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The Calderdn problem for Hilbert couples 

Yacin Ameur 

A b s t r a c t .  We prove t h a t  in t e rmedia te  Banach  spaces  A and  /3 wi th  respect  to a rb i t r a ry  

Hilbert  couples 7~ and  K~ are exac t  in terpola t ion  if and  only if t hey  are exac t  K-mono ton i c ,  i.e. t he  

condi t ion  f0  C ~4 and  t he inequal i ty  K( t ,  9 o ;/C) _< K( t ,  f0  ; "H), t > 0, imply  g o E/3 and  I It~ II ~ <- II f 0  II A 

( K  is Pee t re ' s  K- func t iona l ) .  It  is well known t h a t  th is  p rope r ty  is implied by the  following: for 

each g > l  the re  exists  an  opera to r  T:7/--+/C such t h a t  Tf~ ~ and  K(t, Tf;1C)<_~gK(t,f;~), 
f~J{0q-~]-L1, t > 0 .  Verifying t he  la t ter  property ,  it suffices to consider  the  "diagonal  case" where  

?-t=/C is f ini te-dimensional ,  in which case we cons t ruc t  t he  relevant  opera tors  by a m e t h o d  which 

allows us  to explicit ly calculate  them.  In the  s t ronges t  form of the  theorem,  it is shown t h a t  the  

s t a t e m e n t  r ema ins  valid w h e n  s u b s t i t u t i n g  ~)=1. T he  resul t  leads to a shor t  proof  of Donoghue ' s  

t heo rem on in te rpola t ion  funct ions ,  as well as LSwner ' s  t h e o r e m  on mono tone  ma t r i x  funct ions .  

1. P r e l i m i n a r i e s  

Before we formulate our basic problem let us fix some notation and review some 
notions from the theory of interpolation spaces (cf. [3], [4] or [5] for comprehensive 
accounts of that  theory). We shall denote by the letters A, B, etc., Banach spaces 
over the real or complex field, whereas "H, /C, etc., denote Hilbert spaces. 

Following G. Sparr [27] we denote by s 13) the Banach space of bounded 
linear maps T: A-+B provided with the operator norm 

IITIIc(A;B)= sup IITflIB 
/cA\{0} IlfllA" 

Similarly for Banach couples A (Ao,A1) and B=(B0,B1) we define s  as 
the set of linear operators T: A0+Al-+130+131 such that  the restriction of T to ~4i 
belongs to s  Bi), i=0,  1. It is well known that  s B) is a Banach space under 
the norm 

IITII~c~;z~> = max{ IITII~CAo;~o), IITIILcA~;B~)}. 
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For a given c, let s B) and s B) denote the families of balls of radius c, 

T E s 0) if and only if T E s B) and IITIIc(A;s) _< e, 

TCs  if and only if T E s  and IITIIc(A;B) <_c. 

In this notation, intermediate spaces M and B are interpolation with respect 
to A and /3  if and only if there exists c with the property that  

(c-Int) el(A; O) c c (A; 

(where necessarily c> l ) .  In the special case when c= 1, 

(SxInt) /~I(A; S) C/~I(A; O), 

we speak about exact interpolation. Of particular interest is the diagonal case, .A=B 
and A = B ,  in which we simply say that  A is exact interpolation with respect to A. 

In the present study the problem of characterizing all exact interpolation spaces 
with respect to arbitrary (possibly different) Hilbert couples is considered. Our 
results sharpens the theorems of Sedaev ([24], Theorem 4) and Sparr ([27], Theo- 
rem 5.1) and implies the theorems of Donoghue [9] and LSwner [17]. 

2. M a i n  r e s u l t s  

It is well known that  many exact interpolation spaces can be described by 
Peetre's K-functional, 

K(t,f)=K(t,f;Xo,X1)=f=ir j ,  f E X o + X i ,  t > o ,  

or more precisely by the quasi-order (relative to .A and B) defined by 

9<-f[K] if and only if K(t ,9 ;B)<_K( t , f ;A) ,  t>O. 

We have the following basic lemma. 

L e m m a  2.1. The inclusion (ExInt) is implied by the following property ("ex- 
act K-monotonicity") 

f E A and g <_ f[K] implies g ~ B and llgtts < llf[IA. 

For a proof see [27], Theorem 1.1, p. 232. 
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In general the property (Exlnt) is not the same as exact K-monotonicity, cf. [4], 
Exercise 5.7.14, where a three-dimensional counterexample is given (see Section 9 
for further remarks). However with respect to regular Hilbert couples the following 
weak form of equivalence between the two notions is known: (Recall that  (X0, X1) 
is regular if XoAX1 is dense in X0 and in X1.) Let A and B be exact interpolation 
relative to the regular Hilbert couples 7~ and/~.  Then they are "gr2-monotonic '' in 
the following sense: 

(2.1) f E A and g <_ I[K] implies 9 E B and Ilgllz -< ~/2 IIIIIA. 

This fact is due to Sedaev [24] in the diagonal case, and to Sparr [27] in the general 
case. We have the following sharpening. 

T h e o r e m  2.1. With respect to regular Hilbert couples, (ExInt) is equivalent 
to exact K-monotonicity. 

Couples having the property that  (ExInt) coincides with exact K-monotonici ty 
are (in this paper) called Calderdn couples after A. P. Calder6n [6] who in 1966 
found the non-trivial case A =  (L1 (#), Lo~ (#)) and B=  (L1 (p), Lo~ (~)), # and ~ being 
arbitrary or-finite measures.(1) In this terminology, Theorem 2.1 states that  regular 
Hilbert couples constitute a case of Calderdn couples. 

We have also the ibllowing, slightly stronger theorem. 

T h e o r e m  2.2. Let ~t and ~ be regular Hilbert couples, and f~ and 
g~ be such that g~176 Then there exists an operator T~s 
such that T f ~  ~ 

We note that  our proof of the above results are fairly straightforward conse- 
quences of the following "key lemma". 

L e m m a  2.2. Let ~l and ~ be regular Hilbert couples with elements f~ 
7tl and g~ fulfilling K(t,g~ 1K(t, f~ t>0 ,  for some number 
~> 1. Then there exists an operator TEs such that T f ~  ~ 

It is not hard to show that  Theorem 2.1 is equivalent to the above lemma, and 
that  Theorem 2.2 follows as a limiting case. The main part  of this study is devoted 
to the proof of Lemma 2.2. 

Our next theorem concerns the mapping properties of the operators T exhibited 
in Theorem 2.2. Evidently, for given f0, 90  ~ and/~  such that  g~176 the set 

(1) An equivalent characterization of the exact interpolation spaces with respect to (L1, Loo) 
was independently discovered by B. S. Mityagin [18] in 1965, whence some authors prefer to speak 
about Calder6n Mityagin couples. Also the terms K-adequate couple, K-monotone couple and 
C-couple exist in the literature. 



206 Yacin Ameur  

of such T ' s  form a closed convex subset C1 = { T E  s (7{;/C) :T f  ~ =g0} depending on 
those objects. In order to get into context, let us remark that  the operators used 
by Sedaev and Sparr, leading to the constant x/22 in (2.1) are non-negative in the 
following sense. Assume, with a rather  trivial restriction, that  7{ and ]C be weighted 
L~-couples associated with some measure spaces ftl  and ft2, and that  f0 and g o are 
non-negative functions on those spaces, such that  g~ f0[K]. By the Sedaev-Sparr  

construction, there then exists an operator TEE,~5 (7{, IC) such that  T f ~  ~ and 

(2.2) f > 0 a.e. on ~1 implies T f  > 0 a.e. on Ft2. 

In view of this remark, our next theorem may come as a surprise. 

T h e o r e m  2.3. There exists regular Hilbert couples 7{ and IC, and elements fo 
and g o with g~176 such that the set 61 contains no element T satisfying (2.2). 

It is fitting to compare our results with the work of W. F. Donoghue [91 by 
which a complete description of the exact interpolation Hilbert spaces with respect 
to Hilbert couples is known. Indeed, Donoghue's theorem is advantageous over our 
Theorem 2.1 in the respect tha t  it yields an explicit representation formula for all 
possible norms in such spaces. In a later section, we shall show that  Donoghue's 
theorem can be incorporated as a part  of our theory. Our version of the theorem is 

as follows. 

T h e o r e m  2.4. (Equivalent to Donoghue [91. ) Let 7{, be art intermediate 
Hilbert space with respect to a regular Hilbert couple 7{. Then 7{, is exact inter- 
polation if and only if there exists a positive Radon measure ~ on the compactified 
half-line [0, oc] such that 

( / 0 (  1 ) dao(t) ) 1/2 ' ~t~,, [[fll, = 1 + ~  K2(t, f )  2 ZE 
,oc] 

where, by definition (@ [24]), 

K 2 ( t , f ) = K 2 ( t , f ; ~ ) =  inf (l[foll~+tllflll2) 1/2. 
f=fo+fl 

Remark 2.1. In Theorem 2.4, the function k:t~-+(l+t S)K2(t , f )  2 is defined 
by continuity at t = 0  and t=oc ,  i.e. k(0)=l[f[[~ and k(oc)=llf[[~ , where we have 
used the convention: IIJ'[[i=oo if .f~7{i, i=0 ,  1. 

We shall not prove Theorem 2.4 in its full generality here, but settle by proving 
it in the finite-dimensional case (the interesting case). We shall see in a later section 
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that the theorem leads to a short proof of L6wner's theorem on monotone matrix 
functions, and that Theorem 2.4 is a 'local' version of that theorem. Concerning the 
infinite-dimensional case of Theorem 2.4, we prefer to get back to it in a later paper, 
but the interested reader may confer the author's Ph.D. thesis ([1], Chapter V), 
where details are given, and where it is also explained how the theorem relates to 
Donoghue's original version of the theorem. 

Remark 2.2. Throughout  this paper, we have been careful to avoid non-regular 
couples, although this restriction is strictly speaking not necessary. With minor 
modifications, our theorems and proofs extend to the non-regular case and to inter- 
polation of quadratic semi-norms, cf. the remarks of Sparr [27], top of p. 235, and 
Donoghue [9], p. 264. 

3. T h e  f u n c t i o n a l  /122 

With respect to (Xo, X1) we have the K2-functional 

K2(t,f)  K2(t , f ;Xo,X1) f=~lffl(llfoll~4-tllflll2) 1/2. 

Correspondingly, relative to A and /3  the quasi-order 

g - < f  [K2] if and only if K2(t,g;B)<_K2(t,f;A), t > 0 ,  

is defined. The following theorem is crucial for what follows. 

L e m m a  3.1. With respect to arbitrary Banach couples A and 13, we have 

g <_ f[K] if a ~  o~@ if g <_ r 

Proof. This lemma is formulated in Sparr [27], Lemma 3.2, p. 236 for weighted 
L~,-couples. However, a short consideration of the proof shows that  it holds equally 
well with arbitrary Banach couples. [] 

It is immediate from the definitions that  K(t, .  ) and K2(t, .  ) enjoy the property 
of being ezaet interpolation fartctors for all t, viz. 

(3.1) T f <  IITII~(A;~)f[K] and T f<_ IITII~(A~)f[K2], 

for any A, 13, Tand f .  An advantage of using K2 and not K is that  the former can 
be conveniently calculated in the regular Hilbert case in a way which we describe 
below. 
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Given a regular Hilbert couple (7-/o, "H1) the squared norm Ilfll~ is an (in general 
unbounded, but densely defined) quadratic form on 7-/o, which we represent in the 
form 

II/ll~ = (At, f)o, 
where A is a positive, injective, densely defined linem" operator in "/-to henceforth 
referred to as the associated operator of J~. (Note that the domain of the positive 
square-root A 1/2 is 7/o N~I .  As general sources to the spectral theory of selfadjoint 
operators we refer to [22] and [23].) 

Let us now fix fE'HoA?-/1 and consider the optimal decomposition(z) 

f = fo(t)+f~(t) and K2(t,f)2= Ilfo(t)ll~+tllfl(t)ll~. 
Plainly f~(t)E'HoN?-tl =domain(A1/2), i=0,  1, and moreover for all f in this domain 

j~[(fo(t)+sf, fo(t)+ef)o+t(A(f~(t)-Gf), f l ( t )  el)0] 0, 

so that 
2Re(fo(t)-tA.)q(t),f)o=O, f E~o~7-tl. 

By regularity, fo (t) =tAfl (t) and f = fo (t) + fs (t) = (1+ tA) fl  (t), which yields 
tA 1 

t o ( t ) =  1 - - ~ ( f )  and f l ( t )= l + ~ ( f )  

K2(t,f)2 = Uo(t)ll~+r = ( l+tA)~(f) , f  q-t ( l+tA)~(f)  , f  
(3.2) ta 

= (ht(A)f,f)o, where ht(),) = i+ta" 
An important consequence of (3.2) is that K2(t, f) is a Hilbert space norm on ?-t0+ 
741 for every fixed t>0 .  We shall denote by J-t0+t?-tl the space normed by K~(t, f);  
in particular 7-/0+7/1 is considered as normed by K2(1, f) .  

The following characterization of the unit ball s (7-/;/C) with respect to regular 
Hilbert couples J~ and/C is immediate from (3.1), 

TEZ;I(Jr if and only if Tf<f[tG],  f~J-to+?r 

which is to say that 

(3.3) & ( n ;  ~)  = f~  C l ( ~ 0 + t n ~ ;  ~ 0 + t ~ ) .  
t>0  

It is shown below that (3.3) implies a weak*-type compactness property of the set 
Z;l(J~). (In the diagonal case we prefer to write s instead of/2(7-/; "H), etc.) 

(2) It  is a s imple  exercise to verify t h a t  an  op t ima l  decompos i t ion  exis ts  and  is unique.  

A s s u m e  t h a t  t - -1  and  use the  convexi ty  and  closedness of  the  subse t  { (to,  f l)C?-to x H1 :to + f l  = f }  

of the  car tes ian  p roduc t  space Jr x"]-{1 to obtMn an  e lement  of  m in ima l  norm.  

and 
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L e m m a  3.2. The subset s163 is compact relative to the weak 
operator topology(3) on s +7/1)- 

Proof. We use the well-known fact that  the weak operator topology coincides 
on the set s with the weak* topology, which is compact by Alaoglu's 
theorem; cf. [19], Section 4.2. Given t > 0  it is easy to see that  the subset 
s (7/0 + tT/~ ) N s (7/0 + 7/~ ) C Z;~ (7/0 + 7/1) is weak operator closed, and hence com- 
pact relative to that topology. Thus so is s  being an intersection of compact 
sets (3.3). [] 

4. Further preparat ions  

In this section we simplify and reduce our problems; it is shown below that  
they reduce to the diagonal case (i.e. 7 / = ~ )  of Lemma 2.2. 

L e m m a  4.1. (1) Lemma 2.2 is a conseq~tence of its diagonal case. 
(2) Theorem 2.2 is a consequence of its diagonal case. 
(3) Theorem 2.2 is a consequence of Lemma 2.2. 
(4) Theorem 2.1 is a consequence of Lemma 2.2. 

Pro@ (1) Given ~ and/C, we form the direct sum g=(7/0 @~0,7{10/~1). The 
splitting So +81 = (7/o +7/x)|  (s +/r easily yields the following expression for the 
K2-functional with respect to a generic element f e g  E $0 +$1, 

K~(t, f e g ;  s)  ~ = ~ ( t ,  f; ~,)~ + K~(t, g; s  

By Lemma 3.1, the assumptions of Lemma 2.2 translate to 

K2(t ,O|176 ~K2(t , f~  t > 0 .  

Applying the diagonal case of Lemma 2.2, it yields an operator $6s such that  
S(f~174 ~ and HSlk(s)_<1. Let P denote the orthogonal projection 

P: So+$1 ---+ K0 + /Q.  

Evidently [[PIIc(s;r) = 1. Hence putting 

T: 7/0+7/1 > ~0 +/~1 

f~ > P S ( I e O )  

(3) A net  Ti converges to T in the  weak opera tor  topology on s  if and only if (Tif, g)~ 
converges to (Tf, 9)7{ for all f ,  g 6 ~ .  
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yields T f~ ~ and IIT][c(n;~:)< 1, as desired. 
(2) This is very similar to (1), the simple modifications are left to the reader. 
(3) By (1) and (2) it suffices to consider tile diagonal case 7 /=E .  Let g> 1 be 

given together with any elements g ~ fo ~ 0  +7-tl such that g~ f0 [K]. The hypoth- 
esis that  Lemma 2.2 holds true in tile diagonal case then yields the existence for 
each h E N  of an operator T,~ Es (7-t) such that  T~J~176 1). By compactness 
(Lelnma 3.2) the T,~'s cluster at a point T~s and it remains to check that  
Tf~ ~ To this end, it suffices to note that  

(Tf~ = lh~(Tn, f~ =(g~ h r  

(4) Recall (Lamina 2.1) that  exact K-monotonicity implies (ExInt). Under 
tile hypothesis that  Lamina 2.2 holds true, we shall prove the reverse implication. 
Given exact interpolation spaces A and B with respect to 7t and / s  together with 
elements go and fo such that 

9 o_<fo[K] and f O r  

there then exists for each Q>I an operator TEs such that  T f  ~ g 190. 
Hence TEs B) by (ExInt) whence 

Hg~ = IIoTf~ -< ~llf~ 

Since g> 1 is arbitrary, it yields that A and/3 are exact K-monotonic. [] 

5. S o l u t i o n  o f  t h e  p r o b l e m  

This section is devoted to the diagonal case of Lemma 2.2. Our proof is divided 
into two parts: (i) reduction to a finite-dimensional case and (ii) explicit solution 
of the problem in that  case. 

5.1 .  R e d u c t i o n  t o  t h e  f i n i t e - d i m e n s i o n a l  c a s e  

To fix the problem, let 7~ be given together with a number ~)>1 and vectors 
gO, f0c?~0+~/1 such that  

1 0 
(5.1) t~-~(t,g~ ~ < ~ K ~ ( t , f  ~ ) ~ ,  t > 0 .  

We want to prove that  there exists T with the following properties 

(5.2) T ~ I ( ~ )  and T f ~  ~ 
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Let A be the operator associated with ~ ,  E be the spectral measure of A, and let 
a sequence of orthogonal projections in ~0 be defined by 

P~,, = E~(A)n[1/~,,r~], n C N.  

L e m m a  5.1. To verify (5.2) we cart besides (5.1) without loss of generality 
assume that fo and 9 o belong to the set P,~(~to) .for some n c N .  

Pro@ Plainly, IIP~llc(~)=l for all hEN.  Moreover, as n-+oc the projections 
P~ converge in the strong operator topology o n / 2 ( ~ 0 + ~ 1 )  to the identity. Accord- 
ingly, 

K2(t, p~.qO)2 <_ K2(t,  9o) 2 < 1K2(t ,  fo)2, t > O. 

Moreover, by the estimate K2(t, P,,,g~ 2 <_C~ rain{l, t} and because the sequence of 
functions K2(t, p,,.fo)2 increase monotonically, converging unifbrmly on compact 
subsets of R+ to K2(t, fo)2, it follows that,  for each number t)0 such that  1<~0<~), 
we can choose rn rn(~0,n)>rz such that  

(5.3) K2(t ,P~9~ 2 < l~K2(t,P,~f~ t > 0. 
60 

Thus under the hypothesis that  the implication (5.3) ~ (5.2) holds true with respect 
to the vectors P,~f~176 it yields an element T , ~ s  such that 
Tnm]~rnfO=png O. By Lemma 3.2 the T,~,~'s cluster at a point T E s  a n d  one  

checks without difficulty that  T f ~  ~ whence (5.2) holds. [] 

Define a subcouple KCT-t by letting/~0 =K;~ = P , ~ ( ~ 0 ) = P ~ ( ~ ) ,  where the norm 
in Ki is defined as the restriction of the norm of' ~ i ,  i=0,  1. By Lemma 5.1 we can 
assume that  f0, 9o CK;0A/~. Since 

K 2 ( t , f ; l ~ ) = K 2 ( t , f ; ~ ) ,  f EIr 

we can (replacing ~ by ~ if necessary) assume that  the norms of 7-/o and ~1 are 
equivalent. Our next task is to approximate the problem by a finite-dimensional 
one. 

L e m m a  5.2. Given f~176 and a n~umber c>O, there exists a finite- 
dimensional Hilbert subcouple F c T-t such that fo, gO ~ Yo +F1 and 

(5.4) (1 c ) K 2 ( t , f ; ~ ) 2 < _ K 2 ( t , f ; F ) ' 2 < _ ( l + c ) K 2 ( t , f ; ~ )  2, t > 0 ,  f ~ F o + F 1 .  

Moreover, F cart be chosen so that the associated operator A~ is multiplicity.free. 

Pro@ By the tbregoing remarks, we can assume that  the norms of ~to 
and ~1 be equivalent. Then the associated operator A is bounded and bounded 
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below. Take g>O and let {fl,i}~'r~ 1 be a finite subset of ~(A) such that ~ ( A ) c  
Ui=~ ()',i 1 - E n of ~(A) consisting of disjoint in- " -~G} , i+ �89  Let { ~}~:=1 be a covering 
tervals of length at most { such that Ai CEi. Define a Borel function w: a(A)-+cr(A) 
by w(A)=A~ on E~f3cr(A); then []w(A)-A]]c(~to)_<c. The Lipschitz constants of the 
restrictions of the functions ht (cf. (3.2)) to or(A) are bounded above by Co rain{l, t}, 
where Co is independent of t, whence 

I lhdw(A)) -h t  (A) ll~(no) _< Coffmin{1, t}. 

Thus by Schwarz' inequality and the assumption on ?-t, 

]((ht(w(A))-h,(A))f, f)ol <- Cogmin{1, t}[Ifll 2 
(5.5) 

_< C1Jmin{1, ~} max{llfll~, IIflI~L f ~ ~0+n~.  

Now let c>0  be such that A>c. Using that ht(c)>_ 1 min{1, ct}, we get 

(ht(A)f, f)o >_ hdc)ll/ll~ _> 6"2 rain{l, ~} max{llfl]~, II/ll~}, f d ~ o + ~ 1 .  

This and (5.5) yields 

(5.6) I(hdw(A))f, f )o-(ht(A)f ,  f)ol <- C3g(ht(A)f, f)o, f C ~o+~1. 

Choose unit vectors ei and f,i supported by the spectral sets Ei such that fo and 
g o belong to the space W spanned by {e~, f~}~'~ 1. Put  Wo=W~ =W (as sets) and 
define the norms by 

f 2  Ilfll~Vo = II 114o and I//ll~v~ = (w(A)f, f)~o, f c W. 

The operator associated with W is then the compression A w of w(A) to Wo, i.e. 

(5.7) Ilfll~v =(A~ f , f )wo=(w(A) f , f )no ,  f C W .  

Let e = 2 C j  and observe that (5.6) and (5.7) yield 

(5.8) IK2(Lf;W)2-K2(t,Z;~)2[<_�89 2, I c W .  

In general the eigenvalues of the operator A w have multiplicity 2. To remedy 
this, perturb A ~  slightly to a positive matrix AV, all of whose eigenvalues have 
multiplicity 1, such that HAw AvllC(no)<S/26%. Let P be the couple associated 
with AV, i.e. 

Ilfll~o = I]/ll~Vo and IIfll~ = (Avf, f)vo, f E W. 

By a calculation analogous to the one leading to (5.8), one gets without difficulty 

IK2(t,f;W)2-K2(t,f;P)21< �89 2, f ~W. 

Together with (5.8), this yields (5.4). [] 

The following lemma finishes the reduction to the finite-dimensional case. 
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L e m m a  5.3. Verifying (5.2) one can besides (5.1) without loss of generality 
assume that 7-I is finite-dimensional and that the associated operator is multiplicity 
.free. 

Proof. Let 7~, t~, gO and f0 fulfill our basic assumption (5.1). By Lemma 5.1 
we can assume that  9o, focp~(Tto  ) for large enough n. In this case, for a given c>0 
(to be fixed later) Lemma 5.2 provides us with a couple V of the desired form such 
that 

K~(~, gO; v)~ < (1 +~)K2(~, go; n)~ 

< l_K2(t ' f0; ~)2 +s(K2(t ,  fo; ~ )2+K2( t ,  9o; ~)2). 
t) 

Choosing s >0 sufficiently small in this inequality we can arrange that  

(5.9) K2(t ,g~ 2 < 1 K e ( t , f ~  t > 0 ,  
go 

where L)o is any number in the interval 1 < t)o < t). By using (5.9) instead of our 
basic assumption (5.1) and the hypothesis that the conclusion (5.2) holds true with 
respect, to the couple V, we infer that  tbr each ~1 in the interval l < t h  <L)o there 
exists an operator TEs ('1)) such that  T f ~  ~ Denote the canonical inclusion 
and projections by 

I:Vo+V1 > 7/0+7-tl and P:7-to+7-tl > Vo+V1, 

2 then by (5.4), IIIH~(V;~)<(1-e)-I,  and IIPllc(~;~)_<l+c. Let c>0 be sufficiently 
small, so that  

-_1, 1 ~  <1,  
t)l V 1 - s  - 

and put S = I T P .  Then S f ~  ~ and SCL:~(~). Thus (5.2) is satisfied with respect 
to 7~ and the operator S. [] 

5 .2 .  T h e  f i n i t e - d i m e n s i o n a l  c a s e  

Let ~ be of the type described in Lemma 5.3. Henceforth we shall assume 
complex scalars (the real case is postponed to the end of the proof). Let AEs 
be the operator associated with ~ and k-{A~}i~ 1 its distinct eigenvalues, ordered 
in increasing order. Denote by {(i}i'~ 1 the corresponding orthonormal basis of ~0 
consisting of eigenvectors of A. Then for a generic vector f=~i"--1 f,i(i C~o, 

7Z n 

(5.10) I / / l l~=~ l f ,~ l  2 and II/'ll~ ~ ~lf~l . 
i - -1  i - -1  
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W%rking in the coordinate system <,i the couple ?~ becomes identified with the 
n l n weighed n-dimensional /2-couple (/~,/~'(A)) defined by (5.10) for f={fi}, i=l E 2. 

Pnt (see (3.2)) 

n n 2 n t ~  i 
(5.11) K2,x (t, f)2 = K2(t, f; 12,12 ( i)  ) = E If~12 

l+tA~' i--1 

Let 8> 1 be given such that 

(5.12) 8A~; < h~+~, i = 1 , . . . , n - 1 .  

The problem then becomes the following: given f o  0 g El2 such that  

(5.13) /~2,A(~--1 gO)2 < 18K2,~( t J,fo)2, /:>0, 

we must verify the existence of a matrix T=Tfogo CMn(C):=s such that 

(5.14) T f ~  ~ andK2,a ( t ,Tf )<_K2,x( t , f ) ,  t > 0 ,  fcl~2 ~. 

To simplify the problem, let us first suppose that  our problem is soluble with respect 
to the elements If~ {If~ 1, [.q~176 i.e. there exists ToEM,,~(C) such 
that 

Toff~176 and K2,a(t, Tof)<K2,x(t,f), t > 0 ,  f ~l ;  ~. 

Choosing for each k numbers 0~, qok c R  such that  Jk~'~176 ~Jkl~~ and gO =ei~k 19 o I, we 
infer that  (5.14) holds with respect to the matrix 

T : diag(e {~k )To diag(e-i~ 

whence there is no loss of generality in assuming that the entries ]~ and g, o be 
non-negative. Moreover, replacing g o and fo by small perturbations if necessary, 
we can besides (5.13), assume 

(5.15) f?>o and g~ 

Put/3, i - l , i  and c~:=g~i; then (5.12) becomes 

(5.16) 0 < ~  < ~  < ... <;%~ < ~ , .  

It is a simple matter to check that, 

(5.17) K2,~(t , f)2<_K2,~(t , f)2<_sK2,~(t , f)2 , t > 0 ,  f c l ~  ~, 
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whence (5.13) yields 

(5.15) K2,~(t-l,g ~ l fo),  t > 0 .  

Moreover, (5.17) yields that, verifying (5.14), it suffices to verify the existence of a 
matrix T=Tt,,fomo E/F/~n(C ) such that  

(5.19) Tf~176 andK2,~(t-~,Tf)<_K2.~(t ~ f), t > 0 ,  fEl~ ~. 

Starting the construction of TcM,~(C) fulfilling (5.19), we put 
'Ji, 7~, 

L/3(t)=H(t+/3i), L,,(t)=H(t+ai ) and L(t)=L;~(t)L~(t), 
i = l  i = l  

and note that  (5.16) yields 

(5.20) L'(9, , , )  > 0 and L ' ( ~ )  < 0. 

We now define an important polynomial PC/ )2 ,_ I (R)  by 

( 5 . 2 1 )  P ( ~ )  - - / r~  2 ~ ( t  1 0 2 --1 0 2 n E ( g ~ , ) 2  f ) -K~,~( t  ,g ) : Z ( / , ~ ' )  ~ 9~ " ~,~ 
' ' t+fi i  t+c~i" L(/~) i 1 i 1 

By (5.18) we have P ( t ) > 0  for t>0.  Moreover, P is uniquely determined by the 2n 
conditions 

(5.22) P( - f l i )  = (f~ and P(-(~i) =-tgT' ~ iL"c- ai)'. 

We note that  (5.15), (5.20) and (5.22) yields 

(5.23) P(-9~)  > o and P ( - ~ J  > O. 

We claim that  it suffices to prove (5.19) in the case when 

(5.24) P has exact degree 2 n - 1  and all zeros of P have multiplicity 1. 

To prove this, we note that  polynomials fulfilling (5.24) constitute an open, dense 
subset G of the cone C of polynomials P~7~2~ I(R) fulfilling P ( - / ~ ) > 0 ,  P ( a g )  > 
0 and P ( t ) > 0  for t_>0. Since the formulas (5.22) for the coefficients f0 and g o 
define continuous (positive) functions of PEG, we can, replacing f0 and g o by small 
perturbations if necessary, assure that  (5.24) holds. The set G shall henceforth be 
referred to as the set of generic polynomials. 

Let P~G, i.e. P fulfills (5.23) and (5.24) and P(t)>O for t>O. We split the 
zeros of P according to 

p 1 2 r n - 1  n m n m ( { o } ) = { - ~ d , ~ = ~  u { - c ~ L = ~  u { - c d , ~  1 , 

where the r i 's are positive, and the ci are in the open upper half  plane. We have 
the following lemma. 
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L e m m a  5.4. The following inequalities hold: 

(5.25) E(- /3i)P(- /3 , i )  > 0 and E(-c~i )P(-c~i )  < O, 

[ r  / 2 m - - 1  r ~  / m  U r / m  1 and there is a splitting t iji  1 ---i "i~i 1 ~ i~ i  1 , where 

(5.26) L ( - S j ) P ' ( - S j )  > 0 and L(--Tk)P'(--Tk) < 0. 

Proof. The inequalities (5.25) follow immediately from (5.20) and (5.23), so it 
remains only to prove (5.26). Let - h  denote the leftmost real zero of the polyno- 
mial LP.  We claim that  - h  is a zero of P. In order to prove this, we assume the con- 
trary, i.e. h=c~n. Since the degree of P is odd, and P ( t ) > 0  for t>0 ,  this polynomial 
must be negative %r large negative values of t, which implies P ( - ~ n ) < 0 ,  contra- 
dicting (5.23) and proving our claim. It follows that  L ( - h ) P ' ( - h ) = ( L P ) ' ( - h ) > 0 ,  
which justifies the notation h=d,m,. Putt ing P.( t )=P(t) / (~+(~m) and noting that  

_ _  LJ 7~ t + d , , > 0  for t~{--O~i}~= 1 { ~i)i=1, (5.23) yields 

P . ( - f l i ) > O  and P . ( - c ~ ) > O .  

Thus P.  has either 0 or an even number of zeros between each pair of zeros of L. 
L e t  r . ~ 2 , m - - 2  rj  J~j=l denote the real zeros of P. .  Since the degree of LP .  is even, and the 

OZ n n r . ~ 2 r n - - 2  polynomial ( L P . / h a s  alternating signs in the set { -  i}i=l U{-/3i}i=l Ol-r ' i  ~i=l , 
.f ~ ! m - l u  r ~'m,-- 1 this yields that  we may split the zeros of P.  as k - . i J i = l  l-~/iJ~i=l , where 

( 5 . 2 7 )  ' ' L ( - S i ) P ; (  5~)>0 and L( 7 i ) P : ( - 7 i ) < O .  

S i n c e  "* 'P '  * ' - ~ j )  . ( - r ; )  and (~,,~>rj, we get sign P'  ( -  r; )=sign p2 ( - r ;  ) 
for all j ,  and (5.26) follows from (5.27). [] 

Recall that  ~-m {-ci},i i denotes those zeros of P which are in the open upper 
half-plane, and put 

17~ 17~ --  1 72 -- ~';% 

L (t) = [I and L:(t)= II 
i i i = 1  i = 1  

(If rn 1, we define L v = l  , and if n = m ,  we define L c = l . )  Then P belongs to the 
n-dimensional space V C P 2 n - I ( C )  defined by 

(5.28) V = { L c L a q : q e T ) ~  I(C)}. 
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Indeed, we have that P=LcLs(aL~/[-~), where a is the leading coefficient of P. For 
QcV,  we now put 

(529) L 
L fr~--I _ /3/ a /  7 /  

IQ(t )12 If/12t~-/3,~ Ig/let+~/ ~ Ih/I 2 
t + ~ i '  

where 

Q(-~d 
f~ = (fliL,(_fli)p(_fli))l/2, 

Q ( - ~ d  
(5.30) 9i = (_oziL,(_c~i)p(_cti))l/2 

Q("~/) 
h~ = (_~/~L(_?dp,(_~/d )~/~. 

The identities (5.30) define linear maps 

l~ ~ > V a n d  V--+l~@l~ ~-1 

f ,  >Q and Q~-~g@h. 

Their composition is thus a matrix Tc/VI~x(~+,~_~)(C ). PuttiNg Q = P  in (5.29), 

we see that  5Ff~176 Let TEM~(C)  be defined by T=ET,  where E is the 
orthogonal projection onto the first n coordinates of l~@l~ -1. Then T f ~  ~ and 
by (5.29), 

L ~i n 2 O~i 
= - -  K2'z(t-l'f)2-K2'~(t I 'Tf)2 If~l~ e+/~ t.o,/ 

/=1 i=1 

-> L//I~t+/~/ )__2 
/=1 /=1 

[Q(t) I 2 
L(t)P(t~ >- O, t > O, f ~ l~ ~. 

m -  1 

- - -  Ih l 2 t +~y/ 
i 1 

Thus T satisfies (5.19), and Lemma 2.2 is proved in the case of complex scalars. 
In the case of real scalars, the proof must be modified by showing that  any matrix 
T satisfying (5.19) can be replaced by a real matrix fulfilling the same condition. 
Hereby the argument is as follows: since the complex matrix TEM,~(C) satisfies 
(5.19), so does the complex conjugate T, and therefore, so does any convex combina- 
tion of T and 2". In particular, (5.19) is satisfied by the real matrix Re T =  } (T+T) .  
This finishes the proof of Lemma 2.2. [] 
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6. F o r m u l a  for a s o l u t i o n  m a t r i x  and  t h e  p r o o f  o f  T h e o r e m  2.3  

In this section, we start, with an increasing sequence l={l i}~" 1 c R +  and two 
non-negative vectors f0, 90 ~ I~(=I~"(C)) fulfilling f.~ kO, gO >_0 and 

K2,a(t,9~176 t > 0 .  

W'e shall explain how the material from the previous section can be used to explic- 
it ly calculate good approximations of a real matrix T = Tfo ,~o ~ 2~L, (R) := 12 (l~" (R)) 
fulfilling 

(6.]) T f ~  ~ andK2,a( t ,  Tf )<_K2,a ( t , f ) ,  t > 0 ,  f c l~  ~. 

For ~>1 fulfilling (5.12) we perturb f0 and gO slightly to vectors f5 and g 5 such 
that the following conditions are satisfied: 

(i) f/Q>0 and 9~>0 for all i; 
(ii) f5_+fo and g~_+gO as ~ 1 ;  
(iii) K < a ( t - l , g e ) < t )  1K2,x( t - l , fe) ,  t>_0; 
(iv) the polynomial P(t)=L(t)(K2,~(t -a, f e )2 -K2 ,= ( t - a ,  95) 2) satisfies (5.24) 

(i.e. P belongs to the set G of generic polynomials). 
(It is of course possible that f0 and g 0 already satisfy (i), (iii) and (iv), in which 
case we simply choose f5=fo and gS=g~ 

We shall first consider the problem of constructing ibr each g, fe  and 95 as 
above, a matrix Ts=T~,f,~j~ such that 

(6.2) TefL)=g ~~ andK2,~(t,Tof)<_K2,~(t,f), t > 0 ,  f c l~  ~, 

where it is understood that ~.i=A,~ and ~i-=O,~; for all i. As g, f~ and g~ approach 
1, f0 and 90, respectively, it is clear that  any cluster point of the corresponding set 
T;) of matrices fulfilling (6.2) must be a matrix fulfilling (6.1). 

T h e o r e m  6.1. The matrix Ts=T e fo go =(t~k)~'ik=l, where 

(6.3) 
g,~chf~(-~:)fc(-~k)L~(-ch) ) 

satisfies (6.2). Moreover, each accumulation point T of the T e %, as ~.~1, satis- 
.ties (6.1). 

Remark 6.1. V~Te emphasize that each of the quantities (h, 6{, 7,i. and ci ap- 

pearing in the formula (6.3) for T 5 depend in all essential way on the parameter ~, 
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whereas the vectors fo and 90 depend on ~) only in the pathological cases when fo 
and O ~ fail to satisfy (i), (iii) and (iv). 

Proof of Theorem 6.1. We have the following polynomials 

Lz ( t )=H( t+ /3~)  , L ~ ( t ) = H ( t + a { )  , L ( t )=Lz( t )L~( t ) ,  
i 1 i = 1  

rn m - -  1 n m 

i = 1  i 1 i 1 

"~_~(~ (f,~))2 c~( o) )L ( )L ( )IL ( )1 P ( t ) =  ,~ g 2 ~ ~ t  ~ t  2. 
i = 1  

(To verify the expression for the leading coefficient of P in the last formula, multiply 
(5.21) by ~ and let t-+oo.) We introduce the basis of the space V (cf. (5.28)) 

Qk(t) = Ls(t)Lr (/3kL'(-/3k)P(-(J~)) 1/2 k = 1, ... ,n. 

Then 

Q~(-/3i) --6,~ (the Kronecker delta). (~L'( ~i)P(-~i)) 1/2 

Denoting the canonical basis in l~' by {(i}~ 1 and using (5.30), we get 
(6.~) 

~ik = (Te r  = ( - c ~ , i U ( - c ~ i ) P (  OZi)) 1/2 

1 L~(-ai)L~(-c~i)Lz(-(>i) ( G~,L'(/3k)P(--/3k) ~1/2 
;~-~,~ L~(~)Lc(-~)LS(-9~) \-~C'(-~,~)P(-o~d / ' 

l<_ i ,h<n .  

Inserting the expressions (5.22) for P(--/~k) and P( -a { )  into (6.4) yields 

~ i k  - -  - -  

1 f~fl~,La( a~)L~(-c~i)L~(-/3k) 

This matrix solves (6.2) in the case of complex scalars. In order to get the solution 
in the form (6.3), we recall from the concluding remarks of the proof of Lemma 2.2, 
that  (6.2) remains valid if we replace T o by its real part. [] 



220 Yacin Ameur  

Example 6.1. Let n 5 and 

a=0,2,4,5,6), fo= i , ~ , 1 ,  ,1 ,  9~ 19,1, 'l'V 40/ '  

One finds that  

(6.5) K2 a(t--1 0 2 --1 0 2 t ( t --3)2 > 0 ,  t >0 .  
, , f  ) -K2 ,x ( t  ,9 ) - Z),(t) - 

Let us use Theorem 6.1 to compute a matr ix  T such that  T f  ~ gO and IITltc(~)<1. 
We used the following data  

L)=1.001, f ~ = g f ~  9~=~) 1 9 ~  , u = ( 1 , 1 , 1 , 1 , 1 )  t 

and some computer  algebra to obtain the matr ix  

We also obtained 

0.8888 0.2685 0 -0.0585 0 
0 0.6997 0 0 0 
0 0.2989 0.4437 0.5497 0.0002 
0 0 0 0.3973 0 
0 -0.1462 0 0.5456 0.5749 

gO _ T j O  = (0.0002, 0.0002, 0.0005, 0.0001, 0.0003) ~, 

IlZllLCz;~) = 0 . 9 9 9 9  = PrTIIc(z~ta)) .  

Note tha t  this matr ix  has two negative entries. We shall now prove that  this is no 
coincidence. 

Proof of Theorem 2.3. We shall prove the following. Let n, •, f0 and g ~ be as 
in Example 6.1, then 

(6.6) TfO # go for all non-negative operators T E/21 (2) .  

To prove this, first note that  (6.5) is satisfied, and that  I/f~176 i=o ,  1. W~e 
shall invoke the following theorem, which is a special case of Sparr [281, Lemma 5.4. 

T h e o r e m  6.2. Suppose that fo and 9 ~ are non-negative vectors and IIg~ 
I[J'~ for i=0 ,  1. Suppose further that there exists a non-negative matrix T EEI(7-t) 
such that T f  ~176 Then 

(6.7) L(t, g ~ < L(t, fo), t > O, 
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~vhe~(4) 
L(t,  f )  = E ~'f min{1, tAi}. 

i=1 

Since the conditions of Theorem 6.2 are satisfied with the above choice of n, 
A, f0  and gO it suffices to show tha t  (6.7) is violated for - 1 t - ~  in this case. But ,  by 
calculation, 

L(i, f~188176 < 0. 

This shows (6.6), and the proof  is finished. [] 

Example 6.2. Let  L2 be the Lebesgue space of square integrable functions on 
R d, m a positive integer and H "~ the Sobolev space on R d, i.e. the  set of t empered  
distr ibutions g o n  R d for which all derivatives D~g of order Ic~l < m  belong to L2. 
It is well known tha t  H "~ is a Hilber t  space under  the norm (of. [16], p. 5) 

(/R (6.8) Ilgll- .... d(l+ ly12)~'~l~(~)l~ dy) 

where ~0 is the  Fourier t ransform 

.0(y) = (2~)~/~ ~ f (~)r  d~, y e R d, 

xy=xlyl +...+xayd and lyl2=yy. By (3.2), (6.s) and Plancherel 's  theorem we have 

K2(t,g;L2, H~)2= J:  t ( l+lYl2)  ~ d l+t(l+lyl2) ml[~(y)12dy' geL2. 

Thus  Theorem 2.2 yields tha t  the inequali ty (9 ~ f~ 

/~ t(Z+l~'l~P fR t(l+[yl2)"~ ]+t(l+lYl~),mLO~ ~ Z+~(]+lyl~pI/~ t>O, 

is sufficient to guarantee  the existence of" a linear opera tor  T such tha t  T.f ~ =g0 and 

t lYl ) ;~ , 2 
_ l + ~ ( l + ~ l J t y ) l  dy, feS2.  

In part icular ,  I lg~ I I A _< I I f0 I/A whenever .4 is an exact in terpolat ion space with respect  
to the couple (L2, H'~'~). 

(4) T h e  funct ional  L is denoted  by ]C(2,2 ) in Sparr ' s  paper  [28]. 
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7. T h e  p r o o f  o f  T h e o r e m  2.4 

We settle here by proving the finite-dimensional part of Theorem 2.4; to prove 
it in full generality would bring us too far from the main course of our investigations 
(cf. however [1]). 

To fix the notation. Given a positive definite matrix A~AI%~(C):=s let a 
Hilbert couple 7{ (7t0,~1) be defined by 7t0=l~ ~ and 11f[t21=(Af, f)o,  fcl~L It will 
be convenient to use the following alternative notation for the operator norms with 
respect to ~0 and ~1 ( T ~ M , ( C ) ) ,  

IITII2 2 . IlTllc(no) = sup (T T f ,  f)o, 
(f,f)o_<l 

Ilrll~---- [[TII~(~I > = sup (T*ATZ,  f )0 .  
(Af,f)o<~ 1 

A positive function h defined on or(A) is said to be interpolation with respect to A 
and to belong to the set Ca if and only if 

(7.1) IITllh<A) < nlax{llTl[ , lIT[[A}, T E iF/in (C), 

where, naturally, 2 [IZllh(A) =suP(h(A)f , f)o<l(T*h(A)T f , f)o. 
The following result is our principal result in this section; it is equivalent to 

Donoghue's theorems [8], Theorem III, and [9], Theorem 1, and we shall see later 
that  it is equivalent to Theorem 2.4. 

T h e o r e m  7.1. Let AcB/L,~(C) be a positive definite matrix. For" a positive 
]:unction h defined on ~(A) to belong to the class CA, it is necessary and sufficient 
that h be representable in the form 

(7.2) It(A) ----/0 ( l+t )A ,~] 1+tA do(t), A~(A), 

for some positive Radon measure ~ on [0, ~ ] .  (The measure is not unique.) 

Pro@ Let A~2~Z,,(C) be positive definite and put ~(A)={a,,}L~ oR+ .  Work- 
ing in the coordinate system formed by the eigenvectors of A yields a canonical 
isomorphism identif)ing ~ with the couple (see 5.10) 

= (l; ~, t;~ (X)), 

and it becomes evident that, for functions h defined on ~(A), the membership of h 
in the cone CA is equivalent to that  the space l~(h(A)) be exact interpolation with 
respect to the couple (l~ ~, l~(A)), i.e. 

(7.3) IITIIc(za,(~(a))) -< max{llTIIc(~), IlTIIc(z~(x//}, T c ~ . ( C ) .  
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Our problem is thus to show that  for a function to satisfy (7.3), it is necessary and 
sufficient that  it be representable in the form (7.2) for some positive Radon measure 

on [o, ~]. 

Sufficienc~t. Let h be of the form (7.2). Then by (5.11), 

(h(A)f'f)~ ,oo] l+tA,~ 
/ = 1  

If~l ~ )  d~(t) 

The latter expression is the square of an exact interpolation norm with respect to 
(l~",/~'(A)) (use (3.1) and integrate with respect to d~(t)). Thus (7.3) holds. 

Necessity. Let h satisfy (7.3). Denote by C the unital C*-algebra of continuous 
complex functions on [0, ec] with the sup-norm Ibll~ sups>0 b(t) l .  Put  

~,~(~)_ (1+~);~ i 1,. . . ,~. 
l+tA~ ' 

Then 

(7.5) 1 ~ If,,:l%~(~)- K2,~( t ,  f ) 2  _ ] + t  - ~  
i = 1  

Let V c C  be the linear span of the ei's, and let a linear tunctional on V be defined 
by 

0 : V - - ~  C 

aiei, ~ a,:h(ai). 
i 1 i 1 

We have tlle fbllowing lemma. 

L e m m a  7.1. Let h~CA.  Then r ~s a positive functional on V, viz. the con- 
ditions u ~ V  and u(t)>O, t>0 ,  implies r 

Proof. Let u(t)=Ei~*l  aiei(t)>_0, t>0,  and put ai = IL 12 -].qi 12 with some f ,  gC 
l; ~. Then by (7.5), 

(7.6) 1+ K2,~,(t,f) 2 ~-~.lLI2e~,:(t)_> I.g{12e{(t)= 1+ K2,~,(t,.9) 2. 
i = 1  i i 
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Dividing (7.6) by the positive number l + t  -1 yields K2,a(t, f)>_K2,x(t,g), t>0.  Be- 
cause l~(h(A)) is exact interpolation with respect to (l~,/~(A)), we are in a position 

to use Theorem 2.1. It yields Ilfllt~(h(x))>_llgllz~(h(x)), or 

-> - -  = Ilflh  (h( )) 0 [ ]  

i=1 

Replacing A~ by cA,i with a suitable constant e>0,  we can without loss of gen- 
erality assume that  1 c G(A), i.e. that  the unit 1E C belongs to V. By the positivity 
of q5 (Lemma 7.1) 

H~II = sup I~(~)l=O(1). 
,uE V 

I1~[1~_<1 

Let dp: C--~C be a Hahn Banach extension of ~b; then 

I1r ---I1~11 -- ~(1) ---- r  

Hence q) is a posit ive funct ional on C (cf. [19], Corol lary 3.3.4), and the Riesz 
representation theorem yields a posit ive Radon measure 0 on [0, oc] such that  

r  =[ ~(t) d~(t), ~ c C .  
J[o 

In particular, 

,~] l+fA~ do(t), i = l , . . . , n .  

Thus h has the required representation (7.2) and the proof of Theorem 7.1 is fin- 
ished. [~ 

To finish the proof of Theorem 2.4, it now suffices to combine Theorem 7.1 
with the equation (7.4). 

8. T h e  t h e o r e m s  o f  L S w n e r  a n d  F o i a ~ - L i o n s  

A real function h on R+ is said to be monotone of order n and to belong to the 
class P,~ if and only if for any positive definite matrices A, B E M n ( C )  

A_<B implies h(A) <_h(B). 

A function is rnatriz monotone if and only if it is monotone of all finite orders. 
This definition along with the principal theorem (stated below in an equivalent 

form) is due to K. LSwner [17]. 
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T h e o r e m  8.1. For a positive function h to be matrix monotone, it is necessary 
and sufficient that h be representable in the form 

(8.1) h(A) = . / i  ( l+ t )A 
,oo] l+ tA  d~(t), A>0,  

for some positive Radon measure 0 on the compactified half-line [0, oc]. 

Simplifications and new proofs of this theorem have been provided by several 
authors, cf. [2], [14], [20], [28], [13], cf. also Donoghue's book [10] which contains a 
fairly comprehensive exposition of the theory up until 1974. 

In our approach, we shall obtain a new proof of L6wner's theorem, based on 
the theory of interpolation functions developed in the previous section (notably 
Theorem 7.1), and on a characterization of the positive matrix monotone functions 
on R+ due to F. Hansen [12]. In detail, Hansen's theorem states that  a continuous 
function h defined on R+ is matrix monotone if and only if for any n E N  and any 
positive definite matrix A EMr~(C), we have the following inequality 

(8.2) T * h ( A ) T  < h(T*AT) ,  T C ~i(,,(C), T*T < 1. 

(It is well known that  matrix monotone functions are continuous, i.e. (8.2) is valid 
in general, but we shall not use this fact.) 

By definition, we shall say that  a positive function h defined of R+ is interpo- 
lation in the sense of Foia~ Lions if and only if for every h EN ,  and every positive 
definite matrix A C M~ (C), 

(8.3) HT]Ih(A) _< max{lIT[I, IITIIA}, T M.(C).  

By homogeneity of the norms it is clear that (8.3) is equivalent to the following: for 
every positive definite matrix A C]VL~ (C), we have the following irnplication 

(8.4) T'T_< 1 and T ' A T  <_ A implies T * h ( A ) T  <_ h(A), T E M,~(C), 

which is to hold for every positive definite matrix A C M,~ (C). This latter form (8.4) 
will turn out to be convenient for the applications we have in mind. 

Definition 8.1. Following [9], we shall denote the cone of functions repre- 
sentable in the form (8.1) by the letter P'. 

T h e o r e m  8.2. Let h be a positive function defined on R +. The following are 
equivalent: 

(1) h~P ' ;  

(2) h is interpolation in the sense of Foia~ Lions; 
(3) h is matrix monotone. 
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Remark 8.1. The equivalence (1) ~=~ (2) is due to Foia~ and Lions [11], whereas 
(1) e=~ (3) is of course LSwner's theorem. 

Proof of Theorem 8.2. (1) ~=~ (2) This follows from Theorem 7.1 and the follow- 
ing observation: for a function to belong to P '  it is necessary and sufficient that its 
restriction to every finite subset of R+ coincide on that  set with a P '  function. This 
latter property is a consequence of the well-known fact that  the cone P~ is compact 
relative to the topology of pointwise convergence on R+ (use Helly's theorem, cf. [8J, 
top of p. 154). 

(2) ~ (3) (Cf. Donoghue [9], pp. 266 267.) Let h fulfill (8.4), and let A , B ~  
M,~(C) be positive definite matrices such that  A<_B. Form the 2nx 2n-matrices 

Evidently :~ is positive definite, 

T ' T =  0 0 - 

Hence (8.4) yields T*h(ft)T<_h(A), or 

T =  (01 

0 o) 

0) 
h(A) " 

Comparing the elements in the upper-left corners now yield the desired conclusion, 
h(A)<_h(B). 

(3) ~ (2) Let h be positive and matrix monotone on R+. Let us further 
assume that  h be continuous; this extra assumption will be removed at the end 
of the proof. Then, given matrices A, TEM,~(C) such that  A is positive definite, 
T'T<_1 and T*AT<_A, using (8.2) and the monotonicity of h, 

T*h(A)T <_ h(T*AT) < h(A), 

i.e. h fulfills (8.4). Now let h be an arbitrary (not necessarily continuous) matrix 
monotone function on R+. Let p be a smooth non-negative function on R+ such 
that  f o  ~(t) dr~t=1 and define a sequence hk by 

h~.(A) = ~ ~ h(t) T '  
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Since the class of matr ix  monotone functions is a convex cone, closed under pointwise 
convergence (cf. [10], p. 68), the hk's are matr ix  monotone for all kEN.  Since they 
are evidently positive and continuous, the first part  of the proof yields that  they 
satisfy (8.4). Since the property (8.4) is finitary in nature, it is easy to see (the 
same proof as for monotone functions) that  the set of interpolation functions in 
the sense of Foia~ Lions is closed under pointwise convergence on R+. Hence the 
limiting function h=lim~_+~ hk is also in that  set, as desired. [] 

8.1.  A c loser  l o o k  at m o n o t o n e  and  i n t e r p o l a t i o n  f u n c t i o n s  

This subsection comprises a finer s tudy of the relation between interpolation 
functions and matr ix  monotone functions of finite order. (Recall that  a real function 
h is said to belong to the class P,~ of matr ix  monotone functions of order n if A, B E 
M , ( C )  and O<A<_B yields h(A)<<_h(B).) In the following, it will be convenient 

to use the letter P,f~ to denote the set of positive functions in the class P,,, n~N. 
A further scale of function classes, which we shall denote by C~, n = l ,  2 , , . . . ,  is 
obtained by the definition 

hEC%~ if and only if IlT[lh(A)_<max{llTll ,IITIIA}, A, TEM~(C),  A > 0 .  

It  is fitting to refer to elements of C,~ as interpolation functions of order n. 
It  is easy to see that  C,, and P~ are convex cones, and that  C~DC.~+I and 

Pf~ DPf~+I for all n. Moreover, Theorem 8.2 shows that  

o o  o o  

= p ; ~ = P .  

n--i ~,--i 

A closer look at the proof yields that P,]~. c C.~. and C2~ C P,,, for all n. In this section, 
oo / oo we shall refine that  result by showing that  {C,,,,},,~=1 is a "finer scale" than {P,~,},,~ 1. 

T h e o r e m  8.3. It holds that Pf~+ICC2,~CR/~. 

Proof. The inclusion C2,,cP/, is contained in the proof of (2) ~ (3) of Theo- 
rern 8.2. It  remains to prove P,/~+IcC2~,,. In order to accomplish this, we need 

to invoke the class P of Pick functions on R+. This is by definition the class of 
functions h having a representation of the form (cf. [10], Chapter  II) 

i 0 (  , ,) 
h(a) = aa+/~+ d~(t) 

~,~ t--A t2%1 

for some ct_>0, /~cR and some positive Borel measure # on (-oo,0) such that 

f (~2+1) -1  dp(t) is finite. It  is easy to see that  P'={hEP:h>_O}. In [8], pp. 153 154, 
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it was noted that the class P has an important compactness property; if hk(~) is a 
sequence in P such that  for a pair of distinct points ~ ,  A" ER+ the sequences hk(~ ~) 
and hk(~") remain bounded, then there exists a subsequence of those functions 
converging uniformly on closed subintervals of R+ to a function h in the class P.  

For our purposes, the usefulness of the class P depends on the following inter- 
polation theorem due to LSwner, cf. [10], Theorem I, p. 128. 

L e m m a  8.1. Let hEP~+I and let S c R +  consist of 2 n + l  points. There then 
exists a function [~EP such that h=h on S. 

Assume that hEP~+I and take AEM2~(C) positive definite. By Lemma 8.1, 
there exists a sequence /~k of Pick functions such that for each k, hk=h on the 
set o-(A)u{1/k}. Thus by compactness, there exists a subsequence of the [tk's 
converging unifbrmly on compact subsets of R+ to a function h in the class P.  
Since h is positive, moreover 

h (0 )> l imin fh ( ; )k~  >0.  

Together with the simple fact that  Pick functions are increasing, this yields that  
[~EP'. Finally, since h = h  on a(A), the implication (1) ~ (2) of Theorem 8.2 yields 
that  h is exact interpolation with respect to A. Since A was arbitrary, we obtain 
hE C2~ as desired. [] 

Remark 8.2. A closer study shows that  Theorem 8.3 yields a strengthening of 
Sparr [28], Lemma 1, p. 267. It is not hard to prove that  Sparr's lemma implies 
P'+2cC2~cP"  but not the sharper statement of Theorem 8.3. 

9. Two conjectures 

Let 1 <p<oc ,  A be a positive weight function on some measure space (X, #), and 
Lp, L~(%) be the corresponding Lp-spaces. Relative to the couple A=(Lp ,  Lp(/~)) 
it is interesting besides K to study the functional Kp given by 

K~)(t,f;A)= i n f  . (llfoll~+tllAl[~) lip. 
f = fo + f l  

Defining the corresponding quasi-order g<_f[Kp] in the obvious way, we have (cf. 
Sparr [27], Lemma 3.3) 

(9.1) g<_ f[K] if and only if g ~_ f[Kp]. 
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It  is not hard to verify the following formula for Kp, 

Kp(t, f; L;,  L;(A)) p =/x tA(x) 
( l+( t~(x) ) l / (p_ l ) )p_  1 ]/(x)l p d~(x), f E Lp+Lp(A),  

which yields an analytic expression for the quasi-order (9.1) for all 1 < p  < oc, resem- 
bling in several aspects the case p=2 .  Our first conjecture is the following. 

C o n j e c t u r e  9.1. It holds that the couples f f[=(Lp(ao),Lp(al))  and B= 
(Lp(bo), Lp(bl)) are Calderdn, l <_p<_oc. 

A somewhat  weaker conjecture arises when we restrict our study to interpo- 
lation spaces L~=Lp(h(A))  which are themselves weighted L;-spaces relative to 
(X, p). We have the following conjecture. 

C o n j e c t u r e  9.2. A weighted Lp-space L~ is exact interpolation with respect 
to (Lp, Lp( A ) ) if and only if there exists a positive Radon measure ~ on [0, oc] such 
that (/[0 ( ~) /\I/P 

Ilfll. = 1+ Kp( t , f ;L ; ,L ; (A) )Pdco( t ) l  , f E L ; .  
,oc] 

It  is not hard to see that  the arguments in the proof of Theorem 2.4 admit  
generalization to all p's, in the sense that  Conjecture 9.2 is a consequence of Con- 
jecture 9.1 (tot all l < p < o c ) .  
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