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A property of strictly 
singular one-to-one operators 

George  Androu lak i s  and  Per  Enflo(1) 

Abs t r ac t .  We prove that if T is a strictly singular one-to-one operator defined on an infinite 
dimensional Banach space X, then for every infinite dimensional subspace Y of X there exists an 
infinite dimensional subspace Z of X such that ZAY is infinite dimensional, Z contains orbits of 
T of every finite length and the restriction of T to Z is a compact operator. 

1. I n t r o d u c t i o n  

A n  o p e r a t o r  on an infini te d imens iona l  Banach  space is cal led strictly singular 
if it  fails to  be an  i somorph i sm when it  is r e s t r i c t ed  to  any infini te  d imens iona l  sub- 

space (by "opera tor"  we will a lways mean  a "cont inuous  l inear  map" ) .  I t  is easy  to  

see t ha t  an  o p e r a t o r  T on an infini te d imens iona l  Banach  space X is s t r i c t ly  s ingular  

if and  only if for every infini te  d imens iona l  subspace  Y of X there  exis ts  an  infini te  

d imens iona l  subspace  Z of Y such t h a t  the  res t r i c t ion  of T to  Z, TIz: Z-+X, is a 

compac t  ope ra to r .  Moreover,  Z can be  a s sumed  to have a basis.  C o m p a c t  o p e r a t o r s  

are special  examples  of s t r i c t ly  s ingular  opera tors .  If  1 <_p<q<_oc t hen  the  inclu- 

sion m a p  ip,q:lp--+lq is a s t r i c t ly  s ingular  (non-compac t )  opera to r .  A hereditarily 
indecomposable Banach  space is an infini te  d imens iona l  space such t h a t  no subspace  

can be wr i t t en  as a topolog ica l  sum of two infinite d imens iona l  subspaces .  W.  T. 

Gowers  and  B. M a u r e y  cons t ruc ted  the  first example  of a he red i t a r i ly  indecompos-  

able  space [9]. I t  is also proved in [9] t h a t  every o p e r a t o r  on a complex  he red i t a r i l y  

i ndecomposab le  space can be wr i t t en  as a s t r i c t ly  s ingular  p e r t u r b a t i o n  of a mul t i -  

ple of the  ident i ty .  If  X is a complex  he red i t a r i l y  i ndecomposab le  space and  T is a 

s t r i c t ly  s ingular  o p e r a t o r  on X then  the  s p e c t r u m  of T resembles  t i le  s p e c t r u m  of 

a compac t  o p e r a t o r  on a complex  Banach  space:  it  is e i ther  the  s ingle ton  {0} (i.e. 

T is quas i -n i lpo ten t ) ,  or a sequence {A,r~ : n =  1, 2, . . .} U {0}, where  An is an eigenvalue 
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of T with finite multiplicity for all r~, and (A~,,)~ converges to 0, if it is an infinite 

sequence. It was asked whether there exists a hereditarily indecomposable space 
X which gives a positive solution to the "identity plus compact" problem, namely, 
every operator on X is a compact  per turbat ion of a multiple of the identity. This 
question was answered in negative in [2] for the hereditarily indecomposable space 
constructed in [9[, (for related results see [7[, [8], and [i]). By [3], (or the more 
general beautiful theorem of V. Lomonosov [10]), if a Banach space gives a positive 
solution to the "identity plus compact" problem, it also gives a positive solution 

to the famous invariant subspace problem. The invariant subspace problem asks 
whether there exists a separable infinite dimensional Banach space on which every 
operator has a non-trivial invariant subspace, (by "non-trivial" we mean "different 
than {0} and the whole space"). It  remains unknown whether 12 is a positive solu- 
tion to the invariant subspace problem. Several negative solutions to the invariant 
subspace problem are known [4], [5], [11], [12], [13]. In particular, there exists a 
strictly singular operator with no non-trivial invariant subspace [14]. It is unknown 

whether every strictly singular operator on a super-reflexive Banach space has a non- 
trivial invariant subspaee. Our main result (Theorem 1) states that  if T is a strictly 
singular one-to-one operator on an infinite dimensional Banach space X,  then for 
every infinite dimensional Banach space Y of X there exists an infinite dimensional 
Banach space Z of X such tha t  Z N Y  is infinite dimensional, the restriction of T to 
Z, TIz: Z-+X,  is compact,  and Z contains orbits of T of every finite length (i.e. for 
every h E N  there exists z,~CZ such that  {z , ,Tz~ ,T2z~ , . . .  ,T~b.~}cZ).  We raise 
the following question. 

Q u e s t i o n .  Let T be a quasi-nilpotent operator on a super-reflexive Banach 
space X ,  such that for every infinite dimensional subspace Y of X there exists 
an infinite dimensional subspace Z of X such that Z N Y  is infinite dimensional, 
T]z: Z - ~ X  is compact and Z contains orbits of T of every finite length. Does T 
have a non-trivial invariant subspace? 

By our main result, an affirmative answer to the above question would give 
that  every strictly singular, one-to-one, quasi-nilpotent operator  on a super-reflexive 
Banach space has a non-trivial invariant subspace; in particular, we would obtain 
that  every operator on the super-reflexive hereditarily indeeomposable space con- 
structed by V. Ferenczi [6] has a non-triviM invariant subspace, and thus the in- 

variant subspace problem would be answered in affirmative. 
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2. T h e  m a i n  resul t  

Our main  result is the following theorem. 

T h e o r e m  1. Let T be a strictly singular" one-to-one operator on an infinite 

dimensional Banach space X .  Then, for every infinite dimensional subspace Y of 
X there exists an infinite dimensional subspace Z of X ,  such that Z A Y  is infinite 
dimensional, Z contains orbits of T of every finite length, and the restriction of T 
to Z, TIz: Z - + X ,  is a compact operator. 

The proof  of Theorem 1 is based on Theorem 3. We first need to define the 

bior thogonal  constant  of a finite set of normalized vectors of a Banach space. 

Definition 2. Let X be a Banach space, h E N ,  and xl ,  x2, ..., x~ be normalized 

elements of X.  We define the bior thogonal  constant  of xl ,  ..., x~ to be 

b C { X l , . . . , x n } : = s u p  max{lozll,.. . ,lc~nl} : = 1  . 

Notice tha t  

b c { x l , . . . , x , ~ }  = i n f  i z i  :maxl</<n I/~/1=1 ' 
"i=1 

and tha t  bC{Zl, ..., Xn } <OO if and only if z l , . . . ,  x,~ are linearly independent .  

Before s ta t ing Theorem 3 recall tha t  if T is a quasi-ni lpotent  opera tor  on a 

Banach space X,  then tor every x E X  and ~]>0 there exists an increasing sequence 
i o~ ( ~),~=1 in N such tha t  IITir~zll <_rlllTi~-lzll. Theorem 3 asserts t ha t  if T is a str ict ly 

singular one-to-one opera tor  on a Banach space X then for arbi trar i ly small r l>0 

and k E N  there exists x c X ,  Ilzll =1 ,  such tha t  IlT~:xll <~]lIri-l:cll for i=1 ,  2, ..., k +  1, 
and moreover, the bior thogonal  constant  of x, T x / I I T x I I ,  ... , Z % c / l l T k x l l  does not 
exceed 1/g~O. 

T h e o r e m  3. Let T be a strictly singular one-to-one operator on a Banach 
space X .  Let Y be an infinite dimensional subspace of X ,  F be a finite codimensional 
subspace of X and k E N .  Then there exists ~lo ~ (0, 1) such that for every O<rl<r/o 
there exists x e  Y ,  Ilxll= l, satisfying 

(a) and IIT xll_<rjllT -lxll for" i = 1 , 2 ,  ... , k + l ;  

(b) 

{ bc IIT II,...,IIT  I I 
(where T O denotes the identity operator on X ) .  
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We postpone the proof of Theorem 3. 

Proof of Theorem 1. Let T be a strictly singular one-to-one operator on an 
infinite dimensional Banach space X, and Y be an infinite dimensional subspace 
of X. Inductively we construct a normalized sequence (z~0ncN c Y ,  an increasing 
sequence of finite families (z~)jc& of normalized functionals on X (i.e. (J 'r0,cN 
is an increasing sequence of finite index sets), and a sequence (~M),~eN C (0, 1), as 
follows: 

For n = l  apply Theorem 3 for F = X  (set Yl=f~), k = l ,  to obtain ~h <1/2e  and 
IIz ll=l, such that  

(1) Ilrizl][ < *71[[ri-lzl[[ f o r / = 1 , 2 ,  

and 

Tzl } 1 
(2) BC Z I , ~  < ~1-1 

For the inductive step, assume that  for n>2 ,  gz ~n-1 z* - \ i)i=l CY,  ( j)jEJi ( i=1, . . .  n - l ) ,  
and ~ 1 (~i)i=l have been constructed. Let J~ be a finite index set with J~ - i  C_J~ and 
(x~)je& be a set of normalized functionals on X such that  

(3) 
for every x E span{Tizj : 1 <_ j <_ n -  1, 0 <_ i <_ j}  

* �89 there exists j0 E Y~ such that  IXjo(X)[ >_ 

Y Apply Theorem 3 for = ~ j ~ &  kerx j ,  and k =n ,  to obtain ~M<l/n222~+4 and 

z  cY, LLz,  LL=I, such that 

(4) T i - l z n E F  and IIT~z~ll <~nllT'~-lz,~ll for i = 1 , 2 , . . . , n + 1 ,  

and 

Tz,~ T~zn } 1 
(5) be zn, ilTzr, ll,..., llT~znll ,- ,/~n " 

This finishes the induction. 
Let Z=span{T i zn :ncN,  O<_i<n}, and for h E N ,  let Z,r~=span{Tizn:O<_i<_n}. 

Let x E Z  with Ilxll=l and write x = ~ ~ 1 7 6  x,,, where x~EZ~ for all n ~ N .  We claim 
that 

1 for MI n E N. 
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Indeed, write 

V "  T z~ E aw~ T~ z~ 
x= /__ ai,,~llTiz~ll and x,~= iiT~znl I f o r n C N .  

n=l i=0 i=0 

Fix h E N  and set k~ xl+x2+...+x,~. Let joEJ~+l such that  

2 ~ ~ _ " II~ll _< Izjo(x,dl = 21~;o(X)l < 21Ix;oil IIxll = 2 ,  

by (3), and since for n+l_<m,  Jn+lC_Jm and thus by (4), xmEkerx~o. Thus IIx~ll = 
I1~ - ~ n - ~  II-< II~ II + IIG~-I II < 4  (where x0 =0). Hence, by (2) and (5) we obtain that  

Tzn T~z,. } 4 
(7) lai,~l < 4 b c  zn, [[Tz~ll '"" IIT'%~II < - -  for i = 0 ,  ... ,n. 

Therefore, using (1), (4), (7) and the choice of r],,, 

k @" Ti+lz~ -< E lai,'~l llTi+lz~H <- 4 1 
IITx~ll = Ili~-o a i ' n ~  i=0 IlTiz'.ll ~:o ~ ' n  = 4nx/~n" < 2~' 

which finishes the proof of (6). Let Z to be the closure of Z. Notice that  Z n Y D  
{z~:nEN}, and thus Z A Y  is infinite dimensional. We claim that  TIz: Z-+X is a 
compact operator, which will finish the proof of Theorem 1. Indeed, let (Yrn)mCN C 

Z, where for all m E N  we have IlY-~II =2, and write y~,~=En~__l y,~,~, where y ..... EZ~ 
for all nCN.  It suffices to prove that  (Ty,~).~eN has a Cauchy subsequence. Indeed, 
since Z .  is finite dimensional for all n ~ N ,  there exists 1 �9 (Ym)m~N a subsequence of 
(Y,~),~eN such that  1 (Ty.~.~),~eN is Cauchy (with the obvious notation that  if y),~ =9p 
for some p, then  ylm,n=yp,n). Let (Ym)mEN2 be a subsequence of ( y l ) m e N  such that 

2 (Tym,2),~cN is Cauchy (with the obvious notation that  if ~ Y;o,,n =Yp for some p, then 
Y~,,,=Yp,,~). Continue similarly, and let ~,~=y,~: and y,~,~- --Y,~,n-- m for all m, n c N .  
Then for m E N  we have O ~ = ~ = ,  Ym,~ where ~ ..... cZ~ for all n c N .  Also, for 
all n, m E N  with n_<m, (Yt)t>_,~ and ([h,,~)t>_,,~ are subsequences of (Y2)t6N and 
(Y~)t.eN, respectively. Thus for all n c N ,  (T~t,,-~)~cN is a Cauehy sequence. We 
claim that  (Tyrn)tEN is a Cauchy sequence. Indeed, for s > 0  let moEN be such 
that  1/2 "~~ <e and let ml EN be such that  

E 
(8) I IT~,~-T%,~II  < ~ 0  for all 8, t)_ fit I and n =  1, 2, ... ,m0. 
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Thus for s,t>_rrzl we have, using (6), (8) and the choice of too, 
OO 

77% o r 

n = l  n = m o + l  

OO 

IIT .. II§ IIT  , ,.II 
n = m o + l  

< mo 2m~ + 2 2~- 
n--mo§ 

c 2 
-- + 

2 2 ~o 
<s 

which proves that  (TYrn)rnEN is a Cauchy sequence and finishes the proof of Theo- 
rem 1. [] 

For the proof of Theorem 3 we need the next two results. 

L e m m a  4. Let T be a strictly singular one-to-one operator on an infinite di- 
mensional Banach space X .  Let k c N  and ~l>O. Then for every infinite dimensional 
subspace Y of X there exists an infinite dimensional subspace Z of Y such that for 
all z E Z  and for all i = l , . . . , k  we have that 

IlTZ zll <_ w]lz~-l zll 

(where T o denotes the identity operator on X) .  

Pro@ Let T be a strictly singular one-to-one operator on an infinite dimen- 

sional Banach space X, k c N  and r/>0. We first prove the following claim. 

Cla im.  For every infinite dimensional linear submanifold (which is not as- 
sumed closed) W of X there exists an infinite dimensional linear submanifold Z of 
W such that [[Tz[[<_~]Hz[[ for all zEZ .  

Indeed, since W is infinite dimensional there exists a normalized basic sequence 

(Zi)ieN in W having biorthogonal constant at most equal to 2, such that IITzi[[<_ 
rl/U +2 for all i~N.  Let Z = s p a n { z i : i c N }  be the linear span of the zi's. Then Z 
is an infinite dimensional linear submanifold of W. We now show that Z satisfies 

the conclusion of the claim. Let z ~ Z  and write z in the ibrm z -  i=ls for 
some scalars (Ai)i~N such that at most finitely many Ai's are non-zero. Since the 

biorthogonal constant of (zi)i~N is at most equal to 2, we have that IAil_<4[[zll for 
all i. Thus 

IIT II: _< IA{IIIT  II< 411  : Jll ll 
i=1 i 1 i : 1  
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which finishes the proof of the claim. 
Let Y be an infinite dimensional subspace of X. Inductively for i=0 ,  1, ..., k, 

we define Zi, a linear subInanifold of X, such that  
(a) Z0 is an infinite dimensional linear submanifold of Y and Zi is an infinite 

dimensional linear ubmanifold of T(Z~_I) for i_>1; 
(b) IlTzll<vllzll for all zCZi and for all i>0 .  

Indeed, since Y is infinite dimensional, we obtain Z0 by applying the above claim 
for W = Y .  Obviously (a) and (b) are satisfied for i=0 .  Assume that  for some 

i0E{0, 1, ... , k - l } ,  a linear submanifold Zio of X has been constructed satisfying 
(a) and (b) for i=io. Since T is one-to-one and Zio is infinite dimensional we have 

that  T(Zio) is an infinite dimensional linear submanifold of X and we obtain Zi0+l 
by applying the above claim for W=T(Z~ o). Obviously (a) and (b) are satisfied for 
i=io + 1. This finishes the inductive construction of the Z{s. By (a) we obtain that  
Zk is an infinite dimensional linear submanifold of Tk(Y). Let W T-~(Zk). Then 
W is an infinite dimensional linear submani%ld of X. Since ZkC_T~(Y) and T is 
one-to-one, we have that  W C Y .  By (a) we obtain that  for i=0 ,  1,.. . ,  k we have 
Zk C T~:-iZ~, hence 

T i W = T { T  kZ~, T (k-{)Zk CT-(k  {)Tk-{Z{=Zi 

(since T is one-to-one). Thus by (b) we obtain that  HTizll <_~?IIT i  zll 
and i 1, 2, ..., k. Obviously, if Z is the closure of W then Z satisfies the s tatement  
of the lemma. [] 

C o r o l l a r y  5. Let T be a strictly singular one-to-one operator on an infinite 
dimensional Banaeh space X.  Let k'~N, r]>O and F be a finite codimensionaI 
subspaee of X.  Then for every infinite dimensional subspace Y of X there exists an 
infinite dimensional subspace Z of Y such that for all zC Z and for all i=l ,  ...,/;+1, 

T~-Xz~F and IIT%II ~]llT~<zll 

(where T O denotes the identity operator on X).  

Pro@ For any linear submanifold W of X and for ally finite codimensional 

subspace F of X we have that  

(9) dim(W/ ( FC%V ) ) < dim(X/F) < oo. 

Indeed for any n > d i m X / F  and for any linear independent vectors xl , . . .  ,x~ in 
W \ ( F N W )  we have that  there exist scalars •1,-.-, A, with (A1, ..., s162 ..., 0) 
and ~ 2 1  ,kix.i c F  (since n>dim(X/F)) .  Thus E~2I aix  i EFNl~V which implies (9). 
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Let /~(T) denote the range of T. Apply (9) for W=/~(T)  to obtain 

(10) dim(R(T)/(Ft(T)AF)) < d im (X /F )  < oc. 

Since T is one-to-one we have that  

(11) dim(X/T-l(F)) <_ dim(tt(T)/(Ft(T)~F)). 

Indeed, for any r~>dim(l{(T)/(R(T)f3F)) and for any linear independent vectors 
Zl,...,z,~ of X\T-S(F),  we have that  TXl,...,Tx,,. are linear independent vec- 
tors of R(T)\T(T-S(F))=R(T)\F (since T is one-to-one). Thus TXa , . . . ,Tz~E 
R(T)\(R(T)nF) and as rz>dim(R(T)/(R(T)nF)), there are scalars kl, ..., A,~ with 

(A1, . . . ,kr , ) r  such that  2 i  1A4Tz'iER( )AF. Therefore (}-~i=lkiZi)E 
F,  and hence ~ '~ A i z i E T - I ( F ) ,  which proves (11). By combining (10) and (11) i=1 
we obtain 

(12) dim(X/T -1 (F)) < oc. 

By (12) we have that  

(13) dim(X/T-i(F)) < oo for / = 1, 2, ..., k. 

Thus dim(X/W1) < ec, where W1 = F  A T -  1 (F) A... @T -k (F). Therefore if we apply 
(9) for W=Y and F=W1 we obtain 

(14) dim(Y/(YNW])) < dim(X/W1) < oc, 

and therefore YAW1 is infinite dimensional. 
Now use Lemma 4, replacing Y by YNW1, to obtain an infinite dimensional 

subspace Z of Y n W1 such that  

IIT*zll<-~ll T* %11 for all z E Z  and i = l , . . . , k + l .  

Notice that  for zEZ and i=1 ,  ..., h we have that  z~W~, and thus Ti - l zcF.  [] 

Now we are ready to prove Theorem 3. 

Proof of Theorem 3. We prove by induction on k that  for every infinite di- 
mensional subspace Y of X, finite codirnensional subspace F of X, k c N ,  function 
f :  (0, 1)-+(0, 1) such that  f(7?)'N0 as rlx,~O, and for i0E{0}UN, there exists q0>0 
such that  for every 0<r/<rl0 there exists z c Y ,  Ilzll=l, satisfying 

(a') Ti - l zEF and I]Tixll <~HTi-lccll for i - 1 ,  2, ..., i0 + h + l ;  
(b') 

{ ri~ T{~ Ti~ } 1 
bc iiTioxll, llTio+izll,..., llT,io+kcc] I < f(rl--~" 
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For k = l  let Y, F,  f ,  and i0 be as above, and let rl0E(0, 1) satisfy 

(15) f (~]o) < ~ 62" 

Let O<rl<rlo._ Apply Corollary 5 for k and ~1 replaced by i0+1 and gr/,1 respectively, 
to obtain an infinite dimensional snbspace Z1 of Y such that  for all zEZ1 and for 
i=1,  2, ... ,io+2, 

(16) r ~ * z e F  and IIr%ll_< 1,11T~ lzll. 

Let x I 6 Z  1 with lixz II =1. If bc{Ti~176 H, T*~176 ll}-< 1//(r/) then 
xl satisfies (a') and (b') for k = l ,  thus we may assmne that 

{ Ti~ T~~ } 1 
be I ~ l l '  IIT~:~ > f01~" (17) 

Let 

(18) 0 < r / 2 < ~ A  min A rain f(r]). 

Let ~;, z~ e x * ,  I1~; 11 = ling 11 = 1, ~;(T~Ox~)= IIT~Ox~ II and z~ (Ti~ IITi~ 
Since kerz~Nker z~ is finite codimensional and T is one-to-one, by (13) we have 
that  

(19) dim(X/T -i~ (ker z~ A ker z~)) < oo. 

Apply Corollary 5 for F,  k and r] replaced by FAT-i~ i0+2 and ~72, 
respectively, to obtain an infinite dimensional subspace Z2 of Y such that  for all 
zEZ2 and for all i=1,  2, ... ,%+2,  

(20) Ti-lzEFNT-i~ and IITizll<_r]2llT ~ lzll. 

Let x ~ X *  with Ilx~ll=x~(xm) 1 and let x2eZ2Nkerx~ with 

(21) IIT~~ = II~r"~~ II 

and let x=(xl+x2)/llxl+x211. \~/e will show that  x satisfies (a') and (b') for k = l .  
We first show that  (a') is satisfied for k = l .  Since xl,Txl,... ,Ti~ 

(by (16)) and x2,Tx2,... , T i ~  (by (20)) we have that  x, Tx,... ,T~~ 
Before showing that  the norm estimate of (a') is satisfied, we need some preliminary 
estimates: (22)-(30). 
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(22)  - -  _ 
2 IlT~~ - 2~12 2~j2 2~2 - 

Thus, by (22), for 1<_i<io (assuming tha~ 2<_i0) we have 

(23) ilT,Z~cll ilXl+X2[ [ ilT,~x~+T,Zx2ll _< [iTexlll+llT, x211 -~< 3 T~x211 

and 
1 (24) liT*x[[ Ilxa+z211 = IIT%~+T*x~II > IITb211-IIT*zall > ~ IIT':x211. 

Also notice that,  by (21), 

(25)  

and 

If 1_<i</o (assuming that  2_<i0) then, by (18), (20) and (21), 

[[r,qc~[ I = [[T*~ < IIT%c'~ll, IIT*~ < @-'~llT*x2[[ < IITqc2[[ 
2 

IIZ'%l] IlXl--X211 : ][Ti~176 ~ [ITi~176176 

fIT'%If llzx+x211 = llT~~ + T~~ ~ z; (T{~ T~~ 
(26) : ~; (T*'~) : IIT~o~ II 

(by (20) for z x2 and i=1) .  Also fbr io<i<io+2 we have that  by applying (20) 
for z=x2,  i i0 times, we obtain, using (18) and (21) and the fact that  ~/2<1, 

i io io 
I I T ~ I I _ < v ~  l i t  ~ : l l - < , ~ l l T ~ ~  

(27) 2ttT~o~ii i ; 
-r]2 I I T { x ~ l l  2]]T{x~ll < f(~])]]T{xlll < I I T { x l l l  . 

Thus for iofi<_io+2 we have 

(28) IlT*xll Hxl+x2ll = IITba+Z*x2ll <_ Ilr*x~ll+l[Tb2ll < ~[[T*x~ll. 

Also for io<i<io+2 we have by (27), 

(29) IIT*xH IIx,+x211 = I lTbl  +Z~x211 _> IIT'~m~ II-I/r*x211 > �89 

Later in the course of this proof we will also need that,  using (27) and the fact that  
f ( r ] )< l ,  

Ilrio+<~:ll Ilxl+z211 Ilr~:~176 

> IIT*~ Ti~ 
2 

(30) f(rl) 
_ 2-f(r;)]]T,zO+~x2[[ 

f(rl) 
1 

> - - I I T ~ 0 + ~ x 2 1 1 .  
- f ( r ] )  
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Finally we will show that for 1 < i < i 0 + 2  we have IIT~zll <~IITg-%II  . Indeed if i=1  
then, using (16), (18), (20) and the facts that  I lxall=l=z~(xl+x2) and IIx~ll=l, 

IITx~ll+llTx~l[ 1,11xlll+,211x~ll I]Tixll- I[Txl+TX211< < 
Ilxa+z2ll - II<+x211 - Ilxl+x211 

(31) < ~r / l lx l l l+~2( l lz l+ZNll+l lx l l l )  = @ l + r j 2 ) x ~ ( < + x 2 )  
/r/2 _< ~- +2~/2 <_rl. 

If 1<i< io  (assuming that  3~i0) we have that, by (18), (20), (23) and (24), 

(32) IIT~xll ~//T~x~ll 
I1:> *xl~ -< 1 < 3,~ < ,~z. 

If i=io  > 1 then, by (18), (20), (21), (24) and (25), 

(33) IIT%II < 211T*~ - 4  IIT~~ <4r/2<r/. 
1 1 ~ I I - � 8 9 1 7 6  II II T~~ ~x211 

If io<i<_io+2 then, using (16), (28) and (29), 

(34) IIT~xll 311T%11 
iiT~_lxl~ I ~ �89 H <r]. 

Now (31) (34) yield that for 1 < i < i 0 + 2  we have IITixll <wil t  i ~xll. Thus x satisfies 
(a') for k=  1. Before proving that x satisfies (b t) for k=  1 we need some preliminary 
estimates: (35) (40). By (17) there exist scalars ao and 0,1 with max{]aol, 1311}----1 
and tt~ll </(r l) ,  where 

TiOXl Tio+lxl 
(35) w = ao llZiox I 1~ +G1 llTio+lx Il]" 

Therefore 

Ti~ I 31 r i ~  < IIwll < f ( r / ) .  
Im ol-lalll = ] lTio+lXl[  [ _ 

Thus 1-f(r])~laol, 1311~1 and hence 

(37) 
la~l< 1 < 1 
laol- I'~ol- 1-.f(,)" 
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Also by (35) we obtain that 

and thus 

(38) 

Let 

(39) 

I]T/~ TiO ~ l -- _ _  

ao 

T~o cc -- _ _  

w-IITi~ Ti~ 
~o IIr~o+l< II 

l (]]T~~176 T~~ ) ]]Xl+Z2l] a ~  IIZ~o+lXlll +ri~ " 

~=TiO:c_~ Uri~ ai Z~~ Ti~ 
[]Xl+X2]} ao Ilri~ I l x ~ + x ~ l l "  

Notice that (38) and (39) imply that ~ =  (lITi~ [[/llal +x2 Hao)w and hence by (15), 
(20), (37), the choice of z~ and the fact that IIw]] <f(r]), 

z*(Ti~ IIT~~ IIT~~ f0/)  <2/(~/)]]Ti~ -2f(~])  1 
- [[xl+x2ll 1-f( r j  - r[x~+x2l[ [fz~+x2ll 

. . . .  z~(Ti~176 IIT*~ 
(40) = zyffl) ~{~-1 +x~]]2 ~ - < 2f(r/) IIxl+x211 = 2f(r/)IIT~~ . 

Now we are ready to estimate bc{Ti~176 ri~176 Let the scalars 
Ao and Ai be such that 

Tiox _ Tio+lx 
Ao ~ + A~ IIT~o+ I~:r t = 1. 

We want to estimate max{lAol, ]Ai ]}. By (30), (39), (40) and the triangle inequality 
we have 

I[ Ao ( ,,Ti~ al T*~ Ti~ ) T~~ 
1 =  ~ ~-IIx~+z211 ao I 1 ~ 1 1  r I 1 ~ 1 1  +& IIT~~ 

I I T ~  ~ ~ II I I ~ l l  

k, llZ~~ Ilxl+x211 ao [[T~~ IlZl+X2ll IITi~ 
(41) Ao ~ A~Ti~ 

+ ~ w ~  IIT~o+lxll IIx~+~ll 
> [  A~176 Ti~ 
- /IT~ozllll<+~ll I1~11 

(-AollT~~ as~_ AitfTe~ )T i~  
+\llTg~ Ilzl+z211 ao IIT~~ Ilxl+x211~ HT~~ 
-2f(~)lA01-f(~)lA11. 
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By (20) for i=1  we have that Ti~ and since z~(T~~176 it 
is easy to see that bc{Ti~ Ti~176 Thus (41) implies 
that 

(42) 

and 

(4a) 

IIT~~ Ilzl+xNil ~o 
A~ ]]Ti~ II 

/[T~~ Ilxl+x2ll ~ 2+4fQl)lAo[+2f(~I)lAll 

IAol IIT{~ <2§247 

Notice that (43) implies that 

(44) IA01 -< 4+ 8f (r])[A0 [ +4f(~])IA1 I, 

since 
]]T~~176 ][Ti~176 

IIT,o~.~I I - IIT~o:~I I 

by (21). Also by (42) we obtain 

IA11lITi~ IA0111ri~ I~11 
IIT~~ IIxl +x2[[ rrT~,x[[ [[xl+x2[[ I~o[ 

Thus 

2 1 
(45) ~IAll l _ f ( u )  

by (28) for i= io+1,  (37) and 

=2,  

- -  < 2+4f(~7)lAol+2f(~,7)lA~l. 

- - [ A o l  _~ 2§ 

IIT{~ II IIT{~ II IITi~ II IIT{~ II 
iiTioxll ilxl+x2] ] = iiTioxl+Tiox211 ~ z,~(Tioxl+Tiox2) z~(Tioxl ) - 1 ,  

which hold by (20) and the choice of z~. Notice that (45) implies that 

(46) fd~l< 6+~lAol, 

since f (~)<  ~ by (15). By substituting (46)into (44) we obtain 

1 IAo I -< 4+8f(v)IAo I +4f(~]) (6 + ~ Ido I) -- 43  24f(r]) + ~ f(~)IAo I <- 5 + ~ IAo I, 
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since f(rl) < 2@4 by (15). Thus IAol_< 10. Hence (46) gives that IAl1_<62. Therefore, 
by (15), 

( Ti~ Ti~ "1 1 
bc~_ iiT~zozl I ,/[T~o+lxll ~ < 62 < 

_ _ f ( ~ ] ) "  

We now proceed to the inductive step. Assuming the inductive statement for 
some integer k, let F be a finite codimensional subspace of X, f:  (0, 1)-+(0, 1) with 
f(r])X,~O, as r]'~0, and io~NU{0}.  By the inductive statement for i0, f and r] 
replaced by i0+1, fl/4 and 1 ~q, respectively, there exists rh such that for 0<r]<ql  
there exists Xl EX, Ilxl II =1, such that 

(47) [ p i - l x l ~ F  and IIr%ll~,l lZ~;-l<ll  for i=l ,2 , . . . , ( io+l )+k+l  

and 

(4s) 

Let rio satisfy 

Ti~ Ti~ Ti~ } 1 
bc ]lTio4_lxl[[~ [[Tio4_2Xl[ [~...~ ilTio+X+k221[ [ ~ f(~])I/4 

1 
(49) rio <~1, f(~]o) < and 2882 

1 2 

let 0 < , < , o  and let Xl~X, I]2;'1r1=1, satisfy (47) and (48). If 

Ti~ Ti~ Ti~ } 1 
be i i ~ l l ,  l[Tio+lxxll,..., llrio+~+lxlll < f(~]~ 

then xs satisfies the inductive statement for k replaced by k + l .  Thus we may 
assume that 

(50) 

Let 

(51) 

Ti~ Ti~ Ti~ } 1 
bc i i ~ l ] ,  i]r/o+lx I ii,..., ilrio+k+lzl II > f(rl~" 

0 < , 2  < ~A rain IIr~~ IIT%111 4 ~<i<'io ~ A rain f(r;). io<i~o+k+l 2llTiOmlll 

Let d e { 2 ,  3, ...} be a finite index set and z~, (z~)jej  be norm one functionals such 
that 

(52) ~; ( r  ~~ Xl) = IIf*~ 
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and 

" 1 (53) for z~span{T~~176 there is j0 E J with ]z~o(z)l _> ~]]~ll- 

Since T is one-to-one we obtain by (13) that  dim(X/T i~ 
Apply Corollary 5 tbr F,  /c, q replaced by -io F A T  (nje{1}ujkerz~),  i 0 + k + 2  and 
712, respectively, to obtain an infinite dimensional subspace Z of Y such that  for all 
zEZ and for all i=1,  2, ..., i 0+k+2 ,  

(54) T i - l z ~ F N T - i ~  n}UJkerz~) and [[Tizl[<_~2[[Ti-~z]]. 

Let x~r I[x~ll=l=x~(~l), let cc2EZOkerx~ with 

(55) IIT~~ II = Hf~~ II 

and let x =  (Xl q-x2)/l1371 q-X2 II. We will show that  x satisfies the inductive statement 
for k replaced by k + 1. 

We first show that  x satisfies (a') for k replaced by k + l .  The proof is identical 
to the verification of (a') for k = l .  The formulas (27), (28), (29) and (34) are valid for 
io<i<io+k+2, and (30) is valid if i0+1 is replaced by any iE{ i0+ l ,  ..., i 0 + k + l } ,  
and this will be assumed m the rest of the proof when we refer to these formulas. 

We now prove that  (b') is satisfied for k replaced by k + l .  By (50) there exist 
sca lars  ao, al, ... ,ak+l with max{la01 , lall,  . . . ,  l a k + l l } = l  a n d  I l w l l < f ( ~ ) ,  where 

(56) 

We claim that  

k+l  Tio+ix 1 
w=Eai 

(57) [ao[ > l f(1l~1/4 
- -  2 \ ? �9 

Indeed, if la01 < 1 f(r])l/4 then max{la 1 I, ..., lak+l I} =1 and 

k+l z i o + l z  1 f l o g  1 
= g \ / < f ( • ) 1 / 4  aillTio+~xll I w - a o ~  _ <llwllq-laol<.f(u)+ l fgrl ~1/4 

�9 by (49), which contradicts (48). Thus (57) is proved. By (56) we since f(rl) < 
obtain 

TioXl= IITt~ _ ~  ai llTi~ I Ti~ 
o0~ w ~_~ao IlZi~ 
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and thus 

�9 i (II ziOxl II k + l  Tio+ix I ) 
- - w - -  E a--i llri~ ~-Ti~ . 

~=1 ~o IIT~~ 

Let 

(59) 
k + l  

~ = T i O z + E  ai IlTioxill Tio+ixl Ti~ 

i=1 aO [ ~ [  ]lT~~ ][Xl@X2[[ " 

Notice that (58) and (59) imply that ~=(]]TiOxi II/(llXl+X2lla0))w and hence, using 
(52), (54), (57) and the facts that  IIwll<_f(rl) and Ilz;ll=l, 

(6o) 

II~~ Ilwll < 2f(~l)a/4][T~~ 2f(fl)3/4z;(Ti~ 
II~li = II~l+x~ll laol IIx~+x~ll = I l x l + ~ l l  

= 2f(rl)a/4z~ (T~~ + T  i~ x2) ~ 2f(r]) 3/4 [[T i~ (xl  +x2)[[ = 2f(rl)3/4 {iTio~[[. 
I> l+x~ l l  - IlXl-[-X2 ]] 

Now we are ready to estimate 

Tiox I Tio+k+lxl } 
be ilTioxx] ] ,..., ]lTio+k+lxsH 

Let the scalars Ao, A1, ..., Ak+l be such that 

• A~ Ti~ 1. 

We want to estimate the max{IAol , IAll, ..., IAk+ll}. By (30), (59), (60) and recall- 
ing the paragraph before (56) we have 

(61) 

A / k + l  
1 =  ~o / ~ - V "  ~ IIT~~ T~~ 

]tT~~ \ ~ ao [[Xl+X2]] IITio+r 
i=1 

nollTiox2[[ T~Ox2 
= Ilf~~ IlXl+X2ll ll~-7~x2{[ 

k + l  / 
i~1 l ai -A~176 

@ ~0 IlTi~ Ilxl+x2[[ 

Ao _ k+l Tio+ix2 
,, II ~=1 IlT~~ ]]xl--x2ll 

i k+l Tio+ix T i~ x2 + ~ Ai 
]]~1 ~--X2 [[ i=1 [[Ti~ 

F I[T~o+~xH ]I~I+~:H } IIT~~ 
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>_ AoIITi~ T~~ 
IlT~~ IIx~+x211 I1~11 
k+l  / . 

H77 x H 
k+l  

- 2 f (~)~/~lAol- ~ f (,)lAd. 
i=1 

AillTi~ ) Ti~ 
lITio+ixH IIXl-[-X2II IITi~ 

By (54) for i=  1 and z=x2 we obtain that T~~ e ~ j e a  ker z~ and by (53) and (48) 
it is easy to see that 

Ti~ Ti~ 1 Ti~ } 2 
be  ilT~ox2ll,llrio+lxlll,..., ilzio+k+lXlll < f(r/)l/-~ ~ 

V3. 

Since f(r])< (3) 4 (by (49)), we have that 3<_2/f(~1) 1/4. Hence 

Tiox 2 Tio+lx2 Tio+k+lXl } 
bc [[T~ox2[{,NTio+lx2 H,...,NTio+k+lxl[ [ < -  f ( w ) l / 4 "  

Thus (61) implies that 

HT~~ _ < 2 (  k+l ) 
(62) IA~ IIT~0xll Ilxl+x211 f(f/)l/~ 1+2/@)3/41A~ I ' 

j = l  

and for i=1, ..., k+ l ,  

(63) 

a~o -- A~176 
IIZ%xll Ilxl+x211 

A~IIT~o+% H 

2 / k+l \ -< ~ [l + 2fO?)3/4lAol+j~=lf(rl)lAjl)" 

Since, by (55), 

IIT%zH llxl + x211 _ itT~~ + Ti~ 
IlT~ox2ll HT~ox2ll 

< IITi~176 = 2  

- i i T ~ o x 2 1 1  

we have that (62) implies 

(64) )Ao} _< - -  
k+l 

4 
f(rl)l/4 4-8ftfl)l/21Aol+4 E f(~l)3/41Ajl" 

j=l 
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Notice also that (63) implies that for i=1, ..., k+ l ,  

IITi~ la{I IITi~ 
I& {  - {Ao[ < /IT~o+'Zzl] }]zl+z~]] }ao} liT%x)))}xx +x211 - 

2 
f (7~)1/4 ~-4f(~)l/2{A~ 

k+ l  
+ 2  ~ f(~)~/4[& I. 

j ~ l  

Thus 

9 2 +4f(,)~/21mol§ I (65) Im' i l  f(7.])1.~ IAOI ~ f(?])l/~------4 j : l  

by (28) (see the paragraph above (56)), (57) and 

IIT{~ _ - IlTZ~ < IIT{~ 
liTiox(( {lX1-1-35"2[[ [IT~:OXl+T{ox2]l - i z ; ( T { o x ] + T { o x 2 ) ]  

IIT{~ 
- i ~ ( T { o ~ )  I - 1, 

which follows from (52), (54) and the fact that IIz~ll=l. For i : 1 ,  ..., k + l  rewrite 
(ss) as 

(52 _2f(,o)a/4 )/Ail <_ - -  f(q)l/4 + (4f(~1)1/2+ f (~a /4 ) lAo l§  
j= l  

" 1 x4/3 " 1 xl/2 Thus, since f(r/)<~g) A(~) (by (49)), we obtain 

k+l 

- - + ( 1 4  f(~l/4),Aol-t-j~=lf(~l)3/4]jj]. 
j ,/- .~ 

Hence since l<l/ f( f l )  1/4, we obtain that for i=1, ..., k§  

k + l  

:(~?/---s +-j-(9~)~fTs/~ Ido 1+3 ~ f(~)3/4 IA, I. 
j= l  j=/-i 

(66) IA.,.I <__ 

By substituting (64) in (66) we obtain that for i=1, ..., k+1, 

6 
(67) IAil _< 

f0~)l/4 

k+l k+l 

36 +72f( , ) l /~}Ao}+36~ f(,,)l/~lAjl+3 ~ f ( ~ ) 3 / ~ l A j l .  
f(rl)l/~ . j=l  j=- i  



A property of strictly singular one-to-one operators 251 

We claim that  (64) and (67)imply that  max{IAil:O<i<k+l}<_l/f(r])which fin- 
ishes the proof. Indeed, if max{IA~l:O<i<k+l}=lAol then (64) implies that  

IAo l  < - - -  4 ~S f ( r l )W2[Aol+4(k+l ) f ( r l )3 /4[A  ~ f(~)1/4 
4 i 1 

- - + 5 1 A o l +  IAo l  <- f(@14 

since 

by (49). Thus 

[ 1 " ~  2 // 1 ~4/3 

12 1 
(68) [Ao[ < f(~])l/~ < f(r~ 

since f (7l)<(~) 4/3 by (49). Similarly, if there exists {E{1 , . . . , k+ l}  such that 
max{ IA~ I:0 <i  < k + i } = I A~I then (67) for i= l  implies that 

6 36 
IA, I <_ f(r])l/4 ~ f(r/)l/2 ~-72f(rl)l/41All+36(lc+l)f(rl)l/2[Ali+3kf(rl)3/41All 

42 1 1 A 1 A 
<~f(~)l/2+~[Al[+~[ z[q-~[ tl 

since 1/f(r])l/4<_l/f07) 1/2 and f(r])< (V~s)4A(1/144(k+l)) 2 by (49). Hence 

168 1 
(69) IAtl < f(~l) 1/~ <- f07~' 

since f 0 / ) <  (l@gs) 2 by (49). By (68) and (69) we have that  max{IAi]:O<i<k+l}<_ 
1/f(rl) which finishes the proof. [] 

R e f e r e n c e s  

1. ANDR, OULAKIS~ G.~ ODELL~ E.~ SCHLUMPI{ECHT, T. and TOMCZAK-JAEGERMANN~ 
N., On the structure of the spreading models of a Banach space, Preprint, 
2002. 

2. ANDROULAKIS, G. and SCHLUMPRECHT, T., Strictly singular non-compact operators 
exist on the space of Gowers-Maurey, Y. London Math. Soc. 64 (2001), 655 
674. 

3. ARONSZAJN, N. and SMITH, K. T., Invariant subspaces of completely continuous 
operators, Ann. of Math. 60 (1954), 345-350. 



252 George Androulakis and Per Enflo: 
A property of strictly singular one-to-one operators 

4. ENFLO, P., On the invariant subspace problem in Banach spaces, in Seminaire 
Maurey-Schwartz (1975-1976). Espaces Lp, applications radonifiantes et 9do- 
mdtrie des espaces de Banach, Exp. 14-15,  Centre Math. l~cole Polytech- 
nique, Palaiseau, 1976. 

5. ENFLO, P.,  On the invariant subspace problem for Banach spaces, Acta Math. 158 
(1987), 213 313. 

6. FERENCZI, V., A uniformly convex hereditarily indecomposable Banach space, Israel 
J. Math. 102 (1997), 199-225. 

7. G ASPARIS, I.~ Strictly singular non-compact operators on hereditarily indecomposable 
Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1181-1189. 

8. GOWEI~S, W. T., A remark about the scalar-plus-compact problem, in Convex Geo- 
metric Analysis (Berkeley, Calif., 1996) (Ball, K. M. and Milman, V., eds.), 
Math. Sci. Res. Inst. Publ. 34, pp. 111 115, Cambridge Univ. Press, Cam- 
bridge, 1999. 

9. GOWER$, W. T. and MAUR.EY, B., The unconditional basic sequence problem, J. 
Amer. Math. Soc. 6 (1993), 851-8"/4. 

10. LOMONOSOV, V. I., Invariant subspaees of the family of operators that  commute with 
a completely continuous operator,  Funktsional. Anal. i Prilozhen. 7:3 (1973), 
55 56 (Russian). English transl.: Funct. Anal. Appl. 7 (1973), 213 214. 

11. READ, C. J,~ A solution to the invariant subspace problem, Bull. London Math. Soc. 
16 (1984), 337 401. 

12. READ, C. J., A solution to the invariant subspace problem on the space 11, Bull. 
London Math. Soc. 17 (1985), 305 317. 

13. READ, C. J., A short proof concerning the invariant subspace problem, J. London 
Math. Soc. 34 (1986), 335 348. 

14. READ, C. J., Strictly singular operators and the invariant subspace problem, Studia 
Math. 132 (1999), 203-226. 

Received January 7, 2002 George Androulakis 
Department  of Mathematics  
University of South Carolina 
Columbia, SC 29208 
U.S.A. 
emaih giorgis@math.sc.edu 

Per Enflo 
Department  of Mathematics 
Kent State University 
Kent, OH 44240 
U.S.A. 
emaih enflo@mcs.kent.edu 


