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A property of strictly
singular one-to-one operators

George Androulakis and Per Enflo(!)

Abstract. We prove that if T is a strictly singular one-to-one operator defined on an infinite
dimensional Banach space X, then for every infinite dimensional subspace Y of X there exists an
infinite dimensional subspace Z of X such that ZNY is infinite dimensional, Z contains orbits of
T of every finite length and the restriction of T to Z is a compact operator.

1. Introduction

An operator on an infinite dimensional Banach space is called strictly singular
if it fails to be an isomorphism when it is restricted to any infinite dimensional sub-
space (by “operator” we will always mean a “continuous linear map”). It is easy to
see that an operator T on an infinite dimensional Banach space X is strictly singular
if and only if for every infinite dimensional subspace Y of X there exists an infinite
dimensional subspace Z of Y such that the restriction of T to Z, T|z: Z—X, is a
compact operator. Moreover, Z can be assumed to have a basis. Compact operators
are special examples of strictly singular operators. If 1<p<g<oo then the inclu-
sion map ip q:lp—{, is a strictly singular (non-compact) operator. A hereditarily
indecomposable Banach space is an infinite dimensional space such that no subspace
can be written as a topological sum of two infinite dimensional subspaces. W. T.
Gowers and B. Maurey constructed the first example of a hereditarily indecompos-
able space [9]. It is also proved in [9] that every operator on a complex hereditarily
indecomposable space can be written as a strictly singular perturbation of a multi-
ple of the identity. If X is a complex hereditarily indecomposable space and T is a
strictly singular operator on X then the spectrum of T resembles the spectrum of
a compact operator on a complex Banach space: it is either the singleton {0} (i.e.
T is quasi-nilpotent), or a sequence {A,:n=1,2,...}U{0}, where A, is an eigenvalue
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of T with finite raultiplicity for all n, and (A}, converges to 0, if it is an infinite
sequence. It was asked whether there exists a hereditarily indecomposable space
X which gives a positive solution to the “identity plus compact” problem, namely,
every operator on X is a compact perturbation of a multiple of the identity. This
question was answered in negative in [2] for the hereditarily indecomposable space
constructed in [9], (for related results see [7], [8], and [1]). By [3], (or the more
general beautiful theorem of V. Lomonosov [10]), if a Banach space gives a positive
solution to the “identity plus compact” problem, it also gives a positive solution
to the famous invariant subspace problem. The invariant subspace problem asks
whether there exists a separable infinite dimensional Banach space on which every
operator has a non-trivial invariant subspace, (by “non-trivial” we mean “different
than {0} and the whole space”). It remains unknown whether /5 is a positive solu-
tion to the invariant subspace problem. Several negative solutions to the invariant
subspace problem are known [4], [5], [11], [12], [13]. In particular, there exists a
strictly singular operator with no non-trivial invariant subspace [14]. It is unknown
whether every strictly singular operator on a super-reflexive Banach space has a non-
trivial invariant subspace. Our main result (Theorem 1) states that if T" is a strictly
singular one-to-one operator on an infinite dimensional Banach space X, then for
every infinite dimensional Banach space ¥ of X there exists an infinite dimensional
Banach space Z of X such that ZNY is infinite dimensional, the restriction of 1" to
Z,T|z: Z—- X, is compact, and Z contains orbits of T of every finite length (i.e. for
every n€N there exists z,€Z such that {z,,72,, T2y, ..., T"2,} CZ). We raise
the following question.

Question. Let T be a quasi-nilpotent operator on a super-reflexive Banach
space X, such that for every infinite dimensional subspace Y of X there exists
an infinite dimensional subspace Z of X such that ZNY is infinite dimensional,
Tlz: Z—X is compact and Z contains orbits of T of every finite length. Does T
have a non-trivial invariant subspace?

By our main result, an affirmative answer to the above question would give
that every strictly singular, one-to-one, quasi-nilpotent operator on a super-reflexive
Banach space has a non-trivial invariant subspace; in particular, we would obtain
that every operator on the super-reflexive hereditarily indecomposable space con-
structed by V. Ferenczi [6] has a non-trivial invariant subspace, and thus the in-
variant subspace problem would be answered in affirmative.
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2. The main result
Our main result is the following theorem.

Theorem 1. Let T be a strictly singular one-to-one operator on an infinite
dimensional Banach space X. Then, for every infinite dimensional subspace Y of
X there exists an infinite dimensional subspace Z of X, such that ZNY is infinite
dimensional, Z contains orbits of T of every finite length, and the restriction of T
to Z, T|z: Z—X, is a compact operator.

The proof of Theorem 1 is based on Theorem 3. We first need to define the
biorthogonal constant of a finite set of normalized vectors of a Banach space.

Definition 2. Let X be a Banach space, n€N, and z1, zg, ..., 2, be normalized
elements of X. We define the biorthogonal constant of x1,...,x, to be

n
Zaixi 21}

=1

be{x, ..., Tn} ::sup{max{|a1|, ey |anl}

Notice that

1 Cinf
be{z1, ..., Tn} -

n

T4l 0 ma, =1
Zlﬁm @éﬁ,,lﬁl' }
P

and that be{zq,...,z,} <oo if and only if zy, ..., 2, are linearly independent.

Before stating Theorem 3 recall that if 7' is a quasi-nilpotent operator on a
Banach space X, then for every z€ X and n>0 there exists an increasing sequence
(in)5o, in N such that [Tz || <n||T*~'z||. Theorem 3 asserts that if T is a strictly
singular one-to-one operator on a Banach space X then for arbitrarily small >0
and k€N there exists z€ X, ||z||=1, such that || T%z|| <n||T* x| for i=1,2, ..., k+1,
and moreover, the biorthogonal constant of z, Tz/||Tz|, ..., T*z/||[T*z|| does not
exceed 1/,/77.

Theorem 3. Let T be a strictly singular one-to-one operator on a Banach
space X. LetY be an infinite dimensional subspace of X, F be a finite codimensional
subspace of X and KEN. Then there exists 19 (0,1) such that for every 0<n<mng
there exists €Y, ||z||=1, satisfying

(a) T 'zeF and |Tiz|| <n|lT" 12| for i=1,2,...,k+1;

(b) bc{m Ty Tkﬂf }<i
Tl TRl ) T

(where TO denotes the identity operator on X).
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We postpone the proof of Theorem 3.

Proof of Theorem 1. Let T be a strictly singular one-to-one operator on an
infinite dimensional Banach space X, and Y be an infinite dimensional subspace
of X. Inductively we construct a normalized sequence (z,)nen CY, an increasing
sequence of finite families (27);cs, of normalized functionals on X (i.e. (Jn)neN
is an increasing sequence of finite index sets), and a sequence (7,)nenC(0,1), as
follows:

For n=1 apply Theorem 3 for F=X (set J;=%), k=1, to obtain 71 <1/2% and
z1€Y, ||z1]|=1, such that

(1) (T2 || <m|| T ]| fori=1,2,

TZl 1
(2) bc{zl,—}<—.
[Tz )~ /m
For the inductive step, assume that for n>2, (zi)?:_llcY, (27)jea; (i=1, ... ,n—1),

and (m)?;f have been constructed. Let J,, be a finite index set with J,,_{CJ, and
(z})jes, be a set of normalized functionals on X such that

for every x Espan{Tizj 1<i<n—-1, 0<i<j}

®3)

there exists jo € J, such that |} (x)] > 3 [z].

Apply Theorem 3 for F=[)
z2n €Y, ||znl|=1, such that

es, kerzs, and k=n, to obtain 7,<1/n*2>"** and

(4) T 2 € Fand ||T 2, )| < | T 2n|| fori=1,2,...,n+1,
and
Tz "z, 1
5 bc{z,, n L }< .
) Tz Tl | S

This finishes the induction.

Let Z=span{T"z,:n€N, 0<i<n}, and for neN, let Z, =span{T"z,:0<i<n}.
Let z€ Z with ||z||=1 and write =", #,,, where z,, € Z, for all neN. We claim
that

(6) Tz < 51; for all e N,
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Indeed, write

o0 n T
:Zza“‘HTzn and xz,= Zam”Tl x for nc N.

n=1{=0
Fix neN and set Z,=x1+%2+...+ 2. Let jo€Jp+1 such that
[Znll < 2]2], (@0 )| =22, ()] < 2{127, [ 12| =2,

by (3), and since for n+1<m, Jn+1CJy, and thus by (4), z,€kerzj . Thus ||z, [|=
|Z0 —Zn1]| <|En |+ | Zn-1]| <4 (where o =0). Hence, by (2) and (5) we obtain that

Tz, "z, }< 4
[Tz 1T 20 ) — Vi

(7) laijnlgélbc{zn, for i=0,...,n.

Therefore, using (1), (4), (7) and the choice of 7,

[ Tzn|l =

Zaz n ||Tz

1T 2] _x~ 4 L

P Z' Gl e < 2 e =AY < g
which finishes the proof of (6). Let Z to be the closure of Z. Notice that ZNY D
{zn:n€N}, and thus ZNY is infinite dimensional. We claim that T'|z: Z—X is a
compact operator, which will finish the proof of Theorem 1. Indeed, let (ym )men C
2, where for all meN we have ||y, || =1, and write Ym=> w1 Ym.n, Where ¥, €Z,
for all neN. It suffices to prove that (Ty., )men has a Cauchy subsequence. Indeed,
since Z, is finite dimensional for all nEN, there exists (¥.,}men a subsequence of
(yYm)men such that (T'y;,, 1 )men is Cauchy (with the obvious notation that if ¥, =y,
for some p, then g, , =vp.n). Let (¥2,)men be a subsequence of (4}, Jmen such that
(Ty2, 2)men is Cauchy (with the obvious notation that if y;, ,, =y, for some p, then
Y2 n=Yp,n). Continue similarly, and let Jm=y7 and fm =y, for all m,neN.
Then for meN we have ﬂmzzzozl Um,n, Where ¥m n €2, for all neN. Also, for
all n,meN with n<m, (J¢)i>m and (Jin)i>m are subsequences of (y;")ien and
(QZ?n)teN, respectively. Thus for all neN, (7%, ):en is a Cauchy sequence. We
claim that (T'0m)ien is a Cauchy sequence. Indeed, for £>0 let mgeIN be such
that 1/2™0~!<e and let m; €N be such that

(8) 1 T9s,n —TGe.nll < ﬁ for all s,t>my and n=1,2, ... ,mp.
0



238 George Androulakis and Per Enflo

Thus for s,t>m4 we have, using (6), (8) and the choice of my,

Z Tgs,n _Tgt,n

119 — TG =
n=1
mo 20 o0
Y NTGen=Thenll+ Y I1TGenl+ D [T5enll
n=1 n=mog+1 n=mo+1
0 n=mo+1
€ 2
T2 2mo
<€

which proves that (T'9m)men is a Cauchy sequence and finishes the proof of Theo-
rem 1. O

For the proof of Theorem 3 we need the next two results.

Lemma 4. Let T be a strictly singular one-to-one operator on an infinite di-
mensional Banach space X. Let k€N andn>0. Then for every infinite dimensional
subspace Y of X there exists an infinite dimensional subspace Z of Y such that for
all ze€Z and for all i=1, ...,k we have that

I T2 <n|| T2
(where T® denotes the identity operator on X).

Proof. Let T be a strictly singular one-to-one operator on an infinite dimen-
sional Banach space X, k€N and 7>0. We first prove the following claim.

Claim. For every infinite dimensional linear submanifold (which is not as-
sumed closed) W of X there exists an infinite dimensional linear submanifold 7 of
W such that ||Tz||<n||z| for all z€Z.

Indeed, since W is infinite dimensional there exists a normalized basic sequence
(2;)ien in W having biorthogonal constant at most equal to 2, such that [|[Tz] <
n/272 for all ieN. Let Z=span{z;:i€N} be the linear span of the z;’s. Then Z
is an infinite dimensional linear submanifold of W. We now show that Z satisfies
the conclusion of the claim. Let z€Z and write z in the form z=X52,)\;z for
some scalars (A;);en such that at most finitely many \;’s are non-zero. Since the
biorthogonal constant of (z;);en is at most equal to 2, we have that |\;|<4||z| for
all . Thus

1Tz =

i )\iTZi
i=1

oo >0
n
<7 ITzl <Y allelisi =l
=1 =1
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which finishes the proof of the claim.

Let Y be an infinite dimensional subspace of X. Inductively for ¢=0,1, ..., k,
we define Z;, a linear submanifold of X, such that

(a) Zg is an infinite dimensional linear submanifold of ¥ and Z; is an infinite
dimensional linear ubmanifold of T(Z,_;) for i>1;

(D) ||1T2(|<n||z|| for all z€Z,; and for all ¢>0.
Indeed, since Y is infinite dimensional, we obtain Z; by applying the above claim
for W=Y. Obviously (a) and (b) are satisfied for i=0. Assume that for some
ip€{0,1,...,k—1}, a linear submanifold Z;, of X has been constructed satisfying
(a) and (b) for i=ig. Since T is one-to-one and Z;, is infinite dimensional we have
that T(Z;,) is an infinite dimensional linear submanifold of X and we obtain Z;,11
by applying the above claim for W=T(Z,,). Obviously (a) and (b) are satisfied for
1=ig+1. This finishes the inductive construction of the Z,’s. By (a) we obtain that
7y is an infinite dimensional linear submanifold of T7%(Y). Let W=T"*(Z). Then
W is an infinite dimensional linear submanifold of X. Since Z, CT*(Y) and T is
one-to-one, we have that WCY. By (a) we obtain that for i=0,1,...,k we have
Z,CT*="Z, hence

TW =TT %z, =17 -z cr-k-0pkiz = 7,

(since T is one-to-one). Thus by (b) we obtain that ||T%z|[<n|[T* !z| for all ze W
and i=1,2, ..., k. Obviously, if Z is the closure of W then Z satisfies the statement
of the lemma. O

Corollary 5. Let T' be a strictly singular one-to-one operator on an infinite
dimensional Banach space X. Let k€N, n>0 and F be a finite codimensional
subspace of X. Then for every infinite dimensional subspace Y of X there exists an
infinite dimensional subspace Z of Y such that for all z€ Z and for alli=1, ..., k+1,

Tl 2e Fooand ||T || <n||T 12

(where TV denotes the identity operator on X).

Proof. For any linear submanifold W of X and for any finite codimensional
subspace F' of X we have that

(9) dim(W/(FNW)) <dim(X/F) < oc.

Indeed for any n>dim X/F and for any linear independent vectors z1,..., %, in
WA\(FNW) we have that there exist scalars Aq,..., A, with (A1, ..., \,)#(0,...,0)
and Y. Nz € F (since n>dim(X/F)). Thus Y, Aiz;€ FNW which implies (9).
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Let R(T) denote the range of T. Apply (9) for W=R(T) to obtain
(10) dim(R(T)/(R(T)NF)) < dim(X/F) < oo.
Since T is one-to-one we have that
(11) dim(X/T~*(F)) < dim(R(T)/(R(T)F)).

Indeed, for any n>dim(R(T)/(R(T)NF)) and for any linear independent vectors
T1y e, Ty of X\TY(F), we have that Tzi,...,Txz, are linear independent vec-
tors of R(T\T(T~Y(F))=R(T)\F (since T is one-to-one). Thus Txy,..., Tz, €
R(TO\(R(T)NF) and as n>dim(R(T)/(R(T)NF)), there are scalars Ay, ..., A, with
(A, ooy An)#(0, ..., 0) such that Y. | \\Tx; € R(T)NF. Therefore T(> 7 | hix;)€
F, and hence ;. \;z; €T~ (F), which proves (11). By combining (10) and (11)
we obtain

(12) dim(X/T™H(F)) < o0.
By (12) we have that
(13) dim(X/T™4F))<oo fori=1,2,... k.

Thus dim(X/W;)<oo, where Wy =FNT~}(F)N...N"T~*(F). Therefore if we apply
(9) for W=Y and F'=W, we obtain

(14) dim(Y/(Y NW1)) < dim(X/W1) < oo,

and therefore Y NW is infinite dimensional.
Now use Lemma 4, replacing Y by YNWi, to obtain an infinite dimensional
subspace Z of YNWj such that

|T2|| <n||T* 12| forall ze Z and i=1,...,k+1.
Notice that for z€Z and i=1, ..., k we have that z€ W1, and thus T""1z€F. O

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We prove by induction on k that for every infinite di-
mensional subspace Y of X, finite codimensional subspace F' of X, k€N, function
£:(0,1)—=(0,1) such that f(n)\0 as n\0, and for i€ {0}UN, there exists ny>0
such that for every 0<n<np there exists z€Y, ||z||=1, satislying

(&) T~ lzeF and ([T'z|| <n||T" 1z| for i=1,2,...,ig+k+1;

(b")
Tiog  Thotly Tiotky, 1
be T T T TR < —.
[ Tioz||” [T+ || |Th+kz| [ = fn)
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For k=11et Y, F, f, and iy be as above, and let no€(0, 1) satisfy

(15) Fmo) < g5-

Let 0<n<ng. Apply Corollary 5 for k£ and 7 replaced by ip+1 and in, respectively,
to obtain an infinite dimensional subspace Z; of Y such that for all z€7; and for
i=1,2,...,ip+2,

(16) T 'zeF and |T%| <in|T" 'zl

Let z1€Zy with [[z1[|=1. If be{T 0wy /|| TPy ||, TV /| T  ay ||} <1/f(n) then
x1 satisfies (a') and (b’) for k=1, thus we may assume that

Tioxl Tio+1$1

(17 bc{ . s T > .

) o T ] |~ Fn)
Let

Ul |7 . | Ty ||

18 O<m< I M2 "2l N2 Tl ey,
(18) ST e KA P e RAC)
Let 27,25 X", ||z1]=]l25]|=1, 27(T*z1)=||T" | and z5(T% " zy)=|T x|,

Since ker 2z} Nker 25 is finite codimensional and T is one-to-one, by (13) we have
that

(19) dim (X /T~ (ker 2} Nker 23 )) < co.

Apply Corollary 5 for F, k and n replaced by FNT =% (ker 2} Nker 23 ), io+2 and ng,
respectively, to obtain an infinite dimensional subspace Z5 of Y such that for all
ZE€Z5 and for all i=1,2,...,59+2,

(20) T '2e FNT o (ker zjNker z3) and ||T%z|| <na| T 2.
Let 7€ X™* with ||z7||=23(z1)=1 and let x5 € ZoNker 7 with
(21) 1Ty || = [T

and let x=(x1+xz2)/l|z1+x2|]. We will show that z satisfies (a’) and (b) for k=1.

We first show that (a’) is satisfied for k=1. Since zy,Tx1,..., T g €F
(by (16)) and xa, T2y, ..., T lzs € F' (by (20)) we have that z, T, ..., T lzeF.
Before showing that the norm estimate of (a’) is satisfied, we need some preliminary
estimates: (22)-(30).
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If 1<i<iy (assuming that 2<ig) then, by (18), (20) and (21),

. Tig Tio 20 io—1 7 2
R PO 3 O O e X O 4P
[EAEaN 2m2 2n2 22 2
(T4 ||
Thus, by (22}, for 1<i<iy (assuming that 2<iy) we have
(23) T x| otz || = [T a1 + T w2 || < || TP@n |4 | T a2l < 31722
and
(24) T 2 |21 +aall = | T a1+ T s || > || T wo ||~ | T 21 || > 5 | T2 .
Also notice that, by (21},
(25) T x| lo1+aoll = | Tz +T s || < | T+ | THzs| = 2] Tz
and

(26) [T%x|| oy +az || = Tz + Tws|| > 27 (Tx1+ T z,)
=27 (T"21) = | Tz |

(by (20) for z=z5 and i=1). Also for 7p<i<ig+2 we have that by applying (20)
for z=xq, i—1i¢ times, we obtain, using (18) and (21) and the fact that o<1,
|1 T ol <3~ | Tzl < 1| T |
(27) 2T L
R
Thus for ip<i<ig+2 we have

(28) (T |21+ a2l = 1T w1+ T wa | || T {+ 1T w2l < ST .

[Tl < Fn) T < ST

Also for 19 <i<ig+2 we have by (27),
(29) T2 oy +azll = [T e+ T w2 | > | T2 || = 1T 22 ]l = 5| T @1

Later in the course of this proof we will also need that, using (27) and the fact that

f(n)<1,
T | oy + 2ol = | Tz + T 2 |

> [T+ || = | T 2|

s 2
(30) ~ fn)

= 2_"][‘(77) o+l

> T )|

f(n)

e = T g
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Finally we will show that for 1<i<ig+2 we have ||T%z||<n||T*"'z|. Indeed if i=1
then, using (16), (18), (20) and the facts that ||z1||=1=2z7(z1+22) and |z]||=1,

|T21+Twa|| _ | Toall -+ Tl _ gullzl+nellz]

| TPz = < <
|1+l lz1 +2x2]] |z + 22
1 1 *
snllzi+na(ler x|+ 21 ))  (3n+me)zi(zr422) n
31 < 4 =4 +1e < L 42y <.
(5D s+ 2] Jortas] RS g TR

If 1<i<igy (assuming that 3<iq) we have that, by (18), (20), (23) and (24),

Tl _ 5T s
1T ]| = ST |

(32) <3 <.

If i=ip>1 then, by (18), (20}, (21), (24) and (25),

ITs) _ 2T [T
1T el = ST, T ]

(33) <4y <.

If ig<i<ig+2 then, using (16), (28} and {29),

Tz SlIT |

34 . ,
( ) ||T1_1~’CH - %HT’_lle

Now (31)—(34) yield that for 1<i<ig+2 we have | T%z|| <n||T" *z|l. Thus x satisfies
(a') for k=1. Before proving that x satisfies (b’) for k=1 we need some preliminary
estimates: (35)—(40). By (17) there exist scalars aop and a; with max{|ao|, |a1]}=1
and [[w|| < f(n), where

Tiol‘l Ti0+11'1

35 = . : - .
(35) wW=ag [Toow,| +aq [Ttz ]|
Therefore

TiofL'l T10+1.’,C1
36 - = . < .
(36) '”“‘MHIVWmeH‘ s | £ el < £
Thus 1— f(n)<|apl,|ai|<1 and hence

jar| _ 1 1
(37) <<

lao| ~ laol = 1—f(n)
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Also by (35) we obtain that

. |]Ti0$1|| . aq Ti°+1.’E1
Tiog, = 12 Ty oy 22 =1
X1 o w H Zl’l“ao HTlO'H.’EIH
and thus
; 1 [Tz, || . ogap Totlg - )
38 Tz = w—||T% — 1T, .
(38) l|$1+$2l|< ao | Il“ao [ Teo+ 2y || ?
Let
_— . HT’:Ole ay Ti0+ll’1 TiOZUQ
39 W=T"g4 — = : — .
(58) lort o] a0 TEe izl T el

Notice that (38) and (39) imply that w=(||T* z1||/||z1 +2]|ao)w and hence by (15),
(20), (37), the choice of 2} and the fact that |[w||<f(n),

I o R T Bt Toml) (T
Il = e allaol "= ol =) = e el = 2 e Tl
_ 2 (T xy +Tas) [T (z1+22)|| o

Now we are ready to estimate be{T%x/||T x|, T% T z/|[T%* 12||}. Let the scalars
Ag and Ay be such that

A Tiox Tio+1w

T N T
We want to estimate max{|Ap|, |A1]}. By (30), (39), (40) and the triangle inequality
we have

” AO (~ “TioxlN a1 TZ°+1531 Tio&'?z ) TiOJrlLZT
= - T i g T 1 -
[T x| @1 +32ll ao TPz 71422l [T+ x|

. ” AOHTiOfEQH Tio.’ﬁg
AT [z | 1 T5s||
——A()”Tio.@l” Q_} A1”Tio+11'1H Ti0+1271
+(HT“xH 1 +z2ll ao [T x| ||~”'31+l“2||) [Tty |
(41) Ag i AyTrotg,
[Tzl 1T || [y +2||
B ” A()”TiofL‘QH TéOZEQ
T x| ey 42| | TPz |
AT ey AT\ Tt
+(||T"035H lz1422ll a0 T+ || [z, Jr962||> [Tty |
—2f(mAo| = F(m)]As].

|
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By (20) for i=1 we have that T%zscker 25 and since 25(Ttlz))={T 1z | it
is easy to see that be{Txy/||Txy|, Tz, /|| T 21|} <2. Thus (41) implies
that

AT ar | AT
2 e gl a0 Tt oy v | = 2 T4 Aol +27 () A
and
(43) AT %ll gy o) do|+2£ ()] Au).

[To|| |y +22|| —
Notice that (43) implies that
(44) [ Aol <4+8F(n)[Ag[+4(n)[Axl,

since
T x| lzy+aol| _ [ Toxy+T o] _ [ T%a1 |+ T 9
(T x| [Tozafl  — [Tz ’

by (21). Also by (42) we obtain

AT ey Al [T el
7% oo baall [Tl oz +aal lag] = 2+ (DIAolH2/ ()11
Thus
2 1
(45) §|A1,—Tf(17)i1401§2+4f(77)1140}+2f(77>,141|

by (28) for i=ip+1, (37) and

I T4 | [Tz _ Tzl Tzl _

- = - - - - = - 1
[Tzl ley+zoll  |Troay+T0xs|| ~ 25 (Thox+Tioxs)  2{(T0x1)

bl

which hold by (20) and the choice of 25. Notice that (45) implies that
(46) [A1] <6+ 2| 4],

since f(n)<3 by (15). By substituting (46) into (44) we obtain

| o] <4+8F(n)[Aol+4f(n) (6+ 2 [Aol) =4+24f(n)+ 152 f(n)| Aol <5+ 5[ Adl,
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since f(n)<5o; by (15). Thus [Ag|<10. Hence (46) gives that [A1]|<62. Therefore,
by (15),

bc{ Tiox Tio+1$ } cgo< —-1—
[ Tooxl” [T | f =~ f(n)

We now proceed to the inductive step. Assuming the inductive statement for
some integer k, let F' be a finite codimensional subspace of X, f:(0,1)—(0,1) with
F(m\0, as n\,0, and i{ceNU{0}. By the inductive statement for iy, f and 7
replaced by ip+1, f1/* and in, respectively, there exists 71 such that for O<n<m
there exists z1€X, |l21]|=1, such that

(47)  T''meF and ||T'm|| < in|T o] fori=1,2, ..., (io+1)+k+1

and
(48) be Tiotly,  Tiot2gp, Tiotltkg, < 1
[Tiotig, | [Tiot2z, | [ Tiot i+, || f = Fp)t/e
Let ng satisfy
(49) < <oy and f) < ()
o=t TS e ARG TV S\ Ty )

let 0<n<ng and let x1€X, ||x1]]=1, satisfy (47) and (48). If

Thog,  Thotly Trotk+ly,
be , , — Jenes — <
[Ty || [T+ ay || | Ttk +Lz || f(n)

then x, satisfies the inductive statement for k replaced by k+1. Thus we may
assume that

(50) bc{ Tiog,  Tiotly, Tio+k+1y, }> 1
||Ti°1’1H ’ ”Tz‘0+1x1 ” yorey ||Ti0+k+1$1 ” f(??) .
Let
Tro Tz’
(51) 0<m<tn min W02l Wl

4" 1<i<io 2| Ty || do<i<io+k+1 2||TH0m ||

Let JC{2,3,...} be a finite index set and 27, (27)jes be norm one functionals such
that

(52) 2 (Tzy) = || Tz,
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and
(53)  for zespan{T™ V' xy, ..., T 1y} there is jy € J with |2, ()] > 1zl

Since T’ is one-to-one we obtain by (13) that dim(X/T"((;cyyu kerz)))<oo.
Apply Corollary 5 for F, k, ) replaced by FﬂT‘iO(ﬂje{l}uJ kerz}), to+k+2 and
N2, respectively, to obtain an infinite dimensional subspace Z of Y such that for all
z€Z and for all 1=1,2, ... ,i0+k+2,

(54) Ti_lzeFﬂT_i°< ﬂ kerz;‘) and || T z|| <mo|| T2l
je{1tuJ

Let 7€ X*, ||z}||=1=z](x1), let z2€ ZNker 27 with
(55) 1770wy || = 10|

and let z=(z1+x2)/||z1+22||. We will show that x satisfies the inductive statement
for k replaced by k+1.

We first show that z satisfies (a') for k replaced by k+1. The proof is identical
to the verification of {a") for k=1. The formulas (27}, (28}, (29) and (34} are valid for
to<i<ip+k+2, and (30) is valid if 49 +1 is replaced by any ¢€{ip+1,...,ip+k+1},
and this will be assumed in the rest of the proof when we refer to these formulas.

We now prove that (b') is satisfied for k replaced by k+1. By (50) there exist

scalars ag, a1, ..., ag+1 with max{|ag|, |a1], ..., lax+1]/}=1 and |Jw||< f(n), where
ket 1
T70+lm1
(56) w= Z Y Tiotig, || ||Tzo+zx1|l :

We claim that

(57) laol > 3 F(m)"/*.
Indeed, if |ag| <3 f(n)'/* then max{|ai], ..., |as+1|}=1 and
k+1 :
T, T 1 1/4 1/4
Sttt = -0 T2 | < ool < S+ B4 < ),

=1

since f(n)<j by (49), which contradicts (48). Thus (57) is proved. By (56) we
obtain §
+1

. ||TzDZLlH a; . TiO_HJZl
Fiogy 0Tl R 8y L
o T2
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and thus
; k1 fots
; 1 1 T%,| ai .o TV )
58 Ty = w— —||T*xq b+TZ°x
(5 (e 2 oI o g, 7
Let
kt1 i 4
L a; |Thozi| ToVvia, — Tomy
59 =T" .
(59) D=T"04D o ler v [Toviaa] v taa]

Notice that (58) and (59) imply that w={(||T%=1||/(||z1+x2lag))w and hence, using
(52), (54), (57) and the facts that |lw]| < f(n) and || 2||=1,

i3 = Ll ol < 2f ()| T || _ 2f (m)*/ 125 (T70y)
[|z1+22| laol |21+l |21+ 2]
2 3/4 % Tro, Tho 3/4 |7 . )
llz1 42| llz1+z2|]
Now we are ready to estimate
be Tioxl Tio+k+1x1
[T ||” 7 || Tioth+izy ||

Let the scalars Ay, A1, ..., Ax1 be such that

ktl Thot+is
> Ay |-
£ [Tt ]|

We want to estimate the max{|Aql, |41, ...,|Axs1]}. By (30), (59), (60) and recall-
ing the paragraph before (56) we have

i 1Ty Thtay | TRay \ N, Tt

H HTWH( ao [y @] [Tt 2y | ||x1+l'2||) 2 Tti]
_ AOIIT“’xg[[ Thogy
H [Tl [y +zo| || Tz

i=1

Y a —Ao||Tiomy A;||Tio+iay | Tiotig,
Z falA— R _
ag [|[Tz| ||z +xal|  [[Tiletiz]| ||z +aofl ) || T im ||

i

i=1
k+1

Tm-}—zxz
(®1) nTm o 2= A Tl e, 23]
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“ Ao”TiOCIZQ“ Tio.%’z
Tz [lzr+a2l [T

k+1 . o o
i —Ao|[T x| A || T || Tiotiz,
;<a0 [Tz || [lxytaa|  [T%t ] ll:'31+:v2ll> [Ttz | )

k41
2f ()% Aol > _ F(m)] Asl.
i=1

By (54) for i=1 and 2=z we obtain that Tz, €[, , ker z; and by (53) and (48)
it is easy to see that

Tiox2 Ti0+1$1 Tio+k-+-1$1 2
SER T e S o Y O T
[Troas|)” [Tt ay |77 | T 00tk || f = f(n)t/4
Since f(n)<(§)4 (by (49)), we have that 3<2/f(n)'/*. Hence
b { Tioa',‘g Ti0+11‘2 Ti0+k+1£171 }< 2
[Toowa|]” [T+ ma|” 7 [[TootR+1ay || | = f(m)H/4
Thus (61) implies that
[T, 2 ( DA S )
62 Ao <3 1+2f(m)/ 4| Ag|+ nA;
and for i=1, ..., k+1,
a;  —Ao|| Ty || A T |
ag || Toz|| ||z1+w2|l ||Ti°+ifﬂl| 1422
(63 B+l
< e (12 Ao+ 3 S ).
=1
Since, by (55),
Tzl o1 +a2] _ [Tz + Tzl Tz |+ T2 _,

ITozafl [ Thmf 7 1702 |
we have that (62) implies

k+1
S E )2 Aol 4 S £ A,

=1

(64) [Ao] < o
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Notice also that (63) implies that for i=1,...,k+1,

G Tt el ([T (11/2
o el o ol T o ) = iz + 400
k+1
123 P A,
j=1
Thus
2 2 1/2 an )2/
by (28) (see the paragraph above (56)), (57) and
IToml Tl T
[Tl ar+ea] oo +Twas] = [2(T a1+ 7))
T
|23 (T )|

which follows from (52), (54) and the fact that ||2]||=1. For i=1,...,k+1 rewrite
(65) as

k+1
(52000 Yiad < 2 (s e )1/4>|Aoi+§:f (14,1,
Jsﬁc
Thus, since f(n)< (%)4/3/\ (i)l/2 (by (49)), we obtain
) 9 k41
S s (1+f( )1/4)' o+ 30141
9752
Hence, since 1<1/f(n)'/4, we obtain that for i=1, ..., k+1,
6 k41
(©6) S T >1/4|Aol+3Zf<n V4|
Jséb
By substituting (64) in (66) we obtain that for i=1, ..., k+1,
6 36 k+1 k41
6714 < 5078 o7 +72F ()4 401436 > FVR A3 F)* Ayl
j=1 j=1

JF#
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We claim that (64) and (67) imply that max{|4;]:0<i<k+1}<1/f(n) which fin-
ishes the proof. Indeed, if max{|A4;|:0<i<k+1}=|Ap| then (64) implies that

| Ao| < +8F(n) 2| Ao| +4(k+1) f(n)*/ 4] Ao| <

o< (3] (i)

12 1
fm* = f(n)

4 1 1
f( )1/4 ( )1/4+§IA0[+§‘A0|

since

by (49). Thus

(68) [Ao| <

since f(n)< (3 )4/3 by (49). Similarly, if there exists [€{L,...,k+1} such that
Ai}:nggk—H} |A;| then (67) for = implies that

<8 36
f)v/4 " f(n)/?

42 1 1 1
i W - z
- f(n)1/2+4'Al|+4'A’|+4|Al[

+72F ()M 4 A +36(k+1) F ()2 Ar|+3k £ ()*/*| 4y

since 1/ f(n)/4<1/f(n)*? and f(n)< (5 A(1/144(k+1))? by (49). Hence

168 1
(69) }Allfwfma

since f(n)< (168) by (49). By (68) and (69) we have that max{|A;|:0<i<k+1}<
1/f(n) which finishes the proof. 0
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