5. 

Proof of Theorem 2. As far as possible, we follow the subdivision of the proof 
sketched in Section 2. 

Step 1. Semi-local extension near 3 I \K .  Let f be a continuous CR function 
on M \ K .  By Lemma 2, M \ K  is globally minimal. Hence M \ K  contains a minimal 

point p of M, i.e. there is no local holomorphic curve contained in M which passes 
through p (a hypersurface without minimal points is Levi-flat). By Tr6preau's 
theorem [29], f extends analytically to a one-sided neighborhood at tached to some 
neighborhood of p in M \ K .  But one-sided analytic extensions propagates along 

CR curves, according to another result of Tr6preau [30]. By a s tandard gluing 
argument,  we obtain a holomorphic extension of f to a one-sided neighborhood U 
of M \ K .  After deforming M \ K  slightly into U. we may henceforth assume that  f 
is holomorphie near M \ K .  

Step 2. Embedding K in a pseudoconvex boundary. The following lemma con- 

tains the construction of good spheres in 3I. 

L e m m a  3. In the situation of Theorem 2. let S' CS be a relative neighborhood 
of K in S and V be a neighborhood of S in C 2. Then there is a smoothly embedded 
hypersurface N C V with the following properties: 

(1) N is strictly pseudoconvex and diffeomorphic to the three-sphere; 
(2) N intersects M transversally in a two-sphere E = M n N :  
(3) s ' c z .  

Pro@ After enlarging S' ,  we may assume that  S '  is a disc with smooth bound- 

ary. We shall use the following well-known fact: Let $ be a totally real submanifold 
of a complex manifold 3// equipped with a smooth riemannian metric it. Then the 
distance function 6g,, is strictly pseudoconvex in a neighborhood of N. (In [1] the 
reader finds a proof for the case A d = C  2 equipped with the euclidean metric, which 

generalizes easily.) 

We denote by D the open unit disc in C. By the tubular  neighborhood theorem. 
there is a smooth diffeomorphism G: D x D - + C  2 taking D x {0} to some neighbor- 

hood of S '  in S. One easily arranges G(Dx{(x ,g )ED:y=O})CM.  For tt we take 
the pushforward of the euclidean distance on D •  with respect to G. For some 

6C(0,1) we have ~'cG({C~D:Iq<I-5}• Choose a function qEC2([0,1]) 
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with r/l[0,1_5l-0 and ~/( t )>0 for t > l - ( t  Let ~rl and ~2 denote the projections to 
the first and second coordinate of (Wl, w2)E C 2, respectively. Then for a sufficiently 
small e~ >0, the function 

~(z) = 17r2 ~G-a(z)12-4-~1~(17rl :G--x(z)l) 2 

is strictly plurisubharmonic in some neighborhood V1 of G({~ED: I~l_<l-d} x {0}). 
For small t>0,  the level sets {z:o(z)=t} are diffeomorphic to three-spheres inter- 
secting M transversally in two-spheres. 

We take 1/2 with S CI/2NV1. For a very small c2>0, the translated function 

Q(z) = 17c2 oG-1 (z)-t-(c2,0)12+~1 rI(lTrl ~G-~(z)l) 2 

is still strictly plurisubharmonic on 1/2, and its level sets for small positive t are 
transverse to M. By construction we have S'C{z:o(z)=-c.22} and get therefore the 
desired strictly pseudoconvex three-sphere by setting N={z:o(z)=-z~}. [] 

In order to apply the Bedford Klingenberg theorem, we put E into general 
position without changing it near S'. Of course, this may be achieved by deforming 
N conveniently and taking the intersection with 3I. As explained in Section 2. E 
bounds a Levi-flat three-ball B. which is foliated by a fanfily As of analytic discs. 

Step 3. Localization of the argument. Now we have to reorganize the logic of 
the proof in Section 2 in order to localize the concluding argument. 

Let K '  be the set of all points pcK for which there is no one-sided neigh- 
borhood U~ attached to some neighborhood Vp of p in M \ K  to which f extends 
holomorphically (in other words, there is no function fpEO(Up)AC(UpU(Vp\K)) 
coinciding with f on Vp\K). By definition. K '  is a compact subset of K.  Clearly, 
it is enough to show K ' = 0 .  

Assume that  K ~ 0  to derive a contradiction. We distinguish two cases. 
First, we consider the case when K '  is contained in a finite union of boundaries 

0A~ , . . . , 0As~ .  As K' cannot contain the whole boundary of a disc A~, K '  is 
contained in a finite union A of proper subarcs of c3A~l,..., 0A~ k. According to 
Theorem 4 of [25], A is removable in the sense of one-sided analytic extension, and 
we get a contradiction to the definition of K' .  (If M=OD, a combination of the 
theorem of G. Stolzenberg [26] on polynomial convexity of arcs and a removability 
theorem of C. Laurent-Thi4baut [20] can also be applied.) 

It remains to examine the case when K '  is not contained in a finite union 
of boundaries 0A~. Then there is a disc As, whose boundary 0A~, intersects K '  
non-trivially and lies in the totally real part of E. Indeed. the construction of 
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Bedford Klingenberg shows that  only the boundaries of finitely many of the discs 

As pass through (hyperbolic) complex points of E. 

As OA~, r there is a point `SEOA~, A K  ~ such that  there are locally no points 

of K ~ on the right-hand side of`5 in OAs,. We may fix. for a moment,  a holomorphic 
parametr izat ion As,: D--+C 2 mapping l E T  to .5. If (O/c)~)As,(1)~T~M, then As, 
touches M in `5 tranversally, and we can immediately pass to Step 4. 

The case when (O/O~)As, (1 )~T~M causes additional technical difficulties. The 

strategy consists of deforming E slightly so that  a deformed disc passing through 
K '  gets locally transverse to M. In preparation, we first have to replace `5 by a 
nearby point p enjoying more convenient properties with respect to the geometry 
of K ~. The idea is to choose p together with a hypersurface L c M  through p such 
that  K ~ lies locally in the closure of one side of L. We shall frequently denote by 

As(p) the disc whose boundary passes through the point p. 

L e m m a  4. There are a point p as close to `5 as we please, a neighborhood 
U=Up of p in M,  and a smooth embedded disc L c U  with the following properties: 

(a) L is transverse in p to the boundary of the disc As(p) passing through p; 
(b) L divides U into two components U + and U . and K~NUCU+UL.  

Proof. The boundaries of the discs As induce a smooth foliation ~ of S near `5. 
Let v be a smooth non-vanishing vector field on a neighborhood of`5 in M which is 
tangent to G along S. Let F c M  be a small smooth disc passing through `5 which 
is transverse to v. Near 15 we get smooth coordinates (w, t), w E F ,  by integrating 
v up to the time t with initial values w E F. Of course we may assume that  the 
coordinates (w, t) range over {wER2: lwl<e}  x ( -~ ,  e) and that  t5 corresponds to 

the origin. 

As K~NAs(~) lies to the right of`5, for an)" t~<0 of small modulus, the point 

(0, t ')  does not lie in K ' .  As K '  is closed, the same holds for the set { (w, t'):lwl <5}, if 
6>0  is sufficiently small. Following [23], we consider for 7 > 0  the family of ellipsoids 

E ~ = {  (w't):[t-t'[2+tw[2"c < 5 } .  

Evidently F, ,NK'=O for sufficiently small r .  Hence we get the desired disc L as a 

hemisphere of OE~o, where To is minimal with the property E ,  N K ' # 0 .  [] 

Choosing p as in Lemma 4 sufficiently close to 5, we may assume that  the 
boundary of the disc A~(p) through p is contained in the totally real part  of E. Of 
course, As(p) may touch M tangentially also in p. But now the following deformation 
lemma is available. 
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L e m m a  5. Let qEOAs(p), qCp, and Uq be a neighborhood of q. Then there are 
smooth manifolds M d, N d and Ed=NdN]~I with the following properties: 

(1) The manifolds M g and N d are as C2-close as we please to the original 
manifolds M and N ,  respectively, and coincide with them outside of Uq. Further- 
more N d is again strictly pseudoconvex. 

(2) The manifolds M d and N d intersect transversely in a two-sphere E ~. The 

construction of Bedford-Klingenberg applies to E (t and furnishes a filling by holo- 
morphic discs Ads. 

(3) The disc A d passing through p is as C2-close to As(p) as we please and 4p) 
touches M transversally in p. 

Similar results were proved by Tr@reau [30], Tumanov [31], and others, for 
small discs attached to CR manifolds (of positive CR dimension). In addition, 
the result seems completely natural in view of what was proved by Forstneri~ [8], 
Globevnik [10], and others, for large discs attached to totally real manifolds. As 
there does not seem to be a proof in the literature, we shall supply the argmnent 
in the next section. 

Step 4. Holomorphic extension to a one-sided neighborhood. We choose de- 
formed objects as in Lemma 5. For the sake of simplicity, we denote E d, N d and 
A n again by E, N and A. We may include N = i \ ~  into a one-parameter family 
Nt of strictly pseudoconvex boundaries forming a foliation near l~o. For each t. we 
obtain a filling of E t = N t A M  by analytic discs At.s. 

Consider the local situation near p: As A0.s(p) (the analytic disc provided 
by Lemma 5) is C2-close to the original disc (before deformation), its boundary 
OAo,s(p ) is still transverse in p to the disc L of Lemma 4 (we have left L unchanged 
during the deformation). Therefore the intersection 0A0.s(p) AK t still lies locally on 
the right-hand side of p in 0Ao,s(p). 

We may now choose a holomorphic parametrization A0 s(p): D - + C  2 such that 
AO,s(p)(1)=p and extend it to the nearby discs At.s with C 2 dependence on the 
parameters s and t. Since Ao.s(p) touches M transversally in p, the set 

}tl<~ 
ls-s(p)l<e 

where a~'~ = {r E D:  I1 -r < e}, 

is a one-sided neighborhood of p, if e>0  is sufficiently small. Furthermore W is 
foliated by the analytic curves At.s(aJ~). 

The set H=l,.Jls_s(p)l< ~ A0,s(~)  is a Levi-flat hypersurfaee of W. Applying the 

continuity principle along the discs attached to the spheres G t, t~0 ,  we extend f 
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holomorphically to W \ H .  It remains to extend f holomorphically to W, where we 

are allowed to contract W near p. This is a consequence of Lemma 4.5 of [15]. For 

the reader's convenience, we state the required special case and sketch the proof. 

L e m m a  6. Let f ~ c C  2 be a domain and H c f t  be an embedded hypersurface 
of class C 2. Then for every closed set A c H  which does not contain a CR orbit of 
H we have O(ft \A)=O(ft) .  

Proof. Fix gEO(ft \A) and let A' be the set of all zEA such that g does not 

extend holomorphically to a neighborhood of z. To obtain a contradiction we assume 

that A ' r  

Since A ~ does not contain a CR orbit of H. there is a point z'EA' and a 

differentiable curve 7: [0, 1]-+H which is tangent to T~H such that 2.([0, 1 ) )AA'=  
0 and 7 (1 )=z ' .  Deforming H slightly along ~.([0.1)) it is possible to produce a 

hypersurface HaDA ' such that z' is a minimal point of H ~. Then the theorem of 

Tr@reau [29] implies that g extends holomorphically to a neighborhood of z', in 

contradiction to the definition of A'. [] 

The CR orbits of H are the intersections A0.~(a.')MIV. As we chose p such that 

there are no points of K '  to the left of p on OAo.~(p), all discs passing through W 

will meet the domain U where f is already holomorphic. Hence Lemma 6 concludes 

the proof of Theorem 2. [] 

Proof of Theorem 3. As the passage fl'om holomorphic hulls to statements on 

L p removability is treated in detail in the literature, we shall only briefly indicate 
how to complete the arguments of the previous proof. The reader may find careful 

expositions of the required methods in [15] and [24]. 

Let fcLloc(M) be CR on 3I \K .  The first step of the proof of Theorem 2 

translates without pain to locally integrable functions. After a slight deformation 

of M \ K ,  we may assume f holomorphic near M \ K .  

In the sequel all arguments carry over with the only (obvious) modification 

that we have to consider the set K '  of points where f is not locally CR. To derive a 
contradiction to the assumption K'r  we construct again a holomorphic extension 

F of fIM\K' on a one-sided neighborhood of some well chosen point qEK'. So it 
remains to verify local Hardy space estimates for F in order to recover the restric- 

tion of f to a small neighborhood of q as a weak Ll-limit of F. Since Ll-limits 
of holomorphic functions are CR. this finishes the proof. The local Hardy space 

estimates can be derived from Carleson's embedding theorem in the same way as 

in [2] and [15]. [] 
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5. De format ion  of  analyt ic  discs 

In this section we prove Lemma 5. Let us first simpli~, the notation by elim- 

inating those elements which were only relevant in the context of Section 4. We 

are given an analytic disc A (At(p) in Section 4) whose boundary is contained in 

a totally real surface R c C  2. On 0A we consider two distinguished points pTAq. 
After reparametrization we may" suppose that p=A(1 )  and q = A ( - 1 ) .  Recall that 

we use A to denote both the mapping itself as well as its image A(D).  Likewise 
0A denotes A(T). 

The interplay between the geometry of R and A is characterized by the Maslov 

index of A with respect to R. In our context the following version of the normal 

Maslov index is very convenient (see [12] for a careful introduction and relations to 
different formulations of the Maslov index): Choose a trivialization N A S A  x R 2 =  

A x C  of the oriented normal bundle of A. Then the restricted tangent bundle 

TRIOA defines a one-dimensional subbundle L of X A I o z ~ S  1 x C. A continuous 
unitary section of L over 0A\{p} corresponds to a fimction 9: $1\{1} -+$1. It is 

immediate that its square 9 2 extends continuously to S 1. The winding nmnber of 

g 2 is called the normal Maslov index p(A, R) of A. 

From the construction of Bedford-Klingenberg, it follows that each disc of the 

constructed family whose boundary is contained in the totally real part of E has 

normal Maslov index zero. Hence it is enough to prove the following. 

L e m m a  7. Let A be an embedded analytic disc attached to a smooth totally 
real surface R. Assume that the normal Maslov index of A is zero. Then for every 
neighborhood U of q = A ( - 1 ) ,  there is a deformation R a of R arbitrarily close to 
R in the C2-sense and coinciding with R outside of U. and an analytic disc A d 
attached to R d, with Ad(1)=p,  such that (didO)An(I) is not a complex multiple of 
(d/d~)A(1).  

Before giving the proof we first derive Lemma 5. \Ve choose R C E  as a thin 

annulus containing 0A~(p). The preceding lemina gives a C2-small deformation R d 
of R such that  the corresponding disc A d touches R d transversallv in p. The s(p) 
support of the deformation being contained in a sufficiently small neighborhood of 
q, we obtain a deformed sphere E d by an obvious gluing. Finally we easily find 

adapted deformations M d and N d satisfl'ing all the requirements of Lemma 5. 

Proof. The rough idea is as follows: The union of the discs attached to R which 
are close to A forms a Levi-flat t~ypersurface H. which contains some open part of 

R in its boundary. Near q we construct a one-parameter family Rt by deforming R 
in the direction transverse to H. As a consequence, the direction of the deformed 
discs in p shall also turn out of H. 
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To describe the local arguments,  we shall closely follow the paper [8] of F. Forst- 
neriS. Observe first that  Forstneri~ introduces a slightly different notion of index, 
which equals one in our situation. Lemma 10 in [8] gives us C2-valued vector fields 
X(O) and Y(O) (0CR/27rZ denoting the arc length on T)  and a 2 x 2 matrix-valued 
function B with the following properties: 

(1) The functions B and B -1 have coefficients in O(D)NCkd/2(D), where we 

shall assume that  k is sufficiently large in what follows. 
(2) The vector fields X(O) and Y(O) form a basis of TA(o)R for all 0. Further- 

more we have X(O)=(d/dO)A(O) for all 0 (this can be read off from the proof of 
Lemma 10 in [8]). 

(3) The identities X(O)=B(O)Xo(O) and Y(O)=B(O)Yo(O) hold. where X0(0)= 
(ie i~ 0), Yo(O)=(a(O), 1) and c~CO(D)NCk,1/2(D). 

We may suppose p to be the origin of C 2. Let Z be a smooth extension of the 

vector field iY to a neighborhood U c R  of q. Fix a smooth bump function )~>_0 on 
R, with small support  in U, which equals one near q. For small t>0 ,  we define Rt 
as the hypersurface which coincides with the image of the mapping z E R~-~ z+tZ(z) 
near q, and with R elsewhere. Then Theorem 1 in [8] says that  there is, up to 
reparametrizat ion by automorphisms of the unit disc, a unique analytic disc At 

attached to Rt with 0~0At .  We choose holomorphic parametrizat ions At: D - + C  2, 
with A t ( l ) = 0  , which depend C a on t. 

As observed in [8], AtlT may be parametrized (as any differentiable mapping 
from T to C 2 which is close to AIT ) by the expression 

(1) /Xtl T = AIT+Ut.tX+uztY+i(f~.t+i%f~.dX+i(f2.t+i%f2.t)Y, 

where Ul, u2, fl and f2 are real-valued functions on the circle and T~f denotes the 
harmonic conjugate of f vanishing at z. Such an expression is obtained by applying 

the implicit function theorem to the mapping (ul,u2, fx, f2)~AIT+u~X+u2Y+ 
i(fl +iTofl)X+i(f2 +iTof2)Y and solving for (fx, f2). Decompose 

d A t ( O )  ~176 = (a(t)+ib(t))X(O)+(c(t)+id(t))Y(O) 

at 0=0.  As Rt coincides with R near the origin and X(0) and Y(0) span ToR, we 
obtain b(t)=_O and d(t)-O. By property (2) we have a ( 0 ) = l  and c(0)=0.  In order 
to show that  the direction of At at the origin can be different from the direction of 
A0 = A  it is clearly enough to prove the following claim. 

C l a i m .  The coefficient c(t) is not constant zero on any interval [0, to], O<to. 
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Proof of the claim. To derive a contradict ion,  assume tha t  ct==-O for 0 < t < t 0 .  

First  we check tha t  u2,t(0) is constant  in 0 for all t. Indeed, mult iplying (1) 

with B -1 we see tha t  

Ul ,tXo -~u2,tYo § ,t +iTofl,t)Xo +i(f2.t + iTof2.t )Yo = B -  1 (A t IT -- A IT) 

extends to D as a holomorphic  vector-valued function. Its second component  reads 

u2,t+i(f2.t+iTof2.t). 

and hence u2,t must  be constant .  

As A t ( l ) = 0 ,  we deduce 

u2,t +i(f:,t +iTof2.t) = i(f2.t +iTof2.t). 

By a well-known formula, 

d T 0=0 1 / /  f2.t(O) dO. c(t) = - - ~  of 2.t = ~ ~ i~0_11~ 

For small t, we shall establish a lower bound  

f "  f2.t(O) dO >ct, c > O ,  (2) 
l e i0  i i  2 - 

which obviously implies the desired contradict ion to the assumpt ion  tha t  c(t) is 

constant  zero near the origin. 

To this end, we fix some small 5>0 ,  and consider for each cE(0,  6) the following 

open cover of T = { r 1 6 2  

c~(e) = { r  ICL=I and K - 1 I  < z } ,  

1~ and Ir > ld} .  9 ( c ) =  {r162 1r > ~: 

~ - -{ r  Ir = 1  and Ir <~}. 

We assume that  R ~s only deformed near {<:l<l=~ and Ir < �88 We shah show 
three e lementary estimates:  First  there are uniform constants  cl, c 2 > 0  such tha t  

for small t >_ 0 we have 

[ f2,t(O) dO < (3) clot, s (~) le~~ 2 - 
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and 

f2,t(O) dO > c2t. (4) [ei0_l[Z 

Finally we find for each e a constant c(~)>0 with 

/ f2.t(O) dO <c(~)t 2 (5) 

Taking e > 0  with cle<c2, we get the lower bound (2). 
To prove (5), we recall that  the integral measures the increment of the smoothly 

varying curves At(T)  in the direction of iY  for varying t. Near 3(e), the surfaces 

Rt and R coincide. Furthermore, the vector fields X and Y span T R  along A(3(c)). 

So the increment in the direction of iY  can at most grow quadratically, whence (5). 
A similar argument shows that the bump as a deformation in the direction of i Y  
contributes linearly to the integral in (4). 

Only for (3) we need the assumption c(t)=O. This implies that OAt is always 

tangent to X at the origin. Taylor's formula yields 

d 2 
f2.t(O)= ( ~ f ' 2 . t  ~ o)02+e(t ,  O) 

near 0=0.  where e(t, O) admits a uniform estimate by 10] ~. Now 0 2 and the denom- 

inator in the integral are comparable, and we get (3) after expanding in t to the 

first order. [] 
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