A property of strictly singular one-to-one operators

George Androulakis and Per Enflo(1)

Abstract. We prove that if T is a strictly singular one-to-one operator defined on an infinite dimensional Banach space X, then for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of X such that $Z \cap Y$ is infinite dimensional, Z contains orbits of T of every finite length and the restriction of T to Z is a compact operator.

1. Introduction

An operator on an infinite dimensional Banach space is called *strictly singular* if it fails to be an isomorphism when it is restricted to any infinite dimensional subspace (by "operator" we will always mean a "continuous linear map"). It is easy to see that an operator T on an infinite dimensional Banach space X is strictly singular if and only if for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of Y such that the restriction of T to Z, $T|_Z: Z \to X$, is a compact operator. Moreover, Z can be assumed to have a basis. Compact operators are special examples of strictly singular operators. If $1 \le p \le q \le \infty$ then the inclusion map $i_{p,q}: l_p \to l_q$ is a strictly singular (non-compact) operator. A hereditarily indecomposable Banach space is an infinite dimensional space such that no subspace can be written as a topological sum of two infinite dimensional subspaces. W. T. Gowers and B. Maurey constructed the first example of a hereditarily indecomposable space [9]. It is also proved in [9] that every operator on a complex hereditarily indecomposable space can be written as a strictly singular perturbation of a multiple of the identity. If X is a complex hereditarily indecomposable space and T is a strictly singular operator on X then the spectrum of T resembles the spectrum of a compact operator on a complex Banach space: it is either the singleton $\{0\}$ (i.e. T is quasi-nilpotent), or a sequence $\{\lambda_n: n=1, 2, ...\} \cup \{0\}$, where λ_n is an eigenvalue

 $^(^{1})$ The research was partially supported by NSF.

of T with finite multiplicity for all n, and $(\lambda_n)_n$ converges to 0, if it is an infinite sequence. It was asked whether there exists a hereditarily indecomposable space X which gives a positive solution to the "identity plus compact" problem, namely, every operator on X is a compact perturbation of a multiple of the identity. This question was answered in negative in [2] for the hereditarily indecomposable space constructed in [9], (for related results see [7], [8], and [1]). By [3], (or the more general beautiful theorem of V. Lomonosov [10]), if a Banach space gives a positive solution to the "identity plus compact" problem, it also gives a positive solution to the famous invariant subspace problem. The invariant subspace problem asks whether there exists a separable infinite dimensional Banach space on which every operator has a non-trivial invariant subspace, (by "non-trivial" we mean "different than $\{0\}$ and the whole space"). It remains unknown whether l_2 is a positive solution to the invariant subspace problem. Several negative solutions to the invariant subspace problem are known [4], [5], [11], [12], [13]. In particular, there exists a strictly singular operator with no non-trivial invariant subspace [14]. It is unknown whether every strictly singular operator on a super-reflexive Banach space has a nontrivial invariant subspace. Our main result (Theorem 1) states that if T is a strictly singular one-to-one operator on an infinite dimensional Banach space X, then for every infinite dimensional Banach space Y of X there exists an infinite dimensional Banach space Z of X such that $Z \cap Y$ is infinite dimensional, the restriction of T to $Z, T|_Z: Z \to X$, is compact, and Z contains orbits of T of every finite length (i.e. for every $n \in \mathbb{N}$ there exists $z_n \in \mathbb{Z}$ such that $\{z_n, Tz_n, T^2z_n, \dots, T^nz_n\} \subset \mathbb{Z}$). We raise the following question.

Question. Let T be a quasi-nilpotent operator on a super-reflexive Banach space X, such that for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of X such that $Z \cap Y$ is infinite dimensional, $T|_Z: Z \to X$ is compact and Z contains orbits of T of every finite length. Does T have a non-trivial invariant subspace?

By our main result, an affirmative answer to the above question would give that every strictly singular, one-to-one, quasi-nilpotent operator on a super-reflexive Banach space has a non-trivial invariant subspace; in particular, we would obtain that every operator on the super-reflexive hereditarily indecomposable space constructed by V. Ferenczi [6] has a non-trivial invariant subspace, and thus the invariant subspace problem would be answered in affirmative.

2. The main result

Our main result is the following theorem.

Theorem 1. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X. Then, for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of X, such that $Z \cap Y$ is infinite dimensional, Z contains orbits of T of every finite length, and the restriction of T to Z, $T|_Z: Z \to X$, is a compact operator.

The proof of Theorem 1 is based on Theorem 3. We first need to define the biorthogonal constant of a finite set of normalized vectors of a Banach space.

Definition 2. Let X be a Banach space, $n \in \mathbb{N}$, and x_1, x_2, \dots, x_n be normalized elements of X. We define the biorthogonal constant of x_1, \dots, x_n to be

bc{
$$x_1, ..., x_n$$
} := sup{ $\max\{|\alpha_1|, ..., |\alpha_n|\}$: $\left\|\sum_{i=1}^n \alpha_i x_i\right\| = 1$ }.

Notice that

$$\frac{1}{\mathrm{bc}\{x_1, \dots, x_n\}} = \inf \left\{ \left\| \sum_{i=1}^n \beta_i x_i \right\| : \max_{1 \le i \le n} |\beta_i| = 1 \right\},\$$

and that $bc\{x_1, \ldots, x_n\} < \infty$ if and only if x_1, \ldots, x_n are linearly independent.

Before stating Theorem 3 recall that if T is a quasi-nilpotent operator on a Banach space X, then for every $x \in X$ and $\eta > 0$ there exists an increasing sequence $(i_n)_{n=1}^{\infty}$ in \mathbb{N} such that $||T^{i_n}x|| \leq \eta ||T^{i_n-1}x||$. Theorem 3 asserts that if T is a strictly singular one-to-one operator on a Banach space X then for arbitrarily small $\eta > 0$ and $k \in \mathbb{N}$ there exists $x \in X$, ||x|| = 1, such that $||T^{i_n}x|| \leq \eta ||T^{i-1}x||$ for $i=1, 2, \ldots, k+1$, and moreover, the biorthogonal constant of x, $Tx/||Tx||, \ldots, T^kx/||T^kx||$ does not exceed $1/\sqrt{\eta}$.

Theorem 3. Let T be a strictly singular one-to-one operator on a Banach space X. Let Y be an infinite dimensional subspace of X, F be a finite codimensional subspace of X and $k \in \mathbb{N}$. Then there exists $\eta_0 \in (0, 1)$ such that for every $0 < \eta \leq \eta_0$ there exists $x \in Y$, ||x|| = 1, satisfying

- (a) $T^{i-1}x \in F$ and $||T^ix|| \le \eta ||T^{i-1}x||$ for $i=1,2,\ldots,k+1;$
- (b)

$$\operatorname{bc}\left\{x,\frac{Tx}{\|Tx\|},\ldots,\frac{T^kx}{\|T^kx\|}\right\} \leq \frac{1}{\sqrt{\eta}},$$

(where T^0 denotes the identity operator on X).

We postpone the proof of Theorem 3.

Proof of Theorem 1. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X, and Y be an infinite dimensional subspace of X. Inductively we construct a normalized sequence $(z_n)_{n \in \mathbb{N}} \subset Y$, an increasing sequence of finite families $(z_j^*)_{j \in J_n}$ of normalized functionals on X (i.e. $(J_n)_{n \in \mathbb{N}}$ is an increasing sequence of finite index sets), and a sequence $(\eta_n)_{n \in \mathbb{N}} \subset (0, 1)$, as follows:

For n=1 apply Theorem 3 for F=X (set $J_1=\emptyset$), k=1, to obtain $\eta_1 < 1/2^6$ and $z_1 \in Y$, $||z_1||=1$, such that

(1)
$$||T^i z_1|| < \eta_1 ||T^{i-1} z_1||$$
 for $i = 1, 2,$

and

(2)
$$\operatorname{bc}\left\{z_{1}, \frac{Tz_{1}}{\|Tz_{1}\|}\right\} < \frac{1}{\sqrt{\eta_{1}}}.$$

For the inductive step, assume that for $n \ge 2$, $(z_i)_{i=1}^{n-1} \subset Y$, $(z_j^*)_{j \in J_i}$ $(i=1,\ldots,n-1)$, and $(\eta_i)_{i=1}^{n-1}$ have been constructed. Let J_n be a finite index set with $J_{n-1} \subseteq J_n$ and $(x_i^*)_{j \in J_n}$ be a set of normalized functionals on X such that

(3) for every
$$x \in \operatorname{span}\{T^i z_j : 1 \le j \le n-1, 0 \le i \le j\}$$

there exists $j_0 \in J_n$ such that $|x_{j_0}^*(x)| \ge \frac{1}{2} ||x||$.

Apply Theorem 3 for $F = \bigcap_{j \in J_n} \ker x_j^*$, and k = n, to obtain $\eta_n < 1/n^2 2^{2n+4}$ and $z_n \in Y$, $||z_n|| = 1$, such that

(4)
$$T^{i-1}z_n \in F \text{ and } ||T^i z_n|| < \eta_n ||T^{i-1}z_n|| \text{ for } i = 1, 2, \dots, n+1,$$

and

(5)
$$\operatorname{bc}\left\{z_n, \frac{Tz_n}{\|Tz_n\|}, \dots, \frac{T^n z_n}{\|T^n z_n\|}\right\} < \frac{1}{\sqrt{\eta_n}}$$

This finishes the induction.

Let \widetilde{Z} =span{ $T^i z_n : n \in \mathbb{N}$, $0 \le i \le n$ }, and for $n \in \mathbb{N}$, let Z_n =span{ $T^i z_n : 0 \le i \le n$ }. Let $x \in \widetilde{Z}$ with ||x|| = 1 and write $x = \sum_{n=1}^{\infty} x_n$, where $x_n \in Z_n$ for all $n \in \mathbb{N}$. We claim that

(6)
$$||Tx_n|| < \frac{1}{2^n}$$
 for all $n \in \mathbf{N}$.

Indeed, write

$$x = \sum_{n=1}^{\infty} \sum_{i=0}^{n} a_{i,n} \frac{T^{i} z_{n}}{\|T^{i} z_{n}\|} \quad \text{and} \quad x_{n} = \sum_{i=0}^{n} a_{i,n} \frac{T^{i} z_{n}}{\|T^{i} z_{n}\|} \text{ for } n \in \mathbb{N}.$$

Fix $n \in \mathbb{N}$ and set $\tilde{x}_n = x_1 + x_2 + \ldots + x_n$. Let $j_0 \in J_{n+1}$ such that

$$\|\tilde{x}_n\| \le 2|x_{j_0}^*(\tilde{x}_n)| = 2|x_{j_0}^*(x)| \le 2\|x_{j_0}^*\|\|x\| = 2,$$

by (3), and since for $n+1 \le m$, $J_{n+1} \subseteq J_m$ and thus by (4), $x_m \in \ker x_{j_0}^*$. Thus $||x_n|| = ||\tilde{x}_n - \tilde{x}_{n-1}|| \le ||\tilde{x}_n|| + ||\tilde{x}_{n-1}|| \le 4$ (where $\tilde{x}_0 = 0$). Hence, by (2) and (5) we obtain that

(7)
$$|a_{i,n}| \le 4 \operatorname{bc} \left\{ z_n, \frac{Tz_n}{\|Tz_n\|}, \dots, \frac{T^n z_n}{\|T^n z_n\|} \right\} \le \frac{4}{\sqrt{\eta_n}} \quad \text{for } i = 0, \dots, n.$$

Therefore, using (1), (4), (7) and the choice of η_n ,

$$\|Tx_n\| = \left\|\sum_{i=0}^n a_{i,n} \frac{T^{i+1}z_n}{\|T^i z_n\|}\right\| \le \sum_{i=0}^n |a_{i,n}| \frac{\|T^{i+1}z_n\|}{\|T^i z_n\|} \le \sum_{i=0}^n \frac{4}{\sqrt{\eta_n}} \eta_n = 4n\sqrt{\eta_n} < \frac{1}{2^n},$$

which finishes the proof of (6). Let Z to be the closure of \widetilde{Z} . Notice that $Z \cap Y \supset \{z_n:n \in \mathbf{N}\}$, and thus $Z \cap Y$ is infinite dimensional. We claim that $T|_Z: Z \to X$ is a compact operator, which will finish the proof of Theorem 1. Indeed, let $(y_m)_{m \in \mathbf{N}} \subset \widetilde{Z}$, where for all $m \in \mathbf{N}$ we have $||y_m|| = 1$, and write $y_m = \sum_{n=1}^{\infty} y_{m,n}$, where $y_{m,n} \in Z_n$ for all $n \in \mathbf{N}$. It suffices to prove that $(Ty_m)_{m \in \mathbf{N}}$ has a Cauchy subsequence. Indeed, since Z_n is finite dimensional for all $n \in \mathbf{N}$, there exists $(y_m^1)_{m \in \mathbf{N}}$ a subsequence of $(y_m)_{m \in \mathbf{N}}$ such that $(Ty_{m,1}^1)_{m \in \mathbf{N}}$ is Cauchy (with the obvious notation that if $y_m^1 = y_p$ for some p, then $y_{m,n}^1 = y_{p,n}$). Let $(y_m^2)_{m \in \mathbf{N}}$ be a subsequence of $(y_m^1)_{m \in \mathbf{N}}$ such that $(Ty_{m,2}^2)_{m \in \mathbf{N}}$ is Cauchy (with the obvious notation that if $y_m^1 = y_p$ for some p, then $y_{m,n}^1 = y_{p,n}$). Let $(y_m^2)_{m \in \mathbf{N}}$ be a subsequence of $(y_m^1)_{m \in \mathbf{N}}$ such that $(Ty_{m,2}^2)_{m \in \mathbf{N}}$ is Cauchy (with the obvious notation that if $y_{m,n}^2 = y_p$ for some p, then $y_{m,n}^2 = y_{p,n}$). Continue similarly, and let $\tilde{y}_m = y_m^m$ and $\tilde{y}_{m,n} = y_m^m$ for all $m, n \in \mathbf{N}$. Then for $m \in \mathbf{N}$ we have $\tilde{y}_m = \sum_{n=1}^{\infty} \tilde{y}_{m,n}$, where $\tilde{y}_{m,n} \in Z_n$ for all $n \in \mathbf{N}$. Also, for all $n, m \in \mathbf{N}$ with $n \leq m$, $(\tilde{y}_t)_{t \geq m}$ and $(\tilde{y}_{t,n})_{t \in \mathbf{N}}$ is a Cauchy sequence. We claim that $(T\tilde{y}_m)_{t \in \mathbf{N}}$ is a Cauchy sequence. Indeed, for $\varepsilon > 0$ let $m_0 \in \mathbf{N}$ be such that $1/2^{m_0-1} < \varepsilon$ and let $m_1 \in \mathbf{N}$ be such that

(8)
$$||T\tilde{y}_{s,n} - T\tilde{y}_{t,n}|| < \frac{\varepsilon}{2m_0}$$
 for all $s, t \ge m_1$ and $n = 1, 2, ..., m_0$.

Thus for $s, t \ge m_1$ we have, using (6), (8) and the choice of m_0 ,

$$\begin{split} \|T\tilde{y}_{s} - T\tilde{y}_{t}\| &= \left\|\sum_{n=1}^{\infty} T\tilde{y}_{s,n} - T\tilde{y}_{t,n}\right\| \\ &\leq \sum_{n=1}^{m_{0}} \|T\tilde{y}_{s,n} - T\tilde{y}_{t,n}\| + \sum_{n=m_{0}+1}^{\infty} \|T\tilde{y}_{s,n}\| + \sum_{n=m_{0}+1}^{\infty} \|T\tilde{y}_{t,n}\| \\ &< m_{0}\frac{\varepsilon}{2m_{0}} + 2\sum_{n=m_{0}+1}^{\infty} \frac{1}{2^{n}} \\ &= \frac{\varepsilon}{2} + \frac{2}{2^{m_{0}}} \\ &< \varepsilon \end{split}$$

which proves that $(T\tilde{y}_m)_{m\in\mathbb{N}}$ is a Cauchy sequence and finishes the proof of Theorem 1. \Box

For the proof of Theorem 3 we need the next two results.

Lemma 4. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X. Let $k \in \mathbb{N}$ and $\eta > 0$. Then for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of Y such that for all $z \in Z$ and for all i=1, ..., k we have that

$$||T^i z|| \le \eta ||T^{i-1} z||$$

(where T^0 denotes the identity operator on X).

Proof. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space $X, k \in \mathbb{N}$ and $\eta > 0$. We first prove the following claim.

Claim. For every infinite dimensional linear submanifold (which is not assumed closed) W of X there exists an infinite dimensional linear submanifold Z of W such that $||Tz|| \le \eta ||z||$ for all $z \in Z$.

Indeed, since W is infinite dimensional there exists a normalized basic sequence $(z_i)_{i\in\mathbb{N}}$ in W having biorthogonal constant at most equal to 2, such that $||Tz_i|| \leq \eta/2^{i+2}$ for all $i\in\mathbb{N}$. Let $Z=\text{span}\{z_i:i\in\mathbb{N}\}$ be the linear span of the z_i 's. Then Z is an infinite dimensional linear submanifold of W. We now show that Z satisfies the conclusion of the claim. Let $z\in Z$ and write z in the form $z=\sum_{i=1}^{\infty}\lambda_i z_i$ for some scalars $(\lambda_i)_{i\in\mathbb{N}}$ such that at most finitely many λ_i 's are non-zero. Since the biorthogonal constant of $(z_i)_{i\in\mathbb{N}}$ is at most equal to 2, we have that $|\lambda_i| \leq 4||z||$ for all i. Thus

$$\|Tz\| = \left\|\sum_{i=1}^{\infty} \lambda_i Tz_i\right\| \le \sum_{i=1}^{\infty} |\lambda_i| \, \|Tz_i\| \le \sum_{i=1}^{\infty} 4\|z\| \frac{\eta}{2^{i+2}} = \eta\|z\|$$

which finishes the proof of the claim.

Let Y be an infinite dimensional subspace of X. Inductively for i=0, 1, ..., k, we define Z_i , a linear submanifold of X, such that

(a) Z_0 is an infinite dimensional linear submanifold of Y and Z_i is an infinite dimensional linear ubmanifold of $T(Z_{i-1})$ for $i \ge 1$;

(b) $||Tz|| \le \eta ||z||$ for all $z \in Z_i$ and for all $i \ge 0$.

Indeed, since Y is infinite dimensional, we obtain Z_0 by applying the above claim for W=Y. Obviously (a) and (b) are satisfied for i=0. Assume that for some $i_0 \in \{0, 1, \ldots, k-1\}$, a linear submanifold Z_{i_0} of X has been constructed satisfying (a) and (b) for $i=i_0$. Since T is one-to-one and Z_{i_0} is infinite dimensional we have that $T(Z_{i_0})$ is an infinite dimensional linear submanifold of X and we obtain Z_{i_0+1} by applying the above claim for $W=T(Z_{i_0})$. Obviously (a) and (b) are satisfied for $i=i_0+1$. This finishes the inductive construction of the Z_i 's. By (a) we obtain that Z_k is an infinite dimensional linear submanifold of $T^k(Y)$. Let $W=T^{-k}(Z_k)$. Then W is an infinite dimensional linear submanifold of X. Since $Z_k \subseteq T^k(Y)$ and T is one-to-one, we have that $W \subseteq Y$. By (a) we obtain that for $i=0, 1, \ldots, k$ we have $Z_k \subseteq T^{k-i}Z_i$, hence

$$T^{i}W = T^{i}T^{-k}Z_{k} = T^{-(k-i)}Z_{k} \subseteq T^{-(k-i)}T^{k-i}Z_{i} = Z_{i}$$

(since T is one-to-one). Thus by (b) we obtain that $||T^i z|| \le \eta ||T^{i-1}z||$ for all $z \in W$ and $i=1,2,\ldots,k$. Obviously, if Z is the closure of W then Z satisfies the statement of the lemma. \Box

Corollary 5. Let T be a strictly singular one-to-one operator on an infinite dimensional Banach space X. Let $k \in \mathbb{N}$, $\eta > 0$ and F be a finite codimensional subspace of X. Then for every infinite dimensional subspace Y of X there exists an infinite dimensional subspace Z of Y such that for all $z \in Z$ and for all i=1, ..., k+1,

$$T^{i-1}z \in F \quad and \quad \|T^iz\| \le \eta \|T^{i-1}z\|$$

(where T^0 denotes the identity operator on X).

Proof. For any linear submanifold W of X and for any finite codimensional subspace F of X we have that

(9)
$$\dim(W/(F \cap W)) \le \dim(X/F) < \infty.$$

Indeed for any $n > \dim X/F$ and for any linear independent vectors x_1, \ldots, x_n in $W \setminus (F \cap W)$ we have that there exist scalars $\lambda_1, \ldots, \lambda_n$ with $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$ and $\sum_{i=1}^n \lambda_i x_i \in F$ (since $n > \dim(X/F)$). Thus $\sum_{i=1}^n \lambda_i x_i \in F \cap W$ which implies (9).

Let R(T) denote the range of T. Apply (9) for W=R(T) to obtain

(10)
$$\dim(R(T)/(R(T)\cap F)) \le \dim(X/F) < \infty.$$

Since T is one-to-one we have that

(11)
$$\dim(X/T^{-1}(F)) \le \dim(R(T)/(R(T) \cap F)).$$

Indeed, for any $n > \dim(R(T)/(R(T) \cap F))$ and for any linear independent vectors x_1, \ldots, x_n of $X \setminus T^{-1}(F)$, we have that Tx_1, \ldots, Tx_n are linear independent vectors of $R(T) \setminus T(T^{-1}(F)) = R(T) \setminus F$ (since T is one-to-one). Thus $Tx_1, \ldots, Tx_n \in R(T) \setminus (R(T) \cap F)$ and as $n > \dim(R(T)/(R(T) \cap F))$, there are scalars $\lambda_1, \ldots, \lambda_n$ with $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$ such that $\sum_{i=1}^n \lambda_i Tx_i \in R(T) \cap F$. Therefore $T(\sum_{i=1}^n \lambda_i x_i) \in F$, and hence $\sum_{i=1}^n \lambda_i x_i \in T^{-1}(F)$, which proves (11). By combining (10) and (11) we obtain

(12)
$$\dim(X/T^{-1}(F)) < \infty.$$

By (12) we have that

(13)
$$\dim(X/T^{-i}(F)) < \infty \text{ for } i = 1, 2, ..., k.$$

Thus dim $(X/W_1) < \infty$, where $W_1 = F \cap T^{-1}(F) \cap ... \cap T^{-k}(F)$. Therefore if we apply (9) for W = Y and $F = W_1$ we obtain

(14)
$$\dim(Y/(Y \cap W_1)) \le \dim(X/W_1) < \infty,$$

and therefore $Y \cap W_1$ is infinite dimensional.

Now use Lemma 4, replacing Y by $Y \cap W_1$, to obtain an infinite dimensional subspace Z of $Y \cap W_1$ such that

$$||T^{i}z|| \le \eta ||T^{i-1}z||$$
 for all $z \in Z$ and $i = 1, ..., k+1$.

Notice that for $z \in \mathbb{Z}$ and $i=1,\ldots,k$ we have that $z \in W_1$, and thus $T^{i-1}z \in F$. \Box

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We prove by induction on k that for every infinite dimensional subspace Y of X, finite codimensional subspace F of X, $k \in \mathbb{N}$, function $f: (0,1) \rightarrow (0,1)$ such that $f(\eta) \searrow 0$ as $\eta \searrow 0$, and for $i_0 \in \{0\} \cup \mathbb{N}$, there exists $\eta_0 > 0$ such that for every $0 < \eta \leq \eta_0$ there exists $x \in Y$, ||x|| = 1, satisfying

(a')
$$T^{i-1}x \in F$$
 and $||T^ix|| \le \eta ||T^{i-1}x||$ for $i=1,2,\ldots,i_0+k+1$;
(b')

$$\operatorname{bc}\left\{\frac{T^{i_0}x}{\|T^{i_0}x\|}, \frac{T^{i_0+1}x}{\|T^{i_0+1}x\|}, \dots, \frac{T^{i_0+k}x}{\|T^{i_0+k}x\|}\right\} \leq \frac{1}{f(\eta)}.$$

A property of strictly singular one-to-one operators

For k=1 let Y, F, f, and i_0 be as above, and let $\eta_0 \in (0,1)$ satisfy

$$(15) f(\eta_0) < \frac{1}{62}.$$

Let $0 < \eta \le \eta_0$. Apply Corollary 5 for k and η replaced by i_0+1 and $\frac{1}{4}\eta$, respectively, to obtain an infinite dimensional subspace Z_1 of Y such that for all $z \in Z_1$ and for $i=1, 2, \ldots, i_0+2$,

(16)
$$T^{i-1}z \in F$$
 and $||T^iz|| \le \frac{1}{4}\eta ||T^{i-1}z||.$

Let $x_1 \in Z_1$ with $||x_1|| = 1$. If $bc\{T^{i_0}x_1/||T^{i_0}x_1||, T^{i_0+1}x_1/||T^{i_0+1}x_1||\} \le 1/f(\eta)$ then x_1 satisfies (a') and (b') for k=1, thus we may assume that

(17)
$$\operatorname{bc}\left\{\frac{T^{i_0}x_1}{\|T^{i_0}x_1\|}, \frac{T^{i_0+1}x_1}{\|T^{i_0+1}x_1\|}\right\} > \frac{1}{f(\eta)}.$$

Let

(18)
$$0 < \eta_2 \le \frac{\eta}{4} \wedge \min_{1 \le i \le i_0} \frac{\|T^{i_0} x_1\|}{2\|T^i x_1\|} \wedge \min_{i_0 < i \le i_0 + 2} \frac{\|T^i x_1\|}{2\|T^{i_0} x_1\|} f(\eta).$$

Let $z_1^*, z_2^* \in X^*$, $||z_1^*|| = ||z_2^*|| = 1$, $z_1^*(T^{i_0}x_1) = ||T^{i_0}x_1||$ and $z_2^*(T^{i_0+1}x_1) = ||T^{i_0+1}x_1||$. Since ker $z_1^* \cap \ker z_2^*$ is finite codimensional and T is one-to-one, by (13) we have that

(19)
$$\dim(X/T^{-i_0}(\ker z_1^* \cap \ker z_2^*)) < \infty.$$

Apply Corollary 5 for F, k and η replaced by $F \cap T^{-i_0}(\ker z_1^* \cap \ker z_2^*)$, i_0+2 and η_2 , respectively, to obtain an infinite dimensional subspace Z_2 of Y such that for all $z \in Z_2$ and for all $i=1, 2, ..., i_0+2$,

(20)
$$T^{i-1}z \in F \cap T^{-i_0}(\ker z_1^* \cap \ker z_2^*) \quad \text{and} \quad \|T^i z\| \le \eta_2 \|T^{i-1} z\|.$$

Let $x_1^* \in X^*$ with $||x_1^*|| = x_1^*(x_1) = 1$ and let $x_2 \in Z_2 \cap \ker x_1^*$ with

(21)
$$||T^{i_0}x_1|| = ||T^{i_0}x_2||$$

and let $x = (x_1 + x_2)/||x_1 + x_2||$. We will show that x satisfies (a') and (b') for k=1.

We first show that (a') is satisfied for k=1. Since $x_1, Tx_1, \ldots, T^{i_0+1}x_1 \in F$ (by (16)) and $x_2, Tx_2, \ldots, T^{i_0+1}x_2 \in F$ (by (20)) we have that $x, Tx, \ldots, T^{i_0+1}x \in F$. Before showing that the norm estimate of (a') is satisfied, we need some preliminary estimates: (22)-(30). If $1 \le i < i_0$ (assuming that $2 \le i_0$) then, by (18), (20) and (21),

$$(22) ||T^{i}x_{1}|| = \frac{||T^{i_{0}}x_{1}||}{2\frac{||T^{i_{0}}x_{1}||}{||T^{i}x_{1}||}} \le \frac{||T^{i_{0}}x_{1}||}{2\eta_{2}} = \frac{||T^{i_{0}}x_{2}||}{2\eta_{2}} \le \frac{\eta_{2}^{i_{0}-i}||T^{i}x_{2}||}{2\eta_{2}} \le \frac{||T^{i}x_{2}||}{2}$$

Thus, by (22), for $1 \le i < i_0$ (assuming that $2 \le i_0$) we have

(23)
$$\|T^{i}x\| \|x_{1}+x_{2}\| = \|T^{i}x_{1}+T^{i}x_{2}\| \le \|T^{i}x_{1}\| + \|T^{i}x_{2}\| \le \frac{3}{2} \|T^{i}x_{2}\|$$

and

(24)
$$||T^{i}x|| ||x_{1}+x_{2}|| = ||T^{i}x_{1}+T^{i}x_{2}|| \ge ||T^{i}x_{2}|| - ||T^{i}x_{1}|| \ge \frac{1}{2} ||T^{i}x_{2}||.$$

Also notice that, by (21),

(25)
$$||T^{i_0}x|| ||x_1+x_2|| = ||T^{i_0}x_1+T^{i_0}x_2|| \le ||T^{i_0}x_1|| + ||T^{i_0}x_2|| = 2||T^{i_0}x_1||$$

and

(26)
$$\|T^{i_0}x\| \|x_1 + x_2\| = \|T^{i_0}x_1 + T^{i_0}x_2\| \ge z_1^*(T^{i_0}x_1 + T^{i_0}x_2)$$
$$= z_1^*(T^{i_0}x_1) = \|T^{i_0}x_1\|$$

(by (20) for $z=x_2$ and i=1). Also for $i_0 < i \le i_0+2$ we have that by applying (20) for $z=x_2$, $i-i_0$ times, we obtain, using (18) and (21) and the fact that $\eta_2 < 1$,

(27)
$$\begin{aligned} \|T^{i}x_{2}\| \leq \eta_{2}^{i-i_{0}} \|T^{i_{0}}x_{2}\| \leq \eta_{2} \|T^{i_{0}}x_{1}\| \\ = \eta_{2} \frac{2\|T^{i_{0}}x_{1}\|}{\|T^{i}x_{1}\|} \frac{1}{2} \|T^{i}x_{1}\| \leq \frac{1}{2} f(\eta)\|T^{i}x_{1}\| \leq \frac{1}{2} \|T^{i}x_{1}\| \end{aligned}$$

Thus for $i_0 < i \le i_0 + 2$ we have

(28)
$$||T^{i}x|| ||x_{1}+x_{2}|| = ||T^{i}x_{1}+T^{i}x_{2}|| \le ||T^{i}x_{1}|| + ||T^{i}x_{2}|| \le \frac{3}{2} ||T^{i}x_{1}||.$$

Also for $i_0 < i \le i_0 + 2$ we have by (27),

(29)
$$||T^{i}x|| ||x_{1}+x_{2}|| = ||T^{i}x_{1}+T^{i}x_{2}|| \ge ||T^{i}x_{1}|| - ||T^{i}x_{2}|| \ge \frac{1}{2} ||T^{i}x_{1}||.$$

Later in the course of this proof we will also need that, using (27) and the fact that $f(\eta) < 1$,

(30)
$$\|T^{i_0+1}x\| \|x_1+x_2\| = \|T^{i_0+1}x_1+T^{i_0+1}x_2\| \\ \ge \|T^{i_0+1}x_1\| - \|T^{i_0+1}x_2\| \\ \ge \frac{2}{f(\eta)} \|T^{i_0+1}x_2\| - \|T^{i_0+1}x_2\| \\ = \frac{2-f(\eta)}{f(\eta)} \|T^{i_0+1}x_2\| \\ \ge \frac{1}{f(\eta)} \|T^{i_0+1}x_2\|.$$

Finally we will show that for $1 \le i \le i_0 + 2$ we have $||T^i x|| \le \eta ||T^{i-1}x||$. Indeed if i=1 then, using (16), (18), (20) and the facts that $||x_1|| = 1 = x_1^*(x_1 + x_2)$ and $||x_1^*|| = 1$,

$$\begin{aligned} \|T^{i}x\| &= \frac{\|Tx_{1}+Tx_{2}\|}{\|x_{1}+x_{2}\|} \leq \frac{\|Tx_{1}\|+\|Tx_{2}\|}{\|x_{1}+x_{2}\|} \leq \frac{\frac{1}{4}\eta\|x_{1}\|+\eta_{2}\|x_{2}\|}{\|x_{1}+x_{2}\|} \\ (31) &\leq \frac{\frac{1}{4}\eta\|x_{1}\|+\eta_{2}(\|x_{1}+x_{2}\|+\|x_{1}\|)}{\|x_{1}+x_{2}\|} = \frac{(\frac{1}{4}\eta+\eta_{2})x_{1}^{*}(x_{1}+x_{2})}{\|x_{1}+x_{2}\|} + \eta_{2} \leq \frac{\eta}{4} + 2\eta_{2} \leq \eta. \end{aligned}$$

If $1 < i < i_0$ (assuming that $3 \le i_0$) we have that, by (18), (20), (23) and (24),

(32)
$$\frac{\|T^{i}x\|}{\|T^{i-1}x\|} \le \frac{\frac{3}{2}\|T^{i}x_{2}\|}{\frac{1}{2}\|T^{i-1}x_{2}\|} < 3\eta_{2} < \eta_{2}$$

If $i=i_0>1$ then, by (18), (20), (21), (24) and (25),

(33)
$$\frac{\|T^{i}x\|}{\|T^{i-1}x\|} \le \frac{2\|T^{i_{0}}x_{1}\|}{\frac{1}{2}\|T^{i_{0}-1}x_{2}\|} = 4\frac{\|T^{i_{0}}x_{2}\|}{\|T^{i_{0}-1}x_{2}\|} < 4\eta_{2} < \eta.$$

If $i_0 < i \le i_0 + 2$ then, using (16), (28) and (29),

(34)
$$\frac{\|T^{i}x\|}{\|T^{i-1}x\|} \leq \frac{\frac{3}{2}\|T^{i}x_{1}\|}{\frac{1}{2}\|T^{i-1}x_{1}\|} < \eta$$

Now (31)–(34) yield that for $1 \le i \le i_0 + 2$ we have $||T^ix|| \le \eta ||T^{i-1}x||$. Thus x satisfies (a') for k=1. Before proving that x satisfies (b') for k=1 we need some preliminary estimates: (35)–(40). By (17) there exist scalars a_0 and a_1 with max $\{|a_0|, |a_1|\}=1$ and $||w|| < f(\eta)$, where

(35)
$$w = a_0 \frac{T^{i_0} x_1}{\|T^{i_0} x_1\|} + a_1 \frac{T^{i_0+1} x_1}{\|T^{i_0+1} x_1\|}.$$

Therefore

(36)
$$\left| |a_0| - |a_1| \right| = \left| \left\| a_0 \frac{T^{i_0} x_1}{\|T^{i_0} x_1\|} \right\| - \left\| a_1 \frac{T^{i_0+1} x_1}{\|T^{i_0+1} x_1\|} \right\| \right| \le \|w\| < f(\eta).$$

Thus $1-f(\eta) \leq |a_0|, |a_1| \leq 1$ and hence

(37)
$$\frac{|a_1|}{|a_0|} \le \frac{1}{|a_0|} \le \frac{1}{1 - f(\eta)}.$$

Also by (35) we obtain that

$$T^{i_0}x_1 = \frac{\|T^{i_0}x_1\|}{a_0}w - \|T^{i_0}x_1\|\frac{a_1}{a_0}\frac{T^{i_0+1}x_1}{\|T^{i_0+1}x_1\|}$$

and thus

(38)
$$T^{i_0}x = \frac{1}{\|x_1 + x_2\|} \left(\frac{\|T^{i_0}x_1\|}{a_0} w - \|T^{i_0}x_1\| \frac{a_1}{a_0} \frac{T^{i_0+1}x_1}{\|T^{i_0+1}x_1\|} + T^{i_0}x_2 \right).$$

Let

(39)
$$\widetilde{w} = T^{i_0} x + \frac{\|T^{i_0} x_1\|}{\|x_1 + x_2\|} \frac{a_1}{a_0} \frac{T^{i_0 + 1} x_1}{\|T^{i_0 + 1} x_1\|} - \frac{T^{i_0} x_2}{\|x_1 + x_2\|}.$$

Notice that (38) and (39) imply that $\tilde{w} = (||T^{i_0}x_1||/||x_1+x_2||a_0)w$ and hence by (15), (20), (37), the choice of z_1^* and the fact that $||w|| < f(\eta)$,

$$\begin{split} \|\widetilde{w}\| &= \frac{\|T^{i_0}x_1\|}{\|x_1+x_2\| \,|a_0|} \|w\| \le \frac{\|T^{i_0}x_1\|}{\|x_1+x_2\|} \frac{f(\eta)}{1-f(\eta)} \le 2f(\eta) \frac{\|T^{i_0}x_1\|}{\|x_1+x_2\|} = 2f(\eta) \frac{z_1^*(T^{i_0}x_1)}{\|x_1+x_2\|} \\ (40) &= 2f(\eta) \frac{z_1^*(T^{i_0}x_1+T^{i_0}x_2)}{\|x_1+x_2\|} \le 2f(\eta) \frac{\|T^{i_0}(x_1+x_2)\|}{\|x_1+x_2\|} = 2f(\eta) \|T^{i_0}x\|. \end{split}$$

Now we are ready to estimate $bc\{T^{i_0}x/||T^{i_0}x||, T^{i_0+1}x/||T^{i_0+1}x||\}$. Let the scalars A_0 and A_1 be such that

$$\left\|A_0 \frac{T^{i_0} x}{\|T^{i_0} x\|} + A_1 \frac{T^{i_0+1} x}{\|T^{i_0+1} x\|}\right\| = 1.$$

We want to estimate $\max\{|A_0|, |A_1|\}$. By (30), (39), (40) and the triangle inequality we have

$$1 = \left\| \frac{A_{0}}{\|T^{i_{0}}x\|} \left(\widetilde{w} - \frac{\|T^{i_{0}}x_{1}\|}{\|x_{1} + x_{2}\|} \frac{a_{1}}{a_{0}} \frac{T^{i_{0}+1}x_{1}}{\|T^{i_{0}+1}x_{1}\|} + \frac{T^{i_{0}}x_{2}}{\|x_{1} + x_{2}\|} \right) + A_{1} \frac{T^{i_{0}+1}x}{\|T^{i_{0}+1}x\|}$$

$$= \left\| \frac{A_{0}\|T^{i_{0}}x_{2}\|}{\|T^{i_{0}}x\|\|\|x_{1} + x_{2}\|} \frac{T^{i_{0}}x_{2}}{\|T^{i_{0}}x_{2}\|} + \left(\frac{-A_{0}\|T^{i_{0}}x_{1}\|}{\|T^{i_{0}+1}x_{1}\|} \frac{a_{1}}{a_{0}} + \frac{A_{1}\|T^{i_{0}+1}x_{1}\|}{\|T^{i_{0}+1}x_{1}\|} \right) \frac{T^{i_{0}+1}x_{1}}{\|T^{i_{0}+1}x_{1}\|}$$

$$(41) + \frac{A_{0}}{\|T^{i_{0}}x\|\|\|x_{1} + x_{2}\|} \widetilde{w} + \frac{A_{1}T^{i_{0}+1}x_{2}}{\|T^{i_{0}+1}x_{1}\|\|x_{1} + x_{2}\|} \right\|$$

$$\geq \left\| \frac{A_{0}\|T^{i_{0}}x_{2}\|}{\|T^{i_{0}}x\|\|\|x_{1} + x_{2}\|} \frac{T^{i_{0}}x_{2}}{\|T^{i_{0}}x_{2}\|} + \left(\frac{-A_{0}\|T^{i_{0}}x_{1}\|}{\|T^{i_{0}+1}x_{1}\|} \frac{a_{1}}{a_{0}} + \frac{A_{1}\|T^{i_{0}+1}x_{1}\|}{\|T^{i_{0}+1}x_{1}\|} \right) \frac{T^{i_{0}+1}x_{1}}{\|T^{i_{0}+1}x_{1}\|} \right\|$$

$$-2f(\eta)|A_{0}| - f(\eta)|A_{1}|.$$

By (20) for i=1 we have that $T^{i_0}x_2 \in \ker z_2^*$ and since $z_2^*(T^{i_0+1}x_1) = ||T^{i_0+1}x_1||$ it is easy to see that $\operatorname{bc}\{T^{i_0}x_2/||T^{i_0}x_2||, T^{i_0+1}x_1/||T^{i_0+1}x_1||\} \leq 2$. Thus (41) implies that

(42)
$$\left| -\frac{A_0 \|T^{i_0} x_1\|}{\|T^{i_0} x\| \|x_1 + x_2\|} \frac{a_1}{a_0} + \frac{A_1 \|T^{i_0+1} x_1\|}{\|T^{i_0+1} x\| \|x_1 + x_2\|} \right| \le 2 + 4f(\eta) |A_0| + 2f(\eta) |A_1|$$

and

(43)
$$\frac{|A_0| \|T^{i_0} x_2\|}{\|T^{i_0} x\| \|x_1 + x_2\|} \le 2 + 4f(\eta)|A_0| + 2f(\eta)|A_1|.$$

Notice that (43) implies that

(44)
$$|A_0| \le 4 + 8f(\eta)|A_0| + 4f(\eta)|A_1|,$$

since

$$\frac{\|T^{i_0}x\|\,\|x_1+x_2\|}{\|T^{i_0}x_2\|} = \frac{\|T^{i_0}x_1+T^{i_0}x_2\|}{\|T^{i_0}x_2\|} \le \frac{\|T^{i_0}x_1\|+\|T^{i_0}x_2\|}{\|T^{i_0}x_2\|} = 2,$$

by (21). Also by (42) we obtain

$$\frac{|A_1| \, \|T^{i_0+1}x_1\|}{\|T^{i_0+1}x\| \, \|x_1+x_2\|} - \frac{|A_0| \, \|T^{i_0}x_1\|}{\|T^{i_0}x\| \, \|x_1+x_2\|} \frac{|a_1|}{|a_0|} \le 2 + 4f(\eta)|A_0| + 2f(\eta)|A_1|.$$

Thus

(45)
$$\frac{2}{3}|A_1| - \frac{1}{1 - f(\eta)}|A_0| \le 2 + 4f(\eta)|A_0| + 2f(\eta)|A_1|$$

by (28) for $i=i_0+1$, (37) and

$$\frac{\|T^{i_0}x_1\|}{\|T^{i_0}x\|\|x_1+x_2\|} = \frac{\|T^{i_0}x_1\|}{\|T^{i_0}x_1+T^{i_0}x_2\|} \le \frac{\|T^{i_0}x_1\|}{z_1^*(T^{i_0}x_1+T^{i_0}x_2)} = \frac{\|T^{i_0}x_1\|}{z_1^*(T^{i_0}x_1)} = 1,$$

which hold by (20) and the choice of z_1^* . Notice that (45) implies that

(46)
$$|A_1| \le 6 + \frac{28}{5} |A_0|,$$

since $f(\eta) < \frac{1}{6}$ by (15). By substituting (46) into (44) we obtain

$$|A_0| \le 4 + 8f(\eta)|A_0| + 4f(\eta) \left(6 + \frac{28}{5}|A_0|\right) = 4 + 24f(\eta) + \frac{112}{5}f(\eta)|A_0| \le 5 + \frac{1}{2}|A_0|$$

since $f(\eta) < \frac{5}{224}$ by (15). Thus $|A_0| \le 10$. Hence (46) gives that $|A_1| \le 62$. Therefore, by (15),

$$\operatorname{bc}\left\{\frac{T^{i_0}x}{\|T^{i_0}x\|}, \frac{T^{i_0+1}x}{\|T^{i_0+1}x\|}\right\} \le 62 \le \frac{1}{f(\eta)}$$

We now proceed to the inductive step. Assuming the inductive statement for some integer k, let F be a finite codimensional subspace of X, $f:(0,1)\to(0,1)$ with $f(\eta)\searrow 0$, as $\eta\searrow 0$, and $i_0\in \mathbb{N}\cup\{0\}$. By the inductive statement for i_0 , f and η replaced by i_0+1 , $f^{1/4}$ and $\frac{1}{4}\eta$, respectively, there exists η_1 such that for $0<\eta<\eta_1$ there exists $x_1\in X$, $||x_1||=1$, such that

(47)
$$T^{i-1}x_1 \in F$$
 and $||T^i x_1|| \le \frac{1}{4}\eta ||T^{i-1}x_1||$ for $i = 1, 2, ..., (i_0+1)+k+1$

 and

(48)
$$\operatorname{bc}\left\{\frac{T^{i_0+1}x_1}{\|T^{i_0+1}x_1\|}, \frac{T^{i_0+2}x_1}{\|T^{i_0+2}x_1\|}, \dots, \frac{T^{i_0+1+k}x_1}{\|T^{i_0+1+k}x_1\|}\right\} \le \frac{1}{f(\eta)^{1/4}}$$

Let η_0 satisfy

(49)
$$\eta_0 < \eta_1, \quad f(\eta_0) < \frac{1}{288^2} \quad \text{and} \quad f(\eta_0) < \left(\frac{1}{144(k+1)}\right)^2,$$

let $0 < \eta < \eta_0$ and let $x_1 \in X$, $||x_1|| = 1$, satisfy (47) and (48). If

$$\operatorname{bc}\left\{\frac{T^{i_0}x_1}{\|T^{i_0}x_1\|}, \frac{T^{i_0+1}x_1}{\|T^{i_0+1}x_1\|}, \dots, \frac{T^{i_0+k+1}x_1}{\|T^{i_0+k+1}x_1\|}\right\} \le \frac{1}{f(\eta)}$$

then x_1 satisfies the inductive statement for k replaced by k+1. Thus we may assume that

(50)
$$\operatorname{bc}\left\{\frac{T^{i_0}x_1}{\|T^{i_0}x_1\|}, \frac{T^{i_0+1}x_1}{\|T^{i_0+1}x_1\|}, \dots, \frac{T^{i_0+k+1}x_1}{\|T^{i_0+k+1}x_1\|}\right\} > \frac{1}{f(\eta)}.$$

Let

(51)
$$0 < \eta_2 < \frac{\eta}{4} \wedge \min_{1 \le i \le i_0} \frac{\|T^{i_0} x_1\|}{2\|T^{i} x_1\|} \wedge \min_{i_0 < i \le i_0 + k + 1} \frac{\|T^{i} x_1\|}{2\|T^{i_0} x_1\|} f(\eta).$$

Let $J \subset \{2, 3, ...\}$ be a finite index set and $z_1^*, (z_j^*)_{j \in J}$ be norm one functionals such that

(52)
$$z_1^*(T^{i_0}x_1) = ||T^{i_0}x_1||,$$

and

(53) for
$$z \in \text{span}\{T^{i_0+1}x_1, \dots, T^{i_0+k+1}x_1\}$$
 there is $j_0 \in J$ with $|z_{j_0}^*(z)| \ge \frac{1}{2} ||z||$.

Since T is one-to-one we obtain by (13) that $\dim(X/T^{-i_0}(\bigcap_{j\in\{1\}\cup J} \ker z_j^*)) < \infty$. Apply Corollary 5 for F, k, η replaced by $F \cap T^{-i_0}(\bigcap_{j\in\{1\}\cup J} \ker z_i^*)$, i_0+k+2 and η_2 , respectively, to obtain an infinite dimensional subspace Z of Y such that for all $z\in Z$ and for all $i=1,2,\ldots,i_0+k+2$,

(54)
$$T^{i-1}z \in F \cap T^{-i_0}\left(\bigcap_{j \in \{1\} \cup J} \ker z_j^*\right) \text{ and } \|T^i z\| \le \eta_2 \|T^{i-1} z\|.$$

Let $x_1^* \in X^*$, $||x_1^*|| = 1 = x_1^*(x_1)$, let $x_2 \in Z \cap \ker x_1^*$ with

(55)
$$\|T^{i_0}x_1\| = \|T^{i_0}x_2\|$$

and let $x = (x_1 + x_2)/||x_1 + x_2||$. We will show that x satisfies the inductive statement for k replaced by k+1.

We first show that x satisfies (a') for k replaced by k+1. The proof is identical to the verification of (a') for k=1. The formulas (27), (28), (29) and (34) are valid for $i_0 < i \le i_0 + k + 2$, and (30) is valid if i_0+1 is replaced by any $i \in \{i_0+1, \ldots, i_0+k+1\}$, and this will be assumed in the rest of the proof when we refer to these formulas.

We now prove that (b') is satisfied for k replaced by k+1. By (50) there exist scalars $a_0, a_1, \ldots, a_{k+1}$ with $\max\{|a_0|, |a_1|, \ldots, |a_{k+1}|\}=1$ and $||w|| < f(\eta)$, where

(56)
$$w = \sum_{i=0}^{k+1} a_i \frac{T^{i_0+i} x_1}{\|T^{i_0+i} x_1\|}.$$

We claim that

(57)
$$|a_0| \ge \frac{1}{2} f(\eta)^{1/4}.$$

Indeed, if $|a_0| < \frac{1}{2} f(\eta)^{1/4}$ then $\max\{|a_1|, ..., |a_{k+1}|\} = 1$ and

$$\left\|\sum_{i=1}^{k+1} a_i \frac{T^{i_0+1} x_1}{\|T^{i_0+i} x_1\|}\right\| = \left\|w - a_0 \frac{T^{i_0} x_1}{\|T^{i_0} x_1\|}\right\| \le \|w\| + |a_0| < f(\eta) + \frac{1}{2} f(\eta)^{1/4} < f(\eta)^{1/4},$$

since $f(\eta) < \frac{1}{4}$ by (49), which contradicts (48). Thus (57) is proved. By (56) we obtain

$$T^{i_0}x_1 = \frac{\|T^{i_0}x_1\|}{a_0}w - \sum_{i=1}^{k+1}\frac{a_i}{a_0}\|T^{i_0}x_1\|\frac{T^{i_0+i}x_1}{\|T^{i_0+i}x_1\|}$$

and thus

(58)
$$T^{i_0}x = \frac{1}{\|x_1 + x_2\|} \left(\frac{\|T^{i_0}x_1\|}{a_0} w - \sum_{i=1}^{k+1} \frac{a_i}{a_0} \|T^{i_0}x_1\| \frac{T^{i_0+i}x_1}{\|T^{i_0+i}x_1\|} + T^{i_0}x_2 \right).$$

Let

(59)
$$\widetilde{w} = T^{i_0} x + \sum_{i=1}^{k+1} \frac{a_i}{a_0} \frac{\|T^{i_0} x_1\|}{\|x_1 + x_2\|} \frac{T^{i_0+i} x_1}{\|T^{i_0+i} x_1\|} - \frac{T^{i_0} x_2}{\|x_1 + x_2\|}$$

Notice that (58) and (59) imply that $\widetilde{w} = (||T^{i_0}x_1||/(||x_1+x_2||a_0))w$ and hence, using (52), (54), (57) and the facts that $||w|| \le f(\eta)$ and $||z_1^*|| = 1$,

$$\begin{aligned} \|\widetilde{w}\| &= \frac{\|T^{i_0}x_1\|}{\|x_1 + x_2\| \|a_0\|} \|w\| < \frac{2f(\eta)^{3/4} \|T^{i_0}x_1\|}{\|x_1 + x_2\|} = \frac{2f(\eta)^{3/4} z_1^*(T^{i_0}x_1)}{\|x_1 + x_2\|} \\ (60) &= \frac{2f(\eta)^{3/4} z_1^*(T^{i_0}x_1 + T^{i_0}x_2)}{\|x_1 + x_2\|} \le \frac{2f(\eta)^{3/4} \|T^{i_0}(x_1 + x_2)\|}{\|x_1 + x_2\|} = 2f(\eta)^{3/4} \|T^{i_0}x\|. \end{aligned}$$

Now we are ready to estimate

$$\operatorname{bc}\left\{\frac{T^{i_0}x_1}{\|T^{i_0}x_1\|}, \dots, \frac{T^{i_0+k+1}x_1}{\|T^{i_0+k+1}x_1\|}\right\}.$$

Let the scalars $A_0, A_1, \ldots, A_{k+1}$ be such that

$$\left\|\sum_{i=0}^{k+1} A_i \frac{T^{i_0+i}x}{\|T^{i_0+i}x\|}\right\| = 1.$$

We want to estimate the max{ $|A_0|, |A_1|, ..., |A_{k+1}|$ }. By (30), (59), (60) and recalling the paragraph before (56) we have

$$1 = \left\| \frac{A_{0}}{\|T^{i_{0}}x\|} \left(\widetilde{w} - \sum_{i=1}^{k+1} \frac{a_{i}}{a_{0}} \frac{\|T^{i_{0}}x_{1}\|}{\|x_{1}+x_{2}\|} \frac{T^{i_{0}+i}x_{1}}{\|T^{i_{0}+i}x_{1}\|} + \frac{T^{i_{0}}x_{2}}{\|x_{1}+x_{2}\|} \right) + \sum_{i=1}^{k+1} A_{i} \frac{T^{i_{0}+i}x}{\|T^{i_{0}+i}x\|} \right\|$$
$$= \left\| \frac{A_{0}\|T^{i_{0}}x_{2}\|}{\|T^{i_{0}}x\|\|\|x_{1}+x_{2}\|} \frac{T^{i_{0}}x_{2}}{\|T^{i_{0}}x_{2}\|} + \frac{A_{i}\|T^{i_{0}+i}x_{1}\|}{\|T^{i_{0}+i}x_{1}\|} \right) \frac{T^{i_{0}+i}x_{1}}{\|T^{i_{0}+i}x_{1}\|}$$
$$+ \sum_{i=1}^{k+1} \left(\frac{a_{i}}{a_{0}} \frac{-A_{0}\|T^{i_{0}}x_{1}\|}{\|T^{i_{0}}x_{1}\|} + \frac{A_{i}\|T^{i_{0}+i}x_{1}\|}{\|T^{i_{0}+i}x\|\|\|x_{1}+x_{2}\|} \right) \frac{T^{i_{0}+i}x_{1}}{\|T^{i_{0}+i}x_{1}\|}$$
$$(61) \qquad + \frac{A_{0}}{\|T^{i_{0}}x\|} \widetilde{w} + \sum_{i=1}^{k+1} A_{i} \frac{T^{i_{0}+i}x_{2}}{\|T^{i_{0}+i}x\|\|x_{1}+x_{2}\|} \right\|$$

$$\geq \left\| \frac{A_0 \| T^{i_0} x_2 \|}{\| T^{i_0} x_1 \| \| x_1 + x_2 \|} \frac{T^{i_0} x_2}{\| T^{i_0} x_2 \|} \right. \\ \left. + \sum_{i=1}^{k+1} \left(\frac{a_i}{a_0} \frac{-A_0 \| T^{i_0} x_1 \|}{\| T^{i_0} x_1 \| \| x_1 + x_2 \|} + \frac{A_i \| T^{i_0+i} x_1 \|}{\| T^{i_0+i} x_1 \| \| x_1 + x_2 \|} \right) \frac{T^{i_0+i} x_1}{\| T^{i_0+i} x_1 \|} \right| \\ \left. - 2f(\eta)^{3/4} |A_0| - \sum_{i=1}^{k+1} f(\eta) |A_i|. \right.$$

By (54) for i=1 and $z=x_2$ we obtain that $T^{i_0}x_2 \in \bigcap_{j \in J} \ker z_j^*$ and by (53) and (48) it is easy to see that

$$\operatorname{bc}\left\{\frac{T^{i_0}x_2}{\|T^{i_0}x_2\|}, \frac{T^{i_0+1}x_1}{\|T^{i_0+1}x_1\|}, \dots, \frac{T^{i_0+k+1}x_1}{\|T^{i_0+k+1}x_1\|}\right\} \le \frac{2}{f(\eta)^{1/4}} \vee 3.$$

Since $f(\eta) < \left(\frac{2}{3}\right)^4$ (by (49)), we have that $3 \le 2/f(\eta)^{1/4}$. Hence

$$\operatorname{bc}\left\{\frac{T^{i_0}x_2}{\|T^{i_0}x_2\|}, \frac{T^{i_0+1}x_2}{\|T^{i_0+1}x_2\|}, \dots, \frac{T^{i_0+k+1}x_1}{\|T^{i_0+k+1}x_1\|}\right\} \le \frac{2}{f(\eta)^{1/4}}.$$

Thus (61) implies that

(62)
$$|A_0| \frac{\|T^{i_0}x_2\|}{\|T^{i_0}x\| \|x_1+x_2\|} \le \frac{2}{f(\eta)^{1/4}} \left(1+2f(\eta)^{3/4}|A_0| + \sum_{j=1}^{k+1} f(\eta)|A_j|\right),$$

and for $i=1,\ldots,k+1$,

(63)
$$\frac{\left|\frac{a_{i}}{a_{0}}\frac{-A_{0}\|T^{i_{0}}x_{1}\|}{\|T^{i_{0}}x\|\|x_{1}+x_{2}\|} + \frac{A_{i}\|T^{i_{0}+i}x_{1}\|}{\|T^{i_{0}+i}x\|\|x_{1}+x_{2}\|}\right| \\ \leq \frac{2}{f(\eta)^{1/4}} \left(1+2f(\eta)^{3/4}|A_{0}| + \sum_{j=1}^{k+1}f(\eta)|A_{j}|\right).$$

Since, by (55),

$$\frac{\|T^{i_0}x\| \|x_1 + x_2\|}{\|T^{i_0}x_2\|} = \frac{\|T^{i_0}x_1 + T^{i_0}x_2\|}{\|T^{i_0}x_2\|} \le \frac{\|T^{i_0}x_1\| + \|T^{i_0}x_2\|}{\|T^{i_0}x_2\|} = 2$$

we have that (62) implies

(64)
$$|A_0| \le \frac{4}{f(\eta)^{1/4}} + 8f(\eta)^{1/2} |A_0| + 4\sum_{j=1}^{k+1} f(\eta)^{3/4} |A_j|.$$

Notice also that (63) implies that for $i=1,\ldots,k+1$,

$$\begin{aligned} \|A_i\| \frac{\|T^{i_0+i}x_1\|}{\|T^{i_0+i}x\|\|\|x_1+x_2\|} - \|A_0\| \frac{|a_i|}{|a_0|} \frac{\|T^{i_0}x_1\|}{\|T^{i_0}x\|\|\|x_1+x_2\|} &\leq \frac{2}{f(\eta)^{1/4}} + 4f(\eta)^{1/2} |A_0| \\ &+ 2\sum_{j=1}^{k+1} f(\eta)^{3/4} |A_j|. \end{aligned}$$

Thus

(65)
$$\frac{2}{3}|A_i| - \frac{2}{f(\eta)^{1/4}}|A_0| \le \frac{2}{f(\eta)^{1/4}} + 4f(\eta)^{1/2}|A_0| + 2\sum_{j=1}^{k+1} f(\eta)^{3/4}|A_j|$$

by (28) (see the paragraph above (56)), (57) and

$$\begin{aligned} \frac{\|T^{i_0}x_1\|}{\|T^{i_0}x\|} &= \frac{\|T^{i_0}x_1\|}{\|T^{i_0}x_1 + T^{i_0}x_2\|} \le \frac{\|T^{i_0}x_1\|}{|z_1^*(T^{i_0}x_1 + T^{i_0}x_2)|} \\ &= \frac{\|T^{i_0}x_1\|}{|z_1^*(T^{i_0}x_1)|} = 1, \end{aligned}$$

which follows from (52), (54) and the fact that $||z_1^*||=1$. For $i=1,\ldots,k+1$ rewrite (65) as

$$\left(\frac{2}{3} - 2f(\eta)^{3/4}\right)|A_i| \le \frac{2}{f(\eta)^{1/4}} + \left(4f(\eta)^{1/2} + \frac{2}{f(\eta)^{1/4}}\right)|A_0| + \sum_{\substack{j=1\\j\neq i}}^{k+1} f(\eta)^{3/4}|A_j|.$$

Thus, since $f(\eta) < \left(\frac{1}{6}\right)^{4/3} \land \left(\frac{1}{4}\right)^{1/2}$ (by (49)), we obtain

$$\frac{1}{3}|A_i| \le \frac{2}{f(\eta)^{1/4}} + \left(1 + \frac{2}{f(\eta)^{1/4}}\right)|A_0| + \sum_{\substack{j=1\\j\neq i}}^{k+1} f(\eta)^{3/4} |A_j|.$$

Hence, since $1 \le 1/f(\eta)^{1/4}$, we obtain that for $i=1,\ldots,k+1$,

(66)
$$|A_i| \le \frac{6}{f(\eta)^{1/4}} + \frac{9}{f(\eta)^{1/4}} |A_0| + 3 \sum_{\substack{j=1\\ j \ne i}}^{k+1} f(\eta)^{3/4} |A_j|.$$

By substituting (64) in (66) we obtain that for $i=1,\ldots,k+1$,

$$(67)|A_i| \le \frac{6}{f(\eta)^{1/4}} + \frac{36}{f(\eta)^{1/2}} + 72f(\eta)^{1/4}|A_0| + 36\sum_{j=1}^{k+1} f(\eta)^{1/2}|A_j| + 3\sum_{\substack{j=1\\j\neq i}}^{k+1} f(\eta)^{3/4}|A_j|$$

We claim that (64) and (67) imply that $\max\{|A_i|:0 \le i \le k+1\} \le 1/f(\eta)$ which finishes the proof. Indeed, if $\max\{|A_i|:0 \le i \le k+1\} = |A_0|$ then (64) implies that

$$|A_0| \le \frac{4}{f(\eta)^{1/4}} + 8f(\eta)^{1/2} |A_0| + 4(k+1)f(\eta)^{3/4} |A_0| \le \frac{4}{f(\eta)^{1/4}} + \frac{1}{3} |A_0| + \frac{1}{3} |A_0|$$

since

$$f(\eta) < \left(\frac{1}{24}\right)^2 \land \left(\frac{1}{12(k+1)}\right)^{4/3}$$

by (49). Thus

(68)
$$|A_0| \le \frac{12}{f(\eta)^{1/4}} < \frac{1}{f(\eta)}$$

since $f(\eta) < \left(\frac{1}{12}\right)^{4/3}$ by (49). Similarly, if there exists $l \in \{1, \dots, k+1\}$ such that $\max\{|A_i|: 0 \le i \le k+1\} = |A_l|$ then (67) for i=l implies that

$$\begin{aligned} |A_l| &\leq \frac{6}{f(\eta)^{1/4}} + \frac{36}{f(\eta)^{1/2}} + 72f(\eta)^{1/4} |A_l| + 36(k+1)f(\eta)^{1/2} |A_l| + 3kf(\eta)^{3/4} |A_l| \\ &\leq \frac{42}{f(\eta)^{1/2}} + \frac{1}{4} |A_l| + \frac{1}{4} |A_l| + \frac{1}{4} |A_l| \end{aligned}$$

since $1/f(\eta)^{1/4} \le 1/f(\eta)^{1/2}$ and $f(\eta) < \left(\frac{1}{288}\right)^4 \land (1/144(k+1))^2$ by (49). Hence

(69)
$$|A_l| \le \frac{168}{f(\eta)^{1/2}} \le \frac{1}{f(\eta)}$$

since $f(\eta) < \left(\frac{1}{168}\right)^2$ by (49). By (68) and (69) we have that $\max\{|A_i|: 0 \le i \le k+1\} \le 1/f(\eta)$ which finishes the proof. \Box

References

- 1. ANDROULAKIS, G., ODELL, E., SCHLUMPRECHT, T. and TOMCZAK-JAEGERMANN, N., On the structure of the spreading models of a Banach space, *Preprint*, 2002.
- ANDROULAKIS, G. and SCHLUMPRECHT, T., Strictly singular non-compact operators exist on the space of Gowers-Maurey, J. London Math. Soc. 64 (2001), 655– 674.
- 3. ARONSZAJN, N. and SMITH, K. T., Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), 345–350.

- ENFLO, P., On the invariant subspace problem in Banach spaces, in Seminaire Maurey-Schwartz (1975-1976). Espaces L_p, applications radonifiantes et géométrie des espaces de Banach, Exp. 14-15, Centre Math. École Polytechnique, Palaiseau, 1976.
- 5. ENFLO, P., On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), 213–313.
- FERENCZI, V., A uniformly convex hereditarily indecomposable Banach space, Israel J. Math. 102 (1997), 199–225.
- GASPARIS, I., Strictly singular non-compact operators on hereditarily indecomposable Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1181–1189.
- GOWERS, W. T., A remark about the scalar-plus-compact problem, in *Convex Geometric Analysis (Berkeley, Calif., 1996)* (Ball, K. M. and Milman, V., eds.), Math. Sci. Res. Inst. Publ. **34**, pp. 111–115, Cambridge Univ. Press, Cambridge, 1999.
- GOWERS, W. T. and MAUREY, B., The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851–874.
- LOMONOSOV, V. I., Invariant subspaces of the family of operators that commute with a completely continuous operator, *Funktsional. Anal. i Prilozhen.* 7:3 (1973), 55-56 (Russian). English transl.: *Funct. Anal. Appl.* 7 (1973), 213-214.
- READ, C. J., A solution to the invariant subspace problem, Bull. London Math. Soc. 16 (1984), 337–401.
- READ, C. J., A solution to the invariant subspace problem on the space l₁, Bull. London Math. Soc. 17 (1985), 305–317.
- READ, C. J., A short proof concerning the invariant subspace problem, J. London Math. Soc. 34 (1986), 335–348.
- READ, C. J., Strictly singular operators and the invariant subspace problem, Studia Math. 132 (1999), 203-226.

Received January 7, 2002

George Androulakis Department of Mathematics University of South Carolina Columbia, SC 29208 U.S.A. email: giorgis@math.sc.edu

Per Enflo Department of Mathematics Kent State University Kent, OH 44240 U.S.A. email: enflo@mcs.kent.edu