A property of strictly singular one-to-one operators

George Androulakis and Per Enflo(${ }^{1}$)

Abstract

We prove that if T is a strictly singular one-to-one operator defined on an infinite dimensional Banach space X, then for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of X such that $Z \cap Y$ is infinite dimensional, Z contains orbits of T of every finite length and the restriction of T to Z is a compact operator.

1. Introduction

An operator on an infinite dimensional Banach space is called strictly singular if it fails to be an isomorphism when it is restricted to any infinite dimensional subspace (by "operator" we will always mean a "continuous linear map"). It is easy to see that an operator T on an infinite dimensional Banach space X is strictly singular if and only if for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of Y such that the restriction of T to $Z,\left.T\right|_{Z: Z} \rightarrow X$, is a compact operator. Moreover, Z can be assumed to have a basis. Compact operators are special examples of strictly singular operators. If $1 \leq p<q \leq \infty$ then the inclusion map $i_{p, q}: l_{p} \rightarrow l_{q}$ is a strictly singular (non-compact) operator. A hereditarily indecomposable Banach space is an infinite dimensional space such that no subspace can be written as a topological sum of two infinite dimensional subspaces. W. T. Gowers and B. Maurey constructed the first example of a hereditarily indecomposable space [9]. It is also proved in [9] that every operator on a complex hereditarily indecomposable space can be written as a strictly singular perturbation of a multiple of the identity. If X is a complex hereditarily indecomposable space and T is a strictly singular operator on X then the spectrum of T resembles the spectrum of a compact operator on a complex Banach space: it is either the singleton $\{0\}$ (i.e. T is quasi-nilpotent), or a sequence $\left\{\lambda_{n}: n=1,2, \ldots\right\} \cup\{0\}$, where λ_{n} is an eigenvalue

[^0]of T with finite multiplicity for all n, and $\left(\lambda_{n}\right)_{n}$ converges to 0 , if it is an infinite sequence. It was asked whether there exists a hereditarily indecomposable space X which gives a positive solution to the "identity plus compact" problem, namely, every operator on X is a compact perturbation of a multiple of the identity. This question was answered in negative in [2] for the hereditarily indecomposable space constructed in [9], (for related results see [7], [8], and [1]). By [3], (or the more general beautiful theorem of V. Lomonosov [10]), if a Banach space gives a positive solution to the "identity plus compact" problem, it also gives a positive solution to the famous invariant subspace problem. The invariant subspace problem asks whether there exists a separable infinite dimensional Banach space on which every operator has a non-trivial invariant subspace, (by "non-trivial" we mean "different than $\{0\}$ and the whole space"). It remains unknown whether l_{2} is a positive solution to the invariant subspace problem. Several negative solutions to the invariant subspace problem are known [4], [5], [11], [12], [13]. In particular, there exists a strictly singular operator with no non-trivial invariant subspace [14]. It is unknown whether every strictly singular operator on a super-reflexive Banach space has a nontrivial invariant subspace. Our main result (Theorem 1) states that if T is a strictly singular one-to-one operator on an infinite dimensional Banach space X, then for every infinite dimensional Banach space Y of X there exists an infinite dimensional Banach space Z of X such that $Z \cap Y$ is infinite dimensional, the restriction of T to $Z,\left.T\right|_{Z}: Z \rightarrow X$, is compact, and Z contains orbits of T of every finite length (i.e. for every $n \in \mathbf{N}$ there exists $z_{n} \in Z$ such that $\left\{z_{n}, T z_{n}, T^{2} z_{n}, \ldots, T^{n} z_{n}\right\} \subset Z$). We raise the following question.

Question. Let T be a quasi-nilpotent operator on a super-reflexive Banach space X, such that for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of X such that $Z \cap Y$ is infinite dimensional, $\left.T\right|_{Z}: Z \rightarrow X$ is compact and Z contains orbits of T of every finite length. Does T have a non-trivial invariant subspace?

By our main result, an affirmative answer to the above question would give that every strictly singular, one-to-one, quasi-nilpotent operator on a super-reflexive Banach space has a non-trivial invariant subspace; in particular, we would obtain that every operator on the super-reflexive hereditarily indecomposable space constructed by V. Ferenczi [6] has a non-trivial invariant subspace, and thus the invariant subspace problem would be answered in affirmative.

2. The main result

Our main result is the following theorem.
Theorem 1. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X. Then, for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of X, such that $Z \cap Y$ is infinite dimensional, Z contains orbits of T of every finite length, and the restriction of T to $Z,\left.T\right|_{Z}: Z \rightarrow X$, is a compact operator.

The proof of Theorem 1 is based on Theorem 3. We first need to define the biorthogonal constant of a finite set of normalized vectors of a Banach space.

Definition 2. Let X be a Banach space, $n \in \mathbf{N}$, and $x_{1}, x_{2}, \ldots, x_{n}$ be normalized elements of X. We define the biorthogonal constant of x_{1}, \ldots, x_{n} to be

$$
\operatorname{bc}\left\{x_{1}, \ldots, x_{n}\right\}:=\sup \left\{\max \left\{\left|\alpha_{1}\right|, \ldots,\left|\alpha_{n}\right|\right\}:\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|=1\right\}
$$

Notice that

$$
\frac{1}{\mathrm{bc}\left\{x_{1}, \ldots, x_{n}\right\}}=\inf \left\{\left|\sum_{i=1}^{n} \beta_{i} x_{i} \|: \max _{1 \leq i \leq n}\right| \beta_{i} \mid=1\right\}
$$

and that $\mathrm{bc}\left\{x_{1}, \ldots, x_{n}\right\}<\infty$ if and only if x_{1}, \ldots, x_{n} are linearly independent.
Before stating Theorem 3 recall that if T is a quasi-nilpotent operator on a Banach space X, then for every $x \in X$ and $\eta>0$ there exists an increasing sequence $\left(i_{n}\right)_{n=1}^{\infty}$ in \mathbf{N} such that $\left\|T^{i_{n}} x\right\| \leq \eta\left\|T^{i_{n}-1} x\right\|$. Theorem 3 asserts that if T is a strictly singular one-to-one operator on a Banach space X then for arbitrarily small $\eta>0$ and $k \in \mathbf{N}$ there exists $x \in X,\|x\|=1$, such that $\left\|T^{i} x\right\| \leq \eta\left\|T^{i-1} x\right\|$ for $i=1,2, \ldots, k+1$, and moreover, the biorthogonal constant of $x, T x /\|T x\|, \ldots, T^{k} x /\left\|T^{k} x\right\|$ does not exceed $1 / \sqrt{\eta}$.

Theorem 3. Let T be a strictly singular one-to-one operator on a Banach space X. Let Y be an infinite dimensional subspace of X, F be a finite codimensional subspace of X and $k \in \mathbf{N}$. Then there exists $\eta_{0} \in(0,1)$ such that for every $0<\eta \leq \eta_{0}$ there exists $x \in Y,\|x\|=1$, satisfying
(a) $T^{i-1} x \in F$ and $\left\|T^{i} x\right\| \leq \eta\left\|T^{i-1} x\right\|$ for $i=1,2, \ldots, k+1$;
(b)

$$
\mathrm{bc}\left\{x, \frac{T x}{\|T x\|}, \ldots, \frac{T^{k} x}{\left\|T^{k} x\right\|}\right\} \leq \frac{1}{\sqrt{\eta}},
$$

(where T^{0} denotes the identity operator on X).

We postpone the proof of Theorem 3.
Proof of Theorem 1. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X, and Y be an infinite dimensional subspace of X. Inductively we construct a normalized sequence $\left(z_{n}\right)_{n \in \mathbf{N}} \subset Y$, an increasing sequence of finite families $\left(z_{j}^{*}\right)_{j \in J_{n}}$ of normalized functionals on X (i.e. $\left(J_{n}\right)_{n \in \mathbf{N}}$ is an increasing sequence of finite index sets), and a sequence $\left(\eta_{n}\right)_{n \in \mathbb{N}} \subset(0,1)$, as follows:

For $n=1$ apply Theorem 3 for $F=X\left(\right.$ set, $\left.J_{1}=0\right), k=1$, to obtain $\eta_{1}<1 / 2^{6}$ and $z_{1} \in Y,\left\|z_{1}\right\|=1$, such that

$$
\begin{equation*}
\left\|T^{i} z_{1}\right\|<\eta_{1}\left\|T^{i-1} z_{1}\right\| \quad \text { for } i=1,2 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{bc}\left\{z_{1}, \frac{T z_{1}}{\left\|T z_{1}\right\|}\right\}<\frac{1}{\sqrt{\eta_{1}}} \tag{2}
\end{equation*}
$$

For the inductive step, assume that for $n \geq 2,\left(z_{i}\right)_{i=1}^{n-1} \subset Y,\left(z_{j}^{*}\right)_{j \in J_{i}}(i=1, \ldots, n-1)$, and $\left(\eta_{i}\right)_{i=1}^{n-1}$ have been constructed. Let J_{n} be a finite index set with $J_{n-1} \subseteq J_{n}$ and $\left(x_{j}^{*}\right)_{j \in J_{n}}$ be a set of normalized functionals on X such that

$$
\begin{align*}
& \text { for every } x \in \operatorname{span}\left\{T^{i} z_{j}: 1 \leq j \leq n-1,0 \leq i \leq j\right\} \\
& \text { there exists } j_{0} \in J_{n} \text { such that }\left|x_{j_{0}}^{*}(x)\right| \geq \frac{1}{2}\|x\| \tag{3}
\end{align*}
$$

Apply Theorem 3 for $F=\bigcap_{j \in J_{n}} \operatorname{ker} x_{j}^{*}$, and $k=n$, to obtain $\eta_{n}<1 / n^{2} 2^{2 n+4}$ and $z_{n} \in Y,\left\|z_{n}\right\|=1$, such that

$$
\begin{equation*}
T^{i-1} z_{n} \in F \text { and }\left\|T^{i} z_{n}\right\|<\eta_{n}\left\|T^{i-1} z_{n}\right\| \quad \text { for } i=1,2, \ldots, n+1, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{bc}\left\{z_{n}, \frac{T z_{n}}{\left\|T z_{n}\right\|}, \ldots, \frac{T^{n} z_{n}}{\left\|T^{n} z_{n}\right\|}\right\}<\frac{1}{\sqrt{\eta_{n}}} . \tag{5}
\end{equation*}
$$

This finishes the induction.
Let $\widetilde{Z}=\operatorname{span}\left\{T^{i} z_{n}: n \in \mathbf{N}, 0 \leq i \leq n\right\}$, and for $n \in \mathbf{N}$, let $Z_{n}=\operatorname{span}\left\{T^{i} z_{n}: 0 \leq i \leq n\right\}$. Let $x \in \widetilde{Z}$ with $\|x\|=1$ and write $x=\sum_{n=1}^{\infty} x_{n}$, where $x_{n} \in Z_{n}$ for all $n \in \mathbf{N}$. We claim that

$$
\begin{equation*}
\left\|T x_{n}\right\|<\frac{1}{2^{n}} \quad \text { for all } n \in \mathbf{N} \tag{6}
\end{equation*}
$$

Indeed, write

$$
x=\sum_{n=1}^{\infty} \sum_{i=0}^{n} a_{i, n} \frac{T^{i} z_{n}}{\left\|T^{i} z_{n}\right\|} \quad \text { and } \quad x_{n}=\sum_{i=0}^{n} a_{i, n} \frac{T^{i} z_{n}}{\left\|T^{i} z_{n}\right\|} \text { for } n \in \mathbf{N}
$$

Fix $n \in \mathbf{N}$ and set $\tilde{x}_{n}=x_{1}+x_{2}+\ldots+x_{n}$. Let $j_{0} \in J_{n+1}$ such that

$$
\left\|\tilde{x}_{n}\right\| \leq 2\left|x_{j_{0}}^{*}\left(\tilde{x}_{n}\right)\right|=2\left|x_{j_{0}}^{*}(x)\right| \leq 2\left\|x_{j_{0}}^{*}\right\|\|x\|=2
$$

by (3), and since for $n+1 \leq m, J_{n+1} \subseteq J_{m}$ and thus by (4), $x_{m} \in \operatorname{ker} x_{j_{0}}^{*}$. Thus $\left\|x_{n}\right\|=$ $\left\|\tilde{x}_{n}-\tilde{x}_{n-1}\right\| \leq\left\|\tilde{x}_{n}\right\|+\left\|\tilde{x}_{n-1}\right\| \leq 4$ (where $\tilde{x}_{0}=0$). Hence, by (2) and (5) we obtain that

$$
\begin{equation*}
\left|a_{i, n}\right| \leq 4 \mathrm{bc}\left\{z_{n}, \frac{T z_{n}}{\left\|T z_{n}\right\|}, \ldots, \frac{T^{n} z_{n}}{\left\|T^{n} z_{n}\right\|}\right\} \leq \frac{4}{\sqrt{\eta_{n}}} \quad \text { for } i=0, \ldots, n \tag{7}
\end{equation*}
$$

Therefore, using (1), (4), (7) and the choice of η_{n},

$$
\left\|T x_{n}\right\|=\left\|\sum_{i=0}^{n} a_{i, n} \frac{T^{i+1} z_{n}}{\left\|T^{i} z_{n}\right\|}\right\| \leq \sum_{i=0}^{n}\left|a_{i, n}\right| \frac{\left\|T^{i+1} z_{n}\right\|}{\left\|T^{i} z_{n}\right\|} \leq \sum_{i=0}^{n} \frac{4}{\sqrt{\eta_{n}}} \eta_{n}=4 n \sqrt{\eta_{n}}<\frac{1}{2^{n}},
$$

which finishes the proof of (6). Let Z to be the closure of \widetilde{Z}. Notice that $Z \cap Y \supset$ $\left\{z_{n}: n \in \mathbf{N}\right\}$, and thus $Z \cap Y$ is infinite dimensional. We claim that $\left.T\right|_{Z}: Z \rightarrow X$ is a compact operator, which will finish the proof of Theorem 1. Indeed, let $\left(y_{m}\right)_{m \in \mathbb{N}} \subset$ \widetilde{Z}, where for all $m \in \mathbf{N}$ we have $\left\|y_{m}\right\|=1$, and write $y_{m}=\sum_{n=1}^{\infty} y_{m, n}$, where $y_{m, n} \in Z_{n}$ for all $n \in \mathbf{N}$. It suffices to prove that $\left(T y_{m}\right)_{m \in \mathbf{N}}$ has a Cauchy subsequence. Indeed, since Z_{n} is finite dimensional for all $n \in \mathbf{N}$, there exists $\left(y_{m}^{1}\right)_{m \in \mathbf{N}}$ a subsequence of $\left(y_{m}\right)_{m \in \mathbf{N}}$ such that $\left(T y_{m, 1}^{1}\right)_{m \in \mathbf{N}}$ is Cauchy (with the obvious notation that if $y_{m}^{1}=y_{p}$ for some p, then $\left.y_{m, n}^{1}=y_{p, n}\right)$. Let $\left(y_{m}^{2}\right)_{m \in \mathbf{N}}$ be a subsequence of $\left(y_{m}^{1}\right)_{m \in \mathbf{N}}$ such that $\left(T y_{m, 2}^{2}\right)_{m \in \mathbf{N}}$ is Cauchy (with the obvious notation that if $y_{m, n}^{2}=y_{p}$ for some p, then $y_{m, n}^{2}=y_{p, n}$). Continue similarly, and let $\tilde{y}_{m}=y_{m}^{m}$ and $\tilde{y}_{m, n}=y_{m, n}^{m}$ for all $m, n \in \mathbf{N}$. Then for $m \in \mathbf{N}$ we have $\tilde{y}_{m}=\sum_{n=1}^{\infty} \tilde{y}_{m, n}$, where $\tilde{y}_{m, n} \in Z_{n}$ for all $n \in \mathbf{N}$. Also, for all $n, m \in \mathbf{N}$ with $n \leq m,\left(\tilde{y}_{t}\right)_{t \geq m}$ and $\left(\tilde{y}_{t, n}\right)_{t \geq m}$ are subsequences of $\left(y_{t}^{m}\right)_{t \in \mathbf{N}}$ and $\left(y_{t, n}^{m}\right)_{t \in \mathbf{N}}$, respectively. Thus for all $n \in \mathbf{N},\left(T \tilde{y}_{t, n z}\right)_{t \in \mathbf{N}}$ is a Cauchy sequence. We claim that $\left(T \tilde{y}_{m}\right)_{t \in \mathbf{N}}$ is a Cauchy sequence. Indeed, for $\varepsilon>0$ let $m_{0} \in \mathbf{N}$ be such that $1 / 2^{m_{0}-1}<\varepsilon$ and let $m_{1} \in \mathbf{N}$ be such that

$$
\begin{equation*}
\left\|T \tilde{y}_{s, n}-T \tilde{y}_{t, n}\right\|<\frac{\varepsilon}{2 m_{0}} \quad \text { for all } s, t \geq m_{1} \text { and } n=1,2, \ldots, m_{0} \tag{8}
\end{equation*}
$$

Thus for $s, t \geq m_{1}$ we have, using (6), (8) and the choice of m_{0},

$$
\begin{aligned}
\left\|T \tilde{y}_{s}-T \tilde{y}_{t}\right\| & =\left\|\sum_{n=1}^{\infty} T \tilde{y}_{s, n}-T \tilde{y}_{t, n}\right\| \\
& \leq \sum_{n=1}^{m_{0}}\left\|T \tilde{y}_{s, n}-T \tilde{y}_{t, n}\right\|+\sum_{n=m_{0}+1}^{\infty}\left\|T \tilde{y}_{s, n}\right\|+\sum_{n=m_{0}+1}^{\infty}\left\|T \tilde{y}_{t, n}\right\| \\
& <m_{0} \frac{\varepsilon}{2 m_{0}}+2 \sum_{n=m_{0}+1}^{\infty} \frac{1}{2^{n}} \\
& =\frac{\varepsilon}{2}+\frac{2}{2^{m_{0}}} \\
& <\varepsilon
\end{aligned}
$$

which proves that $\left(T \tilde{y}_{m}\right)_{m \in \mathbf{N}}$ is a Cauchy sequence and finishes the proof of Theorem 1.

For the proof of Theorem 3 we need the next two results.
Lemma 4. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X. Let $k \in \mathbf{N}$ and $\eta>0$. Then for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of Y such that for all $z \in Z$ and for all $i=1, \ldots, k$ we have that

$$
\left\|T^{i} z\right\| \leq \eta\left\|T^{i-1} z\right\|
$$

(where T^{0} denotes the identity operator on X).
Proof. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space $X, k \in \mathbf{N}$ and $\eta>0$. We first prove the following claim.

Claim. For every infinite dimensional linear submanifold (which is not assumed closed) W of X there exists an infinite dimensional linear submanifold Z of W such that $\|T z\| \leq \eta\|z\|$ for all $z \in Z$.

Indeed, since W is infinite dimensional there exists a normalized basic sequence $\left(z_{i}\right)_{i \in \mathbf{N}}$ in W having biorthogonal constant at most equal to 2 , such that $\left\|T z_{i}\right\| \leq$ $\eta / 2^{i+2}$ for all $i \in \mathbf{N}$. Let $Z=\operatorname{span}\left\{z_{i}: i \in \mathbf{N}\right\}$ be the linear span of the z_{i} 's. Then Z is an infinite dimensional linear submanifold of W. We now show that Z satisfies the conclusion of the claim. Let $z \in Z$ and write z in the form $z=\sum_{i=1}^{\infty} \lambda_{i} z_{i}$ for some scalars $\left(\lambda_{i}\right)_{i \in \mathbf{N}}$ such that at most finitely many λ_{i} 's are non-zero. Since the biorthogonal constant of $\left(z_{i}\right)_{i \in \mathbf{N}}$ is at most equal to 2 , we have that $\left|\lambda_{i}\right| \leq 4\|z\|$ for all i. Thus

$$
\|T z\|=\left\|\sum_{i=1}^{\infty} \lambda_{i} T z_{i}\right\| \leq \sum_{i=1}^{\infty}\left|\lambda_{i}\right|\left\|T z_{i}\right\| \leq \sum_{i=1}^{\infty} 4\|z\| \frac{\eta}{2^{i+2}}=\eta\|z\|
$$

which finishes the proof of the claim.
Let Y be an infinite dimensional subspace of X. Inductively for $i=0,1, \ldots, k$, we define Z_{i}, a linear submanifold of X, such that
(a) Z_{0} is an infinite dimensional linear submanifold of Y and Z_{i} is an infinite dimensional linear ubmanifold of $T\left(Z_{i-1}\right)$ for $i \geq 1$;
(b) $\|T z\| \leq \eta\|z\|$ for all $z \in Z_{i}$ and for all $i \geq 0$.

Indeed, since Y is infinite dimensional, we obtain Z_{0} by applying the above claim for $W=Y$. Obviously (a) and (b) are satisfied for $i=0$. Assume that for some $i_{0} \in\{0,1, \ldots, k-1\}$, a linear submanifold $Z_{i_{0}}$ of X has been constructed satisfying (a) and (b) for $i=i_{0}$. Since T is one-to-one and $Z_{i_{0}}$ is infinite dimensional we have that $T\left(Z_{i_{0}}\right)$ is an infinite dimensional linear submanifold of X and we obtain $Z_{i_{0}+1}$ by applying the above claim for $W=T\left(Z_{i_{0}}\right)$. Obviously (a) and (b) are satisfied for $i=i_{0}+1$. This finishes the inductive construction of the Z_{i} 's. By (a) we obtain that Z_{k} is an infinite dimensional linear submanifold of $T^{k}(Y)$. Let $W=T^{-k}\left(Z_{k}\right)$. Then W is an infinite dimensional linear submanifold of X. Since $Z_{k} \subseteq T^{k}(Y)$ and T is one-to-one, we have that $W \subseteq Y$. By (a) we obtain that for $i=0,1, \ldots, k$ we have $Z_{k} \subseteq T^{k-i} Z_{i}$, hence

$$
T^{i} W=T^{i} T^{-k} Z_{k}=T^{-(k-i)} Z_{k} \subseteq T^{-(k-i)} T^{k-i} Z_{i}=Z_{i}
$$

(since T is one-to-one). Thus by (b) we obtain that $\left\|T^{i} z\right\| \leq \eta\left\|T^{i-1} z\right\|$ for all $z \in W$ and $i=1,2, \ldots, k$. Obviously, if Z is the closure of W then Z satisfies the statement of the lemma.

Corollary 5. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X. Let $k \in \mathbf{N}, \eta>0$ and F be a finite codimensional subspace of X. Then for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of Y such that for all $z \in Z$ and for all $i=1, \ldots, k+1$,

$$
T^{i-1} z \in F \quad \text { and } \quad\left\|T^{i} z\right\| \leq \eta\left\|T^{i-1} z\right\|
$$

(where T^{0} denotes the identity operator on X).
Proof. For any linear submanifold W of X and for any finite codimensional subspace F of X we have that

$$
\begin{equation*}
\operatorname{dim}(W /(F \cap W)) \leq \operatorname{dim}(X / F)<\infty \tag{9}
\end{equation*}
$$

Indeed for any $n>\operatorname{dim} X / F$ and for any linear independent vectors x_{1}, \ldots, x_{n} in $W \backslash(F \cap W)$ we have that there exist scalars $\lambda_{1}, \ldots, \lambda_{n}$ with $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \neq(0, \ldots, 0)$ and $\sum_{i=1}^{n} \lambda_{i} x_{i} \in F$ (since $n>\operatorname{dim}(X / F)$). Thus $\sum_{i=1}^{n} \lambda_{i} x_{i} \in F \cap W$ which implies (9).

Let $R(T)$ denote the range of T. Apply (9) for $W=R(T)$ to obtain

$$
\begin{equation*}
\operatorname{dim}(R(T) /(R(T) \cap F)) \leq \operatorname{dim}(X / F)<\infty \tag{10}
\end{equation*}
$$

Since T is one-to-one we have that

$$
\begin{equation*}
\operatorname{dim}\left(X / T^{-1}(F)\right) \leq \operatorname{dim}(R(T) /(R(T) \cap F)) \tag{11}
\end{equation*}
$$

Indeed, for any $n>\operatorname{dim}(R(T) /(R(T) \cap F))$ and for any linear independent vectors x_{1}, \ldots, x_{n} of $X \backslash T^{-1}(F)$, we have that $T x_{1}, \ldots, T x_{n}$ are linear independent vectors of $R(T) \backslash T\left(T^{-1}(F)\right)=R(T) \backslash F$ (since T is one-to-one). Thus $T x_{1}, \ldots, T x_{n} \in$ $R(T) \backslash(R(T) \cap F)$ and as $n>\operatorname{dim}(R(T) /(R(T) \cap F))$, there are scalars $\lambda_{1}, \ldots, \lambda_{n}$ with $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \neq(0, \ldots, 0)$ such that $\sum_{i=1}^{n} \lambda_{i} T x_{i} \in R(T) \cap F$. Therefore $T\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \in$ F, and hence $\sum_{i=1}^{n} \lambda_{i} x_{i} \in T^{-1}(F)$, which proves (11). By combining (10) and (11) we obtain

$$
\begin{equation*}
\operatorname{dim}\left(X / T^{-1}(F)\right)<\infty \tag{12}
\end{equation*}
$$

By (12) we have that

$$
\begin{equation*}
\operatorname{dim}\left(X / T^{-i}(F)\right)<\infty \quad \text { for } i=1,2, \ldots, k \tag{13}
\end{equation*}
$$

Thus $\operatorname{dim}\left(X / W_{1}\right)<\infty$, where $W_{1}=F \cap T^{-1}(F) \cap \ldots \cap T^{-k}(F)$. Therefore if we apply (9) for $W=Y$ and $F=W_{1}$ we obtain

$$
\begin{equation*}
\operatorname{dim}\left(Y /\left(Y \cap W_{1}\right)\right) \leq \operatorname{dim}\left(X / W_{1}\right)<\infty \tag{14}
\end{equation*}
$$

and therefore $Y \cap W_{1}$ is infinite dimensional.
Now use Lemma 4, replacing Y by $Y \cap W_{1}$, to obtain an infinite dimensional subspace Z of $Y \cap W_{1}$ such that

$$
\left\|T^{i} z\right\| \leq \eta\left\|T^{i-1} z\right\| \quad \text { for all } z \in Z \text { and } i=1, \ldots, k+1
$$

Notice that for $z \in Z$ and $i=1, \ldots, k$ we have that $z \in W_{1}$, and thus $T^{i-1} z \in F$.
Now we are ready to prove Theorem 3.
Proof of Theorem 3. We prove by induction on k that for every infinite dimensional subspace Y of X, finite codimensional subspace F of $X, k \in \mathbf{N}$, function $f:(0,1) \rightarrow(0,1)$ such that $f(\eta) \searrow 0$ as $\eta \searrow 0$, and for $i_{0} \in\{0\} \cup \mathbf{N}$, there exists $\eta_{0}>0$ such that for every $0<\eta \leq \eta_{0}$ there exists $x \in Y,\|x\|=1$, satisfying
(a') $T^{i-1} x \in F$ and $\left\|T^{i} x\right\| \leq \eta\left\|T^{i-1} x\right\|$ for $i=1,2, \ldots, i_{0}+k+1$;
(b^{\prime})

$$
\mathrm{bc}\left\{\frac{T^{i_{0}} x}{\left\|T^{i_{0}} x\right\|}, \frac{T^{i_{0}+1} x}{\left\|T^{i_{0}+1} x\right\|}, \ldots, \frac{T^{i_{0}+k} x}{\left\|T^{i_{0}+k} x\right\|}\right\} \leq \frac{1}{f(\eta)}
$$

For $k=1$ let Y, F, f, and i_{0} be as above, and let $\eta_{0} \in(0,1)$ satisfy

$$
\begin{equation*}
f\left(\eta_{0}\right)<\frac{1}{62} \tag{15}
\end{equation*}
$$

Let $0<\eta \leq \eta_{0}$. Apply Corollary 5 for k and η replaced by $i_{0}+1$ and $\frac{1}{4} \eta$, respectively, to obtain an infinite dimensional subspace Z_{1} of Y such that for all $z \in Z_{1}$ and for $i=1,2, \ldots, i_{0}+2$,

$$
\begin{equation*}
T^{i-1} z \in F \quad \text { and } \quad\left\|T^{i} z\right\| \leq \frac{1}{4} \eta\left\|T^{i-1} z\right\| \tag{16}
\end{equation*}
$$

Let $x_{1} \in Z_{1}$ with $\left\|x_{1}\right\|=1$. If bc $\left\{T^{i_{0}} x_{1} /\left\|T^{i_{0}} x_{1}\right\|, T^{i_{0}+1} x_{1} /\left\|T^{i_{0}+1} x_{1}\right\|\right\} \leq 1 / f(\eta)$ then x_{1} satisfies (a^{\prime}) and (b^{\prime}) for $k=1$, thus we may assume that

$$
\begin{equation*}
\mathrm{bc}\left\{\frac{T^{i_{0}} x_{1}}{\left\|T^{i_{0}} x_{1}\right\|}, \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}\right\}>\frac{1}{f(\eta)} . \tag{17}
\end{equation*}
$$

Let

$$
\begin{equation*}
0<\eta_{2} \leq \frac{\eta}{4} \wedge \min _{1 \leq i \leq i_{0}} \frac{\left\|T^{i_{0}} x_{1}\right\|}{2\left\|T^{i} x_{1}\right\|} \wedge \min _{i_{0}<i \leq i_{0}+2} \frac{\left\|T^{i} x_{1}\right\|}{2\left\|T^{i_{0}} x_{1}\right\|} f(\eta) \tag{18}
\end{equation*}
$$

Let $z_{1}^{*}, z_{2}^{*} \in X^{*},\left\|z_{1}^{*}\right\|=\left\|z_{2}^{*}\right\|=1, z_{1}^{*}\left(T^{i_{0}} x_{1}\right)=\left\|T^{i_{0}} x_{1}\right\|$ and $z_{2}^{*}\left(T^{i_{0}+1} x_{1}\right)=\left\|T^{i_{0}+1} x_{1}\right\|$. Since $\operatorname{ker} z_{1}^{*} \cap \mathrm{ker} z_{2}^{*}$ is finite codimensional and T is one-to-one, by (13) we have that

$$
\begin{equation*}
\operatorname{dim}\left(X / T^{-i_{0}}\left(\operatorname{ker} z_{1}^{*} \cap \operatorname{ker} z_{2}^{*}\right)\right)<\infty \tag{19}
\end{equation*}
$$

Apply Corollary 5 for F, k and η replaced by $F \cap T^{-i_{0}}\left(\operatorname{ker} z_{1}^{*} \cap \operatorname{ker} z_{2}^{*}\right), i_{0}+2$ and η_{2}, respectively, to obtain an infinite dimensional subspace Z_{2} of Y such that for all $z \in Z_{2}$ and for all $i=1,2, \ldots, i_{0}+2$,

$$
\begin{equation*}
T^{i-1} z \in F \cap T^{-i_{0}}\left(\operatorname{ker} z_{1}^{*} \cap \operatorname{ker} z_{2}^{*}\right) \quad \text { and } \quad\left\|T^{i} z\right\| \leq \eta_{2}\left\|T^{i-1} z\right\| \tag{20}
\end{equation*}
$$

Let $x_{1}^{*} \in X^{*}$ with $\left\|x_{1}^{*}\right\|=x_{1}^{*}\left(x_{1}\right)=1$ and let $x_{2} \in Z_{2} \cap \operatorname{ker} x_{1}^{*}$ with

$$
\begin{equation*}
\left\|T^{i_{0}} x_{1}\right\|=\left\|T^{i_{0}} x_{2}\right\| \tag{21}
\end{equation*}
$$

and let $x=\left(x_{1}+x_{2}\right) /\left\|x_{1}+x_{2}\right\|$. We will show that x satisfies (a^{\prime}) and (b^{\prime}) for $k=1$.
We first show that (a^{\prime}) is satisfied for $k=1$. Since $x_{1}, T x_{1}, \ldots, T^{i_{0}+1} x_{1} \in F$ (by (16)) and $x_{2}, T x_{2}, \ldots, T^{i_{0}+1} x_{2} \in F$ (by (20)) we have that $x, T x, \ldots, T^{i_{0}+1} x \in F$. Before showing that the norm estimate of (a^{\prime}) is satisfied, we need some preliminary estimates: (22)-(30).

If $1 \leq i<i_{0}$ (assuming that $2 \leq i_{0}$) then, by (18), (20) and (21),

$$
\begin{equation*}
\left\|T^{i} x_{1}\right\|=\frac{\left\|T^{i_{0}} x_{1}\right\|}{2 \frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i} x_{1}\right\|}} \leq \frac{\left\|T^{i_{0}} x_{1}\right\|}{2 \eta_{2}}=\frac{\left\|T^{i_{0}} x_{2}\right\|}{2 \eta_{2}} \leq \frac{\eta_{2}^{i_{0}-i}\left\|T^{i} x_{2}\right\|}{2 \eta_{2}} \leq \frac{\left\|T^{i} x_{2}\right\|}{2} \tag{22}
\end{equation*}
$$

Thus, by (22), for $1 \leq i<i_{0}$ (assuming that $2 \leq i_{0}$) we have

$$
\begin{equation*}
\left\|T^{i} x\right\|\left\|x_{1}+x_{2}\right\|=\left\|T^{i} x_{1}+T^{i} x_{2}\right\| \leq\left\|T^{i} x_{1}\right\|+\left\|T^{i} x_{2}\right\| \leq \frac{3}{2}\left\|T^{i} x_{2}\right\| \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T^{i} x\right\|\left\|x_{1}+x_{2}\right\|=\left\|T^{i} x_{1}+T^{i} x_{2}\right\| \geq\left\|T^{i} x_{2}\right\|-\left\|T^{i} x_{1}\right\| \geq \frac{1}{2}\left\|T^{i} x_{2}\right\| . \tag{24}
\end{equation*}
$$

Also notice that, by (21),

$$
\begin{equation*}
\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|=\left\|T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right\| \leq\left\|T^{i_{0}} x_{1}\right\|+\left\|T^{i_{0}} x_{2}\right\|=2\left\|T^{i_{0}} x_{1}\right\| \tag{25}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\| & =\left\|T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right\| \geq z_{1}^{*}\left(T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right) \tag{26}\\
& =z_{1}^{*}\left(T^{i_{0}} x_{1}\right)=\left\|T^{i_{0}} x_{1}\right\|
\end{align*}
$$

(by (20) for $z=x_{2}$ and $i=1$). Also for $i_{0}<i \leq i_{0}+2$ we have that by applying (20) for $z=x_{2}, i-i_{0}$ times, we obtain, using (18) and (21) and the fact that $\eta_{2}<1$,

$$
\begin{aligned}
\left\|T^{i} x_{2}\right\| & \leq \eta_{2}^{i-i_{0}}\left\|T^{i_{0}} x_{2}\right\| \leq \eta_{2}\left\|T^{i_{0}} x_{1}\right\| \\
& =\eta_{2} \frac{2\left\|T^{i o} x_{1}\right\|}{\left\|T^{i} x_{1}\right\|} \frac{1}{2}\left\|T^{i} x_{1}\right\| \leq \frac{1}{2} f(\eta)\left\|T^{i} x_{1}\right\| \leq \frac{1}{2}\left\|T^{i} x_{1}\right\| .
\end{aligned}
$$

Thus for $i_{0}<i \leq i_{0}+2$ we have

$$
\begin{equation*}
\left\|T^{i} x\right\|\left\|x_{1}+x_{2}\right\|=\left\|T^{i} x_{1}+T^{i} x_{2}\right\| \leq\left\|T^{i} x_{1}\right\|+\left\|T^{i} x_{2}\right\| \leq \frac{3}{2}\left\|T^{i} x_{1}\right\| . \tag{28}
\end{equation*}
$$

Also for $i_{0}<i \leq i_{0}+2$ we have by (27),

$$
\begin{equation*}
\left\|T^{i} x\right\|\left\|x_{1}+x_{2}\right\|=\left\|T^{i} x_{1}+T^{i} x_{2}\right\| \geq\left\|T^{i} x_{1}\right\|-\left\|T^{i} x_{2}\right\| \geq \frac{1}{2}\left\|T^{i} x_{1}\right\| . \tag{29}
\end{equation*}
$$

Later in the course of this proof we will also need that, using (27) and the fact that $f(\eta)<1$,

$$
\begin{align*}
\left\|T^{i_{0}+1} x\right\|\left\|x_{1}+x_{2}\right\| & =\left\|T^{i_{0}+1} x_{1}+T^{i_{0}+1} x_{2}\right\| \\
& \geq\left\|T^{i_{0}+1} x_{1}\right\|-\left\|T^{i_{0}+1} x_{2}\right\| \\
& \geq \frac{2}{f(\eta)}\left\|T^{i_{0}+1} x_{2}\right\|-\left\|T^{i_{0}+1} x_{2}\right\| \tag{30}\\
& =\frac{2-f(\eta)}{f(\eta)}\left\|T^{i_{0}+1} x_{2}\right\| \\
& \geq \frac{1}{f(\eta)}\left\|T^{i_{0}+1} x_{2}\right\| .
\end{align*}
$$

Finally we will show that for $1 \leq i \leq i_{0}+2$ we have $\left\|T^{i} x\right\| \leq \eta\left\|T^{i-1} x\right\|$. Indeed if $i=1$ then, using (16), (18), (20) and the facts that $\left\|x_{1}\right\|=1=x_{1}^{*}\left(x_{1}+x_{2}\right)$ and $\left\|x_{1}^{*}\right\|=1$,

$$
\begin{align*}
\left\|T^{i} x\right\| & =\frac{\left\|T x_{1}+T x_{2}\right\|}{\left\|x_{1}+x_{2}\right\|} \leq \frac{\left\|T x_{1}\right\|+\left\|T x_{2}\right\|}{\left\|x_{1}+x_{2}\right\|} \leq \frac{\frac{1}{4} \eta\left\|x_{1}\right\|+\eta_{2}\left\|x_{2}\right\|}{\left\|x_{1}+x_{2}\right\|} \\
\text { (31) } \quad & \leq \frac{\frac{1}{4} \eta\left\|x_{1}\right\|+\eta_{2}\left(\left\|x_{1}+x_{2}\right\|+\left\|x_{1}\right\|\right)}{\left\|x_{1}+x_{2}\right\|}=\frac{\left(\frac{1}{4} \eta+\eta_{2}\right) x_{1}^{*}\left(x_{1}+x_{2}\right)}{\left\|x_{1}+x_{2}\right\|}+\eta_{2} \leq \frac{\eta}{4}+2 \eta_{2} \leq \eta . \tag{31}
\end{align*}
$$

If $1<i<i_{0}$ (assuming that $3 \leq i_{0}$) we have that, by (18), (20), (23) and (24),

$$
\begin{equation*}
\frac{\left\|T^{i} x\right\|}{\left\|T^{i-1} x\right\|} \leq \frac{\frac{3}{2}\left\|T^{i} x_{2}\right\|}{\frac{1}{2}\left\|T^{i-1} x_{2}\right\|}<3 \eta_{2}<\eta \tag{32}
\end{equation*}
$$

If $i=i_{0}>1$ then, by (18), (20), (21), (24) and (25),

$$
\begin{equation*}
\frac{\left\|T^{i} x\right\|}{\left\|T^{i-1} x\right\|} \leq \frac{2\left\|T^{i_{0}} x_{1}\right\|}{\frac{1}{2}\left\|T^{i_{0}-1} x_{2}\right\|}=4 \frac{\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}-1} x_{2}\right\|}<4 \eta_{2}<\eta \tag{33}
\end{equation*}
$$

If $i_{0}<i \leq i_{0}+2$ then, using (16), (28) and (29),

$$
\begin{equation*}
\frac{\left\|T^{i} x\right\|}{\left\|T^{i-1} x\right\|} \leq \frac{\frac{3}{2}\left\|T^{i} x_{1}\right\|}{\frac{1}{2}\left\|T^{i-1} x_{1}\right\|}<\eta \tag{34}
\end{equation*}
$$

Now (31)-(34) yield that for $1 \leq i \leq i_{0}+2$ we have $\left\|T^{i} x\right\| \leq \eta\left\|T^{i-1} x\right\|$. Thus x satisfies (a^{\prime}) for $k=1$. Before proving that x satisfies (b^{\prime}) for $k=1$ we need some preliminary estimates: (35)-(40). By (17) there exist scalars a_{0} and a_{1} with $\max \left\{\left|a_{0}\right|,\left|a_{1}\right|\right\}=1$ and $\|w\|<f(\eta)$, where

$$
\begin{equation*}
w=a_{0} \frac{T^{i_{0}} x_{1}}{\left\|T^{i_{0}} x_{1}\right\|}+a_{1} \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|} \tag{35}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|\left|a_{0}\right|-\left|a_{1}\right|\right|=\left|\left\|a_{0} \frac{T^{i_{0}} x_{1}}{\left\|T^{i} x_{1}\right\|}\right\|-\left\|a_{1} \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}\right\|\right| \leq\|w\|<f(\eta) \tag{36}
\end{equation*}
$$

Thus $1-f(\eta) \leq\left|a_{0}\right|,\left|a_{1}\right| \leq 1$ and hence

$$
\begin{equation*}
\frac{\left|a_{1}\right|}{\left|a_{0}\right|} \leq \frac{1}{\left|a_{0}\right|} \leq \frac{1}{1-f(\eta)} \tag{37}
\end{equation*}
$$

Also by (35) we obtain that

$$
T^{i_{0}} x_{1}=\frac{\left\|T^{i_{0}} x_{1}\right\|}{a_{0}} w-\left\|T^{i_{0}} x_{1}\right\| \frac{a_{1}}{a_{0}} \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}
$$

and thus

$$
\begin{equation*}
T^{i_{0}} x=\frac{1}{\left\|x_{1}+x_{2}\right\|}\left(\frac{\left\|T^{i_{0}} x_{1}\right\|}{a_{0}} w-\left\|T^{i_{0}} x_{1}\right\| \frac{a_{1}}{a_{0}} \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}+T^{i_{0}} x_{2}\right) \tag{38}
\end{equation*}
$$

Let

$$
\begin{equation*}
\widetilde{w}=T^{i_{0}} x+\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\|} \frac{a_{1}}{a_{0}} \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}-\frac{T^{i_{0}} x_{2}}{\left\|x_{1}+x_{2}\right\|} \tag{39}
\end{equation*}
$$

Notice that (38) and (39) imply that $\widetilde{w}=\left(\left\|T^{\varepsilon_{0}} x_{1}\right\| /\left\|x_{1}+x_{2}\right\| a_{0}\right) w$ and hence by (15), (20), (37), the choice of z_{1}^{*} and the fact that $\|w\|<f(\eta)$,

$$
\begin{aligned}
\|\widetilde{w}\| & =\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\| \mid a_{0} \|}\|w\| \leq \frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\|} \frac{f(\eta)}{1-f(\eta)} \leq 2 f(\eta) \frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\|}=2 f(\eta) \frac{z_{1}^{*}\left(T^{i_{0}} x_{1}\right)}{\left\|x_{1}+x_{2}\right\|} \\
(40) & =2 f(\eta) \frac{z_{1}^{*}\left(T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right)}{\left\|x_{1}+x_{2}\right\|} \leq 2 f(\eta) \frac{\left\|T^{i_{0}}\left(x_{1}+x_{2}\right)\right\|}{\left\|x_{1}+x_{2}\right\|}=2 f(\eta)\left\|T^{i_{0}} x\right\| .
\end{aligned}
$$

Now we are ready to estimate $\mathrm{bc}\left\{T^{i_{0}} x /\left\|T^{i_{0}} x\right\|, T^{i_{0}+1} x /\left\|T^{i_{0}+1} x\right\|\right\}$. Let the scalars A_{0} and A_{1} be such that

$$
\left\|A_{0} \frac{T^{i_{0}} x}{\left\|T^{i 0} x\right\|}+A_{1} \frac{T^{i_{0}+1} x}{\left\|T^{i_{0}+1} x\right\|}\right\|=1 .
$$

We want to estimate $\max \left\{\left|A_{0}\right|,\left|A_{1}\right|\right\}$. By (30), (39), (40) and the triangle inequality we have

$$
\begin{align*}
1= & \left\|\frac{A_{0}}{\left\|T^{i_{0}} x\right\|}\left(\widetilde{w}-\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\|} \frac{a_{1}}{a_{0}} \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}+\frac{T^{i_{0}} x_{2}}{\left\|x_{1}+x_{2}\right\|}\right)+A_{1} \frac{T^{i_{0}+1} x}{\left\|T^{i_{0}+1} x\right\|}\right\| \\
= & \| \frac{A_{0}\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \frac{T^{i_{0}} x_{2}}{\left\|T^{i_{0}} x_{2}\right\|} \\
& +\left(\frac{-A_{0}\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \frac{a_{1}}{a_{0}}+\frac{A_{1}\left\|T^{i_{0}+1} x_{1}\right\|}{\left\|T^{i_{0}+1} x\right\|\left\|x_{1}+x_{2}\right\|}\right) \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|} \\
& +\frac{A_{0}}{\left\|T^{i_{0}} x\right\|} \widetilde{w}+\frac{A_{1} T^{i_{0}+1} x_{2}}{\left\|T^{i_{0}+1} x\right\|\left\|x_{1}+x_{2}\right\|} \| \tag{41}\\
\geq & \| \frac{A_{0}\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \frac{T^{i_{0}} x_{2}}{\left\|T^{i_{0}} x_{2}\right\|} \\
& +\left(\frac{-A_{0}\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \frac{a_{1}}{a_{0}}+\frac{A_{1}\left\|T^{i_{0}+1} x_{1}\right\|}{\left\|T^{i_{0}+1} x\right\|\left\|x_{1}+x_{2}\right\|}\right) \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|} \| \\
& -2 f(\eta)\left|A_{0}\right|-f(\eta)\left|A_{1}\right| .
\end{align*}
$$

By (20) for $i=1$ we have that $T^{i_{0}} x_{2} \in \operatorname{ker} z_{2}^{*}$ and since $z_{2}^{*}\left(T^{i_{0}+1} x_{1}\right)=\left\|T^{i_{0}+1} x_{1}\right\|$ it is easy to see that bc $\left\{T^{i_{0}} x_{2} /\left\|T^{i_{0}} x_{2}\right\|, T^{i_{0}+1} x_{1} /\left\|T^{i_{0}+1} x_{1}\right\|\right\} \leq 2$. Thus (41) implies that

$$
\begin{equation*}
\left|-\frac{A_{0}\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \frac{a_{1}}{a_{0}}+\frac{A_{1}\left\|T^{i_{0}+1} x_{1}\right\|}{\left\|T^{i_{0}+1} x\right\|\left\|x_{1}+x_{2}\right\|}\right| \leq 2+4 f(\eta)\left|A_{0}\right|+2 f(\eta)\left|A_{1}\right| \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|A_{0}\right|\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \leq 2+4 f(\eta)\left|A_{0}\right|+2 f(\eta)\left|A_{1}\right| \tag{43}
\end{equation*}
$$

Notice that (43) implies that

$$
\begin{equation*}
\left|A_{0}\right| \leq 4+8 f(\eta)\left|A_{0}\right|+4 f(\eta)\left|A_{1}\right| \tag{44}
\end{equation*}
$$

since

$$
\frac{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|}{\left\|T^{i_{0}} x_{2}\right\|}=\frac{\left\|T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x_{2}\right\|} \leq \frac{\left\|T^{i_{0}} x_{1}\right\|+\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x_{2}\right\|}=2
$$

by (21). Also by (42) we obtain

$$
\left.\frac{\left|A_{1}\right|\left\|T^{i_{0}+1} x_{1}\right\|}{\left\|T^{i_{0}+1} x\right\|\left\|x_{1}+x_{2}\right\|}-\frac{\left|A_{0}\right|\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|}\left|\frac{\left|a_{1}\right|}{\left|a_{0}\right|} \leq 2+4 f(\eta)\right| A_{0}|+2 f(\eta)| A_{1} \right\rvert\,
$$

Thus

$$
\begin{equation*}
\frac{2}{3}\left|A_{1}\right|-\frac{1}{1-f(\eta)}\left|A_{0}\right| \leq 2+4 f(\eta)\left|A_{0}\right|+2 f(\eta)\left|A_{1}\right| \tag{45}
\end{equation*}
$$

by (28) for $i=i_{0}+1$, (37) and

$$
\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|}=\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right\|} \leq \frac{\left\|T^{i_{0}} x_{1}\right\|}{z_{1}^{*}\left(T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right)}=\frac{\left\|T^{i_{0}} x_{1}\right\|}{z_{1}^{*}\left(T^{i_{0}} x_{1}\right)}=1
$$

which hold by (20) and the choice of z_{1}^{*}. Notice that (45) implies that

$$
\begin{equation*}
\left|A_{1}\right| \leq 6+\frac{28}{5}\left|A_{0}\right|, \tag{46}
\end{equation*}
$$

since $f(\eta)<\frac{1}{6}$ by (15). By substituting (46) into (44) we obtain

$$
\left|A_{0}\right| \leq 4+8 f(\eta)\left|A_{0}\right|+4 f(\eta)\left(6+\frac{28}{5}\left|A_{0}\right|\right)=4+24 f(\eta)+\frac{112}{5} f(\eta)\left|A_{0}\right| \leq 5+\frac{1}{2}\left|A_{0}\right|
$$

since $f(\eta)<\frac{5}{224}$ by (15). Thus $\left|A_{0}\right| \leq 10$. Hence (46) gives that $\left|A_{1}\right| \leq 62$. Therefore, by (15),

$$
\mathrm{bc}\left\{\frac{T^{i_{0}} x}{\left\|T^{i_{0}} x\right\|}, \frac{T^{i_{0}+1} x}{\left\|T^{i_{0}+1} x\right\|}\right\} \leq 62 \leq \frac{1}{f(\eta)} .
$$

We now proceed to the inductive step. Assuming the inductive statement for some integer k, let F be a finite codimensional subspace of $X, f:(0,1) \rightarrow(0,1)$ with $f(\eta) \searrow 0$, as $\eta \searrow 0$, and $i_{0} \in \mathbf{N} \cup\{0\}$. By the inductive statement for i_{0}, f and η replaced by $i_{0}+1, f^{1 / 4}$ and $\frac{1}{4} \eta$, respectively, there exists η_{1} such that for $0<\eta<\eta_{1}$ there exists $x_{1} \in X,\left\|x_{1}\right\|=1$, such that

$$
\begin{equation*}
T^{i-1} x_{1} \in F \quad \text { and } \quad\left\|T^{i} x_{1}\right\| \leq \frac{1}{4} \eta\left\|T^{i-1} x_{1}\right\| \quad \text { for } i=1,2, \ldots,\left(i_{0}+1\right)+k+1 \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{bc}\left\{\frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}, \frac{T^{i_{0}+2} x_{1}}{\left\|T^{i_{0}+2} x_{1}\right\|}, \ldots, \frac{T^{i_{0}+1+k} x_{1}}{\left\|T^{i_{0}+1+k} x_{1}\right\|}\right\} \leq \frac{1}{f(\eta)^{1 / 4}} \tag{48}
\end{equation*}
$$

Let η_{0} satisfy

$$
\begin{equation*}
\eta_{0}<\eta_{1}, \quad f\left(\eta_{0}\right)<\frac{1}{288^{2}} \quad \text { and } \quad f\left(\eta_{0}\right)<\left(\frac{1}{144(k+1)}\right)^{2} \tag{49}
\end{equation*}
$$

let $0<\eta<\eta_{0}$ and let $x_{1} \in X,\left\|x_{1}\right\|=1$, satisfy (47) and (48). If

$$
\mathrm{bc}\left\{\frac{T^{i_{0}} x_{1}}{\left\|T^{i_{0}} x_{1}\right\|}, \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}, \ldots, \frac{T^{i_{0}+k+1} x_{1}}{\left\|T^{i_{0}+k+1} x_{1}\right\|}\right\} \leq \frac{1}{f(\eta)}
$$

then x_{1} satisfies the inductive statement for k replaced by $k+1$. Thus we may assume that

$$
\begin{equation*}
\mathrm{bc}\left\{\frac{T^{i_{0}} x_{1}}{\left\|T^{i_{0}} x_{1}\right\|}, \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}, \ldots, \frac{T^{i_{0}+k+1} x_{1}}{\left\|T^{i_{0}+k+1} x_{1}\right\|}\right\}>\frac{1}{f(\eta)} . \tag{50}
\end{equation*}
$$

Let

$$
\begin{equation*}
0<\eta_{2}<\frac{\eta}{4} \wedge \min _{1 \leq i \leq i_{0}} \frac{\left\|T^{i_{0}} x_{1}\right\|}{2\left\|T^{i} x_{1}\right\|} \wedge_{i_{0}<i \leq i_{0}+k+1} \min _{2} \frac{\left\|T^{i} x_{1}\right\|}{2\left\|T^{i_{0}} x_{1}\right\|} f(\eta) \tag{51}
\end{equation*}
$$

Let $J \subset\{2,3, \ldots\}$ be a finite index set and $z_{1}^{*},\left(z_{j}^{*}\right)_{j \in J}$ be norm one functionals such that

$$
\begin{equation*}
z_{1}^{*}\left(T^{i_{0}} x_{1}\right)=\left\|T^{i_{0}} x_{1}\right\| \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for } z \in \operatorname{span}\left\{T^{i_{0}+1} x_{1}, \ldots, T^{i_{0}+k+1} x_{1}\right\} \text { there is } j_{0} \in J \text { with }\left|z_{j_{0}}^{*}(z)\right| \geq \frac{1}{2}\|z\| \text {. } \tag{53}
\end{equation*}
$$

Since T is one-to-one we obtain by (13) that $\operatorname{dim}\left(X / T^{-i_{0}}\left(\bigcap_{j \in\{1\} \cup J} \operatorname{ker} z_{j}^{*}\right)\right)<\infty$. Apply Corollary 5 for F, k, η replaced by $F \cap T^{-i_{0}}\left(\bigcap_{j \in\{1\} \cup J} \operatorname{ker} z_{i}^{*}\right), i_{0}+k+2$ and η_{2}, respectively, to obtain an infinite dimensional subspace Z of Y such that for all $z \in Z$ and for all $i=1,2, \ldots, i_{0}+k+2$,

$$
\begin{equation*}
T^{i-1} z \in F \cap T^{-i_{0}}\left(\bigcap_{j \in\{1\} \cup J} \operatorname{ker} z_{j}^{*}\right) \text { and }\left\|T^{i} z\right\| \leq \eta_{2}\left\|T^{i-1} z\right\| . \tag{54}
\end{equation*}
$$

Let $x_{1}^{*} \in X^{*},\left\|x_{1}^{*}\right\|=1=x_{1}^{*}\left(x_{1}\right)$, let $x_{2} \in Z \cap \operatorname{ker} x_{1}^{*}$ with

$$
\begin{equation*}
\left\|T^{i_{0}} x_{1}\right\|=\left\|T^{i_{0}} x_{2}\right\| \tag{55}
\end{equation*}
$$

and let $x=\left(x_{1}+x_{2}\right) /\left\|x_{1}+x_{2}\right\|$. We will show that x satisfies the inductive statement for k replaced by $k+1$.

We first show that x satisfies (a^{\prime}) for k replaced by $k+1$. The proof is identical to the verification of (a^{\prime}) for $k=1$. The formulas (27), (28), (29) and (34) are valid for $i_{0}<i \leq i_{0}+k+2$, and (30) is valid if $i_{0}+1$ is replaced by any $i \in\left\{i_{0}+1, \ldots, i_{0}+k+1\right\}$, and this will be assumed in the rest of the proof when we refer to these formulas.

We now prove that (b^{\prime}) is satisfied for k replaced by $k+1$. By (50) there exist scalars $a_{0}, a_{1}, \ldots, a_{k+1}$ with $\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{k+1}\right|\right\}=1$ and $\|w\|<f(\eta)$, where

$$
\begin{equation*}
w=\sum_{i=0}^{k+1} a_{i} \frac{T^{i_{0}+i} x_{1}}{\left\|T^{i_{0}+i} x_{1}\right\|} \tag{56}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\left|a_{0}\right| \geq \frac{1}{2} f(\eta)^{1 / 4} \tag{57}
\end{equation*}
$$

Indeed, if $\left|a_{0}\right|<\frac{1}{2} f(\eta)^{1 / 4}$ then $\max \left\{\left|a_{1}\right|, \ldots,\left|a_{k+1}\right|\right\}=1$ and

$$
\left\|\sum_{i=1}^{k+1} a_{i} \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+{ }_{0}} x_{1}\right\|}\right\|=\left\|w-a_{0} \frac{T^{i_{0}} x_{1}}{\left\|T^{i_{0}} x_{1}\right\|}\right\| \leq\|w\|+\left|a_{0}\right|<f(\eta)+\frac{1}{2} f(\eta)^{1 / 4}<f(\eta)^{1 / 4},
$$

since $f(\eta)<\frac{1}{4}$ by (49), which contradicts (48). Thus (57) is proved. By (56) we obtain

$$
T^{i_{0}} x_{1}=\frac{\left\|T^{i_{0}} x_{1}\right\|}{a_{0}} w-\sum_{i=1}^{k+1} \frac{a_{i}}{a_{0}}\left\|T^{i_{0}} x_{1}\right\| \frac{T^{i_{0}+i} x_{1}}{\left\|T^{i_{0}+i} x_{1}\right\|}
$$

and thus

$$
\begin{equation*}
T^{i_{0}} x=\frac{1}{\left\|x_{1}+x_{2}\right\|}\left(\frac{\left\|T^{i_{0}} x_{1}\right\|}{a_{0}} w-\sum_{i=1}^{k+1} \frac{a_{i}}{a_{0}}\left\|T^{i_{0}} x_{1}\right\| \frac{T^{i_{0}+i} x_{1}}{\left\|T^{i_{0}+i} x_{1}\right\|}+T^{i_{0}} x_{2}\right) \tag{58}
\end{equation*}
$$

Let

$$
\begin{equation*}
\widetilde{w}=T^{i_{0}} x+\sum_{i=1}^{k+1} \frac{a_{i}}{a_{0}} \frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\|} \frac{T^{i_{0}+i} x_{1}}{\left\|T^{i_{0}+i} x_{1}\right\|}-\frac{T^{i_{0}} x_{2}}{\left\|x_{1}+x_{2}\right\|} \tag{59}
\end{equation*}
$$

Notice that (58) and (59) imply that $\widetilde{w}=\left(\left\|T^{i_{0}} x_{1}\right\| /\left(\left\|x_{1}+x_{2}\right\| a_{0}\right)\right) w$ and hence, using (52), (54), (57) and the facts that $\|w\| \leq f(\eta)$ and $\left\|z_{1}^{*}\right\|=1$,

$$
\begin{align*}
\|\widetilde{w}\| & =\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\|\left|a_{0}\right|}\|w\|<\frac{2 f(\eta)^{3 / 4}\left\|T^{i_{0}} x_{1}\right\|}{\left\|x_{1}+x_{2}\right\|}=\frac{2 f(\eta)^{3 / 4} z_{1}^{*}\left(T^{i_{0}} x_{1}\right)}{\left\|x_{1}+x_{2}\right\|} \\
& =\frac{2 f(\eta)^{3 / 4} z_{1}^{*}\left(T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right)}{\left\|x_{1}+x_{2}\right\|} \leq \frac{2 f(\eta)^{3 / 4}\left\|T^{i_{0}}\left(x_{1}+x_{2}\right)\right\|}{\left\|x_{1}+x_{2}\right\|}=2 f(\eta)^{3 / 4}\left\|T^{i_{0}} x\right\| \tag{60}
\end{align*}
$$

Now we are ready to estimate

$$
\mathrm{bc}\left\{\frac{T^{i_{0}} x_{1}}{\left\|T^{i_{0}} x_{1}\right\|}, \ldots, \frac{T^{i_{0}+k+1} x_{1}}{\left\|T^{i_{0}+k+1} x_{1}\right\|}\right\}
$$

Let the scalars $A_{0}, A_{1}, \ldots, A_{k+1}$ be such that

$$
\left\|\sum_{i=0}^{k+1} A_{i} \frac{T^{i_{0}+i} x}{\left\|T^{i_{0}+i} x\right\|}\right\|=1
$$

We want to estimate the $\max \left\{\left|A_{0}\right|,\left|A_{1}\right|, \ldots,\left|A_{k+1}\right|\right\}$. By (30), (59), (60) and recalling the paragraph before (56) we have

$$
\begin{aligned}
1= & \left\|\frac{A_{0}}{\left\|T^{i_{0}} x\right\|}\left(\widetilde{w}-\sum_{i=1}^{k+1} \frac{a_{i}}{a_{0}}\left\|T^{i_{0}} x_{1}\right\| x_{1}+x_{2} \| \frac{T^{i_{0}+i} x_{1}}{\left\|T^{i_{0}+i} x_{1}\right\|}+\frac{T^{i_{0}} x_{2}}{\left\|x_{1}+x_{2}\right\|}\right)+\sum_{i=1}^{k+1} A_{i} \frac{T^{i_{0}+i} x}{\left\|T^{i_{0}+i} x\right\|}\right\| \\
= & \| \frac{A_{0}\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i} x\right\|\left\|x_{1}+x_{2}\right\|} \frac{T^{i_{0}} x_{2}}{\left\|T^{i_{0}} x_{2}\right\|} \\
& +\sum_{i=1}^{k+1}\left(\frac{a_{i}}{a_{0}} \frac{-A_{0}\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|}+\frac{A_{i}\left\|T^{i_{0}+i} x_{1}\right\|}{\left\|T^{i_{0}+i} x\right\|\left\|x_{1}+x_{2}\right\|}\right) \frac{T^{i_{0}+i} x_{1}}{\left\|T^{i_{0}+i} x_{1}\right\|}
\end{aligned}
$$

$$
\begin{equation*}
+\frac{A_{0}}{\left\|T^{i_{0}} x\right\|} \widetilde{w}+\sum_{i=1}^{k+1} A_{i} \frac{T^{i_{0}+i} x_{2}}{\left\|T^{i_{0}+i} x\right\|\left\|x_{1}+x_{2}\right\|} \| \tag{61}
\end{equation*}
$$

$$
\begin{aligned}
\geq & \| \frac{A_{0}\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \frac{T^{i_{0}} x_{2}}{\left\|T^{i_{0}} x_{2}\right\|} \\
& +\sum_{i=1}^{k+1}\left(\frac{a_{i}}{a_{0}} \frac{-A_{0}\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|}+\frac{A_{i}\left\|T^{i_{0}+i} x_{1}\right\|}{\left\|T^{i_{0}+i} x\right\|\left\|x_{1}+x_{2}\right\|}\right) \frac{T^{i_{0}+i} x_{1}}{\left\|T^{i_{0}+i} x_{1}\right\|} \| \\
& -2 f(\eta)^{3 / 4}\left|A_{0}\right|-\sum_{i=1}^{k+1} f(\eta)\left|A_{i}\right| .
\end{aligned}
$$

By (54) for $i=1$ and $z=x_{2}$ we obtain that $T^{i_{0}} x_{2} \in \bigcap_{j \in J} \operatorname{ker} z_{j}^{*}$ and by (53) and (48) it is easy to see that

$$
\mathrm{bc}\left\{\frac{T^{i_{0}} x_{2}}{\left\|T^{i_{0}} x_{2}\right\|}, \frac{T^{i_{0}+1} x_{1}}{\left\|T^{i_{0}+1} x_{1}\right\|}, \ldots, \frac{T^{i_{0}+k+1} x_{1}}{\left\|T^{i_{0}+k+1} x_{1}\right\|}\right\} \leq \frac{2}{f(\eta)^{1 / 4}} \vee 3 .
$$

Since $f(\eta)<\left(\frac{2}{3}\right)^{4}$ (by (49)), we have that $3 \leq 2 / f(\eta)^{1 / 4}$. Hence

$$
\mathrm{bc}\left\{\frac{T^{i_{0}} x_{2}}{\left\|T^{i_{0}} x_{2}\right\|}, \frac{T^{i_{0}+1} x_{2}}{\left\|T^{i_{0}+1} x_{2}\right\|}, \ldots, \frac{T^{i_{0}+k+1} x_{1}}{\left\|T^{i_{0}+k+1} x_{1}\right\|}\right\} \leq \frac{2}{f(\eta)^{1 / 4}} .
$$

Thus (61) implies that

$$
\begin{equation*}
\left|A_{0}\right| \frac{\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \leq \frac{2}{f(\eta)^{1 / 4}}\left(1+2 f(\eta)^{3 / 4}\left|A_{0}\right|+\sum_{j=1}^{k+1} f(\eta)\left|A_{j}\right|\right) \tag{62}
\end{equation*}
$$

and for $i=1, \ldots, k+1$,

$$
\left.\begin{align*}
\left\lvert\, \frac{a_{i}}{a_{0}} \frac{-A_{0}\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|}+\frac{A_{i}\left\|T^{i_{0}+i} x_{1}\right\|}{\left\|T^{i_{0}+i} x\right\|\left\|x_{1}+x_{2}\right\|}\right.
\end{align*} \right\rvert\,
$$

Since, by (55),

$$
\frac{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|}{\left\|T^{i_{0}} x_{2}\right\|}=\frac{\left\|T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x_{2}\right\|} \leq \frac{\left\|T^{i_{0}} x_{1}\right\|+\left\|T^{i_{0}} x_{2}\right\|}{\left\|T^{i_{0}} x_{2}\right\|}=2
$$

we have that (62) implies

$$
\begin{equation*}
\left|A_{0}\right| \leq \frac{4}{f(\eta)^{1 / 4}}+8 f(\eta)^{1 / 2}\left|A_{0}\right|+4 \sum_{j=1}^{k+1} f(\eta)^{3 / 4}\left|A_{j}\right| \tag{64}
\end{equation*}
$$

Notice also that (63) implies that for $i=1, \ldots, k+1$,

$$
\begin{aligned}
\left|A_{i}\right| \frac{\left\|T^{i_{0}+i} x_{1}\right\|}{\left\|T^{i_{0}+i} x\right\|\left\|x_{1}+x_{2}\right\|}-\left\langle A_{0}\right| \frac{\left|a_{i}\right|}{\left|a_{0}\right|} \frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} \leq & \frac{2}{f(\eta)^{1 / 4}}+4 f(\eta)^{1 / 2}\left|A_{0}\right| \\
& +2 \sum_{j=1}^{k+1} f(\eta)^{3 / 4}\left|A_{j}\right|
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{2}{3}\left|A_{i}\right|-\frac{2}{f(\eta)^{1 / 4}}\left|A_{0}\right| \leq \frac{2}{f(\eta)^{1 / 4}}+4 f(\eta)^{1 / 2}\left|A_{0}\right|+2 \sum_{j=1}^{k+1} f(\eta)^{3 / 4}\left|A_{j}\right| \tag{65}
\end{equation*}
$$

by (28) (see the paragraph above (56)), (57) and

$$
\begin{aligned}
\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x\right\|\left\|x_{1}+x_{2}\right\|} & =\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left\|T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right\|} \leq \frac{\left\|T^{i_{0}} x_{1}\right\|}{\left|z_{1}^{*}\left(T^{i_{0}} x_{1}+T^{i_{0}} x_{2}\right)\right|} \\
& =\frac{\left\|T^{i_{0}} x_{1}\right\|}{\left|z_{1}^{*}\left(T^{i_{0}} x_{1}\right)\right|}=1
\end{aligned}
$$

which follows from (52), (54) and the fact that $\left\|z_{1}^{*}\right\|=1$. For $i=1, \ldots, k+1$ rewrite (65) as

$$
\left(\frac{2}{3}-2 f(\eta)^{3 / 4}\right)\left|A_{i}\right| \leq \frac{2}{f(\eta)^{1 / 4}}+\left(4 f(\eta)^{1 / 2}+\frac{2}{f(\eta)^{1 / 4}}\right)\left|A_{0}\right|+\sum_{\substack{j=1 \\ j \neq i}}^{k+1} f(\eta)^{3 / 4}\left|A_{j}\right|
$$

Thus, since $f(\eta)<\left(\frac{1}{6}\right)^{4 / 3} \wedge\left(\frac{1}{4}\right)^{1 / 2}$ (by (49)), we obtain

$$
\frac{1}{3}\left|A_{i}\right| \leq \frac{2}{f(\eta)^{1 / 4}}+\left(1+\frac{2}{f(\eta)^{1 / 4}}\right)\left|A_{0}\right|+\sum_{\substack{j=1 \\ j \neq i}}^{k+1} f(\eta)^{3 / 4}\left|A_{j}\right|
$$

Hence, since $1 \leq 1 / f(\eta)^{1 / 4}$, we obtain that for $i=1, \ldots, k+1$,

$$
\begin{equation*}
\left|A_{i}\right| \leq \frac{6}{f(\eta)^{1 / 4}}+\frac{9}{f(\eta)^{1 / 4}}\left|A_{0}\right|+3 \sum_{\substack{j=1 \\ j \neq i}}^{k+1} f(\eta)^{3 / 4}\left|A_{j}\right| \tag{66}
\end{equation*}
$$

By substituting (64) in (66) we obtain that for $i=1, \ldots, k+1$,
(67) $\left|A_{i}\right| \leq \frac{6}{f(\eta)^{1 / 4}}+\frac{36}{f(\eta)^{1 / 2}}+72 f(\eta)^{1 / 4}\left|A_{0}\right|+36 \sum_{j=1}^{k+1} f(\eta)^{1 / 2}\left|A_{j}\right|+3 \sum_{\substack{j=1 \\ j \neq i}}^{k+1} f(\eta)^{3 / 4}\left|A_{j}\right|$.

We claim that (64) and (67) imply that $\max \left\{\left|A_{i}\right|: 0 \leq i \leq k+1\right\} \leq 1 / f(\eta)$ which finishes the proof. Indeed, if $\max \left\{\left|A_{i}\right|: 0 \leq i \leq k+1\right\}=\left|A_{0}\right|$ then (64) implies that

$$
\left|A_{0}\right| \leq \frac{4}{f(\eta)^{1 / 4}}+8 f(\eta)^{1 / 2}\left|A_{0}\right|+4(k+1) f(\eta)^{3 / 4}\left|A_{0}\right| \leq \frac{4}{f(\eta)^{1 / 4}}+\frac{1}{3}\left|A_{0}\right|+\frac{1}{3}\left|A_{0}\right|
$$

since

$$
f(\eta)<\left(\frac{1}{24}\right)^{2} \wedge\left(\frac{1}{12(k+1)}\right)^{4 / 3}
$$

by (49). Thus

$$
\begin{equation*}
\left|A_{0}\right| \leq \frac{12}{f(\eta)^{1 / 4}}<\frac{1}{f(\eta)} \tag{68}
\end{equation*}
$$

since $f(\eta)<\left(\frac{1}{12}\right)^{4 / 3}$ by (49). Similarly, if there exists $l \in\{1, \ldots, k+1\}$ such that $\max \left\{\left|A_{i}\right|: 0 \leq i \leq k+1\right\}=\left|A_{l}\right|$ then (67) for $i=l$ implies that

$$
\begin{aligned}
\left|A_{l}\right| & \leq \frac{6}{f(\eta)^{1 / 4}}+\frac{36}{f(\eta)^{1 / 2}}+72 f(\eta)^{1 / 4}\left|A_{l}\right|+36(k+1) f(\eta)^{1 / 2}\left|A_{l}\right|+3 k f(\eta)^{3 / 4}\left|A_{l}\right| \\
& \leq \frac{42}{f(\eta)^{1 / 2}}+\frac{1}{4}\left|A_{l}\right|+\frac{1}{4}\left|A_{l}\right|+\frac{1}{4}\left|A_{l}\right|
\end{aligned}
$$

since $1 / f(\eta)^{1 / 4} \leq 1 / f(\eta)^{1 / 2}$ and $f(\eta)<\left(\frac{1}{288}\right)^{4} \wedge(1 / 144(k+1))^{2}$ by (49). Hence

$$
\begin{equation*}
\left|A_{\ell}\right| \leq \frac{168}{f(\eta)^{1 / 2}} \leq \frac{1}{f(\eta)} \tag{69}
\end{equation*}
$$

since $f(\eta)<\left(\frac{1}{168}\right)^{2}$ by (49). By (68) and (69) we have that $\max \left\{\left|A_{i}\right|: 0 \leq i \leq k+1\right\} \leq$ $1 / f(\eta)$ which finishes the proof.

References

1. Androulakis, G., Odell, E., Schlumprecht, T. and Tomczak-Jaegermann, N., On the structure of the spreading models of a Banach space, Preprint, 2002.
2. Androulakis, G. and Schlumprecht, T., Strictly singular non-compact operators exist on the space of Gowers-Maurey, J. London Math. Soc. 64 (2001), 655674.
3. Aronszajn, N. and Smith, K. T., Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), 345-350.
4. Enflo, P., On the invariant subspace problem in Banach spaces, in Seminaire Maurey-Schwartz (1975-1976). Espaces L L_{p}, applications radonifiantes et géométrie des espaces de Banach, Exp. 14-15, Centre Math. École Polytechnique, Palaiseau, 1976.
5. Enflo, P., On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), 213-313.
6. Ferenczi, V., A uniformly convex hereditarily indecomposable Banach space, Israel J. Math. 102 (1997), 199-225.
7. Gasparis, I., Strictly singular non-compact operators on hereditarily indecomposable Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1181-1189.
8. Gowers, W. T., A remark about the scalar-plus-compact problem, in Convex Geometric Analysis (Berkeley, Calif., 1996) (Ball, K. M. and Milman, V., eds.), Math. Sci. Res. Inst. Publ. 34, pp. 111-115, Cambridge Univ. Press, Cambridge, 1999.
9. Gowers, W. T. and Maurey, B., The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874.
10. Lomonosov, V. I., Invariant subspaces of the family of operators that commute with a completely continuous operator, Funktsional. Anal. i Prilozhen. 7:3 (1973), 55-56 (Russian). English transl.: Funct. Anal. Appl. 7 (1973), 213-214.
11. Read, C. J., A solution to the invariant subspace problem, Bull. London Math. Soc. 16 (1984), 337-401.
12. READ, C. J., A solution to the invariant subspace problem on the space l_{1}, Bull. London Math. Soc. 17 (1985), 305-317.
13. Read, C. J., A short proof concerning the invariant subspace problem, J. London Math. Soc. 34 (1986), 335-348.
14. Read, C. J., Strictly singular operators and the invariant subspace problem, Studia Math. 132 (1999), 203-226.

Received January 7, 2002
George Androulakis
Department of Mathematics
University of South Carolina
Columbia, SC 29208
U.S.A.
email: giorgis@math.sc.edu
Per Enflo
Department of Mathematics
Kent State University
Kent, OH 44240
U.S.A.
email: exflo@mcs.kent.edu

[^0]: ${ }^{1}$) The research was partially supported by NSF.

